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Introduction5.1

This chapter summarises our basic understanding of cohort studies, a type of
observational epidemiology study that some have also called longitudinal, or
prospective. A cohort study evaluates the risk of disease or disease-related outcome
in a population that is characterised in terms of relevant risk factors or exposures,
placed under observation, and followed for some time until disease develops or
not. In contrast to its classical counterpart, the case-control study (cf. Chap. I.6
of this handbook), cohort studies can relate multiple diseases to the exposure or
exposures identified. On the other hand, cohort studies are frequently restricted
to a limited number of exposures and potential confounders that can be included
in the study, if historical data is used.

The chapter is organised as follows: First, a brief historical perspective on cohort
studies is given, showing the importance of this study design by giving examples
from the past and from today. Second, conceptual features of cohort studies are
presented, where the two basic types of cohort studies, concurrent and non-
concurrenthistorical cohort studies are summarised, and thebasic concepts of data
analysis in cohort studies are described. These concepts include the description of
outcome events in the cohort, the comparison with external data and the analysis
of effects of exposure. The chapter then deals with key concerns of cohort studies,
like selection of the study population, and on the important question of how
to determine exposure and outcome events in the framework of a cohort study.
A review on ethical issues, mainly raised through the potential future use of
specimens, is given.

A Brief Historical Perspective
on Cohort Studies5.2

Cohort studies have been used for over a century to study determinants of disease.
Since the early days of epidemiology, they have been used as a powerful tool to
study a broad range of exposures like infections, nutritional factors, occupational
exposures, and lifestyle factors as the following examples illustrate.

The classical study on the London cholera epidemic of 1849 conducted by
John Snow is an example of a cohort study on infectious diseases (Snow 1855;
Sutherland2002). Previous reports fromtheRegistrarGeneral haddrawnattention
to the possibility that differences in water supply were associated with differences
in cholera rates across sections of London. Two different water companies (the
Lambeth and the Southwark & Vauxhall) supplied households within various
regions of London, and frequently these two water companies supplied adjacent
households. The companies differed in one important feature, the location of the
water intake. The Lambeth had moved their water intake upstream from the sewage
discharge point in 1849; whereas, the Southwark & Vauxhall continued to obtain
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water downstream of the sewage discharge point. Dr. Snow classified households
according to their exposure to the two water sources and showed a substantial
difference in cholera mortality, 315 versus 37 cholera deaths per 10,000 households
served by the Lambeth and Southwark & Vauxhall companies, respectively.

Cohort studies continue to be an important tool in the investigation of infectious
diseases. For example, McCray (1986) used a cohort design to quantify the risk
of developing the acquired immunodeficiency disorder (AIDS) among healthcare
workers exposed to blood and body fluids of AIDS patients.

Joseph Goldberger employed a variety of epidemiological approaches, including
cohort methods, to study pellagra, a systemic disease endemic in the southeast
of the United States in the late 19th and early 20th century (Terris 1964). In one
investigation,Goldbergerexamined thedietaryexposuresofhouseholds in relation
to the occurrence of pellagra and demonstrated that a cornmeal subsistence diet
was associated with pellagra. Subsequent trials showed that pellagra could not be
transmitted from person to person, as might be expected for an infectious disease,
but could be prevented by the “pellagra preventive factor” later determined to be
niacin. More recently, Oomen and colleagues studied the association of trans-fatty
acids, a hydrogenation product of oils containing polyunsaturated fatty acids, and
heart disease among men in the Netherlands (Oomen et al. 2001). They found
a relative risk of 1.28 of heart disease for an increase of 2% of energy from trans-
fatty acids intake at baseline.

Occupational epidemiology is another classical field of application of cohort
studies. Typically workers exposed to a putative harmful substance are compared
to other workers in the industry or to the general population. Occupational cohorts
were used to study, for example, the association between exposure to dyes and
urinary bladder cancer (Case et al. 1954), exposure to mustard gas and respiratory
cancer (Wada et al. 1968), and exposure to benzene and leukaemia (Rinsky et al.
1987). The health effects for workers exposed to asbestos continue to be examined.
Ulvestad and colleagues (2004) conducted a cohort study of members of the
Norwegian Trade Union of Insulation Workers hired between 1930 and 1975 and
followed through 2002, demonstrating relative increases in risk of mesothelioma
and lung cancer when compared with the experience of the general population.

In addition to diet, other lifestyle exposures have attracted the attention of
epidemiologists, including physical activity, tobacco and alcohol use. Morris and
colleagues (1953a, b) demonstrated that British bus drivers had approximately
twice the risk of heart disease in comparison to the more active conductors (who
went up and down the stairs to collect tickets). This result was confirmed in a com-
parison of postmen with telephonists and clerks (Morris et al. 1953a,b). In 1951,
Doll and Hill (1954) initiated a cohort study of British physicians by collecting
data on tobacco use via questionnaire. By collecting death certificate data, they
were able to demonstrate a 10-fold increased risk of lung cancer death for smokers
compared to non-smokers (Doll and Peto 1976). Doll and colleagues also reported
on the association of alcohol consumption with mortality among British doctors
(Doll et al. 1994a) demonstrating a u-shaped relationship, with greater mortality
among abstainers and heavy drinkers and the lowest mortality among moderate
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drinkers, defined as 1–2 drinks per day on average. Concerns persist that the
increased risk described in abstainers may be falsely elevated by the experience
of former drinkers who may have quit drinking due to health decline. This con-
cern has been addressed by Eigenbrodt and colleagues using cohort methodology
within the Atherosclerosis Risk in Communities (ARIC) study (Eigenbrodt et al.
2001). Eigenbrodt and colleagues measured perceived health status and alcohol
consumption behaviour longitudinally and were able to identify changes in health
status that preceded changes in drinking behaviour. They demonstrated that per-
ceived health decline predicted cessation of drinking, thereby providing evidence
that the risk among abstainers may have been inflated in studies that failed to
distinguish between lifelong abstainers and former drinkers.

Despite disadvantages regarding cost and complexity, cohort studies remain
until today of substantial public health importance as indicated by several of the
previously cited examples and by such evidence as was recently provided by the
National Institutes of Health (NIH). The NIH is considering the establishment of
a 500,000-person cohort study to examine genetic and environmental influences
on common diseases in the United States (National Institutes of Health 2004). The
large sample size under consideration for this study would enable the examination
of gene-gene- and gene-environment interaction in the general population and in
subgroups of interest. Therefore, a sound understanding of cohort methodology
is of substantial importance to the modern epidemiologist.

Conceptual Foundations5.3

Types of Cohort Studies:
Concurrent and Non-concurrent Approaches5.3.1

The central feature of a cohort study is the collection of exposure data in a defined
population and the subsequent surveillance of possible outcome events regarding
health, morbidity, and mortality. For this purpose, healthy members of a defined
population (the cohort) are classified according to their exposure status (e.g.
exposed vs. unexposed) and followed over a longer period with respect to their
health status. Then, the question can be answered if incidence of outcome events
is associated with former presence or absence of exposure, which would indicate
a possible causal relationship.

