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Reconciling Mott-Statistical
and Energy-Based Fragmentation

In earlier sections the statistical fragmentation theory of Mott was considered
in some depth. An alternative fragmentation theory based on energy balance
principals has also been pursued by the present author and others. As posed,
the two theories appear to be based on strikingly different principals. In the
present section attempts are pursued to understand and reconcile differences
between the two theories. For the purpose of this reconciliation the essential
features of both theories are summarized. This summary represents a conden-
sation of same the material provided in the previous sections.

The present discussion will focus on the one-dimensional expanding ductile
ring fragmentation as originally posed by Mott. To provide an experimental
grounding for the theoretical comparisons the dynamic fragmenting ring data
on uranium 6% niobium [Grady and Olsen, 2003], discussed in further detail
later in this report, is used.

5.1 Mott Statistics-Based Fragmentation

As has been pursued here in some detail, three technical reports published
within the first half of 1943 revealed the maturing of Mott’s understanding of
the dynamic fragmentation process and, in the last of these reports, a statisti-
cal theory of fragmentation emerged, which is still one of the leading theories
available. The theory was published several years later in the open literature
[Mott, 1947]. This development is summarized in the following subsections.

5.1.1 The Mott Cylinder

The Mott theory of fragmentation is most readily conceptualized by again
considering the Mott cylinder (or ring) illustrated in Fig. 5.1. The Mott cylin-
der is an idealization of an expanding cylindrical shell whose outward motion
is imparted by some radial impulse. Mott, in particular, focused on the nat-
ural fragmentation of exploding pipe bombs. The model is applicable to other
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Fig. 5.1. Mott cylinder illustrating the one-dimensional activation and interaction
of fractures leading to the statistical fragmentation of the body

test conditions such as the magnetically driven metal ring data considered in
the present section.

An explosively-driven expanding metal cylinder is a decidedly multidimen-
sional fragmentation event, and fragmentation of the Mott cylinder is only an
approximation to this event. The theory attempts to capture the character-
istic circumferential spacing of fractures and the statistical distribution in
the spacing. It is not intended to account for the axial propagation and in-
teraction of cracks within a finite length cylinder. The Mott cylinder is an
expanding metal body with radial velocity u and radius r at the time when
multiple fracture and break up of the cylinder proceeds. Just preceding break
up, the cylinder body is in circumferential tension and undergoing uniform
circumferential stretching at a rate given by the ratio ε̇ = u/r.

Mott proposed that fragmentation proceeded through the random spatial
and temporal occurrence of fractures resulting in a distribution in fragment
lengths. Release waves propagate away from the sites of fracture relieving
the tension and precluding the possibility for further fracture within the re-
gions encompassed by tension release waves. Fragmentation is complete when
fracture-induced release waves subsume the entire cylinder.

Thus, within the model for dynamic fragmentation proposed by Mott, two
physical issues need to be addressed. First, is the issue of when and where
fractures occur on the Mott cylinder. Second, is the nature of propagation of
tensile release waves (Mott waves) away from the sites of fracture. Here each
issue will be addressed in turn.
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5.1.2 Mott Fracture Activation

Mott put forth arguments that energy dissipation was not of consequence in
the fracture process and proposed instead a statistical strain-to-fracture cri-
terion. Mott assumed that fractures occurred at random, around the circum-
ference of the cylinder at a frequency governed by a strain dependent hazard
function λ(ε) [e.g., Hahn and Shapiro, 1967], such that λ(ε)dε provided the
statistical number of fractures occurring within a unit length of the cylinder
circumference in the strain interval dε. It is important to recognize that Mott
considered λ(ε) to be an independently measurable property of the material.
An alternative and complementary application of the hazard function yields,

F (ε) = 1 − e−L
∫

λ(ε)dε, (5.1)

for the cumulative probability of fracture failure in tensile test specimens of
length L. Mott in fact used tensile test data on steels to estimate parameters
in the function λ(ε) as discussed in the preceding section.

