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A Theory of the Fragmentation
of Shells and Bombs

N.F. Mott

(May 1943), Ministry of Supply, A.C.4035

Summary. In a recent report on this subject!, a tentative theory was put forward
to account for the sizes of the fragments obtained from steel projectiles. In a further
note?, the theory was compared with the observed fragmentation of service shells.
In this report an attempt is made to extend and to improve the theory, as far as is
possible without a satisfactory theory of rupture in metals, which does not exist at
present.

Before discussing the theory of fragmentation in Part II of this paper we shall
give in Part I a summary of the information available about the velocities, weights
and shapes of fragments and the mechanisms by which the explosive transfers its
energy to them. We shall confine ourselves as far as possible to cylindrical projec-
tiles of uniform diameter, both internal and external; shells with conical cavities are
obviously less suitable for the deduction of theoretical conclusions. The rocket head
is particularly suitable from this point of view, as is also the German 88 mm shell,
and a special British 3.7 shell recently fragmented by C.S.A.R., Millersford.

PART 1

3.1 Expansion of the Casing

It is well known that steel casings expand considerably before rupture; this
can be seen most clearly by examining the larger fragments which contain part
of the inner and outer surfaces; the case has become thinner by an amount
which varies very little from one fragment to another?. The present author has
examined fragments from the following projectiles which have a uniform case

! A Theory of Fragmentation, by N.F. Mott and E.H. Linfoot, D.S.R. Extra-Rural
Report A.C. 3348

2 A.O.R.G. Memo. No. 24. “Fragmentation of H.E. Shells; a theoretical formula for
the distribution of weights of fragments”

3 Report R.C. 282 from Dept. of Metallurgy, University of Sheffield.
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thickness: A German 88 mm shell, a special British 3.7” shell with cylindrical

cavity, and three rocket shells fragmented in the Safety in Mines Research
Station, Buxton. The filling was TNT in each case; the results are as follows:

Table 3.1.

Carbon  External Thickness of

content diameter Casing Fragment FExtension

Type of Shell of shell %  (mm) (mm) (mm) %

German AA 83 mm 0.7 88 15 11.8 27

British A.A. 3.7” 0.4—0.5 94 16.5 12.8 30
(cylindrical cavity)

Service A.A. rocket head 0.4—0.5 85 6.75 4.5 50

Thick cased rocket head  0.4—0.5 85 12.8 9 42

Thick cased rocket head 0.15 85 12.8 8.5 50

Further evidence is available from photographic records of the explosions
of model bombs obtained at the Safety in Mines Research Station, Buxton?).
According to these, model bombs 2” in dia. with mild steel casings filled with
tetryl expanded by the following amounts before breaking up:

Thickness of case (inches) Expansion (%)
0.125 67
0.30 100

The result obtained that the thicker cased bomb expands further may
however be due to end effects; it is not confirmed by the two rocket heads in
Table 3.1.

3.2 Fragment Velocities

A theoretical treatment of the expansion of the casing of a long cylindrical
cased charge of TNT has been given by G.I. Taylor®. Apart from the unknown
end effect at the base of the shell, his results should be applicable to the nose-
fuzed projectiles considered here.

According to Taylor the velocity of the casing can be expressed by the

following formula:
V =V,dy/\/d} — d} (3.1)

4 Report R.C. 236 from the Safety in Mines Research Station.
5 Report to M. of H. S. No. R.C. 193.
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where dy, ds are the external and internal diameters of the casing before

expansion, and V, is given for different degrees of expansion in Table 3.2
Actual velocities calculated for certain shells are also given:

Table 3.2.

Velocities in ft/sec

% Expansion 11 30 67 124 200
| 2000 2400 2700 3000 3100
V (88 mm shell) 1750 2100 2400 2700 2800
V (3" U.P) 2750 3300 3700 4100 4250

These figures neglect the work done in deforming the case; assuming a con-
stant® resistance to elongation 7T, (poundals/sq.ft) and a density p for the
steel, a short calculation gives for the reduction in velocity due to this cause

T
oV = pT(; log(1+¢) (3.2)

Assuming T, to be 30 tons/sq.in., we obtain the following values:

Table 3.3.

% Expansion 11 30 67 124 200

V (88 mm shell) 1700 2000 2300 2500 2550

The work done against the plastic forces does not decrease the fragment
velocity appreciably, except perhaps for projectiles of very low charge-weight
ratio (A.P. shells). The work done in rupturing the case is probably quite
negligible.

It cannot be assumed that the fragments are projected from the shell with
the velocity of the casing at the moment of break-up; the following observa-
tions show this:

(1) According to (unpublished) results obtained at Buxton, model bombs of
similar dimensions made of steel and cast iron give fragments of about the
same velocity. The cast iron gives very fine fragmentation and probably
breaks up without plastic expansion.

(2) By grooving the charge, controlled fragments can be obtained of a desired
size from U.P. casings. These fragments do not show thinning, but have

6 In steels the resistance is, of course, not constant, but increases somewhat as the
metal hardens.
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the original thickness of the case. The case must therefore have broken
before expansion. Nevertheless the velocity of the fragments is appreciably
the same as for the normal shell without a grooved charge (unpublished
results with model bomb).

Both these results show that the explosive must continue to exert pressure
on the fragments after break-up, and up to about 20 or 30% expansion the
pressure cannot depend much on whether the case has broken or not.

Evidence about fragment velocities is contradictory; at Buxton all frag-
ments from a given model bomb are found to have approximately the same
speed, except for a few very small ones of high velocity, probably acquired
from the expanding gases after break-up; at Millersford, on the other hand,
whilst most of the fragments from shells of the 88 mm or 3.7” type have frag-
ments with speeds in the range 2000—2500 ft/sec., there are a considerable
number with much lower speeds down to 1000 ft/sec., and thus with speeds
less than the calculated velocity of the casing before breakup. The origin of
these is unexplained.

Photographic measurements of the velocity with which the casing of a
model bomb expands have been made at Buxton; surprisingly enough, the
velocity of the case comes out in one case to be greater than that of the
fragments” .

In view of these contradictory results we shall take theoretical values for
the velocities of the casing, calculated as in Table 3.3; these agree at any rate
as regards order of magnitude with observed fragment velocities.

3.3 Types of Fragmentation Observed

The cross sections of the large fragments from a cylindrical shell are usually of
one or other of the types shown in Fig. 3.1; on the outside of the case (along
AB) the rupture is brittle, with shear rupture from B to C. Types 1 and 4
are the commonest, with small pieces of triangular cross section frequently
shearing off (as in type 5 in Fig. 3.1).

Fig. 3.1.

In some casings the rupture is by shear only, fragments of the types shown
in Fig. 3.2 being observed. This has been observed both for mild steel and

7 cf. Reference [4]; values given on pp. 2 and 5 for a model bomb with 0.018" casing.
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Fig. 3.2.

carbon steel casings. In the theories of part IT we have limited ourselves to
rupture which is at least partly brittle.
Fragments are commonly five to ten times as long as they are wide.

3.4 Weights of Fragments

The most usual classification is by weighing. The present writer has pointed
out® that for many shells and bombs the weight distribution satisfies the
following formula; the number of fragments with weights between m and m +

dm is equal to
Ce™M/Magns, M =m/? (3.3)

where C, M 4 are constants. Since C' depends on the total weight of the casing,
the fineness of the fragmentation is given by a single parameter M 4. Apart
from any theoretical significance of formula (3.3), it provides a convenient
practical method of comparing the fragmentation of different projectiles.

Using M 42 as a measure of the mean fragment weight, the following factors
appear to affect it in the following ways:

1. Type of Steel: there is little evidence that the tensile strength or yield point
affects the fragmentation, but the carbon content certainly does. Thus two
similar projectiles, the German 88 mm and the British 5.7" shell give the
following values of M 4:

Diameter — Thickness  Steel, carbon M (ounce)'/?
(mm) (mm) %
88 mm shell 88 15 0.7 0.19
3.7" shell 94 16.5 0.4-5 0.36

Also 3.25"” rocket heads of carbon (0.4%) and mild steels, thickness 0.5
gave the following values of M 4:

Carbon 0.30 (ounce)'/?
Mild steel 0.33

2. Calibre of shell: for given charge-weight a big shell undoubtedly gives bigger
fragments. For example, values of M4 for a large and for a small shell of
similar capacities are (U.B. Proc. 21099 and 21051)

8 Reference [1].
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My
95 mm shell Amatol 50/50 0.26
5.5” (80 Ib. shell) (140 mm Amatol 50/50 0.46

3. Charge-weight ratio: this affects both the thickness of the casing and its
velocity at the moment of break-up. That the velocity at the moment of
break-up has a profound influence on the fragmentation is shown by two
facts:

(a) That a 250 lb. bomb fragmented in water gives only about a quarter
as many fragments as when exploded in air®.

(b) The well known gross fragmentation of that part of an H.E. shell with
direct acting fuze which is in contact with the ground at the moment
of explosion; large pieces can be picked from the crater.

Apart from its influence on the velocity, a thin casing will of course give

thinner fragments than a thick one. Whether it affects the other dimensions

will be discussed below.
Values of M4 for two otherwise similar rocket heads with thicknesses

0.265" and 0.5” are [2]

Thickness 0.263" 0.5"”
Ma 0.134 0.255 (ounce)'/?

The velocity of expansion could be altered at will without affecting the size
or thickness of the casing by putting a lead covering round the outside of the
shell. Experiments to determine the effect of this or the fragmentation would
be of great interest. The pressure distribution within the case would also be
altered (cf. Sect. 3.11).

3.5 Dimensions of Fragments

The primary process in fragmentation must be splitting parallel to the axis of
the shell, with subsequent rupture at the ends, and production of secondary
fragments of type 5 in Fig. 3.1. Assuming that cracking (e.g. along BC in
Fig. 3.3) precedes shear rupture (e.g. along CD), the first task of any theory
of fragmentation must be to account for the distance AB in Fig. 3.3 between
the edges of the average fragment. The observed distributions of the breadth
AB are shown in Figs. I and II at the end of this paper'C. It is of course true

9 Compilation of data on Trials on Explosive Effects of Aircraft Bombs. R.D.
Woolwich, 1938

10 Tn this report Mott included hand drawn sketches within the text identified as
Arabic numbered figures as well as graphs appended at the end of the text iden-
tified as Roman numbered figures. The four graphs are identified as Figs. I, II, III
and IV in this transcription. This identification agrees with the original with the
exception of the present Fig. IV. Further author’s notes will attempt to clarify
this apparent miss-numbering in the original.
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that the length AB often varies considerably along the length of a fragment,
and a visual estimate of the mean breadth is subject to error; nevertheless the
general shape of the curves is significant. We plot against fragment breadth
not the total number of fragments, but the total length of all fragments (placed
end to end) in each category.

