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Geometric Fragmentation Statistics

The statistical issues governing the fragmentation of a body are not well in
hand even to this day. Perhaps foremost in the list of objectives is the predic-
tion of the distribution in the size of fragments resulting from a fragmentation
event. One intriguing approach to this problem has simply been to investi-
gate the statistically most random way of partitioning a given topology into
a number of discrete entities. This approach to statistical fragmentation has
been commonly identified as geometric fragmentation.

As noted in the introduction, Mott was initially led in pursuit of a theoret-
ical description of the distribution in fragments from a fragmenting cylinder
event by then recent work of Lineau (1936). Fragmenting munitions data avail-
able to Mott at the time appeared consistent with the exponential expression
resulting from Lineau’s one-dimensional model. Thus, his early efforts focused
on extending the same geometric statistics approach to the topology of a nat-
urally fragmenting cylinder.

In the present section we pursue some of the approaches to obtaining
representations of fragment size distributions using the methods of geometric
fragmentation statistics. In particular the well-known Mott distribution will
be developed and examined.

2.1 Lineau Distribution

Fundamental to geometric fragmentation are the theoretical efforts of Lineau
(1936). He considered the elementary problem of an extended body such as
a glass rod or a stretching wire subjected to forces resulting in the multiple
fracturing of that body. If any point on the body is as likely as another to
fracture the problem is statistically well posed. The problem is modeled as that
of an infinite one-dimensional body, or line, in which breaks are introduced
with equal probability at any point on that line, as is illustrated in Fig. 2.1.

Thus, as stated, the random geometric fragmentation of a one-dimensional
body appears decidedly unambiguous. An analytic solution requires only a
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n Fragments of 
Variable length l

Total Line Length of L n-1 Fractures

Fig. 2.1. Line of total length L broken at random into fragments of variable length
l by n − 1 fractures

proper probabilistic description of the random breaks, and the lengths of
the segments delineated by these breaks. We shall show later that even this
prescription for the statistical fragmentation of a one-dimensional body is
arguable. At this point, however, we proceed with the solution leading to the
one-dimensional Lineau fragment size distribution.

Consider a line of length L in which breaks on the line are introduced at
random [Grady, 1990]. Since we are initially interested in partitioning the line
into a large number of fragments (the average length is very small compared
to the total length L) the finite length of the line is not of consequence and
can effectively be considered infinite (Fig. 2.1). The average spacing between
breaks λ or equivalently the frequency of breaks per unit length ho = 1/λ
characterizes the statistical distribution. The random distribution of points
on a line is described by Poisson statistics.

If an arbitrary length l of the line is examined then the probability of
finding n points (fractures) within the length l is given by,

P (n, l) =
(l/λ)n

e−l/λ

n!
. (2.1)

The most probable distribution in fragment lengths is determined by observing
that the probability of finding no fractures within the length l is,

P (0, l) = e−l/λ , (2.2)

while the probability of finding one fracture within the subsequent length
increment dl is

P (1, dl) = (1/λ) dl . (2.3)

The probability of occurrence of fragments of length l within a tolerance of
increment dl is then,

f (l) dl = P (0, l) P (1, dl) = (1/λ) e−l/λdl , (2.4)

where,
f (l) = (1/λ) e−l/λ , (2.5)
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is the fragment length probability density distribution while the integral of
f (l),

F (l) = 1 − e−l/λ , (2.6)

is the cumulative fragment distribution.
If a distribution of No fragments satisfies the present statistical premises,

then the analytic expression,

N (l) = Noe
−l/λ , (2.7)

characterizes the cumulative number distribution of fragments larger than
length l. Assigning a density per unit length of the one-dimensional body it
is readily shown that the cumulative mass fraction of fragments is given by,

M (l) = 1 − (1 + l/λ) e−l/λ . (2.8)

The latter is commonly a more tractable experimental description.
Equation (2.7) can be written in the differential form,

dN

N
= − 1

λ
dl , (2.9)

providing a useful form for generalizing to fragmentation events in which the
distribution is biased toward specific fragment sizes. This is accomplished
through a dependence of the distribution length scale λ = λ (l) on the frag-
ment size.

2.1.1 Binomial Distribution

When the number of breaks within the body length L is few then the fragment
size probability distribution will depend on the body length. Here probabilistic
aspects of the problem are governed by the binomial probability function,

Pj,k (p) =
k!

j! (k − j)!
pj (1 − p)k−j

, (2.10)

when, Pj,k (p) is the probability of j successes in k attempts while p is the
probability of a single success.

Consider then a one-dimensional body of length L in which n−1 randomly
distributed breaks partition the body into n fragments.

Consider further a region of length, l < L within the domain of L. The
probability of a single fracture occurring within the region is the ratio p = l/L.
Thus, from the binomial probability function, the probability that none of the
n − 1 fractures occurs within the region l is just,

P0,n−1(l/L) =
(n − 1)!

0! (n − 1)!

(
l

L

)0 (
1 − l

L

)n−1

, (2.11)

= (1 − l/L)n−1
.
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Given that the n−1 fractures are outside of the region l the probability that a
single fracture occurs within the interval dl is the ratio p = dl/ (L − l). Again,
from (2.10).

P1,n−1

(
dl

L − 1

)
=

(n − 1)!
1! (n − 2)!

