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Introduction 2.1

A major aim of epidemiologic research is to measure disease occurrence in rela-
tion to various characteristics such as exposure to environmental, occupational,
or lifestyle risk factors, genetic traits or other features. In this chapter, various
measures will be considered that quantify disease occurrence, associations be-
tween disease occurrence and these characteristics as well as their consequences
in terms both of disease risk and impact at the population level. As is common
practice, the generic term exposure will be used throughout the chapter to denote
such characteristics. Emphasis will be placed on measures based on occurrence
of new disease cases, referred to as disease incidence. Measures based on disease
prevalence, i.e., considering newly occurring and previously existing disease cases
as a whole will be considered more briefly.

We will first define the basic measure of disease incidence, namely the inci-
dence rate, from which other measures considered in this chapter can be derived.
These other measures, namely measures of disease risk, measures of association
between exposure and disease risk (e.g., relative risk), and measures of impact of
exposure-disease associations (e.g., attributable risk) will be considered succes-
sively. Additional points will be made regarding standardized incidence rates and
measures based on prevalence.

Incidence and Hazard Rates 2.2

Definition 2.2.1

The incidence rate of a given disease is the number of persons who develop the
disease (number of incident cases) among subjects at risk of developing the disease
in the source population over a defined period of time or age. Incidence rates are
not interpretable as probabilities. While they have a lower bound of zero, they
have no upper bound. Units of incidence rates are reciprocal of person-time, such
as reciprocals of person-years or multiples of person-years (e.g., 100,000 person-
years). For instance, if 10 cases develop from the follow-up of 20 subjects and for
a total follow-up time of five years, the incidence rate is 10|100 = 0.1 cases per
person-year (assuming an instantaneous event with immediate recovery and all
20 subjects being at risk until the end of the observation period).

Usually, incidence rates are assessed over relatively short time periods compared
with the time scale for disease development, e.g., intervals of five-years for chronic
diseases with an extended period of susceptibility such as many cancers.

Synonyms for incidence rate are average incidence rate, force of morbidity,
person-time rate, or incidence density (Miettinen 1976), the last term reflect-
ing the interpretation of an incidence rate as the density of incident case oc-
currences in an accumulated amount of person-time (Morgenstern et al. 1980).
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Mortality rates (overall or cause-specific) can be regarded as a special case of
incidence rates, the outcome considered being death rather than disease occur-
rence.

Incidence rates can be regarded as estimates of a limiting theoretical quantity,
namely the hazard rate, h(t), also called the incidence intensity or force of mor-
bidity. The hazard rate at time t, h(t), is the instantaneous rate of developing the
disease of interest in an arbitrarily short interval ∆ around time t, provided the
subject is still at risk at time t (i.e., has not fallen ill before time t). Technically, it
has the following mathematical definition:

h(t) = limit∆↓0∆−1 Pr(t ≤ T < t + ∆|t ≤ T) , (2.1)

where T is the time period for the development of the disease considered and Pr
denotes probability. Indeed, for time intervals in which the hazard rate can be
assumed constant, the incidence rate as defined above represents a valid estimate
of the hazard rate. Thus, this result applies when piecewise constant hazards
are assumed, which can be regarded as realistic in many applications, especially
when reasonably short time intervals are used, and leads to convenient estimating
procedures, e.g., based on the Poisson model.

Strictly speaking, incidence and hazard rates do not coincide. Hazard rates
are formally defined as theoretical functions of time whereas incidence rates are
defined directly as estimates and constitute valid estimates of hazard rates under
certain assumptions (see above). For the sake of simplicity however, we will use
the terms incidence rates and hazard rates as synonyms in the remainder of this
chapter unless a clear distinction is needed.

Estimability and Basic Principles of Estimation2.2.2

From the definitions above, it ensues that individual follow-up data are needed
to obtain incidence rates or estimate hazard rates. Alternatively, in the absence
of individual follow-up data, person-time at risk can be estimated as the time
period width times the population size at midpoint. Such estimation makes the
assumption that individuals who disappear from being at risk, either because
they succumb, or because they move in or out, do so evenly across the time
interval. Thus, population data such as registry data can be used to estimate
incidence rates as long as an exhaustive census of incident cases can be ob-
tained.

Among the main designs considered in Part I of this handbook, the cohort
design (cf. Chap. I.5) is the ideal design to obtain incidence or hazard rates for
various levels or profiles of exposure, i.e., exposure-specific incidence or hazard
rates. This is because follow-up is available on subjects with various profiles of
exposure. In many applications, obtaining exposure-specific incidence rates is not
trivial however. Indeed, several exposures are often considered, some with several
exposed levels and some continuous. Moreover, it may be necessary to account
for confounders or effect-modifiers. Hence, estimation often requires modeling.
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Methods of inference based on regression models are considered in detail in Part II
of this handbook, particularly Chaps. II.3 and II.4.

Case-control data (cf. Chap. I.6) pose a more difficult problem than cohort data
because case-control data alone are not sufficient to yield incidence or hazard
rates. Indeed, they provide data on the distributions of exposure respectively in
diseased subjects (cases) and non-diseased subjects (controls) for the disease un-
der study, which can be used to estimate odds ratios (see Sect. 2.4.3) but are not
sufficient to estimate exposure-specific incidence rates. However, it is possible to
arrive at exposure-specific incidence rates from case-control data if case-control
data are complemented by either follow-up or population data, which happens for
nested or population-based case-control studies. In a nested case-control study,
the cases and controls are selected from a follow-up study. In a population-based
case-control study, they are selected from a specified population in which an
effort is made to identify all incident cases diagnosed during a fixed time inter-
val, usually in a grouped form (e.g., number of cases and number of subjects by
age group). In both situations, full information on exposure is obtained only for
cases and controls. Additionally, complementary information on composite inci-
dence (i.e., counts of events and person-time) can be sought from the follow-up
or population data. By combining this information with odds ratio estimates,
exposure-specific incidence rates can be obtained. This has long been recog-
nized (Cornfield 1951, 1956; MacMahon 1962; Miettinien 1974, 1976; Neutra and
Drolette 1978) and is a consequence of the relation (Miettinen 1974; Gail et al.
1989):

h0 = h∗(1 − AR) , (2.2)

where AR is the attributable risk in the population for all exposures considered,
a quantity estimable from case-control data (see Sect. 2.5.1), h0 is the baseline
incidence rate, i.e., the incidence rate for subjects at the reference (unexposed)
level of all exposures considered and h∗ is the composite or average incidence
rate in the population that includes unexposed subjects and subjects at various
levels of all exposures (i.e., with various profiles of exposure). The composite
incidence rate h∗ can be estimated from the complementary follow-up or pop-
ulation data. Equation (2.2) simply states that the incidence rate for unexposed
subjects is equal to the proportion of the average incidence rate in the popula-
tion that is not associated with any of the exposures considered. Equation (2.2)
can be specialized to various subgroups or strata defined by categories of age,
sex or geographic location such as region or center, on which incidence rates
are assumed constant. From the baseline rate h0, incidence rates for all lev-
els or profiles of exposure can be derived using odds ratio estimates, provided
odds ratio estimates are reasonable estimates of incidence rate ratios as in the
case of a rare disease (see Sect. 2.4). Consequently, exposure-specific incidence
rates can be obtained from case-control data as long as they are complemented
by follow-up or population data that can be used to estimate average incidence
rates.



94 Jacques Benichou, Mari Palta

Example 1 . Exposure-specific incidence rates of breast cancer were obtained
based on age as well as family history in first-degree relatives, re-

productive history (i.e., age at menarche and age at first live birth), and history
of benign disease from the Breast Cancer Detection and Demonstration Project
(BCDDP). The BCDDP combined the prospective follow-up of 284,780 women
over five years, and a nested case-control study (Gail et al. 1989) with about 3000
cases and 3000 controls. For each five-year age group from ages 35 to 79 years,
composite incidence rates were obtained from the follow-up data. In age groups
40–44 and 45–49 years, 162 and 249 new cases of breast cancer developed from
the follow-up of 79,526.4 and 88,660.7 person-years, yielding composite incidence
rates of 203.7 and 280.8 per 105 person-years, respectively. For all women less than
50 years of age, the attributable risk for family history, reproductive history and
history of benign breast disease was estimated at 0.4771 from the nested case-
control data (see Sect. 2.5.1). By applying (2.2), baseline incidence rates for women
at the reference level of all these factors were 203.7 × (1 − 0.4771) = 106.5 and
280.8 × (1 − 0.4771) = 146.8 per 105 person-years, respectively. For a nulliparous
woman of age 40, with menarche at age 12, one previous biopsy for benign breast
disease, and no history of breast-cancer in her first-degree relatives, the corre-
sponding odds ratio was estimated at 2.89 from logistic regression analysis of the
nested case-control data (see Sect. 2.4.6), yielding an exposure-specific incidence
rate of 106.5 × 2.89 = 307.8 per 105 person-years. For a 45-year old woman with
the same exposure profile, the corresponding exposure-specific incidence rate was
146.8 × 2.89 = 424.3 per 105 person-years. �

Finally, cross-sectional data cannot provide any assessment of incidence rates
but instead will yield estimates of disease prevalence proportions as discussed in
Sect. 2.6 of this chapter.

