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Physics-Based Statistical Methods

Mott reached closure in his exploration of geometric fragmentation statistics
early in his third internal report. In the remainder of this report he undertook
a seminal investigation of the fragmentation of exploding shells, and developed
a statistical theory of dynamic fragmentation elegant in its formulation and
insightful in the physics explored. His theoretical effort has been noted in
numerous subsequent studies in dynamic fragmentation but has received little
in-depth study. Consequently, the fragmentation theory of Mott now over
60 years in the literature has been neither validated nor refuted. Efforts in
the present section attempt to assess and broaden the physical principles of
dynamic fragmentation first proposed by Mott. The efforts go beyond the
initial analysis of Mott, however, both in the range of fracture processes, as
well as in the analytic development.

3.1 Statistical Theory of Mott

The dynamic fracture analysis pursued by Mott is decidedly one-dimensional.
It is best visualized as that of a uniformly stretching rod or expanding ring
such as illustrated in Fig. 3.1. The model can be usefully abstracted to
fragmentation applications, such as a rapidly expanding cylinder in which
the circumferential stretching rate substantially exceeds the axial, or a one-
dimensional spall event within a body experiencing increasing tension within
a region of uniform axial velocity gradient. Here, for clarity, the model explo-
ration will focus on a stretching filament of material of unit cross section as
depicted by the expanding ring in Fig. 3.1. Prior to fracture, the body is uni-
formly stretched to an axial strain ε which is increasing at a constant strain
rate ε̇.

Mott considered the body to be rigid perfectly plastic and straining in
tension under a constant flow stress Y . The Mott kinematic conditions will
be referred to as plastic fracture. Tensile loading in which the body remains
elastic up to the point of fracture will also be considered (elastic fracture). Here
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Fig. 3.1. The one-dimensional Mott problem. A one-dimensional ring of material
undergoes outward expansion at constant velocity, u. Prior to fracture response of
the body is uniform tensile stretching at a strain rate ε̇ = u/r. Instantaneous fracture
occurs at random sites and waves originate at points of fracture which propagate
at finite speeds, relieving tensile stress and further stretching. Strain-dependent
fracture continues only in regions not yet encompasses by the stress-relieved waves

tensile stress is related to strain and strain rate according to σ = Eε = Eε̇t
where E is the appropriate elastic modulus.

At onset of breakup fractures are considered to occur at random in both
time (or equivalently strain) and in spatial location on the stretching body
as illustrated in Fig. 3.1. Following Mott it is assumed that fractures occur
instantaneously relieving the tensile stress at the point of fracture to zero.
Thus fracture resistance at the point of breakage and corresponding fracture
energy during the breakage process is ignored.

Mott argued that the fracture energy was not significant. Rather, he pro-
posed that the statistical nature of the fracture process determined both the
characteristic fragment size, as well as the distribution in fragment sizes.

Mott’s assumption of both instantaneous fracture and the insignificance
of fracture energy can, and should, be examined further. This issue will be
investigated in some detail in a later section.

Mott used observations of fracture in notched-bar specimens of steels to
support the theoretical approach. He noted that the reduction in the cross-
sectional area (the strain) before fracture was not the same from test to test.
Scatter in the strain to fracture of a few percent over a number of tests was
observed. He then proposed that strain to fracture was a random variable in
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the stretching body, and that fracture when the circumferential strain achieved
some critical level was governed by probabilistic causes.

Following fracture at a point, waves propagate away from the fracture
relieving the tensile stress and subsequent stretching within the regions en-
compassed by the waves. For plastic fracture, in which waves are propagating
into media stretching plastically at a constant flow stress Y these waves are
diffusive (Mott waves) and the distance traveled depends on time and physical
properties according to,

x =
√

2Y t/ρε̇ . (3.1)

If fracture is elastic, release waves propagate according to,

x =
√

E/ρt , (3.2)

where c =
√

E/ρ is the elastic wave speed.
Fracture physics in either the plastic or the elastic model is governed by

the competition of waves of release emanating from existing fractures, with
continuing fracture occurring within regions of the body not yet subsumed by
these waves.

3.2 Mott Wave Propagation

Equation (3.1) describes the time-dependent propagation of tensile stress re-
lease from points of fracture, and is representative of the insightful physics
introduced by Mott in pursuing an understanding of the dynamic fracture
process.

3.2.1 Mott Rigid Plastic Solution

To pursue his analysis of the distribution of the fracture spacing resulting
in the dynamic fracture of an expanding cylindrical shell, it was necessary
to establish the speed at which waves, signaling the drop in tensile stress,
propagated outward from points of fracture. Accordingly, Mott considered a
one-dimensional rod of unit cross section stretching plastically under a tensile
stress Y and uniformly at a constant stretching rate, ε̇. Fracture was initiated
by setting the tensile stress to zero at time t = 0 at some Lagrangian position,
say h = 0. Regions of the rod experiencing tensile stress less than Y were
considered rigid. Mott then realized that a boundary (herein called a Mott
wave) separated rod material stretching uniformly at stress Y in front of the
boundary from rigid material moving at the same uniform velocity behind
the boundary. This boundary (Mott wave) propagates away from the point
of fracture at h = 0. Features of the stress and velocity associated with the
Mott wave at some time t > 0 are illustrated in Fig. 3.2. Location of the Mott
wave is identified by x(t), while crack opening displacement is given by y(t).
The velocity field is then,
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Fig. 3.2. Stress and velocity field at time t after fracture at position h = 0 drops
tensile stress from Y to zero

u (h, t) =
{

ε̇x (t) 0 ≤ h < x (t)
ε̇h x (t) ≤ h ≤ ho

, (3.3)

where, ho is some arbitrary distance.
The corresponding stress field is equally apparent. The total momentum

of the rod within the region 0 ≤ h ≤ ho is just,

ρε̇x2 +

ho∫
x

ρε̇hdh =
1
2
ρε̇(x2 + h2

o) . (3.4)

Equating the time rate of change of momentum to the imbalance in tensile
stress yields the differential equation,

ρε̇x
dx

dt
= Y , (3.5)

for the position x(t) of the Mott wave at time t. Integration readily yields,

x (t) =

√
2Y t

ρε̇
. (3.6)