Mott expected λ(ε) to be a strongly increasing function of strain and
suggested both an exponential and a power-law function. The former leads
to Gumbel statistics, while the latter yields Weibull statistics. Relative differ-
ences between the two distributions were identified earlier in this report. Mott
pursued the exponential hazard function. Here the two-parameter power-law
hazard function,

λ(ε) =
n

σ

( ε

σ

)n−1

, (5.2)

will be used. For reasonably large n the parameter σ is the expected value
of the strain to fracture of a unit length while σ/n is proportional to the
standard deviation in the strain to fracture.

5.1.3 Mott Tension Release

Statistical fracture in the Mott cylinder can now be generally addressed. The
tensile release function is,

Dx(ε) =

ε∫
0

2g(ε − η)λ(η) dη , (5.3)

where λ(η)dη is the statistical number of fractures activated on the Mott
cylinder at a strain η within interval dη. The function g(ε− η) is the distance
traveled by a tensile stress release wave over the strain interval ε − η for one
fracture. (Since strain rate is assumed to be constant over the duration of the
fracture process, strain and time are synonymous through ε = ε̇t.)

In (5.3) Dx(ε) is seen to provide the fraction of the Mott cylinder which
has been encompassed by stress release waves emanating from sites of fracture
at a current strain ε. The equation also determines the fraction of the cylinder
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in which further fracture is precluded. A form of (5.3) was derived by Mott
in the original 1943 report [Mott, 1943] and discussed in the previous several
chapters.

An inspection of (5.3) reveals that the function Dx(ε) will exceed unity at
sufficiently large strain. This non-physical result is a consequence of not ac-
counting for two factors in the fracture activation and stress wave propagation
process. First, the fracture activation function λ(ε) does not exclude the ac-
tivation of further fractures within regions previously stress relieved. Second,
the stress release function g(ε) does not account for the impingement and the
overlap of opposing release waves from separate neighboring fractures. Thus,
(5.3) is only applicable for a dilute number of fractures early in the fracture
and release process.

To account for fracture exclusion and wave impingement in the statistically
random Mott model, a statistical method introduced by Johnson and Mehl
(1939) discussed in the previous chapter is used. Exclusion and impingement
is accounted for through the relation,

D(ε) = 1 − e−Dx(ε) , (5.4)

providing the fraction of the Mott cylinder D(ε) encompassed by fracture
stress release waves at any strain ε. D(ε) and Dx(ε) are equivalent at early
times as they should be. The function D(ε) does approach unity as ε becomes
large.

5.1.4 Fracture Stress Release Function

A functional form of the stress release function g(ε) must be specified. There
are several possibilities. If the expanding Mott cylinder is elastic at the time of
fracture, then a constant elastic release wave velocity governed by the elastic
modulus is sensible. Mott, however, considered an expanding ductile metal
cylinder and assumed a material on the tensile yield surface governed by a
constant flow stress Y . Instantaneous fracture and rigid-ideally-plastic consti-
tutive response leads to the stress release function,

g(ε) =

√
2Y

ρε̇2
ε . (5.5)

It was shown earlier that diffusion rather than wave propagation governs stress
release under the assumed physical conditions.

5.1.5 Fracture Number Prediction

Given explicit forms for the fracture activation function from (5.2) and the
stress release function from (5.5), statistical predictions of the number of frac-
tures (and fragments) produced in the break-up of the Mott cylinder can be
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determined. Accounting for the stress relieved fraction of the cylinder D(ε),
the number of fractures at a strain ε is given by,

N(ε) =

ε∫
0

(1 − D(η))λ(η) dη . (5.6)

Completing the integral in (5.3) and using (5.4) to obtain D(ε), integration
of (5.6) to infinite strain yields,

N = βn

(
ρε̇2

2πY

n

σ

)n/(2n+1)

, (5.7)

for the number of fractures per unit length, where the numerical constant is,

βn =
(

2n

2n + 1

)1/(2n+1) ( 1√
n

Γ (n + 1/2)
Γ (n)

)2n/(2n+1)

Γ
(

2n

2n + 1

)
. (5.8)

For reasonably large n the constant βn approaches one in (5.7) and the power
approaches one-half, leading to a linear dependence of fracture number on
the expansion strain rate. The fracture number is determined by the standard
deviation (
 1.283 σ/n) of the power-law fracture frequency function λ(ε) as
was noted by Mott. The statistical temporal history of fractures appearing on
the Mott cylinder can be determined by retaining the strain dependence of
the integral in (5.6).