Relation with Other Measures2.2.3

The reason why exposure-specific incidence or hazard rates are central quantities
is that, once they are available, most other quantities described in this chapter can
be obtained from them, namely measures of disease risk, measures of association
between exposure and disease risk, and measures of exposure impact in terms
of new disease burden at the population level. However, it should be noted that
measures of impact as well as some measures of association (i.e., odds ratios) can
be estimated from case-control data alone without relying on exposure-specific
incidence rates (see Sects. 2.3 and 2.4). Moreover, cross-sectional data can yield
estimates of measures of association and impact with respect to disease prevalence
(see Sect. 2.6.2).
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Measures of Disease Risk 2.3

Definition 2.3.1

Disease risk is defined as the probability that an individual who is initially disease-
free will develop a given disease over a specified time or age interval (e.g., one year
or lifetime). Of all incidence and risk measures, this measure is probably the one
most familiar and interpretable to most consumers of health data.

If the interval starting at time a1 and ending just before time a2, i.e., [a1, a2), is
considered, disease risk can be written formally as:

π(a1, a2) =

a2∫
a1

h(a){S(a)|S(a1)}da . (2.3)

In (2.3), h(a) denotes the disease hazard at time or age a (see Sect. 2.2). The
function S(·), with (·) an arbitrary argument, is the survival function, so that S(a)
denotes the probability of still being disease-free at time at age a, and S(a)|S(a1)
denotes the conditional probability of staying disease-free up to time or age a
for an individual who is free of disease at the beginning of the interval [a1, a2).
Equation (2.3) integrates over the interval [a1, a2) the instantaneous incidence rate
of developing disease at time or age a for subjects still at risk of developing the
disease (i.e., subjects still disease-free). Because the survival function S(·) can be
written as a function of disease hazard through:

S(a2)|S(a1) = exp

⎧⎨⎩−

a2∫
a1

h(a)da

⎫⎬⎭ , (2.4)

disease risk is also a function of disease hazard.
By specializing the meaning of functions h(·) and S(·), various quantities can

be obtained that measure disease risk in different contexts. First, the time scale
on which these functions as well as disease risk are defined corresponds to two
specificusesof risk. Inmost applications, the relevant timescale is age, sincedisease
incidence is influenced by age in most applications. Note that by considering the
age interval [0, a2), one obtains lifetime disease risk up to age a2. However, in
clinical epidemiology settings, risk refers to the occurrence of an event, such as
relapse or death in subjects already presenting with the disease of interest. In this
context, the relevant time scale becomes time from disease diagnosis or, possibly,
time from some other disease-related event, such as a surgical resection of a tumor
or occurrence of a first myocardial infarction.

Second, risk definition may account or not for individual exposure profiles. If no
risk factors are considered to estimate disease hazard, the corresponding measure
of disease risk defines the average or composite risk over the entire population
that includes subjects with various exposure profiles. This measure, also called
cumulative incidence (Miettinen 1976), may be of value at the population level.
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However, the main usefulness of risk is in quantifying an individual’s predicted
probability of developing disease depending on the individual’s exposure profile.
Thus, estimates of exposure-specific disease hazard have to be available for such
exposure-specific risk (also called individualized or absolute risk) to be estimated.

Third, the consideration of competing risks and the corresponding definition of
the survival function S(·) yields two separate definitions of risk. Indeed, although
risk is defined with respect to the occurrence of a given disease, subjects can
die from other causes (i.e., competing risks), which obviously precludes disease
occurrence. The first option is to define S(a) as the theoretical probability of
being disease-free at time or age a if other causes of death (competing risks) were
eliminated yielding a measure of disease risk in a setting with no competing risks.
This measure may not be of much practical value. Moreover, unless unverifiable
assumptions regarding incidence of the disease of interest and deaths from other
causes can be made, for instance assuming that they occur independently, the
function S(·) will not be estimable. For these reasons, it is more feasible to define
S(a) as the probability that an individual will be alive and disease-free at age a
as the second option, yielding a more practical definition of disease risk as the
probability of developing disease in the presence of competing causes of death (see
Sect. 2.3.5).

From the definition of disease risk above, it appears that disease risk depends
on the incidence rate of disease in the population considered and can also be
influenced by the strength of the relationship between exposures and disease if
individual risk is considered. One consequence is that risk estimates may not be
portable from one population to another, as incidence rates may vary widely among
populations that are separated in time and location or even among subgroups of
populations, possibly because of differing genetic patterns or differing exposure to
unknown risk factors. Additionally, competing causes of death (competing risks)
may also have different patterns among different populations, which might also
influence values of disease risk.

Range2.3.2

Disease risk is a probability and therefore lies between 0 and 1, and is dimension-
less. A value of 0 while theoretically possible would correspond to very special
cases such as a purely genetic disease for an individual not carrying the disease
gene. A value of 1 would be even more unusual and might again correspond to
a genetic disease with a penetrance of 1 for a gene carrier but, even in this case,
the value should be less than 1 if competing risks are accounted for.

Synonyms2.3.3

Beside the term “disease risk”, “absolute risk” or “absolute cause-specific risk”
have been used by several authors (Dupont 1989; Benichou and Gail 1990a, 1995;
Benichou 2000a; Langholz and Borgan 1997). Alternative terms include “individ-
ualized risk” (Gail et al. 1989), “individual risk” (Spiegelman et al. 1994), “crude
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probability” (Chiang 1968), “crude incidence” (Korn and Dorey 1992), “cumulative
incidence” (Gray 1988; Miettinen 1976), “cumulative incidence risk” (Miettinen
1974) and “absolute incidence risk” (Miettinen 1976).

The term “cumulative risk” refers to the quantity
∫ a2

a1
h(a)da and approximates

disease risk closely in the case where disease is rare.
The term “attack rate” defines the risk of developing a communicable disease

during a local outbreak and for the duration of the epidemic or the time during
which primary cases occur (MacMahon and Pugh 1970, Chap. 5; Rothman and
Greenland 1998, Chap. 27).

The term “floating absolute risk”, introduced by Easton et al. (1991), refers to
adifferent concept fromdisease risk. Itwasderived to remedy the standardproblem
that measures of association such as ratios of rates, risks or odds are estimated in
reference to a baseline group, which causes their estimates for different levels of
exposure to be correlated and may lead to lack of precision if the baseline group is
small. The authors proposed a procedure to obtain estimates unaffected by these
problems and used the term “floating absolute risk” to indicate that standard
errors were not estimated in reference to an arbitrary baseline group.

Interpretation and Usefulness 2.3.4

If exposure profiles are not taken into account, the resulting average risk has
little usefulness in disease prediction. Average risk estimates may be useful only
for diseases for which no risk factors have been identified. Otherwise, they only
provide overall results such as “one in nine women will develop breast cancer at
sometime during her life” (American Cancer Society 1992), which are of no direct
use in quantifying the risk of women with given exposure profiles and no direct
help in deciding on preventive treatment or surveillance measures.

Upon taking individual exposure profiles into account, resulting individual
disease risk estimates become useful in providing an individual measure of the
probability of disease occurrence, and can therefore be useful in counseling. They
are well suited to predicting risk for an individual, unlike measures of association
that quantify the increase in the probability of disease occurrence relative to
subjects at the baseline level of exposure, but do not quantify that probability itself.

Individual risk has been used as a tool for individual counseling in breast
cancer (Benichou et al. 1996; Gail and Benichou 1994; Hoskins et al. 1995). Indeed,
a woman’s decision to take a preventive treatment such as Tamoxifen (Fisher et al.
1998; Wu and Brown 2003) or even undergo prophylactic mastectomy (Hartman
et al. 2001; Lynch et al. 2001) depends on her awareness of the medical options,
on personal preferences, and on individual risk. A woman may have several risk
factors, but if her individual risk of developing breast cancer over the next 10 years
is small, she may be reassured and she may be well advised simply to embark
on a program of surveillance. Conversely, she may be very concerned about her
absolute risk over a longer time period, such as 30 years, and she may decide to
use prophylactic medical treatment or even undergo prophylactic mastectomy if
her absolute risk is very high.
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Estimates of individual risk of breast cancer are available based on age, fam-
ily history, reproductive history and history of benign disease (Gail et al. 1989;
Costantino et al. 1999) and were originally derived from the BCDDP that com-
bined a follow-up study and a nested case-control study (Gail et al. 1989). This
example illustrates that not only exposures or risk factors per se (such as family
history) may be used to obtain individual risk estimates but also markers of risk
such as benign breast disease which are known to be associated with an increase
in disease risk and may reflect some premalignant stage. In the same fashion, it
has been suggested to improve existing individual risk estimates of breast cancer
by incorporating mammographic density, a risk marker known to be associated
with increased breast cancer risk (Benichou et al. 1997). In the cardiovascular field,
individual risk estimates of developing myocardial infarction, developing coronary
heart disease, dying from coronary heart disease, developing stroke, developing
cardiovascular disease, and dying from cardiovascular disease were derived from
the Framingham heart and Framingham offspring cohort studies. These estimates
are based on age, sex, HDL, LDL and total cholesterol levels, smoking status, blood
pressure and diabetes history (Anderson et al. 1991).