The following points will be noted:

(a) The rather sharp cut-off for large breadths.

(b) The much narrower fragments obtained with the German 83 mm shell
(0.7% carbon steel) than with the British 3.7 shell or thick cased rocket
head, (0.45% steel but similar diameter and casing thickness).

(¢) The narrower fragments obtained with the thin cased (high capacity)
rocket head than with the thick cased projectiles of similar steel.

The lengths of fragments from the German 88 mm shell are shown in
Fig. III; the curve does not show the same cut-off at high values. In Fig. IV
we show the length distribution for fragments of different breadths; there is
obviously a rough correlation, broad fragments being longer!'!. The average
length of fragments in different categories is given in Table 3.4.

Table 3.4.

Lengths in mm

Breadth (mm) 2-3 4 5 6 7 8 9 10
Thick-cased U.P.

(carbon steel) 39 39 56 44 37 50 36
Thick-cased U.P.

(mild steel) 34 35 33 36 47 58 54
Service U.P. 27 30 28 29

German 88 mm 5.5 10 14.8 21.7

Evidence for correlation between breadth and length is not marked except
for the German shell. For the British shells a ratio of length to breadth of the
order 5 seems to be normal, for the German shell a somewhat smaller value.

3.6 Weight Distribution of Fragments

The formula (3.3) was derived by the author! on the assumption of some sort
of random break-up; Figs. 3.1 to 3.3 show however that neither the break-up
parallel or perpendicular to the axis can be considered random as would be

1 Although Mott refers to Figs. III and IV discussion in this paragraph is clearly
covered by the data in Fig. III.
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Fig. 3.3.

the case if the breadths were distributed according to the law: number of frag-
ments with breadths between a and a + da is preportional to exp(—a/a,)da.
It therefore seems worth while to attempt a derivation of (3.3) from different
assumptions.

Let us assume:

(a) that the casing is broken into strips and that the number of strips with
breadths between x and = + dz is

Cz exp(—z/x,) dz (3.4)

This does not represent the facts exactly, but gives a nearer approximation
than the random fracture.

(b) that each strip is broken up according to the same law, and that the
average length of fragment is proportional to the thickness x of the strip.
Thus from a strip of length [ the number of fragments of length between
y and y + dy is

ye Y/ L dy/ (px)? (3.5)

where p is a factor (of the order 5).
Then the number of fragments of area greater than a? is
Cl
—//lexp . dx dy
P’ 2 T, px
Y >a?

This reduces to

T 1 1
const)\/ (1 + 2) exp (—)\z - 2) dz, N=a/x, /2
2z z
0

and thus the number of fragments with area such that a(= \/area) lies between
a and a + da is
const f(A)d\

- [ 2) -2 (e ) )ew(ca- L)oo
0

where
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Fig. 3.4.

This function is plotted logarithmically in Fig. V over all values of A from 0 to
10, i.e. over a range of log,, f equal to 3, which is about the range over which
the fragment distribution is usually plotted. It will be seen that the deviation
from a straight line is not very large'?.

Weight distributions of actual fragments are likely to deviate from this
theoretical curve for the following reason : the narrower fragments frequently
break as shown in Fig. 3.4, thus having a smaller depth than they should.
Moreover the removal of the triangular pieces from the base of the smaller frag-
ments will obviously make a greater proportional difference to their weight.
This will result in a shift of the whole upper part of the curve in Fig. V some-
what to the left. On the other hand, on reaching the weight categories of the
small triangular fragments, a large number of new fragments appear which
are not included in the analysis given above. Thus the curve should appear
as the dotted curve in Fig. V, which is very similar to those observed.

PART I1
THEORY OF THE MEAN FRAGMENT SIZE

3.7 Dependence on Velocity

We consider that the fragmentation will be determined by the properties of
the casing at the moment of break-up, and will not depend, for instance, on
the pressures to which the case has been subjected during the expansion. The
factors that may be of importance are thus

(a) Properties of the steel at the moment of rupture — for example the true
ultimate tensile strength rather than the yield point.

(b) The rate of increase of plastic strain; this is equal to V/r, where V' is the
velocity of the case and r its radius.

(c) The thickness of the casing.

(d) The pressure of the explosive at the moment of break-up; according to
Taylor’s calculations this is from 60-25 tons/sq. in. for casings that break
up after a 25 to 50% expansion; this is much less than the initial pressure,
which is of the order 1000 tons/sq. in.

12° A Fig. V does not appear in the original graphs however discussions in this para-
graph clearly refer to the upper plot in the present Fig. IV.
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Fig. 3.5.

The theory which we shall develop suggests that (c) and (d) are of minor
importance in determining the breadths and lengths of fragments. As in the
author’s previous report, we take the point of view that it is the kinetic energy
of the case which tears it to pieces; the fragmentation would be almost the
same if the expanding explosive could be miraculously removed just before
the case broke up, leaving it to fly into pieces under its own momentum.

In the author’s previous report' the following derivation of the fragment
breadth was given. Suppose that ABCD in Fig. 3.5 is the cross section of a
fragment which has just broken along BA, CD. The fragment is still in a state
of plastic flow, the rate of increase of plastic strain being V/r. The kinetic
energy of this flow of metal is

[N

1 2 2 _i 2 37,2
2ptV /r9 d9—24V tpa”/r

1
5(1

It was argued that if this were greater than the energy Wt required to rupture
the metal, the fragment would split in half. Thus the value

o {247”21/(/]1/3 57

pV?2

would give an upper limit to the possible breadth of a fragment.

Agreement with observation, i.e. values of a of the order 1 cm, was obtained
with values of W given by the notched bar impact test for a brittle steel, i.e.
40 ft/Ibs. per sq. inch.'® Since W occurs only as W'/3, the values obtained
are not very sensitive to W.

13 Measurements were made at the N.P.L. of the Izod value of test pieces cut from
a 3.7” H. E. shell casing which had been extended 20% in the direction originally
circumferential to the shell, to represent the state of the steel at the moment of
rupture; values obtained for specimens with the usual 10 X 8 mm section at the
notch were, for the energy absorbed to fracture

5.0 5.9 5.0 ft. lbs.
This gives 45 ft. Ibs/sq. inch. (Ref. Eng. Dept/OYY/RE/B. 104 A, 5.3.43).
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Fig. 3.6.

Equation (3.7) will certainly give a lower limit to the maximum fragment
breadth, if W is the true fracture energy under the conditions existing in
an H.E. shell. It is doubtful however if this bears any relation to the energy
expended in the notched bar test, most of which is probably due to plastic
deformation of the metal in the neighbourhood of the notch until the formation
of a true crack of atomic width at its apex, leading to brittle rupture. The
actual work necessary to separate two planes of atoms in a metal is of course
much less, of the order 1072 ft. lbs/sq. inch.

We shall therefore attempt a theory of fragmentation based on the assump-
tion that the energy of fracture is negligible. In addition we shall make the
following assumption: fracture can start at any one of a number of places on
the surface or in the body of the casing, and once started will rapidly spread
across it. During the initial stages of the expansion, it is very unlikely (or even
impossible) that a crack will start anywhere; as the expansion increases the
chance of a crack forming in any part of the case increases. We introduce a
function f(s)dsdx, which gives the chance that a crack will form on a length
dx of the circumference of the casing as the strain increases from s to s + ds.
We may take f(s) to be zero up to a certain value of s (the rupture point), or
we may assume a very rapid increase of f(s) in the neighbourhood of the rup-
ture point. We shall find that the form of f(s) determines the mean fragment
size.

As before we consider a fragment that has just broken along the lines AB,
CD (Fig. 3.6), and ask whether it is likely to break again. As soon as a fracture
has formed along AB, for instance, the metal in the neighbourhood of AB will
stop flowing. A boundary A’B’ between the part of the metal which is still in
plastic flow and the metal which has stopped flowing will move downwards
with a velocity that can be calculated. It will soon reach the boundary C'D’
moving upwards from the lower crack; when this has happened, no further
crack can form. For a fragment of average width, therefore, the chance of a
new crack forming before A’B’ and C'D’ meet each other must be small. This
chance can be calculated by comparing the function f(s), giving the rate of
formation of cracks, with the time available before the surfaces join.



254 N.F. Mott

The velocity with which the surface A’B’ moves can be determined as
follows, if we assume that this is small compared with the velocity of sound in
steel: Let a be the breadth of the fragment, = the breadth of the part that has
stopped flowing, and T, the stress required to cause plastic flow. The velocity
upwards of all material above A'B’ is then

Therefore the equation of motion of the block ABB’A’ is

d (1 1%
Ty=—pz—13 (za—z)—
it (307) )

pV dx
T, = —x— .
° rmdt (38)

which gives

Thus 1
51‘2/7& =rT,/pV , (3.9)

and the time which the fragment takes to stop expanding is
a’pV/8T,r ,

which is of order 1076 secs. if @ ~7mm The increase in the strain s of the
material during this time is of the order 1072.
From (3.9) we find

i =T,r/pVx ~6x10*/z cm/sec

so the velocity, except for very thin fragments, is considerably less than that
of sound in steel (5 x 10° cm/sec.).

We have now to make some assumption about the function f(s). We could
assume alternatively that.

(a) f(s) is zero up to a definite value s, (the rupture point) and is then
constant and equal to f,, say.

(b) f(s) is zero up to s,, and then increases, as ¢(s — s,)™ say.

(¢) f(s) is never zero, but increases rapidly in the neighbourhood of the rup-
ture point, as Ae?® say.

The hypothesis (c¢) is the most attractive, for reasons that will be given in
the next section; but they all lead to somewhat similar conclusions about the
fragmentation.