Thus, fractures occurring in the stretching body lead to the propagation of
waves, away from these points of fracture, which unload the tensile stress. The
time dependent motions of these Mott waves are governed by both material
properties and kinematic conditions according to the relation above. Within
regions subsumed by Mott waves, further fracture will not occur. Subsequent
fracture will only occur in regions, not yet reached by the unloading Mott
waves, which continue to stretch unimpeded at a rate ε̇ and flow stress Y .
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Mott recognized that excessively high velocities of the interface x(t), at
early times, was a consequence of the rigid-plastic assumption and inconsistent
with a more rigorous elastic-plastic treatment of the problem. He acknowledges
an analysis due to E. H. Lee, which was published some years later [Lee, 1967].
Lee considered the same initial and boundary conditions posed by Mott, but
treated material response behind the interface as elastic. It is shown that the
initial drop in stress from σ = Y to σ = 0 at the origin h = 0 propagates as a
decaying shock discontinuity in stress and particle velocity at an elastic wave
speed c. This shock discontinuity decays to zero at a distance of,

h =
2Y

ρcε̇
= λ , (3.7)

and at a time of,
τ = λ/c . (3.8)

Subsequent reflected elastic waves and the interface x(t) are acceleration dis-
continuities (discontinuities in the slopes of stress and particle velocities).
Continued solution reveals that the interface x(t) is a polygon in the h vs. t
domain with vertices,

h = nλ , t = n2λ/c , n = 1, 2, 3, . . . (3.9)

where each segment propagates at a velocity of,

cn =
c

2n − 1
. (3.10)

The rigid-plastic solution of Mott (1947) and the elastic-plastic solution
of Lee (1967) are compared in Fig. 3.3. The former is found to envelop the
elastic-plastic solution touching at the vertices. Within several characteristic
distances λ the rigid-plastic solution is found to be a very good approximation
to both the position of the interface, and to the stress and velocity field behind
the interface.

3.2.2 The Diffusion Solution

It is the simplicity of Mott’s analysis which so vividly reveals the underlying
physics. It is readily apparent that Mott’s solution is intended to apply at
the point at which hardening in the stretching rod saturates, and the tension
versus strain loses its hyperbolic character. At this point of stationary tension,
the governing equations become parabolic, and the diffusive nature implicit
in the motion of the Mott wave is expected.

The diffusive character of the stress release process can in fact be readily
demonstrated by writing the linear diffusion relation,

∂2σ

∂h2
− 1

κ

∂σ

∂t
= 0 , (3.11)
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Fig. 3.3. Comparisons of interface x(t) separating plastic region and rigid plastic
region according to solutions of Mott (1947) and Lee (1967)

with the diffusion constant,
κ = Y/2ρε̇ . (3.12)

Consider the same problem treated by Mott in which fracture at t = 0 and
h = 0 instantly decreases the tensile stress from σ = Y to σ = 0. This classic
solution [e.g., Matthews and Walker, 1964] can be immediately written down
for the stress,

σ/Y = erf (ξ) , (3.13)

and the velocity,

u

ε̇
√

4κt
=

√
4
π

exp
(
−ξ2

)
+ 2ξerf (ξ) − ξ . (3.14)

In (3.13) and (3.14) the similarity parameter,

ξ = h/
√

4κt , (3.15)

has been introduced. The present diffusion equation solution and the rigid-
plastic solution of Mott are compared in Fig. 3.4.

The rigid-plastic solution of Mott, the elastic-plastic solution of Lee, and
the solution to the diffusion equation are, of course, only models of the actual
processes of fracture and stress unloading occurring in the rupture of a rapidly
stretching ductile shell. Which model most accurately depicts reality probably
cannot be answered. All, however, reveal physics of the fracture process and
point to the decidedly diffusive nature of stress wave propagation.
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Fig. 3.4. Comparisons of solutions for Mott’s rigid-plastic model and a linear stress-
diffusion model of fracture in a stretching plastic rod

3.2.3 Fracture Energy Solution

One further extension of the fracture wave analysis developed by Mott is of
interest. Mott was convinced at the time of development of the rigid-plastic
fracture release wave solution that energy dissipated at the point of fracture
was inconsequential and could be ignored. Hence, the assumption of instanta-
neous stress drop at the point and time of fracture was inherently sensible. The
solution method is readily amenable to considerations of fracture when the
fracture energy is not inconsequential, [Grady et al., 1984; Kipp and Grady,
1985].

From (3.4), which equates the rate of change of momentum of the circum-
ferential strip of stretching case material 0 ≤ h ≤ ho, adjacent to a fracture
initiated at h = 0 and at time t = 0, to the misbalance in tensile stress at
opposite ends of that strip, obtain,

ρε̇x
dx

dt
= σ (ho) − σ (0) . (3.16)

The boundary condition in Mott’s solution method sets σ(0) = 0 at t = 0
corresponding to instantaneous stress release at the moment of fracture. It is
reasonable, however, to consider a model in which the tensile stress is reduced
gradually over time from σ(0) = Y to σ(0) = 0 as the crack opens. This model
would replicate a fracture resisting crack opening and thus, dissipate energy
in the crack-opening process. As illustrated in Fig. 3.5, a coordinate y(t) iden-
tifies the crack-open displacement, while x(t) determines the position of the
rigid-plastic boundary. A fracture resistance is proposed in which the bound-
ary tensile stress reduces linearly to zero at y = yc. (Other possible models for
the boundary resistance are considered in Chap. 4.) An energy of fracture is
then given by Γ = Y yc/2, the area under the stress-displacement curve. The
concepts are quite analogous to crack-opening-displacement models of Dug-
dale (1960) and Barenblatt (1962) in the treatment of quasistatic fracture
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Fig. 3.5. The sketch on the left illustrates crack-opening displacement y due to
motion of the rigid section of the strip. On the right the resisting tensile stress as a
function of crack-opening displacement is shown which dissipates an energy Γ when
displacement achieves a value yc

resistance. Equation (3.16) then gives the momentum balance relation,

ρε̇x
dx

dt
=

Y 2

2Γ
y , (3.17)

while motion of the crack-opening displacement provides,

dy

dt
= ε̇x . (3.18)

The coupled (3.17) and (3.18) are readily solved yielding,

x (t) =
1
12

Y 2

ρΓ
t2 , (3.19)

for motion of the rigid-plastic boundary during the crack-opening displace-
ment 0 ≤ y ≤ yc. The solution for crack-opening displacement is in turn given
by,

y (t) =
1
36

ε̇Y 2

ρΓ
t3 . (3.20)

When y exceeds yc (completion of fracture) the original solution of Mott
applies.