Individual risk is also useful in designing and interpreting trials of interventions
to prevent the occurrence of a disease. At the design stage, disease risk may be
used for sample size calculations because the sample sizes required for these
studies depend importantly on the risk of developing the disease during the period
of study and the expected distribution of exposure profiles in the study sample
(Anderson et al. 1992). Disease risk has also been used to define eligibility criteria
in such studies. For example, women were enrolled in a preventive trial to decide
whether the drug Tamoxifen can reduce the risk of developing breast cancer (Fisher
et al. 1998). Because Tamoxifen is a potentially toxic drug and because it was to be
administered to a healthy population, it was decided to restrict eligibility to women
with somewhat elevated absolute risks of breast cancer. All women over age 59 as
well as younger women whose absolute risks were estimated to equal or exceed
that of a typical 60-year old woman were eligible to participate (Fisher et al. 1998).
Individual risk has been used to interpret results of this trial through a risk-benefit
analysis in order to help define which women are more likely to benefit from using
Tamoxifen. Women were identified, who had a decrease in breast cancer risk and
other events such as hip fracture from using Tamoxifen surpassing the Tamoxifen-
induced increase in other events such as endometrial cancer, pulmonary embolism
or deep vein thrombosis (Gail et al. 1999).

Disease risk can also be important in decisions affecting public health. For
example, in order to estimate the absolute reduction in lung cancer incidence
that might result from measures to reduce exposure to radon, one could cate-
gorize a general population into subgroups based on age, sex, smoking status
and current radon exposure levels and then estimate the absolute reduction in
lung cancer incidence that would result from lowering radon levels in each sub-
group (Benichou and Gail 1990a; Gail 1975). Such an analysis would complement
estimation of population attributable risk or generalized impact fractions (see
Sect. 2.5).
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The concept of risk is also useful in clinical epidemiology as a measure of the
individualized probability of an adverse event, such as a recurrence or death in
diseased subjects. In that context, risk depends on factors that are predictive of
recurrence or death, rather than on factors influencing the risk of incident disease,
and the time-scale of interest is usually time from diagnosis or from surgery rather
than age. It can serve as a useful tool to help define individual patient management
and, for instance, the absolute risk of recurrence in the next three years might
be an important element in deciding whether to prescribe an aggressive and
potentially toxic treatment regimen (Benichou and Gail 1990a; Korn and Dorey
1992).

Properties 2.3.5

Two main points need to be emphasized. First, as is evident from its definition,
disease risk can only be estimated and interpreted in reference to a specified
age or time interval. One might be interested in short time spans (e.g., five
years), or long time spans (e.g., 30 years). Of course, disease risk increases as
the time span increases. Sometimes, the time span is variable such as in lifetime
risk.

Disease risk can be influenced strongly by the intensity of competing risks
(typically competing causes of death, see above). Disease risk varies inversely as
a function of death rates from other causes.

Estimability 2.3.6

It follows from its definition that disease risk is estimable as long as hazard rates for
the disease (or event) of interest are estimable. Therefore, disease risk is directly
estimable from cohort data, but case-control data have to be complemented with
follow-up or population data in order to obtain the necessary complementary
information on incidence rates (see Sect. 2.2.2).

It has been argued above (see Sect. 2.3.1) that disease risk is a more use-
ful measure when it takes into account competing risks, that is the possibil-
ity for an individual to die of an unrelated disease before developing the dis-
ease (or disease-related event) of interest. In this setting, disease risk is de-
fined as the probability of disease occurrence in the presence of competing risks,
which is more relevant for individual predictions and other applications dis-
cussed above than the underlying (or “net” or “latent”) probability of disease
occurrence in the absence of competing risks. Moreover, disease risk is identifi-
able without any unverifiable competing risk assumptions in this setting, such
as the assumption that competing risks act independently of the cause of in-
terest because, as Prentice et al. (1978) emphasize, all functions of the disease
hazard rates are estimable. Death rates from other causes can be estimated ei-
ther internally from the study data or from external sources such as vital statis-
tics.
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Example 1. (continued)
In order to obtain estimates of breast cancer risk in the presence of

competing risks, Gail et al. (1989) used 1979 United States (US) mortality rates from
year 1979 for all causes except breast cancer to estimate the competing risks with
more precision than from the BCDDP follow-up data. In age groups 40–44 and 45–
49 years, these death rates were 153.0 and 248.6 per 105 person-years, respectively,
hence of the same order of magnitude as breast cancer incidence rates. In older
age groups, these death rates were much higher than breast cancer incidence rates,
thus strongly influencing breast cancer risk estimates for age intervals including
these age groups. For instance, death rates from causes other than breast cancer
were 1017.7 and 2419.8 per 105 person-years in age groups 65–69 and 70–74 years,
respectively, whereas average incidence rates of breast cancer were 356.1 and 307.8
per 105 person-years in these age groups, respectively. �

Estimation from Cohort Studies2.3.7

Estimation of disease risk rests on estimating disease incidence and hazard rates,
a topic also addressed in Part II of this handbook. Several approaches have been
worked out fully for disease risk estimation. A brief review of these approaches is
given here starting with average risk estimates that do not take exposure profiles
into account and continuing with exposure-specific estimates.

Estimates of Average Disease Risk
The density or exponential method (Miettinen 1976; Kleinbaum et al. 1982, Chap. 6;
RothmanandGreenland 1998,Chap. 3) relies on subdividing the timeor age scale in
successive time or age intervals I1, … , Ii, … , II (e.g., one- or five-year intervals) on
which the rate of disease incidence is assumed constant (i.e., piecewise constant).
Disease riskover timeorage interval [a1, a2), that is theprobability foran individual
to experience disease occurrence over interval [a1, a2) is taken as one minus the
probability of staying disease-free through the successive intervals included in
[a1, a2). Assuming thatdisease is rareoneachof the successive intervals considered,
disease risk can be estimated as:

π̂(a1, a2) = 1 − exp

(
−
∑

i

ĥi∆i

)
. (2.5)

The sum is taken over all intervals included in [a1, a2). Notation ∆i denotes the
width of interval i, whereas ĥi denotes the incidence rate in interval i, obtained as
the ratio of the number of incident cases over the person-time accumulated during
follow-up in that interval.

While (2.5) is simple to apply, its validity depends on several assumptions.
The assumption that disease incidence is constant over each time or age interval
considered makes it a parametric approach. However, if intervals are small enough,
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this will not amount to a strong assumption. Moreover, it relies on the assumption
that disease incidence is small on each interval. If this is not the case, a more
complicated formula will be needed. Finally, this approach ignores competing
risks.

Benichou and Gail (1990a) generalized this approach by lifting the condition
on small incidence on each interval and allowing competing risks to be taken into
account. They derived a generalized expression for the estimate of disease risk over
time or age interval [a1, a2) as:

π̂(a1, a2) =
∑

i

ĥ1i

ĥ1i + ĥ2i

[
1 − exp

{
−
(

ĥ1i + ĥ2i

)
∆i

}]
A(i) , (2.6)

with A(i) =
∏
j<i

exp
{

−
(

ĥ1j + ĥ2j

)
∆j

}
.

In (2.6), the sum is taken over all intervals included in [a1, a2), ∆i denotes the width
of interval i, ĥ1i denotes the disease incidence rate in interval i, ĥ2i the death rate
from other causes in interval i, and the product in A(i) is taken over time intervals
in [a1, a2) from the first one to the one just preceding interval i. Death rates can
be obtained in a similar fashion as disease incidence rates. It should be noted that
disease risk can be estimated for a much longer duration than the actual follow-up
of individuals in the study if age is the time scale (open cohort) provided there is
no secular trend in disease incidence.

Variance estimates were derived by Benichou and Gail (1990a). Moreover, based
on simulations of a closed cohort, they found that resulting confidence intervals
have satisfactory coverage, especially with the log transformation, and observed
little or no bias on risk estimates with a sufficient number of intervals even when
disease incidence varied sharply with time.