Within this framework, cohort studies can be classified in two major categories
depending on the timing of follow-up period relative to the time of study con-
duct. In concurrent cohort studies, sometimes referred to as prospective cohorts
(Fig. 5.1), a defined population is assembled and possibly screened to eliminate
persons with disease. Then, information on exposure, possible confounders, and
other important factors is gathered. The cohort members are subsequently fol-
lowed for a specified period into the future recording outcome events of interest.
In non-concurrent or historical cohort studies (Fig. 5.1), a population is assembled
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Direction of enquiry

Time

Concurrent

Figure 5.1. Design of a cohort study

from available data records, for example from company files. Exclusion of per-
sons with disease and assessment of exposure and other factors is based on the
available data from the past. Cohort members are monitored for outcome events
through existing documents and data systems (e.g. vital statistics files or disease
registries) to some point in the past. As in concurrent studies, outcome rates
may be compared across exposure categories within the cohort, or, if all mem-
bers of the cohort are assumed to be exposed, outcome rates may be compared
between the cohort and the general population, assumed to be unexposed. A com-
bined approach is also possible, with the cohort assembled and followed initially
through historical documents or other data sources such as data from registries
and subsequently followed using concurrent methods. The distinction between
these two major categories of cohort studies has important implications regarding
data collection.

In concurrent studies, the methods for cohort assembly and data collection
can more easily be controlled; whereas, in non-concurrent studies, the investiga-
tors must rely on data recorded in historical records almost always for reasons
other than medical research. This notable disadvantage of the non-concurrent
approach is compensated by the ability to study exposures, such as occupational
exposures, that meet one or more of the following key conditions: (1) the ex-
posure can be attributed to selected employed populations based on individual
records of job descriptions or other employment data, (2) the exposure is rela-
tively rare in the general population outside the occupations of interest, (3) the
induction period is long, and (4) the health concern is substantial, making the
continued exposure required for a concurrent study undesirable from a public
health perspective.

Because many of the non-infectious diseases tend to be multi-factorial in cau-
sation, a crucial point in the validity of cohort studies is the inclusion of data on
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possible confounders at baseline. This is a problem in historical cohort studies,
that will be discussed in the section on determining exposures below.

Two modern extensions of cohort studies that try to integrate the advantages of
cohort and case-control studies are designed to have nearly all the power of classic
cohort studies, but utilise relatively economically detailed exposure information
from questionnaires, biomarkers or other biological measurements determined
from the collection of biological specimens at the time the study is initiated.
These analytic designs, i.e. nested case-control studies and case-cohort studies,
are discussed in detail in Chap. I.7 of this handbook and will not further be
considered here.

Description of Outcome Events in the Cohort5.3.2

In contrast to case-control studies, cohort studies with their straightforward de-
sign allow direct comparisons of exposed and unexposed persons and can provide
measures of effects for various outcome events, like e.g. different endpoints (mor-
bidity, mortality, pre-morbidity) and|or different diseases. Nevertheless, analy-
sis of cohort data requires reasonable care especially in the steps of data pre-
processing for description and analysis. The often necessary change of perspective
from persons at risk to person-time at risk needs special attention to ensure
that unbiased results can be obtained. This subsection will refer mainly to dis-
ease incidence; however other measures can principally be treated in the same
manner.

The results from a cohort study can be presented as shown in Table 5.1.

Table 5.1. 2 × 2 table summarising the results of a cohort study

Second observe Total

Disease contracted No disease
First Exposed a b a + b = nE

select Non-exposed c d c + d = nE

Total a + c b + d a + b + c + d = N

Theeasiestway todescribeoutcomeevents ina cohort is by counting thenumber
of persons experiencing the event of interest and to relate this number to the crude
number of persons at risk in the cohort. Disease incidence, for example, can be
described by the cumulative incidence or risk, which is calculated by dividing the
number of incident cases by the number of persons at risk at baseline:

R̂isk = number of incident cases|number of persons at risk , (5.1)

that can be calculated as

R̂isk = (a + c)|N (5.2)
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and accordingly for the exposed and unexposed study populations as

R̂iskE = a|(a + b) = a|nE

R̂iskE = c|(c + d) = c|nE .

The cumulative incidence or risk is unit-free and represents an individual risk
of developing the disease. It is a proportion, not a rate and it does not account for
possible different periods of disease-free follow-up time of cohort members, but
assumes a fixed cohort. In cohort studies on acute diseases with short induction
periods and a short time of follow-up, like outbreaks, the risk of disease can be
estimated directly using the cumulative incidence, given a fixed cohort with fixed
period of follow-up and a low fraction of drop-outs. In cohort studies on chronic
diseases with their long follow-up periods, however, the use of the cumulative
incidence is not appropriate because usually disease-free follow-up periods dif-
fer strongly among cohort members. In this case, outcome events are preferably
described by rates, that represent the number of outcome events divided by the
cumulated duration of event-free follow-up periods of all cohort members at risk.
For further analysis, all rates presented in the following can be used to determine
rate ratios and rate differences as described in Chap. I.2 of this handbook. Disease
incidence can be expressed as incidence rate (I):

Î = number of incident cases|person-time at risk , (5.3)

where each cohort member is contributing the time from entry into the study
to either development of disease or end of follow-up to the denominator of the
incidence rate, thus accounting for different times at risk of the cohort members to
develop the disease. The incidence rate is sometimes called incidence density and
should not be confused with the above mentioned cumulative incidence. Assuming
total person-time of follow-up of t, with tE and tE follow-up of exposed (E) and
unexposed (E) populations, (5.3) results in

Î = (a + c)|(N × t) , (5.4)

where N × t denotes the person-time at risk. Calculating the incidence rates
separately for the exposed and unexposed study populations gives

ÎE = a| [(a + b) × tE] = a|(nE × tE)

ÎE = c| [(c + d) × tE] = c|(nE × tE) .

Measures of risk and incidence of disease may provide important information
regarding the public health burden of the outcome or disease of interest.

Since incidence rates often vary considerably by e.g. age, sex, calendar year, and
race, the calculation of specific incidence rates instead of crude incidence rates may
be desirable. For this purpose, different strata (for one group variable) or cells (for
two or more group variables) have to be defined over the group variables’ range.
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The individual contributions of the cohort members to numerator and denomina-
tor of the incidence rate have to be assigned to the respective stratum or cell. Usu-
ally, each cohort member will contribute to more than one stratum or cell as he|she
moves through the cohort during follow-up. Age- and calendar-specific incidence
rates can be approximated well enough on the base of calendar year data if more
precise informationonmonths anddays isnot available (seeBreslowandDay 1987).

A simple example demonstrates the principle steps for the calculation of specific
incidence rates for the age groups 30–39 years, 40–49 years, and 50–59 years.
Table 5.2 shows the data of a fictitious cohort, for which we will calculate age-
specific incidence rates. Since exact dates in terms of months and days are not
available in our example, age and follow-up time will be approximated by full and
half years. The contribution of the year at entry into the study and the year of
diagnosis is approximated as half a year (see Fig. 5.2).

The cohort consists of 10 persons who were followed for 20 years resulting in
a total of 155 person-years of follow-up, deaths and drop-outs accounted for the
lacking 45 person-years. Three cases of the disease of interest occurred in the
cohort during follow-up, resulting in a crude incidence rate of 3|135 = 0.022
cases/person-year. The difference between the total of 155 observed person-years
and the 135 person-years in the denominator of the incidence rate results from
20 years of cumulated follow-up time after diagnosis in the three cases. A useful
general way in which to think of cohort data is to separate person-time at risk and
person-time under observation.