An idea of the order of magnitude of the constants involved can be obtained
from the behaviour of steel in tensile tests, if we make the assumption that
the behaviour in static tests is similar to that at high rates of strain. In tensile
tests, steels nearly always fracture after necking; the reduction of area thus
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gives a measure of the strain at which fracture occurs. Specimens prepared
from one sample of carbon steel show a certain seatter in the measured values
of the reduction of area; thus, if a steel fractures on the average for a reduction
of area of 50%, individual specimens will show values between 49 and 51
approximately. The following, for instance, are values'* for a normalised 0.4%
carbon steel:

1 1
58 565 595 59 per cent

Now according to our assumptions, the chance that a specimen of length [
will fracture before the strain reaches a value s is

1—exp |l [ f(s)ds (3.10)
/
In case (a) this gives
1- exXp [7fol($ - 30)] (311)

and in case (c), to a sufficient approximation

1—exp {Me“] (3.12)
v

Suppose that we assume that an increase in s by As increases the chance that
fracture has taken place from 10 to 90%. Then we find from (3.11) and (3.12)

fol =2.2/As  (case a)
v=31/As (case c)

In case (a) it is not clear what value of [ should be taken, since the maximum
strain only occurs at the neck. In case (c), however, | does not occur in the
formula for ~; if, in accordance with the experimental values given above, we
take As = 0.02, we obtain

v =155

A plot of the functions (3.11) and (3.12), showing the chance that a fracture
has occurred when the strain (reduction in area) is s, is given in Fig. VI for
lf, = 100 and for v = 150. The origin of s for curve (c) is arbitrary®®.

Experiments on the extent to which the reduction in area at the breaking
point fluctuates from specimen to specimen, carried out for a sufficiently large
sample, would shed light on the nature of the function f(s).

With any of these form of f(s), an estimate of the order of magnitude of
the breadth a can be made as follows: At each crack, after a time ¢, a breadth

14 N.P.L. Report to A.R. Committee, Paper 4755
5 A Fig. VI does not appear in the original graphs however discussions in this
paragraph refer to the lower curves plotted in the present Fig. IV.
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1/2
2(2To7”) / 1172
Vp

has stopped expanding and is thus “safe” from cracking. Since the strain
increases as Vt/r, when the strain has increased by As after the formation of
a given crack, a breadth round it equal to

TN\Y? r
1/2 _93/2 ( Lo r
sas s, p=i(2) 0

is “safe” also. If we neglect the overlapping of “safe” areas, a proportion

ﬁ/sf(S’)m ds'

is safe when the strain is s. When this approaches unity, the break up is com-
plete. Thus a, the average breadth, is given as regards its order of magnitude,
by eliminating s between

ﬂ/f(s’)\/s —s'ds' =1 (3.13)

/f(s’) ds' ~1/a
With the forms for f(s) suggested above we obtain the following;:
(a) Equations (3.13) lead to

2\** | T, /r\2/3
S -1/3 —o(__
“ (3> Lo 2 p (V)

This gives the same power of (r/V) as the author’s previous theory, and
with f, = 100cm ™", values of a of the order 0.5 cm
(b) Equation (3.13) give

T(n+ 1T (3)]

) 7#+3 =1 q__1
a:(n+1) F(n+%) Cznts 3"~ 2nts

It will be seen that the fragment size is proportional to (r/ V)lfﬁ and
thus to some power of r/V between 1 and 2/3.
(¢) With f(s) = Ae”®, the (3.13) give us

’
oo

Ape™® /6_78,81/2 ds' =1
0

o0
Ae™* / e ds' = 1/a
0
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_j2mT, 11
=\ v

With v = 100,7, = 60tons/sq. inch, this gives 0.7cm for a normal
shall of the calibres considered here.

and hence

It will be seen that a is now proportional to r/V.
Our formulae suggest, then, that the mean width of fragment will be pro-
portional to
const. (r/V)?,

where s lies between 2/3 and 1, the constant will depend on the nature of the
steel; it may depend on the thickness of the case and pressure of the explosive,
but consideration of the next section suggests that it will not.

We have not been able to find an analytical expression for the number
of fragments with breadth between a and a + da, but our equations for the
break-up enable a distribution to be found graphically. We limit ourselves
to the form (¢) for f(s). The theory is at present one-dimensional; we are
considering the division of a line (a circumference of the shell.) by random
fracture. Let [ be the length of this line; then as before where each crack is
formed, a space on each side of it equal to

o\ /2 ¢
o (A 1/2
( p > V( )

is safe from further cracking when s has increased by As. If N is the number
of cracks already formed then the rate of increase of N is given by

dN
—_— A ’YS
iS ple

where p the proportion of the line where cracks can still form. The first crack
will form, on the average, when

Ale?® [y =1

If the value of s given by this equation be denoted by s,, and a new variable
o defined by

oc=v(s—5,),
then the rate of increase in the number of cracks is given by the equation

an _
do

g

pe

Also, if a crack is formed when o = o1, the region round it where subsequent
cracking is impossible is at any subsequent instant
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Table 3.5. Values of 7 deduced from observed distributions of fragment breadths

Rocket head” Rocket head

88 mm shell 3.7 shell  (thick case) (thin case)
Zo (cm) observed 0.37 0.56 0.44 0.31
2 (cm) 11.4 12.2 12.8 12.8
V (cm/sec) 64,000 63,000 76,000 110,000
y= 2o ()’ 230 105 125 124

* The values of =, for 0.15 and 0.45% carbon are about the same.

2z4(0 — 01)/? (3.14)

or\ % r
T, =
<m) Vv

where

A line drawn on paper can now be cut at random, using playing cards or
dice. Initially ¢ is supposed to be zero; after each successive cut is made o is
supposed to increase by do where

do = 1/pe”

After each new cut is made, the “safe” region round all cuts made earlier
must be increased according to formula (3.14). Any arbitrary value of the
ratio [/x, may be taken. We took I/x, = 20. The line is repeatedly cut until
the whole region is “safe” from further cracking. The lengths of all intervals
are then measured and recorded, and the process repeated a number of times
until enough data are obtained to draw a histogram, in which the numbers of
“fragments” (i.e. intervals) are plotted against their lengths. The results are
shown in Fig. 1I(c)*®. The similarity to the distributions of fragment breadths
observed in Figs. I and II (a) and (b) is satisfactory.

By comparing Fig. V with the observed fragment distributions and espe-
cially the values of their upper limits, we have estimated in Table 3.5 the
value of x, for the projectiles investigated'”. The values are not correct to
more than +10%.

From these values we have attempted to deduce ~. For this we require
the radius of the shell at the moment of break-up (r), the velocity of the
casing and the true ultimate tensile strength, T,. The two former quantities
are deduced from the values given in Part I. To deduce T, from a tensile test
we require the stress at the moment of rupture at the base of the neck, which

16 This theoretical curve is an inset identified by Mott as “(c) Theory” in the graph
provided in the present Fig. II.

7 Again Fig. V refer to the curves provided in the upper plot in the present Fig.
Iv.
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is of course considerably greater that the U.T.S. given in engineering tables.
For steels the following values are given by Korber and Rohland, (Mitt. d. K.
Wilhelm Inst. f. Eisenforschung, 5 (1924) 55).

Carbon  Reduction in Area True Ultimate Stress
(%) (%) kg/mm?  tons/sq.inch
0.13 70 78 51
0.25 63 80 52
0.45 57 82 53
0.55 50 87 57

These will probably be somewhat higher for high rates of strain;'® we have
thus assumed

T, = 80 tons/sq. inch
— 100 1" "

for British (0.45% carbon) and German (0.7% carbon) shell steels respectively.

For the values of v we cannot claim an accuracy greater than +30%; within
these limits the British shells (0.45% carbon) show the same value, which is of
the order expected. The German shell shows a higher value, which we assume
to be due to the higher carbon content of the steel.

3.8 Dependence on Thickness and Pressure

We have seen that the hypothesis
f(s) = Ae7? ~v ~ 100

fits the facts well both for the fragmentation of shells and for the consistency
of the rupture point, and seems a priori more likely than the other hypotheses.
We have now to consider the following points:

(a) Is «y likely to depend on the thickness of the casing, or the pressure of the
gases at the moment of rupture?

(b) Why is v larger for steels with high carbon content?

(¢) Can we deduce a factor v of this order from any known property of the
metal?

It has not at present been possible to answer point (b); to the others an
answer can be given:
Let us make the following assumptions about fracture in ductile metals:

18 ¢f. G.I. Taylor, Stress Strain Relationship on Impact. Civil Defence Research
Committee. R.C. 36.
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(i) Cracks can start at a limited number of points or regions in the metal of
which we assume that there are n per unit volume.

(ii) Cracks will start at these points, on the average, when the strain has
increased to a value s1

(iii) The strains at which cracks will form at the individual points of weakness
show a certain scatter about the value sp; it is natural to represent this
scatter by a Gaussian distribution. We thus assume that the number of
points per cm® at which a crack will form as the strain increases from s

to s+ ds is
n (551)2]
ex ds ,
S9NV 21 P [ S%

For a tensile specimen of cross sectional area A, this gives us for our function

f(s)

_ nA
SoV 2T
We are interested only in the tail end of this curve where f(s) first becomes

appreciable; let us then define the rupture point s, as the strain for which one
crack per cm is expected, so that

exp {_(S ;%31)2} em™! (3.15)

f(s)

/80 fls)ds =1, (3.16)

and write
5=5,+5

Then we obtain from (3.15)

nA —(s1 — 30)2} el
Fo) = e [ o
with
v =2(s1 — 50)/85° (3.17)
Also from (3.16)

nAsg

ex
2v/27(s1 — So) P { S92

<81 8_2 so>2 = log, {2\@?&825)} (3.18)

whence

Hence from (3.17) we obtain finally

nAsg

ml%)} /(81— 85) (3.19)

v = 2log, {
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Since n comes within the logarithm, its exact value is not important. For
a number of reasons we expect the distance between the points where rupture
can start to be of the order 107* to 10~° cm. This is for instance the distance
between the slip bands!? in a metal, the “dislocations” in G.I. Taylor’s theory
of slip,?° or the “crystallites” whose existence has been suggested in cold
worked metals.?! We thus take n of the order 10'®; the other terms within the
square bracket are negligible in comparison and we obtain

v = 2log, 10*/(s1 — s,)
=69/(s1 — So)

From formulae (3.19), (3.20) we deduce:

(3.20)

(a) That ~ is practically independent of the cross section of the specimen,
and thus of the thickness of the shell casing.

(b) That + is practically independent of the pressure of the explosive at the
moment of rupture, because (cf. footnote 12) the pressure must vanish
at the outside surface, and if the formation of cracks were confined to a
small layer near the surface only, it would not affect v appreciably.

(¢) The properties of the steel affect the value of v only through the value of
§1 — S, and if sy is of the order unity, as is not unlikely, values of v in
agreement with observation are obtained.

3.9 Lengths of Fragments

Up till this section we have discussed only the breadths of fragments, believing
that splitting parallel to the axis is the primary process in fragmentation. We
have now to discuss the factor determining their lengths.