The actuarial method or life table method (Cutler and Ederer 1958; Elveback
1958; Fleiss et al. 1976; Kleinbaum et al. 1982, Chap. 6; Rothman and Greenland
1998, Chap. 3) shares similarities with the density method, although it was derived
from a less parametric viewpoint. As with the density method, time is split into
intervals. In each time interval i, the probability for an individual who is disease-
free at the beginning of the interval to stay disease-free throughout the interval
is estimated. Disease risk is obtained as one minus the estimated probability of
staying disease-free throughout the successive time intervals included in [a1, a2)
as:

π̂(a1, a2) = 1 −
∏

i

(ni − wi|2 − di)

(ni − wi|2)
, (2.7)

where the product is taken over all intervals included in [a1, a2), ni denotes the
number of disease-free subjects at the beginning of interval i, di the number of
incident cases occurring in interval i, and wi the number of subjects either lost to
follow-up or dying from other causes (competing risks) in interval i. The actuarial
approach is most appropriate when grouped data are available and the actual
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follow-up of each individual in each interval is not known. The person-years of
follow-up for subjects lost to follow-up or affected with competing risks in interval i
is not used directly but, if one assumes that the mean withdrawal time occurs at the
midpoint of the interval, then the denominator in each product term of (2.7) can
be regarded as the effective number of persons at risk of developing the disease
in the corresponding interval. Namely, it represents the number of disease-free
persons that would be expected to produce di incident cases if all persons could
be followed for the entire interval (Elandt-Johnson 1977; Kleinbaum et al. 1982,
Chap. 6; Littell 1952). The actuarial method can be regarded as a refinement of the
simple cumulative method (Kleinbaum et al. 1982, Chap. 6) that ignores quantity wi

and simply estimates disease risk as the number of individuals who contract the
disease, dividedby the total number in the cohort, or exposure subgroup of interest.
The actuarial method is preferable to this direct method because, in practice, it
is rare that a large enough cohort can be followed over a long enough time to
reliably estimate the risk of disease by this simple method. Moreover, the simple
cumulative method cannot handle the case when subjects are followed for varying
lengths of time, which often occurs because subjects can be enrolled at different
times whereas the follow-up ends at the same time for all subjects.

As shown by several authors (Cutler and Ederer 1958; Fleiss et al. 1976), the
actuarial method results in biased estimates of risk even in the unlikely and most
favorable event (in terms of bias) of all withdrawals occurring at the interval
midpoints. Alternative approaches based on different choices of the quantity to
subtract from ni (i.e., choices different from wi|2) are not subject to less bias,
however (Elandt-Johnson 1977). The problem can be best handled by using narrow
intervals but this is done at the expense of a larger random error (i.e., less precise
estimates of risk).

Compared to the density method ((2.5) and (2.6)), the actuarial method has
the advantage of not requiring knowledge of individual follow-up times in each
interval but only knowledge of the number at risk at the beginning of the interval
and the number of withdrawals. The density method could be used however
without knowledge of follow-up time by assigning a follow-up time of half the
interval width to subjects who are lost to follow-up, develop disease or die from
other causes, in an analogous fashion as with the actuarial method (Benichou and
Gail 1990a). The actuarial method requires neither the assumption of constant
incidence rate nor rarity of disease incidence on all time intervals. However, bias
is less of a problem with the density than the actuarial method and the density
method applies naturally to open cohorts and extends easily to risk estimates that
take exposure profiles into account (see below).

When individual follow-up times are all known, a fully nonparametric risk
estimate can be obtained in the spirit of the Kaplan–Meier estimate of survival
(Kaplan and Meier 1958; see also Chap. II.4 of this handbook). Disease risk is
estimated through summation on all distinct times in [a1, a2) at which new disease
cases occur (Aalen and Johansen 1978; Kay and Schumacher 1983; Gray 1988;
Matthews 1988; Keiding and Andersen 1989; Benichou and Gail 1990a; Korn and
Dorey 1992). Corresponding variance estimates were derived (Aalen 1978; Aalen
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and Johansen 1978; Keiding and Andersen 1989; Benichou and Gail 1990a; Korn
and Dorey 1992) from which confidence intervals can be obtained, based on the
log transformation as suggested by Benichou and Gail (1990a) and Keiding and
Andersen (1989), or based on the approach of Dorey and Korn (1987).

Upon comparing the generalized density method (see (2.6)) and the nonpara-
metric method, Benichou and Gail (1990a) showed that the loss of efficiency of the
nonparametric method is small compared to the density method. Moreover, the
nonparametric method yields little bias in risk estimates as well nearly nominal
coverage for confidence intervals of risk with the log transformation. Nominal cov-
erage refers to the theoretical probability of a confidence interval to cover the true
parameter and may be assessed using simulations (i.e., a 95% confidence interval
will be said to have nominal coverage if it does include the true parameter value in
95% of the cases). Hence, properties of the generalized density and nonparametric
methods agree closely. However, the generalized density method has the advantage
of simplicity of computation and is better suited to open cohorts.

Estimates of Exposure-specific Disease Risk
In order to obtain risk estimates that depend on exposure profiles, the cohort
could be subdivided into subcohorts based on exposure levels and the methods
above applied to these subcohorts. However, this approach would be impractical
because it would yield risk estimates with very low precision. In order to remedy
this problem, a natural approach to incorporate exposures is to model incidence
rates through regression models.

BenichouandGail (1990a)proposedadirect extensionof thegeneralizeddensity
method (2.6). This extension is based on assuming that the disease hazard rate
on each time or age interval i is the product of a constant baseline hazard rate
for subjects at the reference level of exposure in interval i and a function of the
various exposures. The corresponding parameters, i.e., baseline hazard rates and
hazard ratio parameters for exposure can be jointly estimated by maximizing
the piecewise exponential likelihood, which is equivalent to the usual Poisson
likelihood for the analysis of cohort data (Holford 1980; Laird and Oliver 1981).
Corresponding variance estimates are available (Benichou and Gail 1990a). In
simulations, risk estimates appeared subject to little bias, variance estimates were
also little biased and coverage of confidence intervals was nearly nominal, except
for the exposure profiles with very few subjects (Benichou and Gail 1990a). Other
parametric approaches were considered to obtain risk estimates of cardiovascular
events from the Framingham studies (Anderson et al. 1991). Semi-parametric
estimators of risk were also derived (Benichou and Gail 1990a). In contrast with
the previous approach where a piecewise exponential or Poisson distribution is
assumed, the baseline disease hazard rate is expressed as an unspecified function
of time or age rather than a constant, which corresponds to the semi-parametric
Cox regression model (Cox 1972). Risk estimates are obtained as functions of
the partial likelihood estimates (Cox 1975) of hazard ratio parameters and related
Nelson-Aalen estimatesof cumulativebaselinehazards (Borgan 1998). Fromresults
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in Tsiatis (1981) and Andersen and Gill (1982) on the joint distribution of these
parameter estimates, Benichou and Gail (1990a) derived an asymptotic variance
estimator.

Regression based methods appear well suited for estimating exposure-specific
disease risk and are therefore useful for the purpose of individual prediction.
Compared to the semi-parametric approach, the generalized density method ap-
pears easier to implement while providing a good compromise between bias and
precision.

Estimation from Population-based
or Nested Case-Control Studies2.3.8

As discussed above, whereas disease risk is directly estimable from cohort data,
case-control data have to be complemented with follow-up or population data in
order to obtain the necessary information on incidence rates. If such complemen-
tary data are available, exposure-specific incidence rates and exposure-specific
disease risk can be estimated. All approaches proposed in the literature rely on
regression methods.

The Hybrid Approach
This approach relies on the assumption of piecewise constant incidence rates and
on (2.2) to obtain baseline incidence rates in strata defined by factors such as
age, sex, race or geographic area (see Sect. 2.2.2). Odds ratio estimates are then
combined with baseline incidence rates to arrive at exposure-specific incidence
rates (see Sect. 2.2.2). Applying (2.6) to these rates and death rates from competing
causes, disease risk estimates can be obtained for desired time intervals. This
approach has been used in practice to obtain individual risks of breast cancer by
Gail et al. (1989) (see Example 1 below). Resulting disease risk estimates can be
termed estimates of individual breast cancer risk since they depend on age and
individual exposure profile (216 profiles were considered overall). The approach
can be seen as a multivariate extension of earlier work by Miettinen (1974). It has
been termed a hybrid approach (Benichou 2000a) since it relies on two models,
namely the piecewise exponential model that underlies the density method (i.e.,
constant incidence by age group) and the logistic model used to obtain odds ratio
estimates from the nested case-control data (see Sect. 2.4.6). It can be applied to
population-based case-control data with no individual follow-up of subjects in
a similar manner as to nested case-control data, as discussed and illustrated for
bladder cancer by Benichou and Wacholder (1994) (see Example 2 below).

Variance estimators for risk estimates are complex since exposure-specific in-
cidence rate estimates involve odds ratio parameters obtained through logistic re-
gression from the case-control data and counts of incident cases from the follow-up
or population data. Estimators of variances and covariances of age- and exposure-
specific incidence rates that take into account all sources of variability have been
fully worked out for various sampling schemes regarding control selection in the
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general case (Benichou and Gail 1990a) and specifically to account for the special
features of the BCDDP data (Benichou and Gail 1995). Simulations tailored to the
BCDDP data showed a small upward bias in risk estimates due to the small upward
bias incurred by using odds ratios to estimate hazard ratios when the rare-disease
assumption appeared questionable. Variance estimates had very little bias and
yielded confidence intervals with near nominal coverage. Coverage was improved
with the logit transformation.