(
dl

L − l

)1 (
1 − dl

L − l

)n−2

, (2.12)

∼= n − 1
L

(
dl

1 − l/L

)
.

The probability of finding a fragment of length l within an interval dl is then
the product of (2.11) and (2.12), or

f (l) dl =
n − 1

L

(
1 − l

L

)n−2

dl , (2.13)

where f (l) is the fragment length probability density distribution. The cumu-
lative probability distribution is then,

F (l) = 1 − (1 − l/L)n−1
. (2.14)

With the probability density function from (2.13) the expected value for the
fragment length is found to be λ = L/n. Equation (2.14) can then be written,

F (l) = 1 − e−(1−L/λ)ln(1−l/L) , (2.15)

which, in the limit λ � L and l � L yields the cumulative fragment proba-
bility distribution for a Poisson process on an infinite line in (2.6).

Probability density curves for number of fragments equal to n = 2, 3, 4,
and 5 are illustrated in Fig. 2.2, along with the Poisson approximation to the
n = 5 fragments case.

2.2 Mott-Linfoot Fragment Distribution

Mott and Linfoot (1943) referenced the earlier work of Lineau (1936) and fur-
thered his random geometric fragmentation ideas in pursuit of a sensible frag-
ment size distribution relation for the description of fragmenting munitions.
Their acceptance of the Lineau approach was bolstered by fragmenting muni-
tions data available to them at the time which were found to plot reasonably
linear in a log number versus cube root of the fragment mass representation.
Since m1/3 is proportional to a length measure of the fragment they reasoned
that the same random variable considered in the Lineau one-dimensional de-
velopment applied in the multidimensional fragmentation event. Further, in
examining fragments from the available data, they observed that a substantial
portion retained inner and outer surfaces of the original munitions case. This
suggested that the fragmentation of a plate or areal region in which event
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Fig. 2.2. Illustrates fragment probability distributions for fragmentation of unit
length body into n = 2, 3, 4 and 5 fragments. Dashed line shows the Poisson distri-
bution approximation to the n = 5 fragments case

the appropriate length scale would be proportional to m1/2. Thus, a plot of
log number versus m1/2 should, by the reasoning given, provide a better fit to
the fragment distribution data. In notation consistent with the development
of the Lineau distribution in the preceding section, the fragment cumulative
probability distribution proposed by Mott and Linfoot (1943) would be,

F (m) = 1 − e−(m/µ)1/2
, (2.16)

where the characteristic mass µ is the distribution scale parameter. The cor-
responding probability density distribution is then,

f (m) =
1
2µ

(
m

µ

)−1/2

e−(m/µ)1/2
. (2.17)

This distribution in various forms has been successfully used by numerous
researchers over the past six decades to organize and compare vast amounts
of exploding munitions fragmentation data. Mott expended considerable sub-
sequent effort in a quest to justify the functional form assumed in (2.16) and
(2.17).

2.2.1 Random Lines Fragmentation

In these initial efforts to justify their distribution Mott and Linfoot (1943)
pursued a very reasonable geometric model. They considered the statistical



12 2 Geometric Fragmentation Statistics

partitioning of a surface by the random disposition of vertical and horizontal
lines. The spacing of lines in the two orientations was assumed to be indepen-
dently governed by the Lineau distribution. Thus,

fx (x) =
1
xo

e−x/xo , (2.18)

and
fy (y) =

1
yo

e−y/yo , (2.19)

where the average spacing or frequency of lines in the vertical and horizontal
direction was allowed to differ. It is not difficult to see that this geometric
model might sensibly replicate the statistical behavior of an exploding mu-
nition. The random lines correlate with observed longitudinal and transverse
fractures, while the ratio xo/yo simulate the elongated nature or aspect ratio
of exploding munitions fragments as illustrated in Fig. 2.3a.

We will subsequently show, as did Mott, that this distribution does not
correspond well with the distribution in (2.16) and (2.17) (the Mott distribu-
tion) arrived at intuitively by Mott and Linfoot. In a later section, however,
it will be shown that this geometric algorithm, when effectively generalized,

(e) (f)

(c) (d)

(b)(a)

Fig. 2.3. Various geometric random fragmentation algorithms explored by Mott
and others
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quite nicely approximates the statistical representation of the biaxial frag-
mentation of expanding shells.

The probability density distribution over fragment length and width is
then provided by a juxtaposition of (2.18) and (2.19),

f (x, y) =
1

xoyo
e−x/xo−y/yo . (2.20)

Mott and Linfoot (1943) then proceeded to solve for the distribution in frag-
ment size through the following approach: Let z =

√
xy, where xy is the

fragment area, provide a measure of the fragment size. The cumulative dis-
tribution for fragments of size larger than z is then provided by the integral
expression,

1 − F (z) =
∫∫

xy>z2

1
xoyo

e−x/xo−y/yodxdy . (2.21)

The double integral over area is written,

1
xoyo

∞∫
0

e−x/xo




∞∫
z2/x

e−y/yody


 dx , (2.22)

which readily reduces to,

1
xo

∞∫
0

e
− 1

xo

(
x+ xo

yo
z2
x

)
dx . (2.23)

With the change of variable,

x = z

√
xo

yo
η , (2.24)

the integral becomes,

z
√

xoyo

∞∫
0

e
− z√

xoyo
(η+ 1

η )dη . (2.25)