5.1.6 Fracture Distribution Prediction

Additionally, the random placement of fractures on the Mott cylinder both
in space and in time, as assumed in the Mott model, allows for calculation of
the statistical distribution of fracture spacing (fragment lengths). This calcu-
lation was performed graphically by Mott and has been completed by analytic
methods as shown in the previous section for the special case of n = 1 in the
power-law fracture frequency function. The calculated analytic distribution in
fracture spacing by this analytic method is,

f (x) =
β2

4
1
xo

(
x

xo

)3

e−
1
4 (x/xo)3

1∫
0

(
1 − y2

)
e−

3
4 (x/xo)3y2

dy , (5.9)

where β = 3Γ(2/3) and xo = (3σY/2ρε̇2)1/3. The sensitivity of the size dis-
tribution to the functional form of the fracture frequency function λ(ε) is not
known, but comparison of the analytic distribution from (5.9) and the graph-
ical distribution of Mott suggests that this sensitivity is probably small. Both
the analytic and the graphical distribution are again compared in Fig. 5.2.
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Fig. 5.2. Comparison of the graphic and the analytic solution for the Mott distri-
bution of fragment lengths

In summary, the statistics-based theory of dynamic fragmentation devel-
oped in the seminal study of Mott provides a physically plausible and in-
tellectually satisfying description of the fragmentation process. Within the
one-dimensional model of the Mott cylinder the theory is fully predictive,
providing the average fragment size and the distribution about the average,
as well as the statistical temporal history of fracture and the strain-to-fracture.

5.2 Energy-Based Fragmentation

A theory of dynamic fragmentation based on markedly different initial as-
sumptions has also been pursued [Grady et al., 1984; Kipp and Grady, 1985].
Again, the one-dimensional fracture and fragmentation on the Mott cylinder
in Fig. 5.1 provides the model for consideration of the theory in the present
context. The fundamental difference in the two theories is that Mott assumed
energy dissipated in the fracture process was not of concern, and that frac-
ture at a site on the cylinder would be effectively instantaneous. In contrast,
energy dissipation and an associated fracture delay time lies at the heart of
the energy-based fragmentation theory.
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5.2.1 Fracture Calculation

Formulation of the energy-based fragmentation theory on the expanding duc-
tile Mott cylinder proceeds by extending the stress release analysis developed
by Mott to calculate the time history of plastic release waves (Mott waves) em-
anating from sites of fracture. The extension of the analysis has been pursued
in Chaps. 3 and 4, and proceeds by considering, rather than instantaneous
fracture, a fracture resistance which reduces from the flow stress Y to zero
as a crack-opening-displacement parameter y goes from zero to some critical
crack opening displacement yc. An assumption of linear reduction of the frac-
ture resistance then leads to a fracture energy dissipation Γ = Y yc/2. The
assumption of other functional forms for the reduction of fracture resistance
(Chap. 4) does not markedly alter the value of Γ. Momentum balance for the
rigid ideally plastic problem leads to the following differential expression for
the position x of the Mott release wave [Kipp and Grady, 1985],

ρε̇x
dx

dt
=

Y 2

2Γ
y , (5.10)

while motion of the crack opening displacement gives,

dy

dt
= ε̇x . (5.11)

The coupled equations are readily solved yielding,

x(t) =
1
12

Y 2

ρΓ
t2 , (5.12)

for the motion of the Mott release wave while crack opening over 0 ≤ y ≤ yc

is given by,

y(t) =
1
36

ε̇Y 2

ρΓ
t3 . (5.13)

The time to fracture is determined by the time for the crack opening displace-
ment to achieve yc and is calculated to be,

tc =
(

72ρΓ2

Y 3ε̇

)1/3

. (5.14)