Example 1. (continued)
Applying (2.6) to exposure-specific incidence rates of breast cancer

estimated from the BCDDP data (see Sect. 2.2.2) and death rates from other causes
estimated from US mortality data (see Sect. 2.3.6), risk estimates of breast cancer
can be obtained. For instance, the 10-year risk of developing breast cancer between
ages 40 and 50 years for a woman initially free of breast cancer at age 40 years
and with the exposure profile considered in Sect. 2.2.2 (i.e., nulliparous woman
with menarche at age 12 years, one previous biopsy for benign breast disease,
and no history of breast cancer in her first-degree relatives) is obtained as a sum
of two terms. The first term π̂1, corresponding to age interval 40–44, is obtained
from (2.6) as:

π̂1 =
307.8 ×10−5

307.8 ×10−5 + 153.0 ×10−5

[
1 − exp

{
−5
(
307.8 ×10−5 + 153.0 ×10−5

)}]
= 0.0152 .

The second term π̂2, corresponding to age interval 45–49, is obtained from (2.6)
as the product of the probability of developing breast cancer in age interval 45–49
times the probability of having stayed free of breast cancer and not died from other
causes in age interval 40–44:

π̂2 =
424.3 ×10−5

424.3 ×10−5 + 248.6 ×10−5

[
1 − exp

{
−5
(
424.3 ×10−5 + 248.6 ×10−5

)}]
× exp

{
−5
(
307.8 ×10−5 + 153.0 ×10−5

)}
= 0.0204 .

Thus, the 10-year risk of developing breast cancer is obtained as the sum 0.0152 +
0.0204 = 0.0356, or 3.6%. The corresponding 95% confidence interval based on
taking all sources of variability into account can be estimated as 3.0% to 4.2%
through computations described in Benichou and Gail (1995). Breast cancer risk
estimates can be obtained for all age intervals in the range 20–80 years and all
216 exposure profiles including the profile considered above. This whole approach
to individual breast cancer risk estimation is known as the “Gail model” and
has enjoyed widespread use in individual counseling, designing and interpreting
prevention trials. Practical implementation has been greatly facilitated by the
development of graphs (Benichou et al. 1996) as well as a computer program
(Benichou 1993a) and its modified version that is available on the US National
Cancer Institute web site at http:||bcra.nci.nih.gov|brc|. �
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Example 2 . In the year 1978, incident cases of bladder cancer were identified
through 10 cancer registries in the United States. For instance, 32 in-

cident cases were identified among white males aged 45–64 years whose population
numbered 97,420 individuals. Assuming that this population remained constant
throughout the year 1978, these data yielded an average incidence rate of 32.8
per 105 person-years. The National Bladder Cancer Study was a population-based
case-control study conducted at the ten cancer registries. Incident cases aged 21–84
years were selected from the registries. Controls aged 21–84 years were selected
from telephone sampling or Health Care Financing Administration rosters and
frequency-matched to cases on geographic area, age and sex. Based on case-control
data from two states (Utah and New Jersey) and one large city (Atlanta), odds ratios
were estimated for smoking status (never smoker, ex-smoker, current light smoker,
current heavy smoker) and occupational exposure to carcinogens (yes, no) using
logistic regression (see Sect. 2.4.6). Moreover, the attributable risk for smoking
and occupational exposure was estimated for white males in each of the nine strata
resulting from the three areas and three age groups (i.e., 21–44, 45–64 and 65+
years) (see Sect. 2.5.1). Among white males aged 45–64 years in Utah, it was esti-
mated at 54.0%, yielding a baseline incidence rate of 32.8 × (1 − 0.540) = 15.1 per
105 person-years. The odds ratios for current heavy smokers (≥ 20 cigarettes per
day) and occupational exposure were estimated at 2.9 and 1.6. Hence, among white
males aged 45–64 years inUtah, exposure-specific incidence rateswere estimatedat
15.1 × 1.6 = 24.1 per 105 person-years for never smokers with a history of occupa-
tional exposure, and 15.1×2.9×1.6 = 69.8 per 105 person-years for current heavy
smokers with a history of occupational exposure assuming a multiplicative effect
of smoking and occupational exposure (and allowing for rounding error). From
these exposure-specific incidence rates, estimates of the risk of bladder cancer over
specified age intervals could be derived, using (2.6). �

Other Parametric Approaches
A pseudo-likelihood approach also relying on the assumption on piecewise con-
stant incidence (i.e., piecewise exponential model) has been proposed as an alter-
native to the hybrid approach (Benichou and Wacholder 1994). In each stratum
separately, observed distributions of exposure in the cases and controls are applied
to counts of incident cases and person-time to obtain respective expected numbers
of incident cases and of person-time per stratum and exposure level. Then, baseline
incidence rates and hazard ratios are jointly estimated from these expected quan-
tities under a piecewise exponential model. Joint estimation proceeds from maxi-
mizing the likelihood corresponding to this model. Since this likelihood includes
expected rather than observed counts, it is termed a pseudo-likelihood. Thus, the
procedure includes two steps. In the first step, expected numbers of incident cases
and person-time per exposure and stratum are calculated. Then, the parameters of
interest (i.e., stratum-specific baseline incidence rates and hazard ratios) are esti-
mated from these expected counts through maximizing a pseudo-likelihood. This
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approach is easy to implement, as was illustrated on population-based case-control
data of bladder cancer.

Example 2. (continued)
Amongwhitemales aged 45–64 years and inall other strata separately,

observed proportions of cases (respectively controls) with given joint level of
smoking and occupational exposure among the eight (four times two) joint levels
considered were applied to counts of incident cases (respectively person-time) to
obtain expectedcountsby stratumand joint exposure level.Namely, theproductsof
the counts by the observed proportions were formed. Using these expected counts,
a pseudo-likelihood based on the piecewise exponential model was maximized
yielding estimates of relative hazards and stratum-specific baseline incidence rates.
For instance, the baseline incidence rate for white males aged 45–64 years in Utah
was estimated at 13.7 per 105 person-years and relative hazards for current heavy
smoking and occupational exposure were estimated at 2.9 and 1.5, respectively.
Hence, among white males aged 45–64 years in Utah, exposure-specific incidence
rates were estimated at 13.7 × 1.5 = 20.6 per 105 person-years for never smokers
with a history of occupational exposure, and 13.7 × 2.9 × 1.5 = 61.9 per 105

person-years for current heavy smokers with a history of occupational exposure
still assuming a multiplicative effect of smoking and occupational exposure (and
allowing for rounding error). �

A full likelihood approach has also been proposed based on the piecewise
exponential model (Benichou and Wacholder 1994). All parameters (i.e., baseline
rates, hazard ratios and conditional probabilities for the distribution of exposure
in the cases and controls) are estimated jointly through maximizing a likelihood
involving all parameters. This approach may prove intractable in practice except in
simple situations with few exposure levels considered. A full likelihood approach
based on the logistic model (Greenland 1981) appears much easier to implement.
Baseline incidence rates are obtained by simply adding to the stratum parameter
estimates from the logistic model a term corresponding to the logarithm of the
ratio of sampling fractions among cases and controls in the stratum (Greenland
1981; Prentice and Pyke 1979; also similar to discussion of (2.8) in Sect. 2.4.6).

Example 2. (continued)
Although it required the estimation of 60 additional parameters rel-

ative to the pseudo-likelihood approach, the full likelihood approach based on the
piecewise exponential model could be implemented. The 60 additional parame-
tersdescribed the conditionalprobabilities of exposure (smokingandoccupational
exposure) in the cases and controls for all nine strata. For instance, the baseline
incidence rate for white males aged 45–64 years in Utah was estimated at 13.9
per 105 person-years and relative hazards for current heavy smoking and occupa-
tional exposure were estimated at 2.9 and 1.6, respectively. Hence, among white
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males aged 45–64 years in Utah, exposure-specific incidence rates were estimated
at 13.9 × 1.6 = 22.2 per 105 person-years for never smokers with a history of oc-
cupational exposure, and 13.9 × 2.9 × 1.6 = 64.1 per 105 person-years for current
heavy smokers with a history of occupational exposure still assuming a multi-
plicative effect of smoking and occupational exposure (and allowing for rounding
error). �

Upon comparing the pseudo-likelihood, full likelihood and hybrid approach on
population-based case-control data of bladder cancer, Benichou and Wacholder
(1994) noted that the hybrid approach seemed to be less efficient for incidence rate
estimation than the other two approaches, which were themselves equally efficient.
They discussed other advantages of the pseudo-likelihood and full likelihood
approaches. Namely, these approaches allow direct estimation of hazard ratios
rather than odds ratios. Furthermore, the pseudo-likelihood approach and the full
likelihood approach (in its version relying on the piecewise exponential model) can
be applied to more general regression models, e.g., models with an additive form
using hazard rate difference parameters rather than hazard ratio parameters (see
Sects. 2.4.4 and 2.4.6). Finally, all three approaches require that cases and controls
be selected completely at random and that incident cases or at least a known
proportion of them (i.e., known sampling fraction) be fully identified.