Introducing the characteristic length zo =
√

xoyo and making the further
change of variable η = eθ yields,

z

zo

∞∫
−∞

e−
z

zo
(eθ+e−θ)eθdθ , (2.26)

which in turn transforms to the integral of the hyperbolic function,
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2
z

zo

∞∫
0

e−2 z
zo

cosh θ cosh θdθ . (2.27)

The solution of the integral was recognized by Mott and Linfoot as a modified
Bessel function. Integral solutions for modified Bessel functions of integer
order (Abramowitz and Stegun, 1954) provides,

Kn (u) =

∞∫
0

e−u cosh θ cosh nθdθ , (2.28)

for the modified Bessel function of order n. Thus, we arrive at the cumulative
probability distribution over fragment size z,

F (z) = 1 − 2
z

zo
K1 (2z/zo) . (2.29)

The probability density distribution follows directly from dF (z) /dz = f (z)
and the modified Bessel function relation (Abramowitz and Stegun, 1954),

d

du
(uK1 (u)) = −uKo (u) , (2.30)

or,
f (z) = 4

z

z2
o

Ko (2z/zo) . (2.31)

An alternative solution method is instructive. Again, start with (2.20)
for the probability density distribution over fragment length and width. A
transformation to a probability distribution g (a, r) over the fragment area,

a = xy , (2.32)

and the fragment aspect ratio,

r = x/y , (2.33)

is sought.
The differential invariant,

f (x, y) dxdy = g (a, r) dadr ,

leads to

dxdy =
∣∣∣∣∂ (x, y)
∂ (a, r)

∣∣∣∣ dadr ,

for the differential element through the transformation Jacobian (Buck, 1965).
The transformed probability density function is then,

g (a, r) = f (x (a, r) , y (a, r))
∣∣∣∣∂ (x, y)
∂ (a, r)

∣∣∣∣ . (2.34)
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Calculating the Jacobian through (2.32) and (2.33),
∣∣∣∣∂ (x, y)
∂ (a, r)

∣∣∣∣ =
1
2
r−1 , (2.35)

yields,

g (a, r) =
1

2xoyo

1
r
e
−
(

1
xo

√
ar+ 1

yo

√
a/r

)
, (2.36)

for the probability density distribution in fragment area and aspect ratio.
To obtain the probability density distribution over area h(a), irrespective

of aspect ratio, integrate over all r,

h (a) =
1

2xoyo

∞∫
0

1
r
e
−
(

1
xo

√
ar+ 1

yo

√
a/r

)
dr . (2.37)

Changing the integration variable through r = (xo/yo)e2η gives,

h (a) =
2
ao

∞∫
0

e−2
√

a
ao

cosh ηdη , (2.38)

where ao = xoyo. The general integral relation for the modified Bessel function
of (2.28) yields,

h (a) =
2
ao

Ko

(
2
√

a/ao

)
. (2.39)

The present distribution function over fragment area is equivalent to that of
Mott and Linfoot in (2.31) if the transformation a = z2 is performed.

The cumulative distribution over fragment area H (a) is readily ob-
tained through the integration of (2.39) and the relation K ′

1 (u) = −Ko (u)
(Abramowitz and Stegun, 1954),

H (a) = 1 − 2
√

a/aoK1

(
2
√

a/ao

)
. (2.40)

The density distribution in (2.36) can be pursued further to provide the prob-
ability density function over aspect ratio k (r) irrespective of fragment size.
The integral over fragment area,

k (r) =
1

2xoyo

∞∫
0

1
r
e
−
(√

r
xo

+ 1
yo

√
r

)√
a
da , (2.41)

through the transformation,

ξ =
(√

r

xo
+

1
(yo

√
r)

)√
a ,
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Fig. 2.4. A comparison of the Mott distribution and the Bessel fragment size (area)
distribution resulting from the random Lineau placement of vertical and horizontal
lines on the surface

yields,

k (r) =
1
ro

1
(1 + r/ro)

2

∞∫
0

ξe−ξdξ , (2.42)

where ro = xo/yo. Thus,

k (r) =
1
ro

1
(1 + r/ro)

2 , (2.43)

provides the probability density distribution over fragment aspect ratio.
The probability distribution (both density and cumulative) for the random

orthogonal lines geometric fragmentation problem is compared with the Mott
distribution in Fig. 2.4 with both distributions normalized to unity. This latter
distribution is discussed further in a subsequent chapter. The comparison
reveals differences, as was noted by Mott and Linfoot, which failed to provide
the justification sought by them. A calculated distribution variance (second
moment about the mean) of five for the Mott distribution (2.17) significantly
exceeds a variance of three calculated for the Bessel distribution in (2.39).
The Mott distribution would predict a larger number of both small and large
fragments.

Mott and Linfoot then pursued the geometric fragmentation problem in
which orientation as well as placement of lines on the area was a random
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variable as illustrated in Fig. 2.3b. They were unable, however, to determine
the size distribution for this fragmentation algorithm except in the small frag-
ment limit, which did agree with the proposed dependence of fragment number
proportional to the square root of fragment area. Computer solutions of this
geometric fragmentation algorithm [Grady and Kipp, 1985] suggest reasonable
agreement with the Mott distribution over the full range of fragment sizes.