A subject is “at risk” at a given moment if the event of interest can happen. Thus
if a subject gets a thyroid surgery, she|he is no longer at risk of getting a thyroid
cancer. If on the other hand the event of interest were a pregnancy, a woman would
not be “at risk” of becoming pregnant if she already is pregnant or during spells of
abstinence. In this case, however, the woman is “at risk” again from the moment on
she desires another child. In the example above, a subject is no longer considered

Table 5.2. Data from a fictitious cohort

No. Age at Years of Age at end Age at Person-years
entry follow-up of follow-up diagnosis at risk

1 34 15 49 15

2 39 20 59 54 15

3 31 12 43 12

4 36 17 53 41 5

5 38 9 47 9

6 38 16 54 51 13

7 41 11 52 11

8 32 20 52 20

9 39 18 57 18

10 42 17 59 17

Total 155 135
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“at risk”, after diagnosis of the disease. Of course no subject is “at risk” from the
moment of his|her death. Being at risk depends only on the endpoint studied.

On the contrary, being under observation, (i.e. being followed up), depends
on the precise definition of the cohort and the method of follow-up considered
in the epidemiological study. A subject is under observation at a time t, if, were
the event of interest to occur at this moment, it would be recorded. Thus for
example if the cohort definition were “all subjects employed in a given factory
with at least one year of employment”, the follow-up would start only at the
moment the subject satisfies this criterion. In this case, all the person-time in
the first year must be ignored. If the event of interest occurred in this year, it
would not satisfy the inclusion category. Similarly a subject would be dropped
from the follow-up at a time t if no information as to his|her disease status could
be retrieved from time t on (e.g. the subject moves abroad), the subject is then
considered “lost to follow-up”. A subject contributes person-time to the study
at any moment t if and only if at this moment he|she is “at risk” and “under
observation”.

Coming back to the example, each incident case is assigned to the age group
he|she belonged to until diagnosis. In the same manner, the disease-free time of
follow-up of each cohort member is allocated to the three age groups yielding the
age-specific incidence rates presented in Table 5.3.

Incidence rates are commonly re-scaled e.g. to cases per 100,000 person-years
underlining their reference to populations rather than to individuals. The crude

Figure 5.2. Follow-up time of cohort member No. 4 of the fictitious cohort



262 Anthony B. Miller et al.

Table 5.3. Age-specific incidence rates for fictitious cohort data

Age Incident Disease-free follow-up time Age-specific
group cases incidence rate

30–39 0 5.5+0.5+8.5+3.5+1.5+1.5+0+7.5+0.5+0 = 29 0|29 = 0

40–49 1 9.5+10+3.5+1.5+7.5+10+8.5+10+10+7.5 = 78 1|78 = 0.013

50–59 2 0+4.5+0+0+0+1.5+2.5+2.5+7.5+9.5 = 28 2|28 = 0.071

incidence rate of 0.022 cases|person-year of the fictitious cohort, for example,
would then be expressed as 2222|100,000 person-years.

In Fig. 5.2 the follow-up time of cohort member No. 4 is depicted schematically
with respect to age. The first three and a half years, denoted with A, of the five years
of disease-free follow-up time (41 years at time of diagnosis – 36 years at entry into
the study) are contributing to the denominator of the incidence rate of the first age
group (30–39 years), the next one and a half year, denoted with B, contribute to
the numerator of the incidence rate of the second age group (40–49 years).

To quantify the frequency of exposure in the population under study the preva-
lence of exposure may be considered:

P̂E = (a + b)|N = nE|N . (5.5)

The various quantities presented here can be used to derive measures of asso-
ciation accordingly (see Sect. 5.3.4).

External Comparisons5.3.3

One important task in cohort studies is the comparison of the cohort with ex-
ternal data, preferably from the general population. Irrespective of the existence
of internal comparison groups, external comparisons always give valuable in-
sights by putting the cohort data in a broader context. For external comparisons
either age-, sex- and calendar year-specific incidence or mortality rates or cumu-
lative measures can be used. Standardised incidence rates can be calculated from
specific incidence rates by weighting them with the age-, sex- and calendar year-
distribution of the external comparison data (direct standardisation). However,
cumulative measures have to be interpreted cautiously since they can mask under-
lying differences in specific disease patterns, like e.g. an unusually high incidence
rate among younger persons in the cohort. With di denoting the number of cases
in the age group i, ni denoting the disease-free person-years accumulated in the
age group i and wi denoting the proportion of persons in the age group i in the
standard population, the directly age-standardised incidence rate ÎW calculates
as:

ÎW =
I∑

i=1

widi|ni , (5.6)
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Indirectly standardised measures requiring morbidity or mortality rates of the
standard population are the standardised morbidity or incidence ratio (SIR) and
the standardised mortality ratio (SMR). Since morbidity data is not routinely
available in most countries the standardised mortality ratio is used much more
frequently. The SMR compares the observed numbers of deaths in the cohort with
the expected numbers, given the age structure of the cohort and the age-specific
mortality rates λi of a reference population. With di denoting the number of deaths
in the age group and ni denoting the person-years accumulated in the age group,
the SMR is estimated as

ŜMR =
I∑

i=1

di|
I∑

i=1

niλi , (5.7)

where
I∑

i=1
di represents the total number of observed deaths in the cohort un-

der investigation and
I∑

i=1
niλi the expected number of deaths that are obtained

by applying age-specific incidence rates of the reference population to the co-
hort under investigation. A SMR above 1 indicates a larger mortality in the
cohort, a SMR below 1 a smaller mortality in the cohort compared to that of
the reference population. Statistical testing of a single SMR can be done with
a simple χ2-test (observed vs. expected) with one degree of freedom. Assum-

ing that the number of observed cases D =
I∑

i=1
di follows a Poisson distribu-

tion with expectation γ = E(D), confidence limits for the SMR (ŜMRL, ŜMRU )
can be obtained by finding confidence limits γ̂L, γ̂U for the number of observed
cases:

ŜMRL = γ̂L|
I∑

i=1

niλi and ŜMRU = γ̂U |
I∑

i=1

niλi . (5.8)

The confidence limits for γ can be determined as:

γ̂L = (1|2)χ2
2D,α|2 and γ̂U = (1|2)χ2

2(D+1),1−α|2 , (5.9)

where χ2
2D,α|2 denotes the 100(α|2)th percentile of the χ2-distribution with 2D

degrees of freedom, and χ2
2(D+1),1−α|2 denotes the 100(1 − α|2)th percentile of the

χ2-distribution with 2(D + 1) degrees of freedom (see e.g. Sahai and Khurshid
1996).

If the age-specific rates of the standard population are just estimations of the
exact rates, as is often the case with morbidity data, calculation of confidence
intervals for the SMR can be performed by the method described in Silcocks
(1994). A method for estimating the SMR where information on vital status is
complete but information on cause of death is partly missing as may be the case in
historical cohort studies can be found in Rittgen and Becker (2000).
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Comparison of rates by direct standardisation has poor statistical properties,
especially due to large variances of age-specific rates in small cohorts. Therefore,
indirect standardisation is usually preferred (see Chap. I.2 of this handbook).