Semi-parametric Approach
In nested case-control studies, controls are usually individually matched to cases
on time. Namely, for each case, one (or several) control(s) is (are) selected among
subjectswith the sameageand lengthof follow-up in the cohort as the case (Breslow
et al. 1983; Liddell et al 1977; Mantel 1973; see also Chap. I.7 of this handbook). The
three parametric approaches described above do not apply readily to this context
of individual time matching of controls to cases. Langholz and Borgan (1997)
developed a semi-parametric approach to handle this case. Their approach can
be regarded as an extension of the semi-parametric approach for cohort studies
described above (see Sect. 2.3.7). Incidence rates are expressed as the product of
baseline incidence rates of an unspecified form times a function of the covariates
representing the hazard ratio (Cox 1972). Hazard ratio parameter estimates are
obtained from maximizing the partial likelihood of the Cox model for nested case-
control data (Oakes 1981; Prentice and Breslow 1978). Risk estimates are obtained by
combining partial likelihood hazard ratio parameter estimates and corresponding
cumulative hazard estimates.

A direct comparison of the semi-parametric approach with the parametric ap-
proaches presented above is not possible because the semi-parametric approach
applies only to time-matched data, which the parametric approaches cannot han-
dle. The semi-parametric approach requires observation of individual follow-up
time of each subject in the original cohort in order to form the risk sets for each
failure time and enable control selection. It is therefore potentially less widely
applicable than the parametric approaches.
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Final Notes and Additional References 2.3.9

General problems of definition of disease risk, interpretation and usefulness, prop-
erties, estimation and special problems have been reviewed in detail (Benichou
2000a). Special problems include accounting for continuous or time-dependent
exposure, estimation of disease risk from two-stage case-control data, and vali-
dation procedures for disease risk estimates. Finally, an important challenge is to
increase awareness of the proper interpretation and use of disease risk in practice
and develop general software for easier implementation.

Measures of Association 2.4

Definitions and General Points 2.4.1

Measures of association have a long history and have been reviewed in many text-
books. They assess the strength of associations between one or several exposures
and the risk of developing a given disease. Thus, they are useful in etiologic re-
search to assess and quantify associations between potential risk (or protective)
factors and disease risk. The question addressed is whether and to what degree
a given exposure is associated with occurrence of the disease of interest. In fact,
this is the primary question that most epidemiologic studies are trying to answer.

Depending on the available data, measures of association may be based on
disease rates, disease risks, or even disease odds, i.e., π|(1 − π), with π denoting
disease risk. They contrast rates, risks or odds for subjects with various levels of
exposure, e.g., risks or rates of developing breast cancer for 40-year old women
with or without a personal history of benign breast disease. They can be expressed
in terms of ratios or differences of risks or rates among subjects exposed and
non-exposed to given factors or among subjects with various levels of exposure.

Measures of association can be defined for categorical or continuous exposures.
For categorical exposures, any two exposure levels can be contrasted using the
measures of association defined below. However, it is convenient to define a refer-
ence level to which any exposure level can be contrasted. This choice is sometimes
natural (e.g., non-smokers in assessing the association of smoking with disease oc-
currence) but can be more problematic if the exposure considered is of continuous
nature,where a rangeof lowexposuresmaybeconsideredpotentially inconsequen-
tial. The choice of a reference range is important for interpreting results. It should
be wide enough for estimates of measures of association to be reasonably precise.
However, it should not be so wide that it compromises meaningful interpretation
of the results, which depend critically on the homogeneity of the reference level.
For continuous exposures, measures of association can also be expressed per unit
of exposure, e.g., for each additional gram of daily alcohol consumption. The ref-
erence level may then be a precise value such as no daily alcohol consumption or
a range of values such as less than 10 grams of daily alcohol consumption.
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Usefulness and Interpretation2.4.2

When computing a measure of association, it is usually assumed that the relation-
ship being captured has the potential to be causal, and efforts are taken to remove
the impact of confounders from the quantity. Section 2.4.6 provides a summary
of techniques for adjustment for confounders. Nonetheless, except for the spe-
cial case of randomized studies, most investigators retain the word “association”
rather than “effect” when describing the relationship between exposure and out-
come to emphasize the possibility that unknown confounders may still influence
the relationship.

RothmanandGreenland (Chap. I.4of thishandbook) take efforts todifferentiate
the concepts of effect and association, and adopt the framework of counterfactuals,
popular in the field of economics (Wooldridge 2001), to define the term effect
size. They then define “measure of association” as computed to compare two
actual populations. Hence, the distinction is one of a true causal concept versus
one that may be subject to the confounding of the true effect arising from the
population mix of characteristics at hand. These definitions are more precise
and serve as reminders of the true nature of causality. We will retain the less
precise, but more common terminology where “measure of association” refers
to either or both concepts. We also note that the discussion here is limited to
measures of association with a binary (i.e. coded as 1 = present, 0 = absent)
or event count (number of events) outcome. In many situations, classification
into disease versus no disease is not clear-cut. For example, the definition of
an abnormal lipid profile has undergone frequent change. In such cases, using
measures based on continuous outcomes may be a better choice. We comment
on relationships between measures of association for continuous and categorical
outcomes in Sect. 2.4.6.

When choosing a measure of association, the primary goal is interpretability
and familiarity to consumers of the information. Another guideline is that the
measure of association should allow as simple a description of the association as
possible. For example, it has been empirically observed that risk ratios are more
likely than risk differences to remain constant across subpopulations with different
risk levels (Breslow and Day 1980, Chap. 2), hence simplifying description of the
association of the exposure with the outcome. Breslow and Day (1980, Chap. 2)
also point out that ratios can be converted to differences by taking the logarithm
of the risk or rate.

Definitions and properties of measures of association as well as relations among
them are reviewed below for measures based on ratios and measures based on
differences. Then, estimability of these measures from cohort and case-control
designs and general points regarding estimation of these measures are considered,
including an overview of techniques to adjust for confounders. More details re-
garding inference, namely estimating these measures and assessing the statistical
significance of apparent associations, will be presented in Part II of this handbook.

The below Table 2.1 provides an overview of measures of association discussed
in this chapter:
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Table 2.1. Measures of association discussed in this chapter (GLM = generalized linear model; see

Sect. 2.4.6)

Measure Lower Upper Null Definition Link function
limit limit value in GLM

Rate ratio (HR) 0 +∞ 1 hE|hE Log
Risk ratio (RR) 0 +∞ 1 πE|πE Log
Odds ratio (OR) 0 +∞ 1 [πE|(1 − πE)]| Logit

[πE|(1 − πE)]

Rate difference −∞ +∞ 0 hE − hE Identity
Risk difference −1 +1 0 πE − πE Identity

Measures Based on Ratios 2.4.3

General Properties
Ratio based measures of association are particularly appropriate when the effect of
the exposure is multiplicative, which means there is a similar percent increase or
decrease associated with exposure in rate, risk or odds across exposure subgroups.
As noted above, effects have often been observed to be multiplicative, leading
to ratios providing a simple description of the association (e.g., see Breslow and
Day 1980, Chap. 2). Ratio measures are dimensionless and range from zero to
infinity, with one designating no association of the exposure with the outcome.
When the outcome is death or disease, and the ratio has the rate, risk or odds
of the outcome with the exposed group in the numerator, a value less than one
indicates a protective effect of exposure. The exposure is then referred to as a pro-
tective factor. When the ratio in this set-up is greater than one, there is greater
disease occurrence with exposure, and the exposure is then referred to as a risk
factor.

It can be shown that numerically, the odds ratio falls the furthest from the null,
and the risk ratio the closest, with the rate ratio in between. For example, from the
below Table 2.2, based on a fictitious data from a cohort study for a disease that
is not rare, we would obtain a risk ratio R̂R = 0.3|0.1 = 3.00 and an odds ratio
ÔR = [(30)(90)]|[(10)(70)] = 3.86. If we assume a constant hazard, so that the risk
for each group is 1 − exp(−hT), with T being the follow-up time for each subject,
we have the rate ratio ĤR = ln(1−0.3)| ln(1−0.1) = 3.39 (see Sects. 2.3.1 and 2.4.6).
Hence 1 < R̂R < ĤR < ÔR.

Table 2.2. Data from fictitious cohort study

Exposed Unexposed

Diseased 30 10

Non-diseased 70 90
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The difference in magnitude between the above ratio measures is important to
keep in mind when interpreting them for diseases or outcomes that are not rare.
For rare outcomes the values of the three ratio measures tend to be close. Ratios
become differences on the logarithmic scale, and estimation and inference often
take place on the log scale, where zero indicates no association.

Rate Ratios
As the name implies, the rate ratio is the ratio between the rate of disease among
those exposed and those not exposed or hE|hE. Conceptually, the rate ratio is
identical to a hazard ratio HR. The latter term tends to be used when time de-
pendence of the rate is emphasized, as the hazard is a function that may depend
on time. The situation of a constant rate ratio over time is referred to as pro-
portional hazards. The proportional hazards assumption is often made in the
analysis of rates (see below). Theoretically, the hazard ratio at a given time point
is the limiting value of the rate ratio as the time interval around the point be-
comes very short, just as the hazard is the limiting quantity for incidence rate
(see Sect. 2.2.1). The rate ratio has also been called the Incidence Density Ratio
(Kleinbaum et al. 1982, Chap. 8). It may be noted that the rate ratio is attenuated
by less than perfect specificity of the outcome criteria, but relatively unaffected
by less than perfect sensitivity, especially when the rate is low, as long as the sen-
sitivity is unaffected by exposure. In other words, if cases are equally missed in
the exposed and unexposed groups, the rate ratio is relatively unaffected. How-
ever, if non-cases are considered cases, the ratio will be lower than if diagnostic
criteria identified only true cases. Even in the fictitious example above with high
incidence rates, 80% sensitivity leads to a slightly attenuated rate ratio of 3.29
from

ĤR = ln [1 − (0.80)(0.3)] | ln[1 − (0.80)(0.1)] = 3.29

(as compared to the correct rate ratio of 3.39 from Table 2.2), while 80% specificity
leads to a severely biased rate ratio of

ĤR = ln[0.80(1 − 0.3)]| ln[0.80(1 − 0.1)] = 1.77 .