Setting y = yc in (3.20) and using the expression for fracture energy,
Γ = Y yc/2, the time tf at which fracture is complete can be calculated,

tf =
(

72ρΓ2

Y 3ε̇

)1/3

. (3.21)

Correspondingly, the distance xf traveled by the rigid-plastic boundary
during the time of fracture completion from (3.19) is,
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is compared with original instantaneous-fracture solution of Mott

xf =
(

3Γ
ρε̇2

)1/3

. (3.22)

The motion of the rigid-plastic boundary with the present resisting fracture
energy model is compared with Mott’s original instantaneous-fracture solu-
tion in Fig. 3.6. Equation (3.19) governs the motion until the fracture time
tf at a distance xf is achieved. Subsequent motion is governed by the same
free-boundary conditions as that of instantaneous fracture. The principal ef-
fect is to cause a delay in the boundary motion compared to the motion of
instantaneous fracture.

It is apparent that if two fractures initiate within a time tf and with
spacing between them of less than 2xf they will interfere with each other
before the fracture growth process is complete. Such interactions have been
studied and have shown under certain criteria that one or the other of the two
fractures will arrest growth and not complete the fracture process [Kipp and
Grady, 1985]. Out of this study a nominal fracture spacing of twice xf or,

xo =
(

24Γ
ρε̇2

)1/3

, (3.23)

has been proposed when conditions in the fracture process favor sufficient frac-
ture initiation sites such that fracture interaction and competition processes
governed by energy requirements determines the breakup intensity.

Thus, like Lee’s elastic-plastic solution places a lower bound on the dis-
tance of interface propagation before Mott’s rigid-plastic solution is adequate,
the present analysis places a lower bound on fracture spacing governing Mott’s
instantaneous fracture assumption.
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The above analysis, of course, opens further questions. What, for exam-
ple, would be the effect on the calculated fracture properties if crack-opening
resistance models other than linear softening were pursued? Also, to what
extent are fracture properties sensitive to the scale of initial perturbations
responsible for fracture onset? These extended issues detract, however, from
the pursuit of Mott’s fracture theory, but have been included in a section of
the next chapter.

3.3 Statistical Fundamentals

Mott proposed that the occurrence of fracture in a stretching body is gov-
erned by a fracture frequency probability function λ(ε) of the strain ε. The
expression λ(ε)dεdl is the chance that a fracture will occur in a length dl at
a strain ε within an interval dε. Dimensionally it can be considered the ran-
dom frequency of fracture per unit strain and length of the stretching body.
It is useful for both later developments, and for the present conceptualiza-
tion to consider an expanding ring composed of a large number No of equal
length segments. Imagine further each of these segments stretching indepen-
dently, but at the same rate. For the moment it is also convenient to consider
segments of unit initial length. Then at a strain ε,

dN

N
= −λ (ε) dε , (3.24)

is the fraction of the surviving segments N that fracture as the strain is in-
creased from ε to ε+dε. Equation (3.24) is integrated to provide the surviving
number of segments as a function of strain,

N = Noe
−
∫

λ(ε)dε . (3.25)

Equation (3.25) readily provides the cumulative probability distribution
for fracture within a body of unity length at or before a strain ε is achieved,

F (ε) = 1 − e−
∫

λ(ε)dε . (3.26)

The probability of a unit length surviving when strain ε is achieved is, of
course,

1 − F (ε) = e−
∫

λ(ε)dε . (3.27)

The complementary cumulative probability density function for a unit length
surviving to strain ε and fracturing within the subsequent unit strain interval
is,

f (ε) =
dF (ε)

dε
= λ (ε) e−

∫
λ(ε)dε = (1 − F ) λ (ε) . (3.28)

In the statistical theory of reliability or life testing the function λ(ε) is com-
monly known as the hazard function or the conditional failure (mortality)
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function [Hahn and Shapiro, 1967] and is more generally identified as h(ε)
in later analysis. Typically time rather than strain is the random variable.
However, in the present development time and strain are related through a
constant strain rate ε = ε̇t, and the two random variables are synonymous.

Mott (1943) proposed three functional forms for the fracture frequency
function λ(ε). They are

λ (ε) = λo, a constant , (3.29)

λ (ε) =
n

σ

( ε

σ

)n−1

, (n ≥ 1) , (3.30)

λ (ε) = Aeγε . (3.31)

The first is, of course, a special case of the second power law representation
for n = 1 leading to a constant or uniform fracture frequency. Mott sug-
gested that the first two expressions could be zero up to some ε = εo taking
their functional representation thereafter. This is not of consequence. Much
of Mott’s attention attended to the later exponential representation for λ(ε)
in (3.31).

The three fracture frequency functions are illustrated in Fig. 3.7. Although,
diversely different in this representation, it was shown by Mott that their con-
sequences on fragment size and distribution were not dramatically different.
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Fig. 3.7. The fracture frequency hazard functions for strain-to-fracture proposed
by Mott are compared. The parameters are for the uniform function, λo = 15; the
power-law function, σ = 1, n = 12: and the exponential function, A = 0.1, γ = 5
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Their functional forms have been explored extensively in treatise on sta-
tistics [e.g., Hahn and Shapiro, 1967]. The first constant hazard function leads
to the familiar exponential probability distribution used, for example, in ra-
dioactive decay. The second power-law hazard function leads to the Weibull
distribution commonly used in the breaking strength of materials. This dis-
tribution reduces to the exponential distribution for n = 1 and the Rayleigh
distribution for n = 2. The third hazard function is a form of asymptotic or
extreme-value probability distribution and leads to the Gumbel extreme value
distribution [Hahn and Shapiro, 1967].

We will principally pursue the consequences of a power law function and
the resulting Weibull distribution for the statistical fragmentation of a one-
dimensional stretching body. It has, in the intervening years, become the
common statistical representation for strength of solids. Doremus (1983) has
pointed out, however, that in spite of popularity of the Weibull distribution,
the normal distribution, and the Gumbel distribution, can in some applica-
tions better characterize strength data in solids. He points out that Weibull
selected the power law form for mathematical convenience and that there was
no theoretical basis. There are important differences between the two distri-
butions for the present fragmentation application, which will be pointed out
after details of the distributions are discussed.