Observation on fragments of marks cut on the surface of the case shows
that shell casings do not stretch parallel to their axis; we must therefore look
for an explanation of rupture at the ends of the fragments different from that
given for the longitudinal cracks.

If cracks start at A and B and spread to the right, and from C and D
and spread to the left, then as Professor Andrew?? has pointed out, when
the cracks bounding two fragments meet, there will be a tendency to split,
as at E. According however to the hypothesis on which this paper is based,
a split like this is only likely to take place if the steel between the cracks A

19 ¢f. for example, Orowan, Nature, 147, 452 (1941) or the beautiful photographs of
worked steel obtained with the electron microscope by Heidonreich and Peck, J.
Applied Physics, 14, 24 (1943).

20 Proc. Roy. Soc. A. 145, 362 (1934).

21 Smith and Wood. Proc. Roy. Soc. A. 178, 93 (1941).

22 Report R.C. 342 from the Dept. of Metallurgy of the University of Sheffield
(31.8.42).
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Fig. 3.7.

and B has already stopped flowing before the crack D reaches it; otherwise
the crack D will be unaware of the presence of the cracks A and B and will
penetrate between them. If however plastic flow has stopped, the different di-
rections in which the two fragments are moving will, we consider, lead to their
separation.

Let u be the velocity with which each crack extends. As soon as a crack
has formed, the region spreads in which flow has stopped, so that after a time
t its width a is given by

1/2
y o (2T e
pV

Thus a crack starting at 0 in Fig. 3.8 and which has spread to a length 2b is
surrounded by a region bounded by two parabolas, in which plastic flow has
stopped; the breadth PQ of this region is

5 [2rTab 1/2
pVu

As a rough criterion for the condition that the region between two cracks
should be no longer in flow, we write a, the width of the crack, equal to half
this;

L [2rTb]
| pVu
Thus the ratio, length to breadth, is equal to

27b | pVua
a rT,

(3.21)

According to (3.14), a for the average fragment is proportional to r/V; we

obtain o
T U
— =2,/ = —= 3.22
a 2T, ~1/2 (3:22)

With T, = 60 tons/sq. inch = 9 x 10 c.g.s. units, p = 8,7 = 100, this gives
2b/a = 0.7 x 10~°u
If we equate u to the velocity of sound in steel, 5 x 10° cm/sec., we obtain

2b/a ~ 3.5
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Q

Fig. 3.8.

Fig. 3.9.

L

Fig. 3.10.

in fair agreement with experiment. The hypothesis that cracks spread with
the speed of sound is not unlikely to be correct, if the atomic cohesion only
has to be overcome, and no plastic deformation is involved.

Formula (3.18) suggests that the length /breadth ratio of the average frag-
ment is independent of the calibre of capacity of the projectile, but will be less
for the German high carbon steel (large ) than for the British steel. These
conclusions seem to be born out by the figures of Table 3.4.

3.10 Shape of Cross Section of Fragments

We have already remarked on the types of rupture observed, and pointed out
that the type of rupture shown in Fig. 3.10 is usual, with a brittle crack on the
outside of the casing and shear rupture at 45° on the inside. In this section
we attempt an explanation of this double type of rupture. For this purpose
we calculate the stresses in the case during plastic expansion.

According to G.I. Taylor’s calculations, the pressure at various stages in
the expansion of a long cylindrical cased charge are given by the following
figures, where 7 is the radius of the inner surface of the case and r, its initial
value:

At the moment of break-up, therefore, the pressure is of the same order as
the yield stress, and both will be of comparable importance in determining
the stresses in the material for thick casings.
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Table 3.6.
r/ro 1.0 1.05 1.1 13 154 24
pressure dynes/
cm?® x 1077 150 49 25 84 40 20
pressure tons/
sq. in. 1000 320 160 55 26 13

In a cylindrical tube subject to an internal pressure just great enough to
cause flow, the stresses have been worked out.?? The radial and tangential
stresses are, at distance r from the axis

S, = -1, logé
,

Sy =1, <1 — logb)
r

where b, a are the external and internal radii; the pressure necessary to cause
flow is

b
T, log —
a

Here T, = 2 S,/\/3 where S, is the shearing stress. If p is the actual pressure
of the gases, we have an additional pressure at the surface

b
p_TOIng
a

giving a hydrostatic pressure at a distance r from the axis equal to

<p—Tologb> a4 (b—l)
a)b—al\r

The stresses can thus be resolved into

(1) A tangential stress T,
(2) A hydrostatic pressure equal to

prologé M+Tologé
a) (b—a)r r

which vanishes at the outside surface and reaches the value p at the inner
surface.

Now it is known that hydrostatic pressure makes fracture more difficult,
while having little effect on the resistance to glide. For nonplastic materials,
where fracture starts from a microscopic crack, the following account of the

23 Nadai, Plasticity, McGraw Hill Book Co., p. 188:
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effect of hydrostatic pressure has been given by A.A. Griffiths in a well-known
paper.?* Suppose elliptical cracks are acted on by a stress T and a hydrostatic
pressure P; the angle made by the plane of any crack to the normal to T is
denoted by 6, and 6 is distributed over all values Fig. 3.11. Then T will be
great enough to cause cracks to spread under the following conditions:

T
L
/

Fig. 3.11.

(a) 4p < 3T If this condition is fulfilled, cracks for which # = 0 will be the
first to spread, where T reaches a value k + p, where k£ depends on the
elastic constants and surface tension of the metal, and the dimensions of
the crack.

(b) 4p > 3T Under these conditions cracks for which § = 0 will not be the
first to spread, but those for which

20 r
cos20 = 5 o T
At the critical pressure given by 4p = 3T, this gives § = 45°.

In plastic materials it is probable that the high tensile stress T near the
apex of a crack will cause cracks to form in crystal grains near to it. As the
apex of the crack travels inwards, if a point is reached where 4p exceeds 37T,
the crack should abruptly change its direction by 45°. This is just what is
observed.

Since T is certainly greater than T,, an necessary condition for such a
change of direction will be

4
§p>To

where p is the pressure exerted by the explosive. For casings that break up
at 30 and 50% expansions respectively, the calculated values of 4p/3 are 73
and 35 tons per sq. inch, which are of the same order as T, though they are
somewhat less than the values that we have assumed to hold for the metal at
high rates of strain.

For this reason we put forward the above explanation somewhat tenta-
tively.

24 Proc. Int. Congress for Applied Mechanics. Delft (1924), p. 55.
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3.11 Comparison with Observed Fragmentation
of Service Projectiles

In this memorandum we have reached the following conclusions:
For a given type of steel

(a) The ratio of length to breadth of fragments is constant.

(b) The average fragment area is proportional to (r/V)2%, where s lies between
2/3 and 1, probably nearer the latter value.

(¢) The weight distribution is given approximately by formula (3.3)

We may thus equate M4 of formula (3.3) to
const t1/2(r/V)*

where the value of the constant depends on the properties of the steel, or,
making use of formula (3.1) for the velocity

5 t 2
M4 = const t"/6d21/3 (1 + d) s= -
2

t
MA = const td21/2 <1 + d) s=1
2

where the constant depends on the type of explosive and steel, ds is the inter-
nal diameter and ¢ the thickness of the casing. The first of these formulae has
already been compared with experiment in 2), in which M4 was determined
for a number of service weapons.

Comparison with fragmentation of observed projectiles should show
whether s = 1 or s = 2/3 or some intermediate value gives the best fit.
Ursell?> has determined the best value of My for three model bombs frag-
mented by Payman,? with thicknesses 0.018, 0.125 and 0.3 inches (diameter
2"). He comes to the conclusion that M, is proportional to 1/V2. The cas-
ings of these bombs were of mild steel and gave shear fracture, and so are not
directly comparable with our theory. Unfortunately the range of values of r
and v available in British shells of carbon steel for which detailed information
is available is not great enough to allow any certain conclusion to be drawn.

Observed values of M, for a number of projectiles filled with TNT are
shown in Table 3.7; we have limited ourselves to those with a reasonably
cylindrical cross section. It looks as though s = 1 gave rather a better fit than
s=2/3.

25 A.W.A.S. Report No. 46; Ministry of Supply No. A.C. 3817
26 Joc. cit.,
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Table 3.7.
dq t My (oz)l/2 My Ma

Projectile inches inches observed t5/6dé/3 (1 + %) td;/2 (1 + d%)
3" U.P. 3.25 0.265 0.134 0.265 0.27
95 mm shell 3.7 0.425 0.23 0.29 0.26
U.P. (thick

cased) 3.5 0.50 0.30 0.32 0.29
3.7" shell 3.7 0.60 0.36 0.32 0.275 £+ .015
25 pr. shell 3.43 0.65 0.35 + 0.03 0.29 4+ .025 0.245 £+ .02
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A THTORY OF TIE FRAGMENTATION OF SHELLS AND BO:iBS,

By N. F. MOTT.

l. TIn a recent report on tnis subjectl), a tentative theory was put for-
ward to account for the sizeg,of the fragments obtained from steel pro-
jectiles. 1In a further note ),the theory was conmpared with the observed
fragmentation of service shells. 1In this report an attempt is made to
extend and to improve the theory, as far as is pessible without a satis-
factory theory of rupture in metals, which does not exist at present.

Before discussing the theory of fragmentation in Part II of this paper
we shall give in Part I a summary of the information available.about the
velocities, weilghts and shapes of fragments and the mechanisms by which
the explosive transfers its cnergy to them. We shall confine ourselves as
far as possible to cylindrical projectiles of uniform diameter, both
internal and external; shells with conical cavities are obvlously less
suitable Tor the deduction of theoretical conclusions. The rocket head is
particularly suitable from this point of.view, as 1s also .the German 88 mn,
shell, and 2 cpecial British 3.7" shell recently fresmented by CLS.ALR.,
Miliersfeord, )

PART I

2. EXPANSION OF THE CASING

It is well kmovm that stecl casings expand considerably before rupture;
this can be seen most clearly oy exomlning. the larger fragments which con-
tain part of the inmer and outer surfaces; the casc has become thinwer: by
an amount which varies very little from onc fragment to anotherd The
prescnt author has excemined frogments from the feollowing prejectiles which
have ‘e uniform case thickness : A German 88 mm. shell, o special British
3,71 shell with cylindricsl cavity, and three rocket ghells. fragmented in
the Szfety in Mines Research Stotion, Buxton, THe filling was THT in each
case; the results are os follows @

TABLE I
Carbon - External Thickmess of
yoe of shell pontont of dianmeter Basing Fragment Extensig
sholl % (mm) {(zm) (mm) A
Germon AA 88 mm. 0.7 g8 15 11.8 27
Britigh A4, 370 0,4 - 0,5 94 16,5 ie.8 30
(eylindrical cavity)
Service A.A.rocket
head n 85 6.75 ‘4,5 50
Thick cased rocket
head n 85 12.8 9 42
n 0.15 85 12.8 8.5 50

Further evidence is aveilable from photographic records of the explosions
of model bombs obtained at the Safcty in Mines Research Station,Puxtons).