Over the time tc the Mott release wave travels a distance from the site of
fracture,

xc =
(

3Γ
ρε̇2

)1/3

. (5.15)
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5.2.2 Fragment Size and Fragmentation Toughness

The distance xc over which the Mott release wave propagates determines
the minimum spacing of separate fractures permitting fracture completion
without interaction of release waves. The theory assumes that the nominal
fragment length xo is given by twice the distance xc or,

xo = 2xc =
(

24Γ
ρε̇2

)1/3

. (5.16)

The fracture resistance Γ is considered to be a property of the material
characterizing the dissipation in the fracture growth process. It is possible,
under certain failure modes, to estimate the fracture resistance Γ from other
material properties [Kipp and Grady, 1985]. Fracture toughness is the prop-
erty commonly used to quantify the static (and dynamic) fracture resistance
of metals. Thus, it is sensible in the present development to define a prop-
erty with the dimensions of fracture toughness through the relation of linear
elastic fracture mechanics relating fracture strain energy release and fracture
toughness. Namely,

Kf =
√

2EΓ , (5.17)

where E is the elastic modulus. The property Kf will be identified as the frag-
mentation toughness of the metal and will not presume any relationship to the
clearly defined static fracture toughness Kc. Frequently, however, Kc is found
to provide a very adequate first order estimate for the fragmentation tough-
ness as will be shown in later chapters. The expression for the characteristic
fracture spacing from (5.16) then becomes,

xo =

(√
12Kf

ρcε̇

)2/3

. (5.18)

The energy-based theory does not address the issue of the statistical dis-
tribution of fragment sizes. It is assumed that (5.18) provides an average
fragment size and that the fragment number per unit length is provided by
the inverse of (5.18), or,

N =

(
ρcε̇√
12Kf

)2/3

. (5.19)

Thus, (5.19) provides the energy-based spatial fracture frequency prediction
to be compared with (5.7) of the Mott statistical theory.

5.3 Comparisons of the Fragmentation Theories
with Experiment

A range of diverse experimental fragmentation investigations could be used,
and in fact has been used, to explore the predictive abilities of Mott’s
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Fig. 5.3. Fragment number versus expansion velocity at fracture for U6Nb expand-
ing ring fragmentation tests

statistics-based theory and the more recent energy-based fragmentation the-
ory. Here, consideration will be restricted to a recent quite-thorough study of
dynamic fragmentation of magnetically driven uranium-6%-niobium (U6Nb)
metal rings with pertinent experimental data shown in Figs. 5.3 and 5.4.
Further details on the experimental test method are provided in a later chap-
ter. The experimental geometry nicely replicates the fragmentation model
assumed by Mott and provides data directly comparable with the theoretical
predictions.

5.3.1 Experimental Fragmentation Results

In the selected study U6Nb metal rings approximately 30 mm in diameter and
with a 0.75 mm square cross section were accelerated by a pulsed magnetic field
to radial velocities in the range of 50–300 m/s. Actual acceleration is provided
by an aluminum pusher ring which accommodates most of the induced electric
current. The aluminum ring is arrested prior to fragmentation allowing free
flight of the U6Nb ring preceding break up. Additional details are provided
in Chap. 8.

Radial velocity history of the U6Nb rings was measured with time-resolved
velocity interferometry or VISAR [Barker and Hollenbach, 1972]. Measured
deceleration of the freely expanding ring prior to fragmentation was used to
calculate a tensile flow stress of nominally one GPa for the selected heat
treated material. Fragmentation for the corresponding material occurred at
an expansion of approximately 30%.
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In each test the number of fragments produced (equivalently, the number
of fractures) was determined. Fragment number versus the expansion velocity
at fragmentation are shown for the series of U6Nb expanding ring experiments
in Fig. 5.3. The anomalous point high on the graph is the consequence of one
test on a markedly differently heat treated U6Nb sample (discussed further in
Chap. 8). A least squares fit, excluding the one anomalous point, provided the
power law representation of the data shown in Fig. 5.3. In one representative
test each fragment was separately weighed and the complementary cumulative
fragment size distribution shown in Fig. 5.4 was obtained.