The Weibull probability density function for fracture within a unit circum-
ferential length of the cylinder is,

f (ε) =
n

σ

( ε

σ

)n−1

e−(ε/σ)n

, (3.32)

while the cumulative distribution function is,

F (ε) = 1 − e−(ε/σ)n

. (3.33)

Shape and scale parameters of the distributions are n and σ, respectively.
Both probability-density and cumulative probability distribution functions
are shown in Fig. 3.8. Curves illustrate the tendency for the fracture to center
about a fixed strain to failure with increasing shape parameter n. The expected
value for strain to failure is given by,

σ Γ
(

1 +
1
n

)
, (3.34)

where Γ( ) is the gamma function. The standard deviation about the mean is
provided by,

σ

[
Γ
(

1 +
2
n

)
−
(

Γ
(

1 +
1
n

))2
]1/2

∼= 1.28
σ

n
. (3.35)

The asymptotic limit as n → ∞ for the standard deviation is shown in (3.35)
and is a reasonable estimate over much of the range of n. The functional
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Fig. 3.8. Probability density and cumulative probability distributions for power-
law fracture frequency function (Weibull distribution) with selected values of shape
parameter n. The scale parameter is σ = 1

form of these statistical properties for the Weibull distribution is illustrated
in Fig. 3.9.

For a body of arbitrary length l the hazard function λ(ε) is replaced by
lλ(ε) in previous relations. It is readily shown that σ in (3.34) and (3.35) is
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Fig. 3.9. Expected value and standard deviation for strain-to-fracture with increas-
ing values of the Weibull shape parameter n. The scale parameter is σ = 1
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then replaced by σ/l1/n illustrating the size dependence of fracture strength
common to Weibull statistics.

With reasonably high values of n the power-law hazard function and
Weibull distribution quite adequately describe the several percent scatter in
failure strain observed in metal tensile specimens. This analytic distribution
thus provides a reasonable statistical representation for describing the multi-
ple fragmentation process in rapidly stretching bodies such as the expanding
ring illustrated in Fig. 3.1.

In contrast, the strain-to-fracture exponential hazard function λ(ε) =
A exp(γε) and the resulting fracture distribution function chosen by Mott for
study is, like the power law hazard function and Weibull distribution func-
tion, a form of extreme value distribution. More specifically it is commonly
known as the Gumbel extreme value distribution [Hahn and Shapiro, 1967].
Characteristics of the distribution are more transparent rewriting the hazard
function in the form,

λ (ε) =
1
σ

e(ε−µ)/σ , (3.36)

where the correspondence σ = 1/γ and (1/σ) exp(−µ/σ) = A is made with
the relation of Mott. The probability density function for strain-to-fracture is
then,

f (ε) =
1
σ

exp
(

1
σ

(ε − µ) − e(1/σ)(ε−µ)

)
. (3.37)

Both hazard function and probability density function for Gumbel distribution
are illustrated in Fig. 3.10. The parameter µ is seen to be the distribution
mode and location parameter, while the expected strain to fracture is,

µ − neσ , (3.38)

where ne = 0.577 is the Euler number. The distribution standard deviation
is,

1.283σ . (3.39)

Thus, not unlike the Weibull distribution, as σ approaches zero the expected
value approaches the mode µ and the distribution converges to a delta func-
tion.

It is important at this juncture to point out a very significant difference
between the Gumbel extreme value distribution (selected by Mott for appli-
cation to fragmentation statistics) and the Weibull distribution. Whereas the
latter has both a distribution scale and shape parameter, the Gumbel distrib-
ution parameters determine only the scale and the location of the distribution
but are lacking a shape parameter. This difference will be shown to have an
important influence on the theoretically predicted dependence of fragment
size on the strain rate. The Gumbel distribution will yield a unique inverse
first power dependence on strain rate. Over physically reasonable values of the
shape parameter n the Weibull distribution predicts a strain rate dependence
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Fig. 3.10. Illustrates the Mott strain-to-failure distribution (Gumbel extreme value
distribution) with distribution location parameter µ = 1 and several values of the
scale parameter σ

ranging between an inverse first power and an inverse two-thirds power. Mott
commented on these differences but did not provide strong justification for
selection of the Gumbel distribution.

3.4 The Mott Distribution

The physical and statistical principles just outlined were then used by Mott
to determine a distribution in fragment lengths (or fracture spacing) resulting
from the plastic fracture of the expanding Mott ring. It should be emphasized
that this one-dimensional distribution bears no relationship to the earlier two-
dimensional Mott distribution arrived at intuitively by Mott and Linfoot from
Lineau’s theoretical efforts.

Mott noted that he was not able to develop an analytic solution and pro-
ceeded with a graphical method which is described below. It seems likely
that with a modest amount of additional time to reflect on his theory Mott
would have developed an analytic solution, which was his nature. It is inter-
esting that nearly concurrently other workers [Johnson and Mehl, 1939] were
pursuing transformation reaction kinetics in metals and developed analytic
tools ideally suited to Mott’s statistical fragmentation theory. This sensible
extension to the Mott development will also be described here.

The graphical solution to the statistical fragment size distribution derived
by Mott proceeds as follows: A parameter D is defined, which is a function of
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time t (or strain) such that 0 ≤ D (t) ≤ 1. At any time D(t) is the fraction of
the stretching body (Fig. 3.1) which has been subsumed by the Mott release
wavelets propagating from the points of fracture. Since further fractures are
assumed to occur only in the fraction of the body not yet encompassed by
these release wavelets 1 − D, clearly the probable number of fractures which
will appear in the time increment t to t + dt is,

dN = (1 − D) λ (ε̇t) ε̇dt . (3.40)

As previously pointed out, Mott chose to explore the fracture frequency rela-
tion λ (ε̇t) = A exp (γε̇t).

The release fraction D(t) of the plastic stretching body considered by Mott
is determined by the collective Mott waves emanating from fractures initiating
prior to time t. Each Mott wave propagates according to,

xi =
√

2Y/ρε̇ (t − ti)
1/2

, (3.41)

where ti is the initiation time of the ith fracture. Introducing a dimensionless
time through,

ξ = γε = γε̇t , (3.42)

Equation (3.41) becomes,

xi =
√

2Y/ρε̇2γ (ξ − ξi)
1/2

, (3.43)

where Mott recognizes the radical expression on the right of (3.43) as the
normalizing length scale (proportional to the average fragment length) for
the distribution in fragment lengths.