%} A Theory of Frogmentatior, by N.F.Mott and E.H.Linfoot, - D,S.R: Extra-
Tural Report A.C. 3348. ‘ '

2) A.0,R.G. Memo. No. 24. "Frogm cntation of H.E.Shells; a theorctilcal
formila for the distribution of weights of fragments". ~

3) Report R.C. 282 from Dept, of Mbtallurgy,'Univers;ty of Shefficld,
4) Report R.C.236 from the Safety in Mines Rescarch Station,
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According to these, model bombs 29 in dis, wlth mild stecl casings filled
with tetrvl evnandcd by the followihg amounts before breaking up :

Thickness of case {inches) Expagsion (%)
0.125 87
0.30 100

The result obtained that the thicker cased bomb expands further may how-
ever be due to end effects; it 1s wot couilrmed by the two rocket heads
in Table I,

3. FRAGIENT VELOCITIES

A theorctical treatment of the expansion of the casing ¢f 2 long cylin-
drical casecd charge of TNT has becon.ziven by G.I. Taylorg). Apart from
the unlmown end effect at the base bf the shell, his results should be
appliecable to the nose-fuzed projectiles considered hercl

Aecording to Taylor the velocity of the easing can be expressed by the
following forrmla :

Va=a=VWd4d (T 1
e Ta d_""d.;p_ . ( )
where di, d, are the extornal and infernal diamcters of the casing before

expansion, and Vo is given for different degress of expansion in Table II
Actuel velocities calculated for certaln shells are also given :

TABLE IX
Veloclties in ft/sec;
4 expansion 1 L0 87 124 200
Vo 200Q 2400 2700 . 3000 2100
V(88 mm. shell) 1750 2100 2400 2700 2800
v (3" U,B) 2750 3500 5700 4100 4850

These figures neglect the work done in defeorming the case; assuming. a,
constant® resistance to elongation Tp (poundals/sq.ft) =2nd a. dengity P
for the steel, a short ccleculation gives for the reduction in velocity
due to this cause

FRVAES 1;1\7‘ leg (1+ E) (@)
Assuming Ty to be 30 tons/sq.in,, we obtain the following values :
TABLE ITT
£ expansion 11 30 87 124 200
vV (88 mm. shell) 1700 2000 2300 2500 2550

The work done against the plastic forces does not deerease the fragment:
veloelty appreciably, except perhaps for projectiles of very low charge-
weight ratio (A.P. shells). The work done in rupturing the casc is
probably quite negligible.

Tt. connot he assumed that the fragments cre projected from the shell
with the velocity of the casing at the moment of break-up; the following
observations show this :

(1) According to (unpublished) results obtalned at Buxton,model bombs of
simllar dlmensions made of steel and cast iron give frogoents of about the
same velocity. The cast iron gives very fine fragmentation and probably
breaks up without nlastic expansicn. ’

(%) By groeving the charre, controlled fragments can.be.obtained of a
5) Report to M. of H. S. Ho, R,C. 193. '

# In steels the resistance is, of course, not constant, but increases
somewhat as the nmet=1 hardens.
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desired size from U.P. casings., These fragments do not show thimning,
but have the original thickness of the case. The case rust therefore
have broken before expension. HNevertheless the velocity of the fragments
is appreciably the same as for the normal shell without a grooved charge
(unpublished results with nedel bomb.)

Both these results show that the explosive rust continue to exert
pressure ¢n the fragnents after broclk-up, and up to about 20 or 309
cxnension the pressure cannot devpend riuch on whether the tase has broken
or not.

Bvidcnce about fragment volocities is contradictory; at Buxton all
fragments from 2 given nodel bomb are found to have zpproxinately the sane
specd, cxcept for a few very small ones of high velocity, probably acguir-
ed from the expunding cases after break-up; a2t Hillersford, on the other
hand, whilst nost of the fragments from shells of the 8B mm or 5.7% type
have frognents with speeds in the range 8000-2500 ft/sec.,” therc are a
considerable number with rmch lower speeds down to 1000 ft/sec., and thus
with speeds less than tho caleulated veloeity of the caslng before break-
up. The origin of these is unexplained. !

Photographic nmeasurements of the velocity with which the casing of
a model bordb expands have been madoe ot Buxton; surnrisingly cnough,the
vecloeity of the case comes out in one case to be greater than that of
the. fragnents#*,

In view of these contradictory results we shall talke theoretical
values for the velocitics nf the casing, calculated as in Table III;
these cgree at .any rate as regerds order of magnitude with observed
fragnent velocitles.

4. TYPES OF FRAGMENTATION OBSERVED

The cross scctions-of the larze
fragments from 2 eylindrical shell aré usually
of one or other of the types shovm in fig.1;
on the outside of the case (along 4B) the
rupture is brittle, with shear rupture fron
B to C. Types.-1 and 4 2rc the .comaonest,with
szall pieces of triangular cross section fre-
cucntly shearing off tas in type 5 in fig.l).

In some casings the rupture is by
shear only, fragoonts of the types shomm in
fig. 2 being observed. ‘This has been observed

botlh for mild steecl and corbon steel, eosings.
In the trecries of Part IT we hove limited
ourselves to rupture which is at least part-

1y Brittle.

Fig., 2 Fragnents are .cormonly five to
toen times as long as they are wide.

5. WLDIGHTS OF FRAGMENTS

The wmest usual classification is by ﬁeighing. The presen® writer has
pointed out**that for many shells and bombs the weight distribution
satisfies the following formula; the mumber of fragments with .weights
between n ond n + dm is equal to

- M/M
Ce "™ dm M= m % @)

¥ cf, Reference 4); values given on zp. 2 and 5 for a model bomb with
0,018" casing. o

** Reference 1).
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where C, MA are constants. ©Since C depends on the total weight of the
cdsingy the fineness of the fragmentation is given by a single parameter
Hp. Apart from any theoretical significonce of formula (3), it provides
a convenlent practical method of comparing the frégmentation of different
projectiles;.

Using MA2 as a measure of the mean fragment weight, the following
factors appear to affect it in the following ways :

L. Iype of.Bteel v there is little ovidence that the tensile strength
or yield point affects the fragmentation, but the carbon content certain-
1y does. Thus two similor projectiles, the German 88 mr, and the British
8.7" shell give the following values of Mjp:

Dicneter  Thiclmess — Stegl, carbon  Mp(ounce)d
(o) Tem)” A
88 mn. shell 88 15 - 0.7 0,19
3,7 " 24 16.5 0.4-5 0.36

Also 3.85" rocket heads of carbon (0.4%) and mild steels, thickness 0.5
geve the following values of My = :

Carbon 0.30 (ounce) ¥
I7i1d steel 0,33

2, Calibre of shell : for given charge-welght a big shell undoubtedly
gives bigger frogrments. For cxemple, volucs of Mp for o large ohd for a
small shell of similar ecapneities are (U.B.Proc. 21099 and '21051)

Ha

95 mm, shell Amctol  BO/BO 0726

5.5" (80 1b. shell) (140 rmu. Amatol  0.48
50/50

&. Charge-welpht ratio : this affects both the thickness of the casing
snd its veloclty at the monent of break-up. That the velocity at the
oorent of breck-up has o profound influcnce on the fragmentation is shown
by two facks ¢

(a) That a 250 1b, bemb fragmonted in weter gives only about a
quarter as nany fragrents as vhen exploded in air 6),
*(b) The well kmown gross frasmontation of that part of an H,E.shell
with direct acting’ fuzé which is-in centact with the ground at the
monent of explesion; large plecos ccon be picked from the crater.

Apart from its influencd on the veloeity, 2 thin casing will of
coursnpgivo‘thinncﬁ fragmcbts jﬁan a thick oéé. Whether it affects the
other dirensions will bo. discussed below,

Values of MA for twe otherwi c'similar rocke: heads with thicknesses
0.265" and 0.5" arc fﬂefcrencc Bff

Thickness 0.265" 0.5% N
My 0.134 0,255 (ounce)®

The veloclty of expansion could be altered at will without affect-
inz the size or thickness of the casing by putting a lead coverirg round
the outside of the shell. Exverirents to determine the effect of this or

he fragmentation would be of great interest. The pressure distribution
within the cose would.zalso be altered (cf.} 11).

6. DIMENSIONS OF FEAGMENTS

The primary process in fragnentation must be splitting parallel to
the axis of the shell, with subsequent rupture at the onds, and product-
ion of secondory fragnonts of type 5 in fiz. 1. Assumlag that cracking

——— e = e ———— - —

6) Compilation of dote on Trinls on Explosive Effects of Alrcraft
Bombs, ER,D. Woolwich, 1938. .
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A B AB (e.r. elong BC ‘in fiz. 3) precedes shear rupi—
ure (e.;. along CD), the first task of any

\ C theory of fragnentation must be to account for

D the distance AB -in fig. 2 between the sdzes of

the averace frogmont. The observed distribut-
lons of the-breadth AB are shown in figs, I and
Fir. 3 II =2t thc cnd of this poper., It i1s of course
) true that the length AB often varies consider-
ably along-the length of o fragment, ond o visual estimate of the mean
breadth is subject to error; nevertheless the gonornl shape of the curves
ig siinificant. We plot azalnst fragment hreadth not the total number of
frognents, but the total length of 2]l fragnents (plzced end to-end) in
each eotegory.

The follewing onoints will be ncted :
(a) The rather charp cut-off for large breadths.

Eb} The much narrower fragnents obtoined with the Corrmen 88 ., shell
0.7% carbog steel) then with the British 3.7" shell or thick cased rocket
head, (0,454 stecl but similar dizmeter and cosing thiclmess)s

(c) The nerrower fragments cbtoinad with the thin cased (high capacity)
roclket head than . with the thick cnsed projectiles of similar stcel.