5.3.2 Comparison with the Mott Statistics-Based Theory

Weibull parameters σ and n are necessary in the Mott statistical theory to
predict the fragment number dependence on velocity (or strain rate) and
are not available for the U6Nb material tested. Hence, only sensibility of
the experimental results can be examined. The observed experimental power
law dependence of fragment number on expansion velocity is close to two-
thirds and indicates that the Weibull parameter n in (5.7) is very close to
unity. Assuming that n = 1, the second Weibull parameter is calculated to be
σ = 7.7×10−5m. The standard deviation in strain to fracture calculated from
(5.1) is approximately σ/L. Considering specimens of length one centimeter,
the nominal length of fragments in the ring tests, a scatter in strain to fracture
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of approximately 0.01 or about 3% of the observed 0.30 strain to fracture is
calculated. Thus, the Weibull parameters within the Mott statistical theory
for the fragmentation of U6Nb rings are quite plausible.

Prediction of the distribution in fracture spacing is also a facet of Mott’s
statistical theory. Comparison of both the graphic distribution generated by
Mott and the analytic distribution from (5.9), both displayed in Fig. 5.2, are
compared with the distribution determined experimentally in Fig. 5.4. The
observed distribution and the theoretical distributions based on the Mott
statistical fracture theory are also in reasonable accord.

5.3.3 Comparison with the Energy-Based Theory

The energy-based fragmentation theory directly predicts from (5.19) a two-
thirds power dependence of fragment number on strain rate or, equivalently,
the expansion velocity at fracture. A two-thirds power dependence curve is
compared with the data and the experimental fit in Fig. 5.3 and shows sensible
agreement with the data.

To further test the energy-based theory the fragmentation toughness is
calculated through (5.19) for each experiment. This representation is shown
in Fig. 5.5. A value of Kf in excess of 60 MPa·m1/2 determined from the
fragmentation data is remarkably close to a static fracture toughness of ap-
proximately 90–110 MPa·m1/2 measured on similar U6Nb alloys.

0 50 100 150 200 250 300

Velocity (m/s)

0

20

40

60

80

100

120

140

T
ou

gh
ne

ss
  (

M
P

a·
m

1/
2 )

Static Kc

Uranium Alloy

Dynamic Kf

Fig. 5.5. Dynamic fragmentation toughness calculated through theoretical relation
relating fragment number, expansion rate and material toughness. Comparison with
static toughness data for U6Nb



108 5 Reconciling Mott-Statistical and Energy-Based Fragmentation

Other features observed in the U6Nb ring fragmentation experiments also
attest to the importance of energy dissipation and finite fracture time in the
dynamic fracture process. Inspection of fragments revealed fully developed
necking regions – a signature of fractures which were enveloped with tensile
release (Mott) waves and fracture growth arrested before full fracture and
separation was achieved.

5.3.4 Comments on the Mott Fracture Frequency Function

In the development of the Mott statistical fragmentation theory a statisti-
cal fracture frequency function was required. Mott discussed two very viable
functional forms; the power law,

λ(ε) =
n

σ

( ε

σ

)n−1

, (5.20)

and the exponential law,
λ(ε) = Aeγε . (5.21)

The latter equation, written in a more common statistical form is,

λ (ε) =
1
σ

e(ε−µ)/σ , (5.22)

where the correspondence to the Mott parameters, introduced in Chap. 3,
σ = 1/γ and A = (1/σ) exp(−µ/σ), is made.

The power law leads to the Weibull extreme value cumulative probability
of fracture function,

F (ε) = 1 − e−(ε/σ)n

, (5.23)

and probability density function,

f (ε) =
n

σ

( ε

σ

)n−1

e−(ε/σ)n

. (5.24)

Correspondingly, the exponential law,

λ (ε) =
1
σ

e(ε−µ)/σ, (5.25)

provides a Gumbel cumulative probability,

F (ε) = 1 − exp
(
−e(1/σ)(ε−µ)

)
, (5.26)

and probability density function,

f (ε) =
1
σ

exp
(

1
σ

(ε − µ) − e(1/σ)(ε−µ)