To determine the fragment distribution Mott worked with (3.40) and
(3.43). A graphical solution was carried out whereby he introduced fractures
at random at successive times determined by (3.40), and computed the col-
lective release fraction of the body D(t) with (3.43). Performing this task a
number of times provided a credible histogram of the distribution in fragment
lengths. The resulting distribution obtained by Mott as both a density dis-
tribution and a complementary cumulative distribution is shown in Fig. 3.11.
The normalizing length, Lo is that identified in (3.43). From the graphical
distribution Mott noted that the average fragment size was about 1.5 Lo.
Again this distribution bears no relation to the Mott distribution inferred by
Mott and Linfoot from Lineau’s theoretical efforts, and that is commonly used
to represent munitions fragmentation data.

This author is aware of only one effort to duplicate the statistical size
distribution analysis performed by Mott. Wesenberg and Sagartz (1977) per-
formed fragmentation experiments through magnetic inductive expansion of
aluminum cylindrical shells (see Chap. 8). Using computer methods and an
appropriate random number generator, they produced fragment size distri-
butions by solving the same pair of equations as Mott (3.40) and (3.43).
Distribution results were compared with their fragmentation data.
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Fig. 3.11. The fractional number density distribution (left) and fractional comple-
mentary cumulative number distribution (right) determined by Mott (1947) for the
fragmentation of a uniformly stretching plastic body. Normalizing length scale Lo is
identified in the text

Wesenberg and Sagartz displayed their calculated distributions as the aver-
age of the individual results of 10 rings, 100 rings, and 1000 rings, respectively,
and concluded that a reasonably large number of calculations was required to
achieve sensible convergence. Their distribution resulting from the average of
1000 rings is shown in Fig. 3.12 and compared with the distribution of Mott.
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Fig. 3.12. Comparisons of fragment distributions calculated by Mott (1947) and
by Weisenberg and Sagartz (1977)
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3.5 Dynamic Fracture as a Statistical
Transformation Process

In the present and subsequent subsections the essential ideas proposed by
Mott on statistical fracture and fragmentation will be pursued further. The
analytic statistical methods to be described will not necessarily provide im-
proved predictive capabilities. They will, however, provide alternative points
of view and provide analytic relations which are potentially amenable to gen-
eralization to more complex fragmentation problems. These methods also help
to clarify scaling features in the predicted fragment sizes and distributions.

The processes of dynamic fracture and fragmentation involve spatially and
temporally random nucleation and growth of fractures that have similarities to
other nucleation and growth phenomena (melting, recrystallization, detona-
tion reaction, etc.). In fracture, as in some of the other phenomena, nucleation
and growth of a single fracture can be treated in substantial detail. It is the
impingement or influence of one fracture, or region of growth, on others which
compounds the complexity of the total nucleation and growth process.

To treat problems of nucleation and growth, Johnson and Mehl (1939)
and Avrami (1939) introduced the concept of an extended volume fraction Dx.
The factor Dx is defined as the volume fraction of the body transformed disre-
garding further transformation nucleation in previously transformed material
(exclusion), and disregarding the overlap of growing transformation regions
(impingement). The extended volume fraction will exceed unity.

The actual transformed volume fraction D of the body is determined from
the ratio in the change of the extended and the actual transformed volume
fraction, namely,

dD/dDx = 1 − D , (3.44)

which integrates to,
D = 1 − e−Dx . (3.45)

In the present context the quantities Dx and D will apply to the stress-
relieved portion of the stretching ring (Fig. 3.1) during dynamic fracture. The
Johnson–Mehl–Avrami (JMA) relation is applicable to two-dimensional bod-
ies or areas, as well as to one-dimensional bodies or lines. Further discussion
of the statistical relationship between D and Dx is addressed in Chap. 4.

Although the work of Johnson and Mehl (1939) and Avrami (1939) was
focused on phase transformations in materials, their results have more general
application. Their result (the JMA relation) is based on the statistics of sur-
vival, in this case, survival at any time of the, as yet, untransformed volume.
The concept is independent of the physics involved and is applicable to any
nucleation and growth process which is random in nature. The JMA relation
allows initial attention to focus on the physics of the nucleation and growth
process at a single site. Equation (3.45) will then account for the coalescence
of multiple transforming regions.
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Consequently, analogous to Mott’s (3.40), an expression for the number
of fractures per unit length which occur at a past time τ within interval dτ ,
ignoring the stress-released regions, is

dNx = λ (η) dη . (3.46)

In (3.46) η = ε̇τ is identified as a non-dimensional time or, equivalently,
as the strain at past time τ . Release waves from fractures at past time τ (or
η) will have propagated a distance,

x = g (ε − η) , (3.47)

at the present time t (or ε = ε̇t). The function, g(ε) accounts for either elastic
wave speed in elastic fracture or Mott’s diffusive wave speed for plastic fracture
provided previously in (3.1) and (3.2). Therefore, the increment in extended
stress release region due to the earlier fracture is,

dDx = 2g (ε − η) dNx = 2g (ε − η) λ (η) dη , (3.48)

where the factor of 2 accounts for right and left facing release waves from each
fracture. Integrating over past time to the present yields,

Dx = 2

ε∫
0

g (ε − η) λ (η) dη . (3.49)

Equation (3.45) then provides,

D (ε) = 1 − e−Dx(ε) , (3.50)

the fractional stress-relieved region at any time in the dynamic fracture
process.