Summary Effects of Exposure5.3.4

The main goal of cohort studies is to compare morbidity and/or mortality in
exposed and non-exposed subjects or between different exposure groups of the
cohort, and to investigate dose-effect relationships between exposure and disease.
If the exposure is constant and can be determined at entry into the cohort, internal
comparisons can be performed by calculating specific incidence rates for each
exposure category separately as if each group were a separate cohort. Cumula-
tive rates can be used, again provided the subgroups do not differ in important
determinants of disease, like e.g. age.

In the simple case of a single dichotomous exposure several measures of associ-
ation of exposure with disease can be estimated from results provided by a cohort
study (see Table 5.1). In the following, the most important ones will be briefly intro-
duced. A detailed discussion of their properties and examples for their calculation
can be found in Chap. I.2 of this handbook.

The perhaps most popular measure of association is the risk ratio (RR), also
known as relative risk, that compares the experience of exposed and unexposed
populations. With the notation given in Table 5.1 and the risks for the exposed and
unexposed subjects calculated according to (5.2) it can be estimated as

R̂R = R̂iskE|R̂iskE = [a|(a + b)] | [c|(c + d)] = (a|nE)|(c|nE) . (5.10)

The incidence ratio (IR) compares the incidence rates in the exposed and un-
exposed study populations. According to (5.4) its estimator is given as

ÎR = ÎE |̂IE =
{

a| [(a + b) × tE]
}

|
{

c| [(c + d) × tE]
}

= [a|(nE × tE)] |[c|(nE × tE)]
(5.11)

The RR and IR provide estimates of the relative strength of the association
between the exposure of interest and the outcome or disease of interest.

The absolute difference in risk (AR) between the exposed and unexposed groups
provides an estimate of the impact of the exposure on the risk of disease in absolute
terms. This measure is not to be confused with the absolute risk, which is the
absolute probability that a disease-free individual will develop a given disease over
a specific time-interval (Benichou 1998). Using the above formulas for the risks
among exposed and unexposed it can be obtained from a cohort study as

ÂR = R̂iskE − R̂iskE = [a|(a + b)] − [c|(c + d)] = a|nE − c|nE . (5.12)

Based on the attributable risk several other measures can be derived. The so-
called attributable fraction (AF) can be interpreted as the proportion of risk due
to exposure in exposed individuals. It may be useful for quantifying the degree to
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which risk can be reduced at the individual level if the exposure (and its effects) can
be eliminated. It may, therefore, be a sensible measure for counselling individuals:

ÂF = ÂR|R̂iskE =
{
[a|(a + b)] − [c|(c + d)]

}
| [a|(a + b)] =

(
a|nE − c|nE

)
|
(
a|nE

)
.

(5.13)

The population attributable risk (PAR) reflects the absolute level of risk of the
outcome in the population due to the exposure. It can be used to estimate the
public health impact, in absolute terms, of elimination of the exposure, at least
with respect to the outcome of interest. Based on the attributable risk and the
prevalence of exposure (see (5.5)) it is given as

P̂AR = ÂR|̂PE =
{
[a|(a + b)] − [c|(c + d)]

}
| [(a + b)|N] = (a|nE − c|nE)|(nE|N) .

(5.14)

The last measure to be mentioned here may be used to estimate the proportion of
all eventsof interest that couldbeprevented in theoverallpopulation if theexposure
(and its effects) can be eliminated. The population attributable fraction (PAF) is
defined as the proportion of all events of interest that occur in the population due
to the exposure:

P̂AF = P̂AR|R̂isk = (a|nE − c|nE)|
{

(nE|N) [(a + c)|N]
}

. (5.15)

Internal Modelling of the Effects of Exposure 5.3.5

The situation is more complicated, if cohort members continuously add exposure
over follow-up time. Simple categorisation on the basis of cumulative exposure
would lead to biased results. Person-years accumulated shortly after entry into
the study of cohort members with high cumulative exposure would wrongly be
allocated to a high exposure category, although the cumulative exposure at that
time-point was still low for these cohort members, resulting in underestimation of
high exposures and overestimation of low exposures. Therefore, the disease-free
person-time of each subject has to be subdivided and assigned to the respective
age- and sex-specific exposure category the cohort member belongs to as he or
she moves through the cohort, meaning that most cohort members contribute to
different age-exposure-categories. In the same manner, the incident cases have to
be assigned to the categories where they occurred.

In Fig. 5.3 the follow-up time of cohort member No. 4 is again depicted schemat-
ically, this time with respect to age and cumulative exposure assuming that the
exposure starts at the beginning of the follow-up and that it is constant over time.
For age- and exposure-specific incidence rates, the disease-free follow up time is
assigned to the groups according to the squares in the figure that are defined by the
categorisation of the group variables, resulting in a contribution of cohort member
No. 4 of two and a half year to the denominator of the incidence rate of category
A × C (30–39 years of age and < 3 units of cumulative exposure), one year to the
denominator of the incidence rate of category A × D (30–39 years of age and 3
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Figure 5.3. Follow-up time of cohort member No. 4 of the fictitious cohort

to smaller than 10 units of cumulative exposure), and one and a half year to the
denominator of the incidence rate of category B×D (40–49 years of age and 3–< 10
units of cumulative exposure). The case itself contributes to the nominator of the
incidence rate of category B × D, since this is the category in which he|she was
diagnosed.

This procedure can be extended in several ways. The exposure may have started
before beginning of follow-up or may start later. It can vary over time, it can
even vary from individual to individual or can be lagged to account for induc-
tion time. Several measures of exposure (e.g. time since first exposure and and/
or confounders) can be considered simultaneously and possible confounders can
be included in the analyses as additional variables. Figures 5.4, 5.5 and 5.6 illus-
trate some of these features. For simplicity no half-years are considered in these
examples.

In Fig. 5.4, a subject is followed up from age 23 but has been exposed from age 19
on, he|she is exposed until age 27 followed by an unexposed 5 year period. He|she
is again exposed until age 39 at which time his|her person-time at risk ceases either
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Figure 5.4. Person-time classification with varying duration of exposure

because of disease diagnosis or because of end of follow-up. This subject would
contribute 7 years (from age 23 to age 30) to the A1×B1 group (20–29 years of age,
0–10 years exposure) 4 years (from age 30 to 34) to the A2 × B1 (30–39 years of
age, 0–10 years of exposure), 5 years (from age 34 to 39) to A2 × B2 ((30–39 years
of age, 10–19 years of exposure).

Fig. 5.5 presents the same subject assuming that the first exposure spell was twice
as intensive (e.g. 20 ppm of a given chemical) than the second exposure (10 ppm).
The unit of cumulative exposure y-axis is now in ppm.years. The subject would
contribute 1 year to group A1×B1, (his cumulative exposure is then 100 ppm.years)
then 5 years to group A1×B2 (at age 30 his cumulative exposure is 160 ppm.years),
then 6 years (from age 30 to age 36 at which he reaches 200 ppm.years) in group
A2 × B2) and finally 3 years in group A2 × B3.

Fig. 5.6 considers the same subject again but this time the exposure is lagged by
10 years, say, to account for disease induction time. The first period would then be
a non-exposed period. The rationale is that, were the disease to occur in these first
10 years, it would not be attributable to exposure. Applying the same rationale as
before, the subject would contribute 6 years in group B0 × A1, then 1 year in group
B1 × A1, finally 9 years in group B1 × A2, the lagged cumulative exposure at end
of follow up (i.e. at age 39) is 160 ppm–years.