By considering the geometric problem of randomly oriented vertical and
horizontal lines, and then the extension to randomly oriented lines as shown in
Fig. 2.3b, Mott and Linfoot tacitly observe that the generated fragment size
distribution would probably depend on the algorithm chosen to randomly
partition the area. This algorithm dependence of geometric fragmentation
methods will be pursued later.

2.2.2 Cylindrical Segmentation Fragmentation

First, however, it is of interest to outline the final geometric fragmentation
algorithm pursued by Mott before this line of study was dropped by him. If
the fragment size distribution generated in a random geometric fragmentation
process is dependent on the fragmentation algorithm, as is becoming apparent,
then an algorithm which most closely replicates the event of interest might
be expected to better approximate the statistical features sought. Indeed, the
present algorithm reasonably approximates the longitudinal fractures and sub-
sequent circumferential breakup observed in a munition fragmentation event.
This proximity to the problem of concern most likely guided Mott in selecting
this final geometric fragmentation process for study.

This final algorithm is illustrated in Fig. 2.3e. The method consists of first
inscribing randomly positioned horizontal lines, and then segmenting each
horizontal strip with randomly positioned vertical lines where the average
spacing within any strip is proportional to the width of that strip. In pursuing
the size distribution solution to this problem, Mott also changed the functional
form governing the random placement of horizontal lines and vertical line
segments. We will here, however, proceed one step at a time and assume that
the Lineau distribution governs the placement of the line and line segments
as in the preceding exercise.

It is found in carrying through the solution for the fragment size distribu-
tion for this geometric algorithm, with a Lineau distribution of vertical lines
and horizontal line segments, that the analysis is not tractable and that the
resulting distribution does not converge. Mott must have also observed this
difficulty and the observation may have motivated his selection of a distri-
bution function different than the Lineau form. It is also possible that this
selection was not arbitrary, but was motivated by physical ideas emerging
from the more physically-based theories he was starting to pursue.

In any case, in pursuing the solution to this alternative geometric frag-
mentation algorithm posed by Mott, it becomes apparent that the probabil-
ity density distribution for fragments over the areal region cannot simply be
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obtained by a juxtaposition of the two linear distributions as was done in the
previous analysis. It will initially be necessary to work with number distribu-
tions because of difficulties in normalizing the probability distribution. Note
first that given a probability density distribution in fragment lengths f (x),
the total length dL of fragments of length x within increment dx is just,

dL = xdN = Noxf (x) dx , (2.44)

or

L = No

∞∫
0

xf (x) dx = No〈x〉 , (2.45)

where 〈x〉 is the expected value of x and No is the total fragment number.
For the Lineau distribution as written in (2.18) the expected value is just
〈x〉 = L/No = xo.

In the geometric fragmentation algorithm illustrated in Fig. 2.3e the region
is assumed to be of equal height and width L. Consider one strip of width y.
The number of segments (fragments) within this one strip of length x, within
increment dx, is just,

dNx = Nxo
1
xo

e−x/xodx =
L

x2
o

e−x/xodx , (2.46)

where the Lineau distribution in fragment lengths is assumed. Correspond-
ingly, the number of strips of width, y within increment dy is

dNy =
L

y2
o

e−y/yody . (2.47)

Thus, the number of fragments of length x and width y per unit area (setting
L2 = 1) is just the product,

dN = dNxdNy =
1

x2
oy

2
o

e−x/xo−y/yodxdy . (2.48)

At this point Mott supplemented the geometric fragmentation algorithm with
the assumption that within a strip of width y the average fragment length
was proportional to y or,

xo = py . (2.49)

Mott suggested that the constant p was approximately 5 based on munitions
fragments that he had the opportunity to inspect. The present assumption
was clearly motivated by observation of fragments from a cylindrical munition
fragmentation event in which the nature of the breakup leads to an abundance
of elongated fragments.

The resulting fragment number distribution is accordingly,

dN =
1

p2y2
oy2

e−y/yo−x/pydxdy . (2.50)
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We again introduce the change of variables,

a = xy, r = x/y , (2.51)

with Jacobian, ∣∣∣∣∂ (x, y)
∂ (a, r)

∣∣∣∣ = 1/2r , (2.52)

leading to the number distribution,

dN =
1

2p2y2
o

1
a
e
−
√

a

ry2
o
−r/p

da dr , (2.53)

over fragment area a and aspect ratio r. The number distribution over frag-
ment area is then the integral,

dN

da
= n (a) =

1
2p2y2

o

1
a

∞∫
0

e
−
√

a

ry2
o
−r/p

dr , (2.54)

or, with the variable change r = pη,

n (a) =
1

2py2
o

1
a

∞∫
0

e
−
√

a

py2
o

1√
η
−η

dη . (2.55)

Unfortunately, the integral within (2.55) is not finite. Cursory examination
of the distribution shows an unbounded number density distribution as both
area a and aspect ratio r become small. Thus, this very natural statistical
fragmentation geometry, when combined with the Lineau (Poisson) place-
ment of the fractures, leads to an ill-defined fragment distribution. Although
not explicitly discussed in his reports Mott must have tread this path and
encountered the same difficulty. Undaunted, he proposed a novel solution re-
sulting in an analytically regular fragment size distribution for the geometric
fragmentation problem addressed above. Some further background is neces-
sary, however, to fully appreciate the approach he pursued. Mott’s treatment
of this final geometric fragmentation algorithm will be revisited in Sect. 2.5.