Rate ratios are extremely useful because of the ease of estimating them in many
contexts. They refer to population dynamics, and are not as easily interpretable
on the individual level. It has been argued, however, that rate ratios make more
sense than risk ratios (see below) when the period subjects are at risk is longer
than the observation period (Kleinbaum et al. 1982, Chap. 8). Numerically, the
rate ratio is further from the null than the risk ratio. When rates are low, the
similarity of risk and rate leads to rate ratios being close to risk ratios, as discussed
below. Some investigators tend to refer to rate ratios as relative risks, creating some
confusion in terminology. Further considerations of how the rate ratio relates to
other ratio based measures of association are offered by Rothman and Greenland
(1998, p 50).
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Risk Ratios
The risk ratio, relative risk or ratio of risks of disease among those exposed πE

and those not exposed πE, RR = πE|πE, has been viewed as the gold standard
among measures of association for many years. It is eminently interpretable on the
individual level as a given-fold increase in risk of disease. Like other ratio-based
measures, it tends to be more stable than the risk difference across population
groups at widely different risk. However, similar to rate ratios and odds ratios
(introduced in Sect. 2.4.3), the risk ratio can be viewed as misleading in the public
eye when the risk among both the unexposed and the exposed is very low, yet many-
fold increased by exposure. Another disadvantage of the risk ratio is its asymmetry
with respect to the definition of an event, so that the risk ratio for not having an
event, (1 − πE)|(1 − πE), cannot be directly computed from the risk ratio for having
an event. For example, knowing that the risk ratio for an event RR = 3.00, the
scenario πE = 0.3, πE = 0.1 results in (1 − πE)|(1 − πE) = 0.7|0.9 = 0.78, while the
scenario πE = 0.6, πE = 0.2, which represents the same risk ratio of 3.00, results in
(1 − πE)|(1 − πE) = 0.4|0.8 = 0.50. The risk ratio depends on the length of the time
interval considered because risk itself refers to a specific interval (see Sect. 2.3.1). In
the literature, the term relative risk is often used to denote the rate ratio as well as
the risk ratio, creating some confusion. Therefore, we will avoid the term “relative
risk” in the following. Numerically the risk ratio is closer to the null than the rate
ratio for the same data (see above).

Cornfield et al. (1959), in the smoking versus lung cancer debate, derived several
theoretical properties of the risk ratio, which have further supported its use. In this
debate, Cornfield, along with Doll and Hill, argued against strong opposition from
R.A. Fisher and Joseph Berkson that the association was causal, and not likely due
to unmeasured confounders, such as a genetic predisposition to both smoke and
contract lung cancer. First of all, Cornfield et al. (1959) turned attenuation of the
risk ratio due to lack of specificity of the outcome into an advantage, by noting that
the ratio will become stronger as the disease subtype affected by the exposure is
honed. Second, Cornfield et al. demonstrated that if a confounder is to explain the
outcome with exposure risk ratio RR > 1, that confounder has to have risk ratio at
least RR, and in addition the prevalence of the confounder must be at least RR times
greater among the exposed than among the unexposed. Lin et al. (1998) presented
more general formulas that confirm Cornfield et al.’s assertions under assumptions
of no interaction between the confounder and exposure. These theoretical results
have led investigators to reason that high risk ratios (say above 1.4; Siemiatycki
et al. 1988) are not likely to be explained by uncontrolled confounding.

Odds Ratios
For several reasons, the odds ratio has emerged as the most popular measure of
association. The odds ratio is the ratio of odds, OR = [πE|(1 − πE)]|[πE|(1 − πE)].
Historically, the odds ratio was considered an approximation to the risk ratio
obtainable from case-control studies. The reason for this is that the probabilities
of being sampled into case and control groups cancel in the calculation of the odds
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ratio, as long as sampling is independent of exposure status. Furthermore, when
πE and πE are small, the ratio (1−πE)|(1−πE) has little influence on the odds ratio,
making it approximately equal to the risk ratio πE|πE. The assumption of small πE

and πE is referred to as the rare-disease assumption. Kleinbaum et al. (1982) have
pointed out that in a case-control study of a stable population with incident cases
and controls being representative of non-cases, the odds ratio is the rate ratio.
Numerically, the odds ratio is the furthest from the null of the three ratio measures
considered here.

More recently, the odds ratio has gained status as an association measure in its
own right, and is often applied in cohort studies and clinical trials, as well as in
case-control studies. This is due to many desirable properties of the odds ratio.
First of all, focusing on risk rather than odds may be a matter of convention rather
than a preference based on fundamental principles, and using the same measure
across settings has the advantage of consistency and makes comparisons and meta-
analyses easy. In contrast to the risk ratio, the odds ratio is symmetric so that the
oddsratio fordisease is the inverseof theoddsratio fornodisease.Furthermore, the
odds ratio based on exposure probabilities equals the odds ratio based on disease
probabilities, a fact that follows fromBayes’ theorem(e.g., Cornfield 1951;Miettinen
1974; Neutra and Drolette 1978) or directly from consideration of how cases and
controls are sampled. The disease and exposure odds ratios are sometimes referred
to as prospective and retrospective odds ratios, respectively. Finally, odds ratios
from both case-control and cohort studies are estimable by logistic regression,
which has become the most popular approach to regression analysis with binary
outcomes (see Sect. 2.4.6).

Some investigators feel that the risk ratio is more directly interpretable than the
odds ratio, and have developed methods for converting odds ratios into risk ratios
for situations when risks are not low (Zhang and Yu 1998).

Measures Based on Differences2.4.4

General Properties
Difference based measures are appropriate when effects are additive (e.g., see
Breslow and Day 1980, Chap. 2), which means that the exposure leads to a similar
absolute increase or decrease in rate or risk across subgroups. The difference
in odds is very rarely used, and not addressed here. As noted above, additive
relationships are less common in practice, except on the logarithmic scale, when
they are equivalent to ratio measures. However, difference measures may be more
understandable to the public when the outcome is rare, and relate directly to
measures of impact discussed below (see Sect. 2.5).

The numerical ranges of difference measures depend on their component parts.
The rate difference ranges from minus to plus infinity, while the risk difference is
boundedbetweenminusandplusone.Thesituationofnoassociation is reflectedby
a difference measure of zero. When the measure is formed as the rate or risk among
the exposed minus that among the non-exposed, a positive value indicates that
the exposure is a risk factor, while a negative value indicates that it is a protective
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factor. It can be shown that the risk difference falls numerically nearer to the
null than does the rate difference. For example, Table 2.2 yields a risk difference
of 0.30 − 0.10 = 0.20, while the rate difference is ln(0.70) + ln(0.90) = 0.25.
However, they will be close for rare outcomes. In contrast to ratio measures,
difference measures are always attenuated by less than perfect sensitivity (i.e.,
missed cases), but the rate difference is unaffected by less than perfect specificity.
The risk difference is also relatively unaffected when risk is low. In the fictitious
example above, if the sensitivity of the test used to detect disease is 80%, the rate
difference is − ln[1 − (0.80)(0.3)] + ln[1 − (0.80)(0.1)] = 0.19, but if the specificity
is 80%, the rate difference remains at 0.25.

Rate Differences
The rate difference is defined as hE − hE, and has been commonly employed to
compare mortality rates and other demographic rates between countries, time pe-
riods and|or regions. In such comparisons, the two rates being compared are often
directly standardized (see Sect. 2.6) to the age and sex distribution of a standard
population chosen, e.g., as the population of a given country in a given census year.

For the special case of a dichotomous exposure, the rate difference, i.e., the
difference between the incidence rates in the exposed and unexposed subjects
has been termed “excess incidence” (Berkson 1958; MacMahon and Pugh 1970;
Mausner and Bahn 1974), “excess risk” (Schlesselman 1982), “Berkson’s simple
difference” (Walter 1976), “incidence density difference” (Miettinen 1976), or even
“attributable risk” (Markush 1977; Schlesselman 1982), which may have caused
some confusion.

Risk Differences
The risk difference πE − πE is parallel to the rate difference discussed above, and
similar considerations apply. Due to the upper and lower limits of plus, minus
one on risk, but not on rate, risk differences are more difficult to model than rate
differences.