Another exposure can occur during the follow-up, e.g. the preceding subject
starts smoking at age 25. In this case a further splitting of the time periods would
be done separating periods in which the subject was a non-smoker and periods in
which he|she smoked.

This splitting of person-time into age and exposure groups must be done for
each subject of the cohort and gets more complex with a growing number of group
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Figure 5.5. Person-time classification with varying cumulative exposure

Figure 5.6. Person-time classification with varying lagged cumulative exposure
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variables. Specialised software packages exist (e.g. Coleman et al. 1986) to perform
these computations but they are usually limited in the complexity they can handle.
Interestingly, these restrictions do not apply to some more general packages as
Stata (version 7 or later – StataCorp. 2001) or Epicure (Preston et al. 1993) in which
the statistical modelling procedures of such data are furthermore included. The
end result of the calculations carried out in these packages can then be presented
as a data table with each line corresponding to a separate combination of age and
exposure classes (other classifications like calendarperiodsmight alsobe included)
and containing the following variables: the value of each age and exposure group,
the number of person-years ni accumulated in this category over the entire cohort
and the number di of events of interest falling in this category.

In epidemiological cohort studies the standard model for analysing such data
is the Poisson model which is a statistical model of the disease rates. Basically the
Poissonmodel assumes that thenumberof eventsdi ineachcategory i (combination
of age category j and the kth combination of exposure variables) follows a Poisson
distribution with parameter niλi. The standard (multiplicative) model would then
assume that

ln(λi) = αj + βk (5.16)

where λi are the unknown true disease rates, the αj are nuisance parameters spec-
ifying the effects of age and (possibly) other stratification variables like calendar
periods and βk the parameters that describe the effects of primary interest. As
usual in regression models β0 = 0 would be a baseline category. exp(βk) is then an
estimate, adjusted on the nuisance parameters, of the relative risk of the kth expo-
sure category vs. the baseline category assuming absence of interaction between
exposure. The full modelling strategy of the Poisson regression is beyond the scope
of this chapter but is not different from any regression modeling (see Chaps. II.3
and II.4 of this handbook). A comprehensive account of Poisson modeling is given
by Breslow and Day (1987, Chap. 4).

An alternative way of analysing event history data (another denomination of
cohort data focussed on events), is by using Cox’ proportional hazard model. This
model acknowledges that the categorisation of continuous data always implies
a loss of information and therefore a loss in statistical power. Moreover, there is no
need to explicitly estimate the effects of nuisance parameters if it can be avoided.

The first step in proportional hazard model is the choice of one of the time
variables considered. This basic time variable can either be age as was implicit
at the beginning of this chapter, but in some settings, this variable can be the
calendar time or even the time since the beginning of follow-up. Once this special
time variable has been fixed, its effects are estimated nonparametrically.

The key idea of Cox’s regression is that no information is lost when considering
only the time points ti at which an event of interest occurs. At each such time point
a “risk set” is set up including all members of the cohort contributing person-time
(at risk and under observation) at this time point. If one wants to use a Cox model,
the first step is thus to identify all risk sets. Then, one must obtain the value at
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each time ti of all variables to be included in the model for all members of the
corresponding risk set. The statistical analysis is then similar (in fact the same
software can be used) to a conditional logistic regression analysis, in which the
matching variable is the indicator of the risk set. As in the logistic regression, the
exposure at time ti of the case, i.e. the subject experiencing the event at time ti,
and the exposure at time ti of the other members of the risk set are compared.
Again, the full modelling strategy of the Cox proportional hazard model and its
various extensions are beyond the scope of this chapter (see Chaps. II.3 and II.4).
A comprehensive account of this model is given by Breslow and Day (1987, Chap. 5).
As for Poisson models, both Stata and Epicure provide easy to use software, but
once the risk sets and the corresponding exposure variables have been computed
for each risk set, any logistic regression package (e.g. Proc PHREG in SAS) can be
used.

Internal Versus External Comparisons5.3.6

In Sect. 5.3.3 the event rate (morbidity or mortality) of a cohort is compared
to the rates of an external population. This is done by comparing the observed
number of deaths in the cohort with the expected numbers, given the age struc-
ture of the cohort and the age-specific mortality rates λi of a reference pop-
ulation. The ratio of observed to expected (the SMR) is then interpreted as
a rate ratio between the cohort and the general population taken as a refer-
ence.

If the cohort is set up for investigating a specific risk factor, as would be the
case in an occupational cohort, one can be tempted to interpret the SMR as
a risk ratio due to the risk factor under investigation. However, this interpre-
tation would only be valid if the cohort were comparable to the general popu-
lation for all factors except for the risk factor under investigation. This is ob-
viously only rarely the case. The general population consists of all subjects in-
cluding the very ill and very poor, which would rarely be included in the same
proportion in a cohort. Thus the mortality in the general population is usu-
ally higher than in any (unexposed) cohort. In occupational cohorts, this phe-
nomenon has been termed the “Healthy Worker Effect” (see e.g. Li and Sung
1999; Goldberg and Luce 2001). Other factors, like regional differences, owing
to social, behavioural, nutritional and environmental factors, might cause the
mortality of a regionally based cohort to be different from a nationwide general
population. In summary, the SMR is a biased estimate of the effect of any risk
factor.

This bias can be reduced by choosing a reference population which is as com-
parable as possible (except for the risk factor of interest) to the cohort under
investigation. This implies to carefully select the reference population and in the
end to compare the cohort to another reference cohort. In this case, however,
the computation of the confidence interval of the SMR is no longer valid as it
assumes that, because of the large number of subjects in the reference population,
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the disease rates and hence the expected numbers are observed without any sam-
pling error. In this case, the only statistically valid methods are those presented in
the preceding section, although the confidence intervals of the risk ratio become
wider. The choice between an external comparison and an internal comparison
is thus the choice between accepting an (often small) bias and accepting a larger
variance, which implies a lower power. Such a choice can only be made in the
context of each study and, if possible, both approaches should be tried. Finally,
methods have been proposed including external reference rates to stabilise internal
comparisons (e.g. Breslow and Day 1987, p 151) that might be used as reasonable
compromise.

Key Concerns in Cohort Studies 5.4

Selection of the Study Population 5.4.1

Usually, vital statistics data of the general population, or data derived from national
disease registries are used as a reference for the calculation of expected cases.
However, they canonlybe regardedasvalid forderivinganexpectationofmortality
and disease rates if the cohort under investigation is a representative sample of the
general population. Indeed, many cohorts are convenience samples, derived from
a group that happens to be accessible. Representative cohorts can for example be
derived from national censuses, utilizing the data collected for the specific census.
Obtaining access to census data is generally not easy, since most censuses guarantee
confidentiality to participants. Exceptions to that rule are for example, a Swedish
occupational census-based sample or a 10% sample of the Canadian labour force,
derived from data collected from Canadian having a social insurance number that
is required for all who are employed in an active occupation (Howe and Lindsay
1983). These types of population samples are very valuable, because subsets among
them chosen for specific analysis can be regarded as comparable to the general
population apart from the characteristics that caused them to enter, or be selected
for, that subset.