The- Lenzths »f fragments from the Cerman 88 rm. shell azre showm in
fi~, IIT; the curve does hot show the scne cut-off at hizh volues., In
fiz, IV we show the length distribution for fraogments of different breadths
there is “bviously a-rough c¢orrel:tion, broad frogmeonts teing longer. The
averasc length of frosznents in @ifferent coterories Is eiven ia Toble IV,

TABLE IV
Lenchts in mn.

Breadth {un.) 2 -3 4 5 6 7 8 9 10

Thick-cased U,P,
(er.rben stecl) 59 39 56 44 v 50 28

Thiek-tased U,P,
(z1ld steel)

Sarvice U.P. 27 1\ 30 28 29 ;

Gerizan 88 rii. 5.5 10 14.8 21,7

35 35 38 a7 58 54

[
1%

Evidence for corrclation between breadth and length is not marked
except Tor the Cerman shell, For the British shells o ratio of length to
breadth of the order 5 gcens to be nornal, for the Gornan shell a sone-
wnat snaller volue. :

Y. WBIGIT DISTRIBUTION OF FRAGMTNTS

The forrmule (3) was dorivedl) by the author on thc assumption of sone
sort of random break-up; figs. 1 to & show however that neither the
breal:-up parallel or perpefidicular to the axis can he consldered randon
as would be the case 1f the breadths were distributed according fo. the
lav ¢+ number of fromments with bresdths between 2 gnd a + do is proport-
ionnl to exp(-afag)da. It therefore seems worth while to attempt a
derivation of (3) from diffcrent assunptions.

~Let us assunme :
(a)'that the ca-ing is broken inte gstrips cné that the number of strips
with breadths between x and x + dx is

Cx e (-fx,)dx )

This does not represent the faets exectly, tut sives a nearer approxin-
ation thon the rondom frocture.
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(b) that each strip is broken up accordin® to the scne law, and that the
average lenzth of fragnent is proportional to the thiclmess x of the
strip. Thus from a strip of length the nunter of fragnents of length

between y and ¥y + dy 1is _?/in 3
3 Wyfpx) (5)

where p is a factor (of the srder 5).

Then the nunber of fragments of arca greater than a? is

%xgvjsw % [u P _%‘)] dx dy
This reduces to o

cons A i("{;é’l} exp (-A}—é‘i)db, Az Q_/xn Flz’.

and thus the number >f fragments with area such that a(= Jdrea) lies
between a and a + ds is

const £(A) 4}

where. o0
O - go{ff*'g‘)"A(yg)}{xp(-)\r?)dé (8)

This function is plotted logarithmieally in fi~. V over all values of

A from 0 to 10, i.e. over a renge of logyg f cqual to 3, which is
about the range over which the frazsment dis%ributian is usually plotted.
It will be scen that the deviation from & straight line is not very
larce.

Welght distributions of actual frognents arc likely to dsviate from
this thesretical curve for the following reason : the narrowed fragnents
: freoguently bresk as showm in fig. 4, thus
?aving a snmaller depth than they should.
oty T T Horeover the removal of the triangular
?7 ﬁéav pleeces fronm the base of the smaller frog-
7 | s ments will obviously make a greater pro-—
N portionel differcnce to their weight, This

- will result in a 'shift of the whole upper
part of the curve in fig. 5 somewhat to the
Fig, 4 left. On. the other hand, on reaching tie

welght catezories of the small triongular
fragments, a large nunber of ncw fragments appear which are not included
in the anolysils given above. Thus the curve should appear as the cotted
curve in fig., V, which ic very similar to those observed.,

PART IT

8. DEPENDENCE ON VELOCITY

We consider that the fragmentation will be determined by the pro-
perties of the casing at the moment of bresk-up, and will not depend,
for instance, on the pressures to which the case has been subjected
during the expansion. The factors that may be of Inportance are thus

(2) Propertiecs of the steel ot the moment of rupture - for cxanple
the true ultimate tensile strength rather than the yvield point.

(b) _The rate of increage of plastic strgin; this is equal to V/r,
where V 1s the velocity of the case and r its reodius,

(e) The thickness of the casing.
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(d) The pressure of thc cxplosive 2t thce monent of break-upjaccording
to Taylor's celeculations this is fronm 60 - 25 tons/sg. in. for casings
thot brezlr wp zfter & 25 to 5O cxpnuasion; this is ymch less thon the
initial pressure, which is of the order 1000 %ons/sq. in.

Tho theory which we shall develop suggests that (c} and (d} are of
oinor importance in determining the breadths ond lengths of fragments. As
in the author's previous report, we take the point of view that 1t is the
kinetic cnerpy of the case which tears it to pleces; the fragmentation
would De almost the same if the expanding explosive counld be miraculously
removed just before the casc broke up, leaving it to fly into pleces under
its own nonentun.,

 ———— 2
— -
<] v Fig. 5
D¢

In the author's previous‘reportl) the following derivation of the
fragnent breadth was given., Suppose that ABCD in.fig. 5 is the cross
section 2f a fragment which has just broken along BA, CD. The fragnent
is still in a state of plastic flow, the rate of ilncrease of plastic
gtrain being V/r. The kinetic encrgy of this flow of netal is

2 (3 2 L 3/.2
; v8 = o
'5.f)t v & 46 = %j; voEP //Y
--‘;d

It was arzued that If this were greater than the cnergy Wt regquired to
runture. the netal, the fragment would split in half. Thus the value

o = (2550 ] ®

woulc give an upper limit to the possible breadth of = fragment.

Agreement with observation, i,e. values of a of the order 1 cm.,
was cbtained with values of W given by the notched bar impact test for a
bi}gtle stecl, i.e. 40 ft/1lbs. per sg. ianch®*, Since W occurs only as
W72, the values obtained are not very sensitiye to W.

Equetion (7) will ceriainly give a lower limit to the masimum frag-
nent breadth, if W is the true fracturc energy under the conditions exist-
ing in an H.E.shell, It is doubtful however if this bears any relation to
the energy exponded in the notched bar test, most of which is probably
due to plastic deformation of the metal in {the nelghbourhood of the notch
until the fornation of a true crack of atomic width at its apex, leading
to brittle rupture. The actual work necessary to separate two planes of
atons in a metal is of coursé much less, of the order 10-3 ft,lbs/sq.inch.

We shall therefore attenpt a theory of fragmentation based on the
assumption that the energy of fraeture is negligible. In addition we shall
nake the following assumption : fracture can start at any one of a number
of places on the surface or in the body of the casing,. and osnce started
will rapidly spread across it. During the initial stages of the expans-
ion, it is very unlikely (or even inpossible) that a crack will start any-
where; a2s the expansion increases the chance of 2 crack forming in any

* Measurenents were nmade at the NLP.LT of %the Izod value of test pieces
cut from a 3.7" H,E, shell casing which had been extended 204 in the
direction origlnelly circumferential to the shell, to represent the
state of the steel at the nmonent of rupture; values obtained for speci-
nens with the usual 10 x 8 an. section at the notch were, for the energy
absorbed to fracture

5.0 5.9 5.0 ft. lbs.
This gives 43 ftilbs/sq. inch. (Ref. Eng} Dept/OYY/RE/B,104 4;5:3.43),
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part of the casec increases. We introduce 2 functi-m f(s)ds dx, which
gives the chance that o erack will form on a length éx of the circunfer-
ence of the casing as the strain increases from s tc s + ds, We nay take
£(s) to be zero up to a certain value of s (the Tupturc point), or we
nay assurie 2 very rapid increase of f£(s) in the nzighbourhoad of the
rupture point. We shall find that the forn of £(s) determines the mean
fragment size.

As Dbefore we consider. a fragment that
has just brokten along the lines AB,CD (fig.6),
and ask whether it is likely to break again,

As soon 25 a fracture has Tormed along AB, for
instance, the metal in the neighbourhsod of AB
will stop flowing. A& boundary A'B' between the
part of the metal which is still in plastic
flow and the metal which has stopped flowing
will rove downwards with a velocity that can

te calculated., It will soon reach the boundary
C'D' noving upwards from the lower crack; when
this has haprened, no further crack can form.
For a fragment of average width, therefore,the
chance of a new crack firming before A'B! and C'D' nmeet each other rust
be small., This chance can be calculated by ccmparing the function £{s),
giving the rate of fornmatlon »f cracks, with tho time available before
the surfaces join.

The velcelty with which the surface A'B!' roves can be deternineéd as
follows, if we assume that 3his is small compared with the velselty of
souné in steel ¢ Let a be the breadth of the fragment, » the breadth;of
the part that has stopped flowing, and T, the stress required to cause
plastic flow. The veloeity upwards of al1 nateriel above A'B' is then

Y (Iiou—x)

X
Therefore the equation of motion of the block ABBTA! 1s
- X - .
To= PTG {(e-)¥)
which gives V d
= PV dx
To 3 Tt (8)
Thus

<Mt = \;T‘,/Pv} ()

and the time Which the fragnent takes te stop exparding 1s

a}fﬂvv/g'T;Y’

whieh is of order 10~® sece. if a ~» 7 mm. The increase in the -strain
s .of the material during this time is of the order 1072,

.From. equaticn (9) we find

% = T 1/&°\/1: rn obx lokf/x o/ pec

sc the velocity, except 1or very thin fragments, is considerably less
than that of sound in steel (5 x 10° cn/sec.)

We have now to make some assumption about the funetion f(s). We
could assume clternatively that

(2) £is) is zero up to a definite value sq (the rupture poirnt) and
15 theon constant and equal to f4, say.

(v) f(s) is zero up to sp, and then inerooses, as e(s-.soln say.

(e¢) £(s) is never zero, but increases rapidly in the neighbourhood
of the rupture point, as p q_yﬁ say.
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. The DIypothesis {c) is the most attractive, for reasons that will be
given in the next section; but they all lead to somewhat similar con-
clusions about the fragmentation.