3.6 Fragment Size in the Mott Fracture Process

Perhaps most basic to a dynamic fragmentation event is the characteristic size
of the fragments produced. An experiment, such as the rapidly expanding ring
shown in Fig. 3.1, results in a number of fragments that can be counted. This
number can be divided by the circumferential length of the ring to determine
an average fragment length. Additional testing reveals that the number of
fractures produced is dependent on both the mechanical properties of the
test material as well as the dynamic conditions achieved. This dependence is
readily illustrated in Fig. 3.13 in which fragment numbers from similar tests on
rapidly expanding aluminum and copper rings are plotted against the radial
expansion velocity imparted to the ring at fracture [Grady and Benson, 1983].
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Fig. 3.13. Representative tests showing fragment number versus expansion velocity
for fragmenting aluminum and copper ring experiments [Grady and Benson, 1983]

3.6.1 Analysis of Elastic Fracture

In pursuing further the extended statistical approach initiated in the previous
section in treating the dynamic fracture model posed by Mott, the power-law
fracture frequency function (which results in Weibull extreme value statistics)
will be used. Consider first, elastic fracture in which fracture release waves
travel at a constant elastic wave velocity. Salient features of the analysis are
readily illustrated by the elastic fracture case, while the mathematics are
modestly simpler. Accordingly, the power-law fracture frequency from (3.30)
and the elastic wave speed (3.2) yield through (3.49),

Dx = 2
c

ε̇

n

σn

ε∫
0

(ε − η) ηn−1dη , (3.51)

where the elastic wave speed c =
√

E/ρ has been introduced. The substitution
y = η/ε yields,

Dx = 2
c

ε̇

n

σn
εn+1

1∫
0

(1 − y) yn−1dy , (3.52)

where the integral has the solution in terms of the gamma function,

Γ (n) Γ (2)
Γ (n + 2)

=
1

n (n + 1)
. (3.53)
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Consequently,

Dx =
2c

(n + 1) ε̇σn
εn+1 , (3.54)

and, through (3.50),
D = 1 − e−

2c
(n+1)ε̇σn εn+1

. (3.55)

Fracture activation within the unrelieved portion of the stretching body is
then calculated through,

dN = (1 − D) λ (ε) dε . (3.56)

Substituting the appropriate relations, the number of fractures per unit length
occurring in the fragmentation process is obtained from the integral over all
time,

N =
n

σn

∞∫
0

εn−1e−(aε)n+1
dε , (3.57)

where the notation has been simplified through,

an+1 =
2c

(n + 1) ε̇σn
. (3.58)

Substitute y = (aε)n+1 in (3.57) yields,

N =
1

(aσ)n
n

n + 1

∞∫
0

y
n

n+1−1e−ydy , (3.59)

where the integral is the complete gamma function Γ(n/(n + 1)). In the
original notation, the fracture number per unit length is arrived at,

N =
(

n

n + 1

) 1
n+1

Γ
(

n

n + 1

)(
ε̇n

2cσ

) n
n+1

. (3.60)

For the special case of n = 1,

N =
1
2

√
πε̇

cσ
, (3.61)

while for large n approximately,

N =
ε̇n

2cσ
. (3.62)
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3.6.2 Analysis of Plastic Fracture

A solution for the plastic fracture problem considered by Mott follows similar
analysis. Using instead the relation for the diffusive propagation of Mott waves
(3.1) the expression for the extended fracture release region corresponding to
(3.51) becomes,

Dx = 2

√
2Y

ρε̇2

n

σn

ε∫
0

(ε − η)1/2
ηn−1dη , (3.63)

or with y = η/ε,

Dx = 2

√
2Y

ρε̇2

n

σn
εn+1/2

1∫
0

(1 − y)1/2
yn−1dy . (3.64)

Solving for the integral, √
π

2n + 1
Γ (n)

Γ (n + 1/2)
, (3.65)

yields,

Dx =
√

π
n

n + 1/2
Γ (n)

Γ (n + 1/2)

√
2Y

ρε̇2

εn+1/2

σn
. (3.66)

The total number of fractures is calculated similarly through the simplifica-
tion,

Dx = (aε)n+1/2
, (3.67)

leading to the integral expression for the fragment number,

N =
1

(aσ)n
n

n + 1/2

∞∫
0

y
n

n+1/2−1e
−y

dy , (3.68)

and yielding,

N =
1

(aσ)n
n

n + 1/2
Γ
(

n

n + 1/2

)
. (3.69)

The fragment number per unit length in the original notation for plastic frac-
ture in the Mott model becomes,

N = βn

(
ρε̇2

2πY

n

σ

) n
2n+1

, (3.70)

where,

βn =
(

2n

2n + 1

) 1
2n+1

(
1√
n

Γ (n + 1/2)
Γ (n)

) 2n
2n+1

Γ
(

2n

2n + 1

)
. (3.71)
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Again the special cases yield for n = 1,

N = Γ
(

2
3

)(
ρε̇2

12Y σ

)1/3

, (3.72)

while for large n approximately,

N =

√
ρε̇2

2πY

n

σ
. (3.73)

Comparing standard deviation for the power-law fracture frequency
(
 1.28σ/n) with that for extreme-value function explored by Mott (
 1.28/γ)
we find from (3.73) that an average fragment length of 1/N gives,

√
π

√
2Y

ρε̇2

σ

n
=

√
πLo , (3.74)

where Lo is the same distribution length scale determined by Mott ((3.43)
and Fig. 3.11). Mott determined graphically that an average fragment length
was approximately 1.5 Lo, close indeed to the analytic result in (3.74).

3.6.3 Analysis with the Mott Fracture Hazard Function

The same analysis can be carried through with the strain-to-fracture acti-
vation function assumed by Mott, namely, the Gumbel extreme value dis-
tribution provided by (3.37) and displayed in Fig. 3.10. Using the release
propagation function,

g (ε − η) =

√
2Y

ρε̇2
(ε − η)1/2

, (3.75)

and the activation function,

λ (η) =
1
σ

e(η−µ)/σ , (3.76)

the extended fracture release region corresponding to (3.63) becomes,

Dx =
2
σ

√
2Y

ρε̇2

ε∫
0

(ε − η)1/2
e(η−µ)/σdη . (3.77)

The Gumbel distribution has the awkward feature of providing finite values
for negative ε. For realistic values of σ and µ, however, this contribution is
vanishing small and the integral in (3.77) over the interval [−∞, ε] can be
assumed providing, after the substitution y = ε − η,
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Dx =
2
σ

√
2Y

ρε̇2
e(ε−µ)/σ

∞∫
0

y1/2e−y/σdy , (3.78)

or,

Dx = 2Γ (2/3)

√
2Y σ

ρε̇2
e(ε−µ)/σ . (3.79)

Using the relation between D and Dx from (3.45) and,

N =

∞∫
0

(1 − D)λ (ε) dε ,

results in,

N =
1
σ

∞∫
0

e(ε−µ)/σe−be(ε−µ)/σ

dε , (3.80)

where b is the pre-exponential term in (3.79). The substitution y =
exp(ε − η)/σ, and recognizing that the lower limit is approximately zero for
µ/σ � 1, yields,

N =
1√
π

√
ρε̇2

2Y σ
. (3.81)

Accounting for the differing definitions of σ in the power-law and exponential
hazard functions, (3.81) and (3.73) are identical. Recall that Mott used γ =
1/σ in his application of the Gumbel distribution.