Occupational cohorts (cf. Chap. III.2 of this handbook) are usually identified
by company files or sometimes by workers’ union files. Access to these cohorts
is usually granted, if the company or union is interested in determining whether
a suspected increase in disease rates has occurred, or there is concern that expo-
sure to a potential hazard bears an increased risk of disease. Many carcinogens
have been confirmed in humans, after first evidence from animal studies, by in-
vestigations of specific cohorts (Tomatis et al. 1990). This mechanism is still being
used, as exhibited by a tri-utility study of electrical and magnetic field exposures
(Theriault et al. 1994), and a study of Motorola employees on the potential risks
of exposure to radiofrequency fields (Morgan et al. 2000). It is very helpful, if
employment records indicate exposure to specific agents. This is the case when
routine measurements are taken for safety reasons, as for most workers exposed to
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radiation. In their absence estimation of exposures may be required, as discussed
further below.

So-called multi-purpose cohorts identified for study, however, have to be re-
cruited by some mechanism that provides the opportunity for potential subjects to
volunteer. For example, much has been learnt from an ongoing study of American
nurses, who were given the opportunity to volunteer for the study by completing
a questionnaire of dietary and other lifestyle factors (Willett et al. 1992). Similar
studies were initiated in Canada by providing self-administered questionnaires to
women already participating in a mammography screening trial (Howe et al. 1991)
and in Sweden by approaching women who participated in a routine mammog-
raphy screening programme (Wolk et al. 1998). In Europe, a large multi-centre
cohort study was initiated in 10 countries using different approaches (Riboli and
Kaaks 1997). Some used population registers as the basis for mailing invitations
to participate. The response proportions were good in most countries, but still
tended to include more health conscious and more highly educated people than
the general population as is often the case in volunteer studies (cf. Chap. I.10 of
this handbook).

Another recent feature of cohort studies has been the attempt to bring many
together and analyse them almost as a multicentre study to enable the investigators
to identify risks which none of them individually were capable of demonstrating.
The Pooling Project is a case in point, originally funded to evaluate further uncer-
tain associations between diet and breast cancer, it has proven a very useful source
of additional knowledge because of the ability of cohort studies to identify mul-
tiple endpoints. Thus it has already been extended to lung cancer (Smith-Warner
et al. 2003), with findings similar to the EPIC study (Miller et al. 2004), and other
diseases will follow.

When a truly representative cohort cannot be obtained, because the mechanism
used involves the opportunity to volunteer, and to refuse to participate, compar-
isons with the general population in terms of mortality and disease rates may not
be valid. Thus the cohort may lack external validity. However, provided that the
recruitment mechanism is unbiased with regard to the exposure of interest, and
the data obtained on exposure enables the investigators to stratify their population
into exposed and unexposed subgroups, the estimation of the association between
the exposure and the outcome will be valid (internal validity).

Tables 5.4 and 5.5 demonstrate the effects of different participation patterns
(selection) on estimates that can be obtained from cohort studies. In the presence
of a fair sample, all of the measures of disease occurrence and association will be
unbiased (Table 5.4). In the presence of over-representation of exposed persons
(Table 5.5), the prevalence of the exposure will be overestimated and the risk of
the outcome will be over- or under-estimated depending on whether the exposure
is positively or negatively associated with disease. Nevertheless, the estimates of
the relative risk and the attributable risk will be unbiased. Since the estimate of
the prevalence of exposure is biased, estimates of the public health impact will
be biased. Other participation patterns that can theoretically introduce selection
bias including over-representation of diseased individuals and participation rates
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Table 5.4. Effects of a fair sampling process on the measures of disease occurrence and association

Table 5.5. Effects of oversampling of exposed individuals on the measure of disease occurence and

assiociation (positive association between exposure and outcome)

that differ by both, exposure and disease status, are unlikely to affect cohort stud-
ies due to the customary exclusion of persons with the outcome of interest at
baseline. This assurance is only relative, relying on the degree to which persons
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with prevalent disease can be excluded from the cohort. In general, selection
bias can be minimized by avoiding the use of volunteers (or using volunteers
exclusively) and by minimizing non-participation. The potential for selection
bias can be assessed by evaluating non-participants for study characteristics, if
possible.

Exposure and Confounders in Cohort Studies5.4.2

As already indicated, some cohorts will have exposure data readily available, es-
pecially those derived from occupational groups where exposure was routinely
collected for safety monitoring purposes. It is the strength of such cohorts that
they offer the possibility to report the exposure before the disease occurs. However,
for population-based cohorts, the investigators will have to collect data specifically
for the study, or to refine existing data.

Because most cohorts will be very large, the collection of exposure data is
not a simple task. If exposure data is to be collected by questionnaires, the scale
of the effort required will generally mean that neither personal nor telephone
interviews are feasible, as would normally be planned for case-control studies.
This means that the exposure data will generally be collected by mailed self-
administered questionnaires, often linked to the recruitment mechanism of the
cohort,with response to thequestionnairequalifying the individual for inclusion in
the study. Inevitably, the amount of data that can be collected by self-administered
questionnaire is limited. The degree of detail for a given variable that can be
obtained by such instruments is also restricted (cf. Chap. I.11 of this handbook), so
that in addition to the problems of the ability of the respondent to recall accurately
the exposure he|she has experienced, the data will be potentially subjected to major
misclassification.

The extent of misclassification in cohort studies has only recently been appreci-
ated, probably explaining the fact that the results of many cohort studies, especially
when diet was the exposure of interest, have been negative (Day and Ferrari 2002).
Thus although many of the questionnaires used in cohort studies have been sub-
ject of validation studies, and correlation with other assessment methods seemed
reasonable, these validation studies have served to reassure the investigators, but
probably have not protected them from reporting negative, or very weak results.
Even for smoking, the information obtained in cohort studies cannot be regarded
as precise as investigators would have wished.

Misclassification of exposure can be differential or non-differential with respect
to the outcome of interest; that is, the degree of misclassification of the exposure
can differ, or not, by outcome status. In cohort studies, non-differential misclassifi-
cation is the more typical form of misclassification due to the customary exclusion
of persons with prevalent disease at baseline. It is unlikely that the measurement of
exposureatbaselinewill be influencedby thedevelopmentof anoutcomesometime
in the future. Differential misclassification is potentially a much greater problem in
case-control and cross-sectional studies. Non-differential misclassification always
introduces a bias toward a null finding (a finding of no association) if the exposure
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Table 5.6. Non-differential misclassification of exposure

status is dichotomized; whereas, differential misclassification can introduce a less
predictable bias. Table 5.6 shows the impact of a 10% non-differential error rate in
classifying smokers. In this example, 90% of exposed individuals were correctly
classified regarding exposure and 100% of unexposed individuals were correctly
classified. Assuming a true relative risk of 2.0, the observed relative risk would
be 1.8. With greater degrees of misclassification, the bias towards the null would
increase. This bias can be minimized through the use of standardized and validated
procedures for exposure assessment.

Another issue that affects cohort studies differently than case-control studies
is the effect of change in exposure with time. In case-control studies detailed
exposure biographies that include changes in exposure patterns, e.g. change in
intensity of smoking, or cessation of smoking, or even measures taken to affect
dietary change, can be retrieved using just one survey, with the problem of uncer-
tainty, and possibly differential error, in recall. The concurrent cohort study with
its prospective data collecting does offer the possibility of assessing changes in
exposure while they happen. To assess changes in exposure patterns, a mechanism
has, however, to be set up specifically e.g. by re-administering the questionnaire on
a regular basis. This could be done as part of the follow-up mechanism adopted,
though some loss to follow-up will be inevitable. An alternative to incorporating
this new information into the analysis is shown in the Nurses Health Study (Willett
et al. 1992). The follow-up period with regard to the time from the first exposure
information to the second was used as a separate cohort from the follow-up period
subsequent to the second exposure information. This is justifiable as blocks of
person-time in different periods are statistically independent, regardless of the
extent they are derived from the same people (Rothman and Greenland 1998).
However, sometimes cohorts are analysed with regard to the exposure determined
at baseline, and although that may seem distant from the period when many
endpoints are determined, for those with a long induction period from exposure
to outcome, as for many cancers, this has not always been regarded as a major
disadvantage.