)
. (5.27)
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Although, both extreme value representations of the statistical fracture
frequency have two parameters, they are far from equivalent. The parame-
ter σ in both is the distribution scale parameter. The Weibull representation
also has a distribution shape parameter n, whereas the Gumbel distribution,
in contrast, is lacking a shape parameter, but specifies instead the distribu-
tion location parameter µ. The Mott fragment number prediction based on a
Gumbel fracture frequency representation is,

N =
1√
π

√
ρε̇2

2Y σ
. (5.28)

The location parameter µ plays no role in the fragment number prediction
either in terms of the fragment length scale or in the strain rate dependence.
The parameter µ does govern the strain to fracture, however.

The fragment number prediction based on a Weibull representation is,

N = βn

(
ρε̇2

2πY

n

σ

)n/(2n+1)

, (5.29)

and it is observed that the fragment number depends on both the distribution
scale and shape parameter.

A location parameter could also be included in the power law fracture
frequency and Weibull fracture probability by the replacement ε → ε−µ. The
resulting distribution would then be a three parameter representation. Again,
however, the location parameter would control only the strain to fracture
and would not influence either the fragment length scale or the strain rate
dependence. Equation (5.29) would remain the same.

As the shape parameter n in the Weibull distribution becomes large, the
character of the two extreme value distributions becomes similar. The frag-
ment number becomes dependent on the strain rate to the first power in both
cases and the fragment size scale is determined solely by the distribution stan-
dard deviation (proportional to σ in both cases). As the standard deviation
approaches zero both density distributions uniformly converge to a Dirac delta
function.

Experimental data, however, suggest a two-thirds power strain rate de-
pendence of fragment number in some cases (although not all). The U6Nb
fragmenting ring data discussed here, for example, certainly supports such
strain rate dependence. The Weibull fracture frequency representation (with
shape parameter n = 1) supports this experimental observation. The Gumbel
distribution does not.

5.4 Statistical and Energy-Based Theory
of Fragmentation

Both Mott’s statistical theory and the energy-based theory have features in ac-
cord with the results of the U6Nb expanding ring fragmentation experiments.
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Frequency, and in particular, the statistical spread in spacing of fractures
are consistent with predictions of the Mott theory. The favorable strain rate
dependence and the very close agreement between static fracture toughness
and the inferred dynamic toughness are, on the other hand, supportive of the
energy-based theory. It would seem that a broader theory encompassing con-
cepts from both the statistics-based and the energy-based approaches would
be appropriate.

5.4.1 Merging of Theories

The statistical fragmentation theory of Mott is based on two functional prop-
erties characterizing response of the material in a dynamic fragmentation
event. First, is a strain-dependent fracture activation function λ(ε), which
has been selected here as the power law form,

λ(ε) =
n

σ

( ε

σ

)n−1

. (5.30)

Second, is the diffusion-governed tensile stress release propagation function
from sites of fracture,

g(ε) =

√
2Y

ρε̇2
ε . (5.31)

Together the Mott theory yields the spatial fracture frequency from (5.7),

N = βn

(
ρε̇2

2πY

n

σ

)n/(2n+1)

. (5.32)

In contrast, the energy-based theory yields for the average spatial fracture
frequency,

N =
(

ρε̇2

24Γ

)1/3

. (5.33)

The theories are equivalent, if the Weibull constants have the unique values,

n = 1 , (5.34)

and,

σ = β3
1

12
π

Γ
Y

∼= 5
Γ
Y

. (5.35)

Thus, the requisites of the energy theory would uniquely constrain the Weibull
parameters and the functional form of the fracture activation function of
Mott’s statistical theory. Equation (5.35) identifies a material-specific length
scale σ and requires, through (5.30), that the fracture activation function be
constrained to a constant λ(ε) = λo = σ−1.