Again, it is emphasized that the lack of a shape parameter in the Gumbel
extreme value distribution leads to a unique first power dependence of frag-
ment number on strain rate (3.81). In contrast, strain rate dependence based
on the Weibull extreme value statistics depends on the distribution shape
parameter n (3.70).

3.7 Size Distribution in the Mott Fracture Process

The statistical analysis developed in the last several sections can be further
pursued to provide analytic solutions for the distributions in fragment size.
These analytic distribution solutions correspond to the graphic distribution
determined in the original analysis of Mott shown in Fig. 3.11. The solution
method is somewhat more detailed in that it is necessary to assess statisti-
cally when fracture release waves initiate and when they arrest, thus deter-
mining the unbroken distance spanned by the wave. The process is illustrated
in Fig. 3.14 in which release waves originating from two separate fractures
propagate distances l1 and l2, respectively, before colliding and arresting. The
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Fig. 3.14. Release waves originating from fracture 1 and fracture 2 travel distances
l1 and l2, respectively, before arresting. The distance l1 + l2 constitutes the length
of one fragment

distance, l1 + l2 constitutes the length of one fragment. The statistical frag-
ment size distribution is then the probability function for the expectation of
fragments of this specified length.

The solution is carried out for both elastic and plastic (Mott) fracture in
the present subsection. The solution method is also presented in general terms
in a later chapter, providing a clearer display of the solution methodology.

3.7.1 Analysis of Elastic Fracture

The solution will again be pursued first for that of elastic fracture in which
fracture release waves travel at the constant speed c =

√
E/ρ. Also a power-

law fracture frequency expression continues to be assumed. The analysis will
start with the solution for the extended length fraction of stress relieved region
from (3.54),

Dx =
2c

(n + 1) ε̇σn
εn+1 = (aε)n+1

, (3.82)

where,
D = 1 − e−Dx = 1 − e−(aε)n+1

. (3.83)

Calculate first the number of activated release waves Nx without regard for
exclusion (activation within previous stress relieved region) or impingement
(collision and arrest of opposing release waves). The symbols Nx and N refer
here to the number of Mott waves and not the number of fractures as in
previous sections. The rate of activation of release waves Ix is,

Ix = 2λ (ε) = 2
n

σ

( ε

σ

)n−1

, (3.84)

where the factor of 2 accounts for both a right and left facing wave emanating
from each fracture point. Nx is then simply,
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Nx =

ε∫
0

Ixdε = 2
( ε

σ

)n

. (3.85)

But at any time (or strain) a fraction D of the length of the body has been
stress relieved. The actual number of active release waves is,

N = Nx (1 − D) = 2
( ε

σ

)n

e−(aε)n+1
, (3.86)

accounting for both exclusion and impingement.
The rate of change of N is then,

dN

dε
=

2n

σn
εn−1e−(aε)n+1 − 2 (n + 1) an+1

σn
ε2ne−(aε)n+1

. (3.87)

From (3.87) we identify the rate of activation of release waves,

I+ =
2n

σn
εn−1e−(ae)n+1

, (3.88)

and the rate of arrest of release waves,

I− = −2 (n + 1) an+1

σn
ε2ne−(aε)n+1

. (3.89)

The activation rate I+ can also be calculated from the extended activation
rate Ix by accounting for exclusion,

I+ = Ix (1 − D) =
2n

σn
εn−1e−(aε)n+1

. (3.90)

Also, note that the arrest rate may be written,

I− = − (n + 1) an+1εnN . (3.91)

With the above relations, we will now proceed to calculate the number of
waves which activated at an earlier time η and arrested at a later time ε. The
unbroken distance l spanned by these waves will all be the same (Fig. 3.14).

Accordingly, the number δN of release waves activated at time η within
increment δη is, from (3.88),

δN =
2n

σn
ηn−1e−(aη)n+1

δη . (3.92)

The fraction of δN arrested at later time ε is, from (3.91),

d (δN) = − (n + 1) an+1εn (δN) dε . (3.93)

Equation (3.93) can be separated and integrated to obtain,
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δN = Ae−(aε)n+1
, (3.94)

where A is a constant of integration. Setting ε equal to the early time η in
(3.94) the constant of integration is seen from (3.92) to be,

A =
2n

σn
ηn−1δη , (3.95)

and consequently, (3.94) becomes,

δN =
2n

σn
ηn−1e−(aε)n+1

δη . (3.96)

Substituting the results of (3.96) into the right side of (3.93) yields,

d (δN) = −2n (n + 1) an+1

σn
εnηn−1e−(aε)n+1

δηdε . (3.97)

We now make the variable change,

x =
c

ε̇
(ε − η) , (3.98)

where x is the distance traveled by the release wave over the time interval
ε − η.

At the same time switching the incremental order on the left hand side
(3.97) results in,

δ (dN) = −2n (n + 1) an+1

σn

ε̇

c
dx

(
η +

ε̇

c
x

)n

ηn−1e−an+1(η+ ε̇
c x)n+1

δη . (3.99)

Integrating over all past time η provides,

dN = −2n (n + 1) an+1

σn

ε̇

c
dx

∞∫
0

(
η +

ε̇

c
x

)n

ηn−1e−an+1(η+ ε̇
c x)n+1

δη . (3.100)

Substituting y for the exponential exponent simplifies the integral to,

dN

dx
= −2n

σn

ε̇

c

(
ε̇x

c

)n−1
∞∫
b

[
(y/b)1/(n+1) − 1

]n−1

e−ydy , (3.101)

where,

b =
2

n + 1

(
ε̇

cσ

)n

xn+1 . (3.102)

Equation (3.101), when normalized, provides the probability distribution in
lengths of unbroken release wave segments, such as l1 and l2 in Fig. 3.14. It
does not, however, provide the distribution in fragment length as release wave



60 3 Physics-Based Statistical Methods

segments combined in pairs to constitute fragments (i.e., l1 and l2 in Fig. 3.14
combine to make a fragment of length, l = l1 + l2).

Thus, the distribution in fragment lengths is,

f (l) dl =
∫

l=l1+l2

p (l1) p (l2) dlidl2 , (3.103)

where p(li) is the normalized distribution in release wave segments and the
integral is over all release wave segment length l1 and l2 which sum to l.