2.3 Poisson Fragment Distribution
and Statistical Heterogeneity

Mott and Linfoot proposed a representation for the statistical distribution
of fragment sizes resulting from a munitions fragmentation event which was
independent of any specific fragmentation process, geometric or otherwise.
Namely, that a measure of the fragment size (proportional to the square root
of the fragment area) was distributed over fragment number according to
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the Poisson process put forth by Lineau (1936). They then pursued analytic
methods to justify the assumed fragment distribution, an approach that served
Mott well throughout the course of his theoretical career. As illustrated in the
previous section, the statistical geometric methods were not fully successful
in validating the proposed distribution.

Others have pursued alternative statistical assumptions regarding the dis-
tribution of fragment sizes and have similarly undertaken efforts to justify
their assumptions. Here we consider the approach of Grady and Kipp (1985)
as it parallels the fragmentation assumptions and geometric statistics justi-
fication attempts of Mott and Linfoot (1943). The comparison more starkly
brings out features and weaknesses of the approach.

2.3.1 Grady–Kipp Postulate

Within the intervening years since the seminal study of Mott, considerable
opportunity has risen to test the distribution of Mott and Linfoot. Although
the linear dependence of the logarithm of fragment number against the square
root of fragment mass proposed by Mott and Linfoot has in many comparisons
been quite satisfactory, there have also been examples of obvious discrepancy.
For example, munitions fragment data have been obtained which plot linear in
log number versus cube root of fragment mass. This dependence has of course
been suggested to apply to thick-walled munitions in which the preponderance
of fragments are of size smaller than the wall thickness, as is tacit in the initial
development of Mott and Linfoot. Other disparities between the Mott-Linfoot
distribution and munitions fragmentation data have also been observed.

Grady and Kipp (1985) have offered an alternative development and ex-
planation for the distributions in fragment sizes observed in munitions frag-
mentation. They first suggest that if such fragmentation can be represented by
mechanism-independent statistical descriptions that perhaps fragment mass,
as opposed to fragment size (either m1/2 or m1/3 in the Mott-Linfoot devel-
opment), is the more appropriate random variable. They then propose that
the mass of the fragment is distributed over fragment number according to a
Poisson (or binomial if the fragment number is small) process, which parallels
the development of Lineau in Sect. 2.1.

Thus, if the fragment mass is viewed as a random scalar variable, then the
random fragmentation of the mass is analogous to the one-dimensional Lineau
problem. Fragmentation is determined by breaks distributed randomly over
the scalar measure of mass. The breaks determine a Poisson variate and lead
to a cumulative fragment probability distribution,

F (m) = 1 − e−m/µ , (2.56)

and density distribution,

f(m) =
1
µ

e−m/µ . (2.57)
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In contrast to the Mott distribution, the present distribution keeps the same
linear exponential functional form for both area and volume fragmentation.

2.3.2 Sequential Segmentation

Grady and Kipp (1985) also pursued justification of their fragment distribu-
tion relations through geometric fragmentation methods. With the availability
of computational resources they were not restricted to geometries with ana-
lytic solutions. The algorithms pursued by them are illustrated in Figs. 2.3c
and 2.3d. The method is as follows: A point was selected at random on the unit
area. Then a random vertical or horizontal direction in Fig. 2.3c or random
arbitrary direction in Fig. 2.3d was determined and a line drawn through the
point and terminated at the area boundary. A second point was randomly se-
lected and a random line again drawn bisecting the sub area within which the
point fell. This process was sequentially repeated until the desired intensity
of fragmentation was achieved.

It was found that distributions from both the horizontal and vertical lines,
and randomly oriented lines, sequential segmentation geometric processes con-
verged to the linear-exponential distributions in (2.56) and (2.57) with suffi-
cient numbers of fragments for the geometric fragmentation of an area. With
some reflection, it is recognized that this geometric algorithm is replicating
the Poisson partitioning of a scalar area or volume. Thus, the agreement is
expected.

The linear exponential (Poisson) density and cumulative distribution is
shown in Fig. 2.5 and differs markedly from the Mott distribution. The much
broader Mott distribution has a variance a factor of five larger than the Poisson
distribution.

2.3.3 Statistical Heterogeneity

Considering the substantial difference between the exponential distribution
and the Mott distribution in Fig. 2.5, and the historic success of the latter in
describing munitions fragment distribution data, one may question how the
exponential distribution can be offered as a viable representation. Grady and
Kipp (1985) provide the following argument in support of the exponential
distribution.

In the statistical fragmentation problems considered up to this point, sta-
tistical homogeneity over the fragmented region was tacitly assumed. Namely,
the average fragment size did not vary from point to point within the region of
consideration. In application, uniform or homogeneous fragmentation is usu-
ally not achieved. Normally, due to complexity of the device geometry and
dynamic loading, the intensity of fracture will vary throughout the body and,
correspondingly, the average fragment size will also be a function of position.
A uniformly expanding ring or the uniform expansion of a spherical shell are
unique experimental geometries in which nearly homogeneous fragmentation
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Fig. 2.5. A comparison of the Mott distribution and the Exponential, or Poisson,
fragment size (area) distribution resulting from the random segmentation of the
surface

is achieved. Most experimental geometries will lead to statistically inhomoge-
neous fragmentation. This concept was considered by Lineau (1936), but was
not pursued.