The fracture activation functions proposed by Mott, and as constrained
by the energy theory, are illustrated in Figs. 5.6 and 5.7. The function λ(ε) in
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statistics-based and energy-based fragmentation theories
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Fig. 5.6 specifies fracture activation frequency as increasing plastic strain ε is
achieved. Thus, increasing expansion rates are required to achieve increasing
levels of strain to fracture. Below the strain at which the two functions cross
in Fig. 5.6, the lower rate of fracture activation is provided by the rapidly
increasing power-law expression for λ(ε). Above the cross-over strain the con-
stant expression for λ(ε) = λo, inferred from energy considerations, provides
the lesser rate of fracture activation.

From the Mott statistical development outlined earlier, the cumulative
strain to fracture is calculated from the expression,

εf =

∞∫
0

(1 − D)dη . (5.36)

It is readily shown that the cumulative strain to fracture is εf = αnε̇2/(2n+1)

where αn is a constant function of the material properties. The strain εf in-
creases with the expansion rate ε̇. Thus, the comparison indicates that, with
increasing expansion rate, a strain to fracture which exceeds the cross-over
strain is eventually achieved. Fragmentation and the frequency of fractures
become governed by fracture energy dissipation properties above the cross-
over strain.

This observation suggests a reinterpretation of the fracture activation func-
tions. The rapidly increasing Mott power law function would, more appropri-
ately, be the fracture seeding function. This function characterizes the per-
turbations and defects in the body leading to fracture (the seeds of fracture),
but does not necessarily specify the fracture activation process itself. Above
the cross-over strain the constant energy-based function provides the fracture
survival rate. Below the cross-over strain the fracture seeding function limits
the fracture activation and there is a one-to-one correspondence between frac-
tures seeded and fractures that survive. Above the cross-over strain, however,
many fractures are initiated, but energy requirements limit fracture survival
and only a subset of fractures seeded achieve completion.

5.4.2 Strain to Fracture

In the statistical theory of Mott, both strain to fracture and fracture frequency
are uniquely determined through the parameters σ and n in the power-law
fracture activation function. The theory of Mott, however, cannot also account
for the two-thirds power dependence of the average fragment number on strain
rate predicted by the energy-based theory, and also observed in the U6Nb
expanding ring experiments.

With the extended statistical energy-based theory, strain to fracture in
addition to the statistical fragment size and strain-rate dependence features
can be accounted for. Prediction is dependent on proper selection of the Mott
fracture seeding function,
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λ(ε) =
n

σ

( ε

σ

)n−1

, (5.37)

and the energy governed fracture survival function,

λ(ε) = λo , (5.38)

where, λo has the unique material dependence specified in (5.35). The cumu-
lative number n(ε), or integral of the fracture seeding and fracture survival
functions (the integral of (5.37) and (5.38)), are plotted in Fig. 5.7 (compare
with Fig. 5.6). The new parameter revealed in Fig. 5.7 is the constant of in-
tegration εo of the fracture survival function. The Mott fracture function is
determined by the solid segments of both of the functions shown in Fig. 5.7.

The theory has acquired an additional material parameter, but now sup-
ports the prediction of strain to fracture in addition to the statistical frac-
ture frequency, spacing distribution, and associated strain-rate dependence.
At fracture strain rates into the energy-governed fragmentation regime it is
readily shown that the statistical strain to fracture from (5.36) is,

εf = εo + α1ε̇
2/3 , (5.39)

where, α1 is calculated through (5.36) from the energy-based Mott fracture
properties. Experimental support for a strain rate dependence of the strain to
fracture is presented in Chap. 8.

This broader interpretation of fragmentation merges both the statistical
principals of Mott and the fracture energy requirements of the energy-based
theory. A wider set of properties characterizing the solid body of interest is
required, however. The Mott seeding function characterizes the defect state
of the body governing the strain-dependent nucleation of potential fractures.
Weibull parameters in the two-parameter power law function serve this pur-
pose in the present development. The Mott survival function incorporates the
energy dissipation, or fragmentation toughness, properties of the material.
Further material properties and supporting theory are needed to establish
onset of the strain to fracture.