An idea of the »rder »f megnitude »f the ccnstants invslved can be
obtained from the behavicur of steel in tensile tests, if we nake the
assumption that the behaviour in static tests is similar to that at high
rates of strain. In tensile tests, steels nearly always fracture after
necklng; the reduction of area thus gives a2 measure of the strain at
which fracture occurs, Specinens prepared from one sarple of carbon
steel show & certein scatter in the measured valucs of the reduction of
area; thus, if a steel fractures on the average for 2 reduction of area
of EOﬁ, indivicual specimens will show values between 49 and Bl apohrox-—
inctely. The following, for instance, are valucs® for a normelised 0,47
carbon steel @

58 563 5932 59 per cent

Now eccording to our assunptions,the chance that a specimen of
length £ will fracture before the strain reaches a value s 1is

- e (0] 005 (10)
In case (a) this gives
|~ e=p -, £ (s-5.)] (11)
and. in case (c), to a sufficient appréoxinmation

| — exp [-— %q-— est (12)

Sunpose that we assume that an increase in s by #5 iIncreases the chance
that fracture kas talien place from 10 to 80¢. Then we finé from (11)

ana (12)
’%OE = a'Z/bS {case a)
¥ = 3-!/:;5

In case (a) it is not clear vhot value of { should be talken, since the
nmaximm strzin only sccurs ot the neek. In case (e), however, £ dees
not occur in the forrmla for y; if, in accordance with the experimental
values given above, we take &S = 0.02, we obtain

{case ¢)

y = 155

A plet of the functions (11) ané (12), showing the chence that a
fracture hos sceyrred when the strain (reduction in area) is s, 1s given
in fig. VI for €%, =100 and for y = 150. The origin of s for curve
(c) is arbitrary.

Experinments on the extent to which the reduction in area at the
breaking point fluctuates from specimen to specimen, carried out for a
sufficienrly large sample, would shed light on the nature of the
function £(s).

Vith any of these forms of f(s), an estinate of the order of mag-
nitude of the breadth a can be made as follows : At each crack, after a
time t, a brezdth v oo

z(ngf )1tz
VP
as stopped expanding and is thus 'safe! from cracking. Since the ztrair
acreases as Vt/r, when the strain has increased by S after the form-
ation of a given crack, & breadth round it egual EP - Vg
3 _ > [ z
g (asyi , p= Y {jf") -

# N,P.L. Report to A.R. Committce, Paper 4755
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is "safe" also. If we neglect the overlapping of "safe" areas, a2 pro-

portion S
Bitls) sy ds

is safe when the strain is =. Wien this approaches unity, the brezk up
is complete. Thus a2, the average breadth, is gilven as regards its order
of magm..ude, by e lminatins s between

8 Y4(s) Js-s ds =~y 13)

%(S CIS > , A
With the forms ‘.f‘o f(s) svzzested above we obtain the following :

{a) Equations {13) lead tc P N
_ (2132 o3 -
a= (53¢ 2Jz ()7

This gives the same power of (r/V) as the author's previous theory,,
and with fo = 100 em™*, values of a of the order 0.5 cm.

(b) Equations (13) give

2'n+3 ‘;v’\ﬂ "f’?,';
w
C(.:('n-i-l)[ (‘“"'szl C
Min+g ) R p—
T2n+)
1t will bo seon that the frogment sizez is proportional to (r/V)
and thus to some ')m‘el of‘ r/'f betwes: I and 2/35.
(e) wizh f(s) = A "- i -thc, cquations (13} zive us
VST -8 + h;
Ape e g7 ds
vsT ¢ -ys' |,
Ae Sc 2 c‘S = }"Jo_
end hence
T A A
a = ZT{) b \/ ),J;‘
With ¥y = 100, Ty = 60 tens/sg. incéh, this gives 0.7 2n. for a normal

shell of the calibres considercd hero.
It will be seen thot a ic 0w proporticnzl to r/V,

Our formulae susgest, thon, that the mean width of fragment will be
proportional to
conss. [(r/v)s ,

where s lies betwoaza 275 and 1; the constant will depend on the nature of
the steel; it may deperd on the thicimess of the case and pressure of tha
explosive, but comsideretion of the nexi scebtion sugpest that it will not..

We have nct beer 2ble to find an ans-.J.:rT.'.c 1 expression for the number
of fragmentlz with brendths bobwesn a and & + da, mt our chL-tions‘for
the breck-up enable 2 digtribu m Lo bs :.o.h.c". gI“‘p"liC:l ly. W Zimit
ourselves to the ferm ( "j for I 5). The theory is at oresent one—dimen—
sional; we are coasidering the divizion of 2 line (a eircunference of the
shell) by rondom frac urc. T:et? he thie length of this line: then as
nefore wher. eachk crack is Jormed, 2 s".._,e cn each side of it equal to

(_:.&_Ta )4 X (ﬂ S)

P

igs gafe from furither coa
number of cracks dlves 1=

by AN " s
e = Aple

1 s Los ‘neronasad by 268 It iz the
thzz tha rate of inercase of N is given

where is she proporiion ¢f Srha -..nc: waere cracks can gtill form. The
first erack will fovm, on the aveorafe, vhan
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Al Eyi/; = |

If the value of s given by this ccuation be dencted by so, and 2 new
variable o defined by
o = )’(S'-so);

then the rate of lncrease in the nunmter of ecracks 1s given by the equat-
ion dv o
arv. = Fe
do—
Also, 1f a crack 1s formed when o= 97 , the rezion round it where sub-
sequent cracking 1s impossible is 2t any subsequent instant
1A
2
2 Xg (o= o7) (14)

where L
2T )Z X
X = =_—Q
° FY v
A linc drawn on paper can now be cut at random, using playing cards or

dice. Initially o— is zupposed o be zero; after each successive cut is
made o is suppesed to increase byde— where

do = }/bea‘

After each new cut 1s ncde, the "safe! region round all cuts made earlier
mst tf increcsed aceording to formula (14). Any arbitrary value of the
ratio £/x, may be teken. Ve took £/x,. = 20. The line is repentedly
cut until the wholc resion is "safe® from further crocking. The lengths
of 211 intervals are then mecsured ond recorded, and the process repeated
a rumber of times until enouzh dato are obtoined to drow o histogrem, in
which the numbers of "fraguents" (i.e. intervals) cre plotted ageinst
their lengths. The results arc shovm in fiz, II(e). The similarity tc
he distributions of fraogpent breadths observed in figs., I ond II (agand
b) is satisfactory.

By comparing fi-, UV with the observed. frogment distributions and
especially the values of thelr upper limits, we hove estinated in Table
V the walue of xo for the nrojectiles investipated. The values are not
correct to mere than E 107,

From these values we have attempted to deduce y. For this we require
the radius of the shell at the moment of break-up (r), the velocity of
the casing and the truzs ultimate tensile strength, To. The two former
quantities are deduced from the vnlues given in Part I. To deduce Tg
from 2 tensile test we regquire the stress at the moment of rupture at the
base of the neck, vhich is of course considerably greater that the U.T.S.
given in engineering tabless. TFor steels the following values are given
by Korber and Rohland, (Mitt. d. ¥X. Wilthelm Inst. f. Eisenforschung, 5
(1924) 55).

Carbo Reduction in area True wltimate stress
D % R tong/sa.inch
0.13 70 78 51
0.85 63 80 52
0.45 57 62 53
0.55 50 a7 57

These will probably be somewhat higher for hizh rates of strain¥; we
have thus assuned

To 80 tons/sq. inch
loo " n

and German (0.7% carbon) shell steels

~ 1 n

for British (0.45% carbon
respectively.

# cf. G, I. Taylor, Stress Stroin Relotionship on Impact. Civil
Defaence Rogearch Comnittee. R.C. 38,
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TABLE ¥
Values of v deduced .fyron obgerved distributionsof fragment
oreedths
88 mn shell 5.7" shell Rocket head®  Rocket head
(fthick case) (thin case)
¥, (cn)observed 0.37 0.586 0.44 0,31
Sr (ert) 11:4 12.8 12.8 12.8
v (em/szc) 84,000 83,000 76,000 110,000
¥=24% (x_ 2 230 105 125 124
Y= =)

For the values of y we.cannot claim an accuracy greater than t 3043
within these Iimits. the British shells (0.45% carbon) shew the senme
value, which is of the order expected. The German shell shows a higher
volue, which we assune to be due to the hisher carbon content of the
steel.

9. DEPENDEHCE OF THICKNESS AND PRESSURE

We have seen that the hypothesis
ris) =A Y8 y~ 100

fits the facts well both for the fragmentation of shells and for the
consisteoncy of the rupture point, and seenms a priorl nore. lilkely fhan
the other hypctheses. VWe have now to consider the following points

(a) Is y likely to depend on the thickness'of the-casing, or the pressure
of the gases at the nmoment of runture?

(b) Why is y larger for stecls with high carben content?

(¢} Can we deducg o factor y of this order from any kmown property of the
uetal?

It has not at present been possible-to.answer point (b} to the
nthers an Znswer cen be given @
g

Let us make the following assunptions abiut. rradture in- ductilé
netals :

(i) Cracks can start a2t a limited nurber of points or regions.in the
metsl of which weé assume that therc are n per unit volume.

(ii) Cracks will stort at these points, om the average, when the
strain has increased to a value 5

(i11) The strains at which crocks will form at the indivldual points
of weakness show a certaln scatter cbout the value 5, 5 it is natural to
represent this scatter by'avGaussian distribution. We thus assume that
the nunber of polnts per em® at which a crack will form as the strain
increases fron s to s + ds is

P axp |- "-5117_
T P [ gf ds,

For a tensile spccimen of cross sectional area A, thls gives us for our
function £(s)

¢ “-A .
§ls)= s, or 7 [‘ (——'l—ss"f"‘ } cm™" (15)

¥ The volues of xo for 0,15 and 0.45% carbon arc about. the sane.
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Ve are interested only in the tail end of this curve where f(s first be-
comes nppreciable; let us then define the rupture point so he strain
for which one cracl’ per cm. is expected, so thaot

S R(s)ds = (16)

and write p
S= S5, +5S

Then we obtain from (15)

i(S) = E-A—-- ex‘:E (5 ~ % )J

with
Y= a (9.-‘59)/5?_1 (7)
Also from (18)
TlA S
2;?5(3 -50) exPE.(S — ) ] =,
whence
S =%\ — |, wAs,
( ) Je [Q.J‘i?’(s s)} (8)
Hence from (17) we obtain finally
= IO
7/ 5E Jh—f’s—ﬁ )\ /('5 S, ) (19)

Since n comes within the logerithm, its cxa2ect value 1s not important.
For a number of reasons we expcoet the distance bhetween the points where
rupture can start to be of the order 10-4 to 10-5 em. This 1s for inst-
ance the dlstanCe between the slip bands* in a metcl, the "dislocations”
in G.I, Taylor's theory of slip#¥*, or the "erystallites" whose existence
as _been sugzested in cold worked metals¥t#, We thus take n of the order
1015; the other terms within the square bracket are neglizible in compar-—

ison and we obtain -
y= 215y 10" /(5,-50)

e‘?/(s,~s°)

From formulae (19), (20) we deduce :

"

(20)

1

(a) That y is practically lndepundent of the cross scetion of the
soecimen, and thus of the thiclmess of the shell casing.