Additionally, there is some evidence that fracture mechanisms may marked-
ly differ for different parts of the fragment size distribution. This was briefly
suggested by Mott for the fragmentation of exploding cylinders and has been
pursued in more detail by Odintsov (1992). This possibility will be considered
further later in this section.

The linear exponential distribution based on a Poisson process over a scalar
mass region,

f(m) =
1
µ

e−m/µ , (2.58)

proposed by Grady and Kipp (1985), assumed statistical homogeneity with
average mass µ constant over the region of interest. A second distribution
with a different average fragment size could be described equally well with a
distribution of the form of (2.58). A mixing of the two distributions would not
be characterized by a linear exponential distribution. The distribution would,
rather, be represented by the bi-linear form,

f (m) =
g1

µ1
e−m/µ1 +

g2

µ2
e−m/µ2 , (2.59)

where g1 and g2 are the number fractions of the respective homogeneous dis-
tributions, while µ1 and µ2 are the corresponding average fragment masses.
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More generally, any statistically inhomogeneous distribution could be approx-
imated with a Poisson mixture [Puri and Goldie, 1979],

f (m) =
n∑
1

gi

µi
e−m/µi . (2.60)

It can be shown that any Poisson mixture representation of a fragment
distribution will have a larger variance than a statistically homogeneous lin-
ear exponential representation of that same distribution. It is instructive to
compare, for example, the bi-linear distribution from (2.59) with the Mott
distribution. Normalizing the Mott distribution to the average fragment mass
x = m/µ,

f (x) =
1√
2x

e−
√

2x , (2.61)

and similarly the bi-linear distribution with x = m/µ and µ = g1µ1 + g2µ2,

f (x) =
g1

α1
e−x/α1 +

g2

α2
e−x/α2 , (2.62)

where α1 = µ1/µ and α2 = µ2/µ.
Constrain the integral of the distribution and the first moment to unity in

(2.62),

g1 + g2 = 1 , (2.63)

α1g1 + α2g2 = 1 . (2.64)

The second and third distribution moments (equivalently the distribution vari-
ance and skewness) can also be equated to the corresponding moments for the
Mott distribution yielding,

2
(
g1α

2
1 + g2α

2
2

)
= 6 , (2.65)

6
(
g1α

3
1 + g2α

3
2

)
= 90 , (2.66)

uniquely constraining the four constants in the bi-linear distribution. A com-
parison of the Mott and bi-linear distributions (actually complementary cumu-
lative distributions) with identical distribution moments is shown in Fig. 2.6.
Although significant visual differences are observed, the bi-linear distribution
does start to capture the important features of the Mott distribution. The
distributions are compared in a semi-logarithmic representation in which a
single exponential (Poisson) distribution plots linear. Better agreement can,
of course, be achieved as more terms are included in the Poisson mixture
representation.

A mixture of Weibull distributions (referred to as a hyper Weibull distri-
bution) has been proposed by Odintsov (1992) of the form
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Fig. 2.6. Comparison of the Mott and Poisson fragment size complementary cumu-
lative distribution with a bilinear (Poisson mixture) distribution approximation

f (m) =
n∑
1

gi
ni

µi

(
m

µi

)ni−1

e−(m/µi)
ni

, (2.67)

with mean fragment size,

µ =
n∑
1

giµiΓ(1 + 1/ni) . (2.68)

This distribution, of course, reduces to the Poisson (hyper exponential) mix-
ture provided in (2.60) when the ni for each distribution component is set to
unity. The latter specialized mixture was pursued in some detail be Odintsov.

The issue emphasized in the present section, however, is the statistically
inhomogeneous character of experimental fragment distributions. Attempts
to represent such distributions with analytic forms developed from homoge-
neous statistical fragmentation models will be at best approximate. Also, the
theoretical logical inconsistencies are not fully satisfying. The introduction of
Poisson mixtures to describe statistically inhomogeneous distributions is in-
herently reasonable. Acceptance of a Poisson (linear exponential) distribution
as the homogeneous basis function as has been proposed [Grady and Kipp,
1985; Odintsov, 1992], has not been fully justified, and is open to criticism as
later developments will illustrate.
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2.3.4 Multimodal Distributions

The power of the mixture distribution representation is illustrated in the
description of multimodal fragment distributions as emphasized by Odintsov
(1992). Commonly the mass spectra of fragments over size is desired and is
obtained from the probability distribution through,

dM = mdN = mNof(m)dm . (2.69)

Let ϕ(m) = dM/dm so that,

ϕ(m) =
1
µ

mf(m) , (2.70)

for the distribution of the mass of the fragment over the fragment size (or
weight) m and with µ = 1/No.

For a bilinear Poisson mixture normalized to a fragment size scale of µ = 1
as in (2.62), the mass distribution in (2.70) becomes,

ϕ(x) = x

(
g1

α1
e−x/α1 +

g2

α2
e−x/α2

)
. (2.71)

Two distributions are plotted from (2.71) and are shown in Fig. 2.7 for differ-
ent values of the distribution parameters. In both distributions the number
ratio is the same at g1/g2 = 1. When the size ratio is not large (α1/α2 = 4
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Fig. 2.7. Mass distribution for bilinear Poisson fragment distribution mixtures for
selected distribution parameters illustrating both unimodal and bimodel character
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Fig. 2.8. Fragment mass distributions for explosive fragmentation of low carbon and
high carbon content steel cylinders and associated bilinear exponential distribution
fit in uncalibrated units [Odintsov, 1992]

in Fig. 2.7) the distribution is unimodal. As the size ratio increases (or corre-
spondingly decreases), however, a mode separation is observed in the distrib-
ution yielding a distinct bimodal distribution (α1/α2 = 10 in Fig. 2.7).