Equation (3.101) is not analytically tractable for arbitrary values of n. It
is readily solved for n = 1, however, and this solution is provided here. Recall
that n = 1 corresponds to a statistically uniform rate of fracture activation
following onset of the first fracture. For n = 1 (3.101) reduces to,

dN

dx
= − 2

σ

ε̇

c

∞∫
b

e−ydy , (3.104)

or,
dN

dx
=

2ε̇

σc
e−

ε̇
σc x2

. (3.105)

Integrating (3.105) provides the normalizing factor and the probability distri-
bution in release wave segments,

p (x) = 2

√
ε̇

πσc
e−

ε̇
σc x2

. (3.106)

or, after introducing a length scale,

lo =

√
2σc

ε̇
, (3.107)

Equation (3.103) provides the integral,

f (l) dl =
8

πl2o

∫
l=l1+l2

e−2(l21+l22)/l2odl1dl2 . (3.108)

The integral is completed through,

l = l1 + l2, ξ = l1 − l2,

dl1dl2 = [∂ (l1, l2) /∂ (l, ξ)] dldξ ,

yielding,

f (l) =
4

πl2o
e−(l/lo)2

l∫
−l

e−(ξ/lo)2dξ , (3.109)
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and finally,

f (l) =
4√
π

1
lo

e−(l/lo)2erf (l/lo) , (3.110)

where erf ( ) is the error function. The cumulative distribution is provided by,

F (l) =

l∫
0

f (l) dl , (3.111)

while the expected value of l is,

〈l〉 =

∞∫
0

lf (l)dl =

√
2
π

lo , (3.112)

identically equal to 〈l〉 = 1/N for the predicted fragment number per unit
length from (3.61). Both the probability density and complementary cumula-
tive distributions for fragment length based on elastic fracture are shown in
Fig. 3.15.
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Fig. 3.15. Calculated probability density and complementary cumulative distribu-
tions in fragment lengths based on the Mott theoretical model for elastic fracture

3.7.2 Analysis of Plastic Fracture

The similar solution for the plastic fracture process pursued by Mott fol-
lows identical steps. A plastic wave speed, c =

√
2Y/ρ, introduced into the
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relation for the diffusive propagation of Mott waves yields (3.66) for the ex-
tended length fraction of stress-relieved region. Assuming as before, a power-
law relation for the rate of fracture activation, the probability distribution in
lengths of unbroken release wave segments corresponding to (3.101) is,

1
x

dN

dx
= −4n

σn

(
ε̇

c

)2 (
ε̇x

c

)2(n−1)
∞∫
b

[
(y/b)2/(2n+1) − 1

]n−1

e−ydy , (3.113)

where,

b =
2
√

πn

2n + 1
Γ (n)

Γ (n + 1/2)

(
ε̇

c

)2n
x2n+1

σn
. (3.114)

As before, the analytic solution cannot be pursued further for arbitrary
values of n. For the special case of n = 1 (3.113) reduces to,

1
x

dN

dx
= − 4

σ

(
ε̇

c

)2
∞∫
b

e−ydy , (3.115)

with,

b =
4
3
σ

(
ε̇

c

)2

x3 , (3.116)

yielding,
dN

dx
=

4
σ

(
ε̇

c

)2

xe−
4
3

1
σ ( ε̇

c )
2
x3

. (3.117)

Introducing the length scale,

lo =
(

3σ

4

( c

ε̇

)2
)1/3

, (3.118)

and normalizing, (3.117) leads to,

p (x) = β
x

l2o
e−(x/lo)3dx , (3.119)

for the probability density distribution of segment lengths corresponding to
(3.106) for elastic fracture and where β = 3/Γ (2/3).

Combining segment lengths in pairs as discussed in the paragraphs leading
to (3.103) provides the fragment size distribution for plastic fracture,

f (l) =
β2

4
1
lo

(
l

lo

)3

e−
1
4 (l/lo)3

1∫
0

(
1 − y2

)
e−

3
4 (l/lo)3y2

dy . (3.120)

The integral in (3.120) can be manipulated into an error function expression
if desired, although, it is readily computed with most available math software.
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The expected fragment size is calculated from the integral,

〈s〉 =

∞∫
0

lf (l) dl . (3.121)

Performed numerically the integral yields 〈s〉 
 1.48lo with lo provided from
(3.118). This calculation agrees, as it should, with the previous calculation for
the total fragment number per unit length in (3.72).

It is also of interest to compare the present analytic distribution with
that generated graphically by Mott (1947). Comparisons for both probability
density and complementary cumulative probability distributions are shown
in Fig. 3.16. Recall, however, that the assumed laws governing the statistical
fracture frequency differ markedly in the two calculations. Mott assumed an
exponentially escalating rate of fracture activation (3.31). A power law frac-
ture frequency (3.30) was assumed in the analytic derivation which, for the
sake of analytic tractability, was reduced to a uniform rate of fracture activa-
tion (3.29) corresponding to n = 1 in the power law expression. Influence of
the differing fracture frequency laws on the statistical distribution in fragment
lengths is not known.

Mott’s graphical distribution and the present analytic distribution agree
quite well as the comparison in Fig. 3.16 shows. Modest differences are perhaps
best revealed in the comparison of the complementary cumulative distribu-
tions. The present distribution for plastic fracture differs from that of elastic
fracture as comparison with the plot in Fig. 3.17 reveals. The comparisons in-
dicate that the law governing the propagation of release waves from the point
of fracture (diffusive Mott waves versus elastic waves) is the first order effect
in governing the distribution shape. The fracture frequency law, on the other
hand, appears to have a smaller influence on the shape of the distribution.
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Fig. 3.16. Comparison of the present analytic distribution in fragment lengths for
plastic fracture with the graphical distribution of Mott
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Fig. 3.17. Analytic length distributions for models of elastic and plastic fracture
based on Mott statistical fragmentation

The normalizing length scale lo for the two distributions in Fig. 3.16 are,

lo =
√

2Y/ρε̇2γ ,

from the Mott (1947) analysis and,

lo =
[
(3σ/4)

(
2Y/ρε̇2

)]1/3
,

from the analytic solution. The separate derivations are based on markedly
different assumed fracture frequency laws. That the two distributions suc-
cessfully overlay without adjustment of the independent length scales seems
remarkable.
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