276 Anthony B. Miller et al.

Exposure assessment by questionnaires always depends on subjects’ accuracy
of recall and their willingness to participate, and many efforts have been made
to introduce more objective measures of exposure determination. For radiation
exposure, cohorts with occupations that require wearing film badges provide cu-
mulative, and in some instances, peak measurements of exposure. For uranium
and other hard rock miners, measures of the radiation exposure in mines were
often made for safety reasons to limit the length of exposure of those at risk and
these measurements can be assigned to the job history of the individual.

However, in many instances, exposure has to be estimated simply from the
type of occupation at a certain time since no further information is available,
and misclassification of exposure assessment cannot be avoided. In occupational
studies, attempts have been made to refine exposure assessment by developing
a job exposure matrix (cf. Chap. I.11). Often using data from hygiene assessments
performed in the past, a matrix can be constructed with the different job tasks
in the rows, and columns indicating the probability and|or intensity of exposure
within that job to the agents (chemical or physical) of interest. The approach
was for example used in a study of electrical and magnetic field exposures in
electric utility workers in Canada and France (Theriault et al. 1994). Extension
of the work upon a sample of workers wearing portable electric and magnetic
field exposure meters, and using historical data of electrical usage in the province
enabled the investigators to identify strong associations of leukaemia and non-
Hodgkin’s lymphoma risk with high electric field exposure (Miller et al. 1996;
Villeneuve et al. 1998).

Another source of exposure data collected in cohort studies is gained from
biological material of the cohort members. Historically, rather simple parameters
were under study, like blood pressure or cholesterol levels, derived from blood
samples that were collected in the framework of large cohort and intervention
studies on cardiovascular disease. Now, there is increasing interest in the study
of disease aetiology by biomarkers of exposure and|or of genetic factors, as e.g.
in the European Prospective Investigation of Diet and Cancer (EPIC) (Riboli and
Kaaks 1997).

The findings of cohort studies regarding the effects of exposure can be strength-
ened if it is possible to evaluate a dose-response relationship. This requires the
assessment of intensity of exposure that can be quantified as peak, average, or
cumulative exposure. Sometimes duration of exposure is used as a surrogate for
cumulative exposure. However, using duration in this way is problematic if the
exposure is associated with an early, perhaps toxic effect. Then it could be an-
ticipated that these workers would tend to change their employment and could
not cumulate long durations of exposure. If such workers represented a particu-
larly susceptible subgroup, perhaps for genetic reasons, it is possible that in this
subgroup a relatively brief exposure results in the same incidence of disease than
in subgroups with a longer duration of exposure that are less susceptible. The
absence of a dose-response relationship without appropriate statistical control for
the genetic background might then be incorrectly interpreted as indicator that the
exposure is not causal for the disease (Blair and Stewart 1992).



Cohort Studies 277

The treatment of potential confounding factors is the major challenge of the
analysis of cohort studies. This is in part because the basic data set may not
contain information on all relevant confounders, particularly not in historical
cohort studies, but also because the data available on confounders may not be
assessed with sufficient precision to take account of their effect. An example is
the possible confounding effect of cigarette smoking with fruit and vegetable
consumption and lung cancer. Although two large cohort studies (one multicentre
and one the result of a pooled analysis) which fully adjusted for the effects of
cigarette smoking in the opinion of the investigators were available (Miller et al.
2004; Smith-Warner et al. 2003) a working group of the International Agency
for Research on Cancer (IARC) was not convinced that there was not residual
confounding of fruit consumption by smoking with lung cancer, and therefore
judged the evidence to be limited rather than sufficient (IARC 2003).

Determining Outcome Events 5.4.3

A limiting factor for cohort studies is that most diseases are relatively rare, with
rates determined in the population per 100,000 persons. Therefore to accrue suffi-
cient cases of the disease the size of the cohort has to be large, and|or the follow-up
time has to be long. Another factor affecting the length of follow-up relates to the
long induction period from the beginning of many exposures to the occurrence
of disease. For many cancers, for example, the induction period exceeds ten, often
20 years. One example for the importance of a long enough follow-up period is
the British Doctors’ Study that showed much higher lung cancer risks of cigarette
smoking after 40 years of follow-up than in the ten- and twenty-year reports of this
study (Doll et al. 1994b). The reason for this was a dominant effect of duration of
smoking compared to intensity of exposure on the risk of lung cancer (see also
Flanders et al. 2003). It seems probable that this is not the only example of this phe-
nomenon – it may particularly affect exposures with a long induction period from
initiation of exposure to effect. The possibility of such an effect should encourage
investigators to maintain the follow-up of well documented cohorts for as long as
proves feasible, and granting agencies will agree to provide the necessary funds.
If grants are limited it may be useful to store the necessary data and extend the
follow-up after a certain time lapse. It is unusual for cohort studies to start from the
first exposure and the possible initiation of disease, covering the whole spectrum
of exposure in a subject’s lifetime. Attempts have to be made to determine or to
estimate past exposure, with all the error and potential misclassification of such
inquiries. Nevertheless, a major advantage of cohort studies over case-control stud-
ies is that exposure is determined prior to the diagnosis of disease, thus avoiding
a major bias of concern in case-control studies, the recall bias.

As already indicated, the follow-up of cohorts enables multiple endpoints to be
determined, e.g. different types of cardiovascular disease and|or different cancer
sites. In determining endpoints in cohort studies, it is essential that ascertainment
bias is avoided. Ascertainment bias relates to the possibility that the surveillance of
cohort members, by virtue of the fact that they are in a study, may result in greater
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efforts to make a diagnosis than would occur in the general population. Special
surveillance mechanisms in a cohort study are valid if internal comparisons of
exposed versus unexposed within the cohort are planned, but would invalidate
external comparisons with general population data. Orencia and colleagues (1995)
provided an example of this bias in a non-concurrent cohort study examining
the association of mitral valve prolapse (MVP) with stroke. Using the database
of the Mayo Clinic, they assembled a cohort of persons with MVP, followed them
for the occurrence of stroke, and compared the rate of stroke with the rate in
the general population of Olmsted County, Minnesota. The overall standardized
mortality ratio was 2.1, indicating a risk of stroke twice of that of the general
population. However, Orencia noted that MVP can be diagnosed by ausculta-
tion or as a serendipitous finding during an echocardiogram conducted for other
medical reasons (e.g. following myocardial infarction, chronic heart failure, atrial
fibrillation) often associated with risk of stroke. When the cohort was further sub-
divided according to method of diagnosis, the auscultatory group demonstrated no
increase in risk. The increased risk was confined to the group identified serendipi-
tously during a cardiac evaluation motivated by other medical concerns associated
with risk of stroke.