Odintsov (1992) has reported detailed fragment distribution properties
from explosion-induced natural fragmentation experiments on low-carbon and
high-carbon steel cylinders. Histogram distributions for one low-carbon and
one high-carbon steel tests are plotted in Fig. 2.8 in uncalibrated units. Bi-
linear curve fits to the data by Odintsov are also shown. The distribution for
the low-carbon steel is distinctly bimodal where as that of high-carbon steel
is nearly unimodal.

Odintsov attributes the bimodal character of the distributions to two dis-
tinct populations of fragments with possibly distinct fracture mechanisms.
The first population is composed of the larger fragments created by through-
the-thickness fractures, which retain sections of both the inner and outer sur-
faces of the original cylinder. The second population is composed of the smaller
angular shards created by fracture intersections, near either the inner surface
(shear fracture dominated) or the outer surface (tensile fracture dominated).
These failure modes were also noted by Mott.

The more brittle high-carbon steel is dominated by fragments from the
second population and consequently is nearly unimodal in character. The
more ductile low-carbon steel has sensible contributions from both fragment
populations leading to the observed bimodal nature of the distribution.
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2.4 Voronoi-Dirichlet Fragment Distribution

The present discussions of random geometric fragmentation would be remiss
without consideration of the Voronoi-Dirichlet construction [e.g., Boots and
Murdoch, 1983]. This method for the random partitioning of space has re-
ceived by far the lion’s share of attention in a much broader spectrum of
literature. The resulting distributions have been proposed for such applica-
tions as the distribution of galactic matter throughout the universe [Kiang,
1966] and the formation of geologic columnar structures such as the Giant’s
Causeway in Northern Ireland [Weaire and Rivier, 1984] to name but a few.

The construction algorithm in two dimensions is illustrated in Fig. 2.3f. As
in the Grady-Kipp construction, the method begins with a random (statisti-
cally homogeneous) distribution of points on the surface (or within the volume
if three-dimensional space is considered). Space is then randomly partitioned
by construction of perpendicular bisecting lines (or surfaces) as illustrated.
On a regular (periodic) lattice of points the same process creates the Wigner-
Seitz cells used, for example, in the construction of Brillouin zones in solid
state physics [Kittel, 1971]. The space is also randomly partitioned through
the reciprocal, or dual, Delauney construction [Watson, 1981] created through
the joining, with lines (or surfaces), the points in each Voronoi-Dirichlet cell.

Analytic relations for the fragment size distributions resulting from the
Voronoi-Dirichlet construction have not been directly determined. A compu-
tational determination of the resulting fragment size distributions has been
widely pursued, however [e.g., Crain, 1978], and an analytic expression which
successfully reproduce the computational distributions has been arrived at by
intuitive means [Kiang, 1966].

Both the analytic distributions and the process of developing them are
of interest to the present pursuit of statistical fracture through geometric
means. First Kiang (1966) considered the one-dimensional Voronoi-Dirichlet
construction, where points are distributed at random on a line (a Poisson
process), and then the degenerate perpendicular bisector (the midpoint) of
each point pair is determined. Thus, the Voronoi-Dirichlet distribution on a
line is the dual of the Lineau distribution considered earlier (or the degenerate
Delauney distribution). Whereas, in the Lineau distribution random points on
the line were considered as breaks or fractures, in the present Voronoi-Dirichlet
distribution these same random points constitute in some sense the centroid
of fragments with fractures occurring at the bisector points.

2.4.1 One-Dimensional Voronoi–Dirichlet Distribution

The fragment size distribution for the one-dimensional Voronoi-Dirichlet dis-
tribution can be determined directly as follows. The probability of finding a
length l between a Poisson point pair is given by the Lineau distribution,

f(l)dl =
1
λ

e−l/λ . (2.72)
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The probability of finding a point pair of length l1 adjacent to a point pair of
length l2 is then the product,

f(l1)f(l2)dl1dl2 =
1
λ2

e−(l1+l2)/λdl1dl2 . (2.73)

Implementing the transformation,

L = (l1 + l2)/2 , (2.74)

ξ = (l1 − l2)/2 , (2.75)

leads to the distribution,

f(L) =
1
λ2

L∫
−L

e−2L/λdξ , (2.76)

where L is the length between midpoints of the point pairs. Integration provide
the Voronoi-Dirichlet distribution of fragments on a line,

f(L) =
2
λ

(
2L

λ

)
e−2L/λ . (2.77)

Comparison of the one-dimensional Voronoi distribution (2.77) and the Lin-
eau, or Poisson, distribution is provided in Fig. 2.9.