5.5 Computational Simulations of Ring Fragmentation

Partial support for the extended theory is provided by a one-dimensional
computational simulation of the Mott fragmentation process performed by
Kipp and Grady (1986). At that time it was recognized that interplay between
dynamics of the fragmentation event and the population of flaws seeding the
multiple fracture process could lead to conditions in which flaw structure
controlled the extent of fragmentation on one hand while energy limitations
controlled fragmentation on the other. A rationale for analytically merging
the range of behaviors was not recognized, however.
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The following computer simulations of dynamic fragmentation were per-
formed to support experimental fragmenting ring studies performed at that
time [Grady et al., 1984]. A one-dimensional finite difference wave code was
used to calculate the response of an aluminum rod or wire 0.1 m in length and
1.0 mm in diameter stretching plastically at a flow stress Y = 100 MPa and
at a uniform stretching rate ε̇ = 104/s. Fracture sites were introduced ran-
domly in time according to a constant nucleation rate parameter λ(ε) = λo,
and randomly placed within the length of the rod. The nucleation rate λo was
the only parameter varied over the series of calculations. When fracture was
nucleated at a computational cell, stress in that cell was relaxed from the flow
stress Y to zero as the cell distended, such that the plastic fracture energy
within that cell of Γ = 20 kJ/m2 was dissipated. The number of fragments
produced as the nucleation rate λo was varied over approximately one order
of magnitude was determined from the simulations and are shown in Fig. 5.8.
Although, not directly duplicating the conditions of Fig. 5.7, the relationship
is apparent.

At reduced nucleation rates every fracture nucleation site grows to full frac-
ture. The number of fractures and the corresponding characteristic fragment
size is, thus, governed fully by the flaw structure and the fracture nucleation
(seeding) function. As the nucleation rate is increased the number of nucleated
fracture sites which fail to grow to completion correspondingly increases. At
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Fig. 5.8. Fragment number from computational simulations of a uniformly stretch-
ing aluminum rod [Kipp and Grady, 1986]
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Fig. 5.9. Fragment distribution from computational simulation and comparisons
with Mott statistical fragmentation theory

the highest nucleation rates the number of fragments becomes independent of
the number of fracture sites nucleated and is determined strictly by the frac-
ture energy Γ resisting fracture growth. The energy governed constant fracture
survival rate, λo

∼= Y ε̇/5Γ, identified in Fig. 5.8, is sensibly consistent with
the expected transition from flaw limited to energy-limited fragmentation.

A cumulative fragment length distribution from one computational simu-
lation is compared with the predicted graphic and analytic Mott distribution
in Fig. 5.9. The computational distribution is also fully consistent with the
statistical theory.

5.6 Fracture Physics

Of the properties required to characterize the fragmentation response of an
expanding metal cylinder, the fracture energy captured through the property
Γ is probably the most apparent. That some degree of work must be ex-
pended, and some fracture energy overcome, in opening the cracks delineat-
ing the fragment boundaries produced in the fragmentation event is inherently
reasonable. Less apparent are details of the deformation mechanisms occur-
ring in the fracture growth and dissipation process. Plastic necking, adiabatic
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shearing, and ductile fracture are all viable mechanisms. It is likely that all
of the above mentioned mechanisms will contribute to some degree.

Considerably less intuitive are the material features responsible for onset
of fracture; analytically expressed in this development by the Mott seeding
function and quantified by the Weibull parameters in the power-law hazard
function. In most events leading to the dynamic expansion and fragmentation
of ductile metal rings and shells a degree of stable plastic stretching is accom-
modated before the fracture occurs. This deformation is most likely a con-
sequence of stabilizing plastic hardening of the component metal. As plastic
hardening saturates, however, continued stretching and thinning becomes in-
herently unstable and susceptible to perturbations in the deformation. Sources
of these perturbations are far from certain. Granularity of the device metal is
a reasonable source of deformation perturbations. Perturbations from metal
granularity leading to fracture would suggest sensitivity of the fragmentation
process (particularly the effective strain to fracture) to grain size and related
material issues.

There are also convincing indications that surface features, either inherent
or induced, play a role in the perturbations seeding fracture onset. Imper-
fections in metal-explosive interfaces leading to deformation perturbation as
detonation-induced shock waves are coupled into the metal system are also
suspect.
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