(b) That y is practicclly independent of the pressure of the explosive
at the monment of rupture, because (cf.é 12) the pressure must vanish at
the outside gurface, ard if the formction of cracks were confined to a
snell layer near the surface only, it would not affect y appreciably.

(¢) The proverties of thc steel affect the value of ¥y only through the
value of s, - s, aqd if s4 1s of the order unity, as is not unlikely,
valucs of y in agreement with observation are obtained.

# cf. for exanple, Orowen, N aturc, 147, 452 (1941) or the bheautiful
photographs of worked steel obtained with the electron mieroscope by
Heldonrolch ond Peck, J, Applied Physics, 14, 24 (1943).

#% Proc. Roy. Soc. A, 145, 362 (1934),

#e% Spith andé Wood. Proc. Roy. Soc. A. 178, 95 (1941).
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10. LENGTHS OF FRAGHENTS

Up till this section we have discussed only the breadths of fragments,
belleving that splitting parallel to the axis is the primary process in
fragmentation. We have now to discuss the factor determining their lensgths.

Observation on fragments of marks cut on the surface of the case shows

that shell casings do not stretch paraller to their axls; we rust therefore
look for en explanation of

rupture at the ends of the frag-

A “____E“,___“ ments different from that given
—_— for the longitudinal cracks.
E
\—-——~&-_w__ If cracks start at A and B
'"'h""jﬁ""—-“- D and spread to the right, and
from C and D and spread to the

left, then as Professor Andrewk
has pointed out, when the cracks
ric. 7 bounding two fragments meet,

there will be a tendency to
3plit, as 2t E. According however to the hypothesis on which this paper
1s based, o split like this is only likaly to take place if the steel
between the cracks A and B has already stopped flowing before the erack D
reaches 1t; otherwise the crack D will bc unaware of the prescnece of the
cracks A and B and will penetrate botweon them. If however plastic flow
has stopped, the different dlrections in which the two fragments are
moving will, we consider, lcad to their scparation.

Let u be the velocity with which each crack extends. As soon as a
crack has formed, the reglon spreads in which flow has stopped, so that
after a time t its width a is

given by "
oz 2 L&iﬁé)z. é:i
Pv

]
< Thus 2 crack starting at 0 in fig.
A 2 8 and which has spread to a length

2b is surrounded by a region
bounded by two parabolas, in which

Q plastic flow has stopped; the

breadth PQ of this region is

Fiz, 8 2 &TTo{rl}i
P Va

Ay O

As o rough criterlon for the con-
ditlon that the regilon between two
cracks should be no longer in flow,
we write a, the width of the crack,

K >< equal to half ;Ehis;
a = 1fT;%]z

Pva

\\\\\\\\"”,/’//} Thus the ratio, length %o breadth,

is equal to

: 2% o PVua
Fig. 9 o . (21.)
According to cquation (14), a for the average fragment is proportional
to v/V; we obtain
2% _ 2 [wE w_ o
a 2T, Y% (22)

With To = 80 tons/sg. inch = 9 x 109 c.g.s. units, = 8, y = 100, this
P

gives
2bfe = 0.7 x 1075 u

# Report R.C. 342 from the Dept. of Metallurgy of the University of
Shefficld (31.8.42).
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If we equate u to the velocity of sound in steel, 5 x 10° em/sec., ,we
obtain
2h/any 3.5

in fair azreement wilth experiment, The hypothesis that cracks spread with
the speed of sound is not unlikely to be correct, if the atomic cohesion
only has to be overcome, and no plastic deformation is involved.

Formula (18) suggests that the length/breadth ratio of the average
fragment is independent of the calibre or capacity of the projectile, but
will be less for the German high carbon steel (large y) than for the
griiis?vsteel. These conclusions seom to be born out by the figures of

able .

1L, SBAPE QF CROSS_SECTION OF FRAGUENTS

We have already remarked on
the types of rupturs observed, zand pointed
out that the type of rupture shovm In fig.

,.——""‘Y'_““———ﬁ 10 is usual, with a brittle crack on the
! outside of the casing and shear rupture at
450 on the inside. In this section we
-"‘“JL———“‘“*~‘\ attempt an explanation of this double type
of rupture. For this purpose we calculate
the stresses in the case during plastic
erpansion.
Fiz, 10
According to G.I., Taylor's
calculations, the pressure at various stoges In tho expansion of 2 long
cylindrical cased charge are glven Dy the following ﬁigures, where r 1is
the radius of the inner surface of the case and rq its initial value :

TABLE VI
r/ro 1.0 1,05 1.1 1.3 1.54 2.4
pressure gyncs/
cm?® x 107 150 49 25 3,4 4.0 2,0
pressure tons/
5q. in. 1000 320 160 55 26 13

At the moment of bresk-up, therefore, tie pressure is of the same order
as the yicld stress, and both will be of comparablc importance in deter-
mining the stresges in tHe material for thick casings.

In a° cylindrical tube subject to an internsl pressure just great
enough to cauvse flow, the stresses have been worked .out¥, The radizl
and tangential stresses are, at distance r .from the axis

Se= - T, Iy &
S, = To (i log &)

where b, -2 are the external amd internal radii; the pressure nccessary
to couse flow 1s

To .I"") gf;:
Herc Tg = BVSO/ J% whore 8o is the shearing stress. T p is the actual
pressurc of the gases, we have an additlonal:pressure &t the surfece
4 o

#iving = hydrostatic prossurc at 2 distonce r from the axis equal to

(-7 ) s (5-1)

% Jadal, Plasticity, McGraw Hill Book Co., pil88%
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The stresses can thus be resolved into

Elg A tangential stress To
2) A hydros.,,tic pressure equal to

T e )28 Tl B
(F o 3‘*'){@-0.)\' LS B

which vanisiies' at tho outside surface and reaches the value p at the
inner -surfacs,

Nov it is lmovm that hydrostatic pressure makes fracture more diffic-

ult, while having little effect on the.resistance to glide. For non-
plastic moterials, where fracture sterts
frow a microscoplc crack; the following
account of the effedt of hydrostatic

T pressure has been given by A.A,Griffiths
in a well-known paper*. Suppose elllp-
tical cracks are acted on by a stress T

/ ahd 2 hydrostatic préssure P; the angle

—

2 made by the plane of ony cr‘"clf. to the
normal to™' is denoted by 6 , and 6 1s
o distributed over all wvalues. Then T will
. be great enough _to cause cracks to sprecad
iz, 11 under the following conditions :
(a) 4p<c 37T If this condition is fulfilled, cracks’ for-which

& = 0 will be the first to spread, where T recaches a2 value K+p, where
K. depends on the clastic consfants and sucfacc tension of the metal,and
the dimensions of the crack.

(lb) 4 p>» 3T Under thesc conditions cracks for which 7= 0 will not be
the first to spredd, bt those for which

— T
Cﬂﬁla—"l‘{m

At the critical pressure given by 4 p = 3 T, this gives 6 = 450,

In plastic materials it is probable that the high tensile stress T
near the apex of a crack will ceuse cracks to forn m crystal graifs near
to it. As *the apex of the cracx travels inwards, if a2 point.is reached
where 4 p exceeds 3 T, the crack should cbruptly chanse its éirection by
450, This is just what is observed.

Since T is certzinly greater than Tg, o necessary condition for.such
a chonge of directlon wiil be
+ P > T

where p is the pressuré cxerted bY the explosive, For casings that break
up at 50 and 50% expansions respectlvely, the ‘calculated values of 4p/3
are 73 and 35 tons per sa. inch, which are of the srme order as Ty, though
they =re somewhat less than the values that. we have assumed to hogd for
the netal at high rates of strain.

For this reason we put forward the above explonation somewhat
tentatively.

12. COMPARISON WITH OBSERVED FRAGMENTATION OF SERVICE PROJECTILES,
In this memorandum we have reached tha following conclusions : v
For a given type of stecl

(a) The ratio of length to breadth of fragments -is- constont.

(b) The averagze Ir%ment areas is proportional to (r/V)2S, where s lies
between 2/3 and 1, probably nearer the lotter velue.

(c¢) The weight distribution is given approximately Ly formula (3)

% Proc, Int. Congress for Applied Mechanics. Delft (1924), p.55.
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We ray thus equate My of Torrmulz (3) to
A s
const E* (‘%/ )

where the value of the constant depesnds on the properties of the steel,
or, making use of formula (1) for the velocity

- - 1% a4 5 _
MA = const E% dl3 (F+ _3: ) 5 -:;_
" X [= -
MA: const dlL (I‘i’d-—‘) 5=

where the constant depends cn the type of explosive and steel, d, is the
internal diarcter &nd t the thickness of the casing. The first of these
formilae hos clready bLeen compared with experiment in 2), in vhich
Mp was determined for a number of scervice weapons.

Comparison with fragmentation of observed projectiles should show
wkether s = 1 or s = 2/3 or some intermediatez velue gives the best fit.
Ursell#* has deterained the best value of Mp for three model bombs frag-
nented by Paymon #%, with thiclnesses 0,018, 0,125 and 0.3 inches (dia-
maeter 2"5. e comes to the csnelusion thet My is proportionnl to
1/vi.2, The casings of thesc bombs werce of mild stecl and gave shez
fracturc, and so arc not dircectly comparable with our theory. Unfortun-
ately tho range of values of r and V availablc in British shells of
carbon steel for which detailed informetion is available is not great
enough te 2llow ony certein conelusion to bo drawm,

Observed volues of 3y for o number of projectiles filled with TNT are
shotm in Table VIL;we have limited ocursclves to these with a reasonzbly
cylindricnl cross sccticn. It looks as though s = 1 ceve rether a
better £it than s = £2/3.

* AW.A,S, Report No. 46; Ministry of Supply NHo. A,C.3E817
?

# 1ac, cit.,

TAZLE VIT

Projectile  d, t Mé(oz)% M Mg
inchies  inches observed £3% df (”5‘;) edx( HE"
én u.P. 3.25 0.265 0,154 0.265 0.27
95 mn.shell 3.7 0.425 0.23 0.28 0.26
U,P, (thick:
cascd) 5. 5 0.50 0.30 0.28 0.29
3.7 shell 5.7 0.80 0.36 0.52 0.275%,015

25 pr, shell  3.43 0.65 0,35%0.08 0.20%,0825 0.R45%,02
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