In some cohort studies, annual or less frequent contact by mail, generally with
the cohort member directly, or sometimes with his or her designated physician,
will identify the probable occurrence of a study endpoint, or death from a cause
unrelated to the disease of interest. However, these processes are costly, and also
pose the risk of losing an increasing proportion of cohort members with time.
Further, if the participant has died, family members may not always be willing to
collaborate in providing the required information. Hence, in many studies, other
mechanisms are used for follow-up, and indeed may have to be used also for
subjects lost if the basic mechanism of follow-up is by mail. Losses to follow-up
lead to a loss of power due to the resultant loss of sample size and can introduce
bias in a manner similar to the selection processes described previously. Losses
that do not differ by either exposure or disease status result in a picture similar
to that shown in Table 5.4, that is, no bias, but a loss of power. Losses that differ
by exposure (but not outcome) status introduce the same bias as that described
in Table 5.5. More problematic are losses that differ by outcome status (Table 5.7)
and those that differ by both exposure and outcome status (Table 5.8). In these
situations, estimates of the relative risk may be biased in unpredictable directions.

Apart from special surveillance mechanisms, including screening for the dis-
ease of interest, there are many sources of routinely collected data for endpoints
in cohort studies. These include medical records of physicians, health mainte-
nance organizations and hospitals, vital statistics systems and disease registries.
The process to determine whether a particular record relates to a cohort mem-
ber involves some form of record linkage, determining whether the identify-
ing data in the study file of a cohort member corresponds with the identifying
data on the medical or other record of endpoint information. In the past, much
of this linkage used to be done manually. Increasingly some form of comput-
erised record linkage is performed. Although such linkages are easier if both
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sets of records contain the same (national) identifying number, computerised
record linkage can still be extremely efficient, and less costly than individual-
based follow-up. If record linkage is planned to determine endpoints in a co-
hort study, great care should be taken at the time of recruitment to collect suffi-
cient identifying information for record linkage purposes, this includes full name,
full date of birth, place of birth, mothers maiden name, social security num-
ber, other identifying number (if available), and current address. Further, the
name and address of friends or relatives of the cohort member should also be
collected, to facilitate tracing an individual if other means of tracing them have
failed, or if record linkage to another data source has resulted in an uncertain
linkage.

In many countries, in addition to disease registries, such as cancer registries,
there are other data sources that have been developed to facilitate record linkage
for cohort studies and large scale trials. These include the National Health Service
Central Register in the UK, the Canadian National Mortality Data Base, the Na-
tional Death Index in the USA, and similar national registers in the Scandinavian
countries. Relatively new in this context are the population-wide registries of ge-
netic data, like the registry already established in Iceland or the one planned in
Estonia. Record linkage using these national data bases overcomes many of the
issues regarding confidentiality of data, as confidentiality procedures are readily
available for such systems. In Canada, what is returned to the investigator is gen-
erally anonymous (i.e. stripped of personal identifiers), unless the subjects have
signed a prior consent form that specifically permitted record linkage. This was

Table 5.7. Effects of losses to follow-up that differ by outcome status on estimates of disease

occurence and assiociation
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Table 5.8. Effects of losses to follow-up that differ by both exposure and outcome status on estimates

of disease occurence and assiociation

the case, for example in a cohort study that was linked to a large multi-centre trial
of breast screening (Howe et al. 1991).

Ethical Issues5.5

It is now generally accepted that studies on humans should be carried out with
informed consent. This principle, originally developed in relation to controlled
clinical trials, has generally now been extended to observational epidemiology
studies, including cohort studies.

In the past, if a cohort was recruited that involved the subjects participation
in providing data, their agreement to supply the data (e.g. respond to a question-
naire) was generally regarded as implied consent. However, now, in addition to
providing information on questionnaires, for many cohorts, biological specimens
(e.g. blood, buccal cells) are requested, and then it becomes mandatory that the
respondent provide consent for the future use of such specimens for research
purposes. However, at the time the specimens are provided, it is impossible to
know the precise use the investigators may wish to apply to this material. An
example relates to the fact that the majority of participants in the sub-cohorts
of the European Prospective Investigation of Diet and Cancer (EPIC; Riboli and
Kaaks 1997) provided blood specimens in the early 1990s; a few without signing
a consent form, the majority did so. However, now that genetic studies are com-
monplace on such specimens, it has become apparent that some of the consent
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forms did not specifically mention genetic analyses as potential research usages.
This has led to difficulties in obtaining approval for such sub-studies from hu-
man experimentation committees, some of which wanted new consent forms to
be signed, specific to the genetically-associated sub-study planned. Obtaining new
consent, however, will become increasingly difficult as time goes on, and a num-
ber of subjects with the endpoint of interest may have died. In the United States,
potential restrictions upon studies such as these have caused difficulties. In Eu-
rope, especially Scandinavia, there has been a more relaxed view of the ethical
acceptability of studies on stored specimens, many such collections having been
originally made without a formal informed consent process, but for which stud-
ies conducted with full preservation of confidentiality have been deemed to be
ethically acceptable.

The issue as to whether respondents whose stored specimens have been tested
should be informed of the results of such tests is also controversial. The Euro-
pean view tends to be that as the testing is being conducted as part of research,
it may be impossible to interpret the results of tests for individuals, until this
particular research track reaches agreed conclusions. Thus, it is not necessary,
indeed possibly unethical, to inform the respondent of the results. Some con-
sent forms specifically state this as a policy. In the United States, however, the
opposite viewpoint tends to hold, say, it being regarded as ethically inappro-
priate for investigators to take a decision on whether or not a subject receives
information on themselves. The difficulty with a universal application of such
a principle is that for some, the test results may come too late for any possi-
bility of benefit, but, especially in the case of genetic-related information, this
may not preclude the test result having implications for the relatives of the sub-
ject, and such knowledge is not always a blessing. However, all would agree
that if a test reveals information of potential benefit to a subject, they should
be informed.

The question of consent for historical cohort studies in general does not arise,
though again, there may be issues on informing subjects of the findings of the
research. In general, as the research is unlikely to harm the individuals, and
providing confidentiality is maintained, human experimentation committees will
approve such studies.

One further ethical issue has already been mentioned in Sect. 5.4.3, and that
relates to the use of record linkage in obtaining outcome data. In general, providing
full confidentiality is maintained, this should not cause difficulties in obtaining
approval from human experimentation committees. For further discussions of
ethical aspects we refer to Chap. IV.7 of this handbook.

Conclusions 5.6

Cohort studies are a critical method for evaluating causality in epidemiology, and
may also be used in evaluating screening (see Chap. III.10 of this handbook).
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There are, however, several needs if they are to be valid. You need skilled inves-
tigators being familiar with the peculiarities of the planning and the conduct of
cohort studies, a sensible source for cohort recruitment, evaluable hypotheses to
consider, a validated questionnaire for use at enrolment, unbiased mechanisms to
administer the questionnaire as well as for follow-up, quality controlled procedures
to collect biological material if relevant for the question under research, facilities
for data entry and of course the expertise as well as the facilities for analysis and
interpretation.

Cohort studies are often rated at a higher level than case-control studies, largely
because the latter are susceptible to recall bias. However, both are usually regarded
as “level II” evidence (level I are randomised controlled trials) and there are po-
tential deficiencies in cohort studies that may be less intrusive than in case-control
studies, especially a greater propensity for measurement error. Both, however,
continue to have an important role in disease epidemiology.
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