2.4.2 Two and Three Dimensional Analytic Distributions

The distribution in (2.77) is a gamma function of order n = 2. Kiang (1966)
offered without proof that symmetrically higher order gamma functions would
provide analytic fragment distributions for Voronoi-Dirichlet partitioning of
an area or a volume. Following Kiang we will write the general expression for
the fragment distribution over mass,

f(m) =
1
µ

n

Γ(n)

(
nm

µ

)n−1

e−nm/µ , (2.78)

where n = 2, 4 or 6 for a line, surface or volume fragmentation, respectively.
Computational distributions from Voronoi-Dirichlet constructions on an

area performed by Kiang (1966) were in acceptable agreement with (2.78) for
n = 4. A degree of controversy was generated by Kiang’s proposal among
subsequent authors as to the adequacy of (2.78); both for and against. Appar-
ently the construction of computer algorithms to generate Voronoi-Dirichlet
fragment distributions is not a trivial exercise. In any case, for the present
geometric fragmentation investigations, (2.78) is an adequate analytic repre-
sentation of Voronoi-Dirichlet distributions in line and area fragmentation.
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Fig. 2.9. A comparison of the one-dimensional Voronoi distribution and the Lineau,
or Poisson, fragment length distribution resulting from the random segmentation of
the line according to the respective algorithms

Fragment size (area) distributions resulting from both the Voronoi algo-
rithm and the sequential segmentation algorithm (Poisson distribution) are
compared with the Mott distribution from (2.17) in Fig. 2.10. The three den-
sity distributions are normalized to unit expected value. The comparisons
reveal the stark differences resulting from differing randomization algorithms
and differ markedly from the proposed distribution of Mott.

2.5 Mott Cylinder Segmentation Algorithm

Mott undertook one final attempt at justifying through geometric methods the
proposed m1/2 distribution. The approach was explored earlier in Sect. 2.2.
From the elongated and sliver-shaped fragments recovered from exploding mu-
nitions tests Mott surmised that fracture in an end-detonated metal shell with
cylindrical symmetry would occur through longitudinal running cracks with
occasional crack branching and crack intersection resulting in the observed
fragments. Thus he proposed the statistical algorithm illustrated in Fig. 2.3e
and analyzed earlier with the Lineau distribution of the lines and line seg-
ments. To randomly distribute the longitudinal and transverse line features
on the plane he made the interesting selection of the one-dimensional Voronoi-
Dirichlet distribution discussed in the previous section rather than the Lineau
distribution used in his earlier geometric pursuits. He may have made this
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Fig. 2.10. Comparison of the Mott, Poisson and Voronoi distributions for the ran-
dom fragmentation of an area

choice for one of two reasons. It is possible that he carried through the analy-
sis using the Lineau distribution, as was attempted earlier in this chapter, and
found (as was shown in the earlier section) that a solution could not be ob-
tained. Alternatively, ideas to emerge in his later work, and to be discussed in
the next chapter, may have influenced this selection: namely, that the physics
of fracture interaction precludes the close proximity of parallel fracture, and
thus limits the number of smaller fragments. The Voronoi-Dirichlet distribu-
tion is observed to better provide a statistical constraint limiting the number
of the close parallel fractures and hence the number of smaller fragments.

Following the methods outlined previously, but using the Voronoi-Dirichlet
distribution from (2.77) to determine the random placement of longitudinal
lines and transverse line segments, the following size distribution over frag-
ment area is obtained,

f(a) =
2
ao

1√
4a/ao

∞∫
0

(
ξ
√

4a/ao − 1
) (

1 + 1
/
ξ2
)
e−ξ

√
4a/ao−1/ξ2

dξ . (2.79)

This relation corresponds to the distribution provided by Mott and differs
only in the distribution variable λ =

√
a/ao used by him where ao = py2

o .
The corresponding cumulative distribution is then,

F (a) =
√

4a/ao

∞∫
0

(
1 + 1

/
ξ2
)
e−ξ

√
4a/ao−1/ξ2

dξ . (2.80)



2.5 Mott Cylinder Segmentation Algorithm 31

1.0
Mott
Cyl. Seg.

Cumulative
Distributions

Density
Distributions

0.8

Pr
ob

ab
ili

ty
 D

is
tri

bu
tio

n 

0.6

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0

Fragment Size

Fig. 2.11. A comparison of the cumulative and density fragment size distributions
from the Mott distribution and the geometric cylinder segmentation distribution

The plot in Fig. 2.11 compares the Mott distribution with the cylindrical
segmentation algorithm proposed by Mott using the Voronoi algorithm for
randomly distributing the partitioning lines and line segments. This figure
corresponds to Fig. 2.4 in which the Mott distribution is compared with the
random vertical and horizontal lines algorithm. A final comparison is shown
in Fig. 2.12 in which the density distributions resulting from both algorithms
considered by Mott are compared with the Mott distribution over a wider
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Fig. 2.12. A comparison of the probability density fragment distributions from
the Mott distribution, the geometric cylinder segmentation distribution, and the
geometric random horizontal and vertical lines (Bessel) distribution. Approximately
95% of the fragment area (mass) is included in the range of the plotted distributions
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spectrum of fragment sizes. It is interesting that the distributions from the
two algorithms tend to straddle the Mott-Linfoot proposed distribution, each
with respectively larger and smaller variance. It is unlikely that anything else
can be said.

At this point a degree of healthy suspicion as to the applicability of random
geometric fragmentation algorithms to actual physical fragmentation phenom-
ena should be embraced. Later, it will be shown that some utility of these
methods can be made use of in modeling the statistical fragmentation phe-
nomena, but they should be employed only with a sensible understanding of
the underlying physics.
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