Estimability 2.4.5

Because exposure-specific incidence rates and risks can be obtained from cohort
data, all measures of association considered (based on ratios or differences) can be
obtained as well. This is also true of case-control data complemented by follow-up
or population data (see Sects. 2.2 and 2.3). Case-control data alone allow estimation
of odds ratios thanks to the identity between disease and exposure odds ratios (see
Sect. 2.4.3) that extends to the logistic regression framework. Prentice and Pyke
(1979) showed that the unconditional logistic model (see also Breslow and Day
1980, Chap. 6) applies to case-control data as long as the intercept is disregarded
(see Sect. 2.4.6). Interestingly, time-matched case-control studies allow estimation
of hazard rates (e.g., see Miettinen 1976; Greenland and Thomas 1982; Prentice and
Breslow 1978).
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Estimation2.4.6

The most popular measures of association have a long history of methods for esti-
mation and statistical inference. Some traditional approaches have the advantage
of being applicable in small samples. Traditional methods adjust for confounders
by direct standardization (see Sect. 2.6.1) of the rates or risks involved, prior to
computation of the measure of association, or by stratification, where association
measures are computed separately for subgroupsand thencombined. Formeasures
based on the difference of rates or risks, direct standardization and stratification
can be identical, if the same weights are chosen (Kahn and Sempos 1989). Generally,
however, direct standardization uses predetermined weights chosen for external
validity, while optimal or efficient weights are chosen with stratification. Efficient
weights make the standard error of the combined estimator as small as possible.
Regression adjustment is a form of stratification, which provides more flexibility,
but most often relies on large sample size for inference.

In modern epidemiology, measures of association are most often estimated
from regression analysis. Such methods tend to require large sample sizes, in par-
ticular when based on generalized linear models (often abbreviated GLM). In this
context, the ratio, difference or other association measures arise from the regres-
sion coefficient of the exposure indicator, and different measures of association
result depending on the transformation applied to the mean of the outcome vari-
able. Note that the mean of an event count over a unit time interval is the rate,
and the mean of a binary outcome is the risk. For example a model may use the
logarithm of the rate (ln(h)) or risk (ln(π)) as the outcome to be able to estimate
ratio measures of association.

The function applied to the rate or risk in a regression analysis is referred to
as the link function in the framework of generalized linear models underlying
such analyses (see McCullagh and Nelder (1989) and Palta (2003) for theory and
practical application). For example, linear regression would regress the risk or rate
directly on exposure without any transformation, which is referred to as using the
identity link. When the exposure is the only predictor in such a model, all link
functions fit equally well and simply represent different ways to characterize the
association. However, when several exposures or confounders are involved, or if
the exposure is measured as a continuous or ordinal variable, some link functions
and not others may require interaction or non-linear terms to improve the fit. The
considerations in choosing the link function parallel those for choosing a measure
of association as multiplicative or additive and as computed from rates, risks or
odds, discussed above (see Table 2.1).

Both traditional and regression estimation is briefly overviewed below, with
more details provided in Chap. II.3 and Chap. II.4 of this handbook.

Estimation and Adjustment for Confounding of Rate Ratios
Estimation of the rate or hazard ratio between exposed and non-exposed individu-
als can be based on either event counts (overall or in subgroups and|or subintervals
of time), or on the time to event for each individual, where the time for subjects
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without events are entered as time to end of follow-up, and are referred to as being
censored (see Chap. II.4).

In the first case, estimation can proceed directly by forming ratios of interest,
or by modeling the number of events on exposure by a generalized linear model.
When ratios are formed directly as the ratio of the number of cases DE divided by
the person time at risk tE, i.e. DE|tE, in those exposed and DE|tE in those unexposed,
the 95% confidence interval of the resulting rate ratio HR = DE|tE|DE|tE is obtained
as (Rothman and Greenland 1996)[

exp
(

ln( ĤR) − 1.96(1|DE + 1|DE)1|2
)

, exp
(

ln( ĤR) + 1.96(1|DE + 1|DE)1|2
)]

.

In either case, it is often necessary to adjust for confounding factors, including
age and sex. When rate ratios are formed directly, the rates are generally adjusted
by direct standardization (see Sect. 2.6.1) or by use of the standardized mortality
(or morbidity or incidence) ratio SMR or SIR (see Sect. 2.6.1). The SMR and SIR
have found wide application in investigations of the potential health effects of
occupational exposures.

A common regression approach to estimating rate ratios requires information
on event count and person time at risk for each subgroup, time interval and
exposure level of interest. To obtain rate ratios from the regression requires that
the logarithm of the mean number of events be modeled. This is referred to in
the generalized linear model framework as using a log link function. The resulting
regression equation is

ln(hi) = − ln(ti) + β0 + βEEi + β1X1i + β2X2i + … ,

where the subscript i indicates subject, i = 1, … , n, Ei is an indicator that equals 0
for the unexposed and 1 for the exposed. In this equation, β0 is the logarithm of the
rate per time unit for the unexposed with confounder values, X1, X2, … = 0. Care
should be taken to center confounders so that this intercept is meaningful. The
quantity ln(ti) is referred to as the offset, and allows event counts over different size
denominators to be used as the outcome variable. In the case when disease rates
in a population are modeled, ti are population sizes. The rate ratio for exposure
adjusted for confounders X1, X2, … is obtained as exp(βE). Differences in rate ratios
across levels of X can easily be accommodated by the inclusion of interaction terms
in the model. Inferences on the rate ratio follow from the standard error of the
estimate β̂E of βE, which is approximately normally distributed with reasonable
large sample sizes, so that a 95% confidence interval for the rate ratio is[

exp
(

β̂E − 1.96se
(

β̂E

))
, exp

(
β̂E + 1.96se

(
β̂E

))]
.

The standard errors se( β̂E) can be obtained from maximum likelihood theory,
assuming that the counts follow a Poisson or negative binomial distribution. The
variance of the Poisson distribution equals the rate, while the negative binomial
distribution allows for possible clustering of events leading to the variance being
larger than the rate.
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There are also several approaches available in most statistical software packages
to adjust standard errors for so called overdispersion. Overdispersion refers to
variability in rates being larger than expected from a Poisson count process. For
example, events may cluster in time, or there may be unmeasured characteristics of
the population influencing the rate, so that the overall count arises from a mixture
of different rates. An example of overdispersion (Palta 2003) arises in overall cancer
rates because different cancers predominate for different ages and genders. One
of the approaches to adjusting for overdispersion, is to use a robust or sandwich
estimator of the standard error of β̂E available in software packages, such as PROC
GENMOD in SAS (1999) that fit generalized estimating equations (Liang and Zeger
1986).

When the data consist of times to event for individuals, the rate ratio, or hazard
ratio can be estimated by techniques designed for survival analysis (e.g., see Hos-
mer and Lemeshow 1999 and Chap. II.4 of this handbook). Most parametrically
specified survival distributions (i.e., distributions S(t) = 1 − F(t), where F is the
distribution of time to event) lead to hazard ratios hE(t)|hE(t) that vary over time.
When the hazard ratio remains constant, this is referred to as proportional hazards.
This property holds when the time to event follows the exponential distribution,
so that the probability of avoiding an event up to time t is given by S(t) = exp(−ht)
where h is a constant hazard, and for the Weibull distribution S(t) = exp[(−ht)γ] as
long as γ is the same for the exposed and non-exposed groups. Models are some-
times fit that assume that the exponential distribution holds over short intervals,
i.e., piecewise constant hazard. In these models, the hazard ratio is constant across
short intervals, but can be allowed to change over time. An exponential distribu-
tion for time to event leads to the Poisson distribution for number of events in
a given time period.

In the situation of proportional hazards, estimation of the hazard ratio can
proceed without specifying the actual survival distribution via the Cox model,
where estimation is based on so called partial likelihood (Cox 1972). The reason
this works is that the actual level of the hazard cancels out; similarly to how the
offset becomes part of the intercept in the regression model given by (2.8) above.

Estimation and Adjustment for Confounding for Risk Ratios
In a cohort study with a fixed follow-up time, the risk ratio can be estimated in
a straightforward manner. From a 2 × 2 table (see Table 2.3) with cells a, b, c, d,
where a is the number diseased and exposed, b is the number diseased and unex-
posed, c the number non-diseased and exposed and d the number non-diseased
and unexposed,the risk ratio is estimated by R̂R = {a|(a + c)}|{b|(b + d)}.

Table 2.3. Notation for a generic 2 × 2 table from cohort or case-control study

Exposed Unexposed

Diseased a b

Non-diseased c d
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Statistical inference can be based on the approximate standard error (Katz et al.
1978)whichcanbeestimatedas se(ln( R̂R)) = {a|(a+c)+d|b(b+d)}1|2. In caseswhere
follow-up time is not fixed, the risk ratio can be calculated from the individual
risks estimated from the rate or hazard function. However, this is rarely done, as
investigators tend to prefer the rate or hazard ratio as the measure of association
in such situations. The risk ratio can be estimated from case-control studies only
when the ratio of sampling probabilities of cases and controls is known, or by using
the odds ratio (see above) as an approximation.

Although standardization can be used either as direct standardization to adjust
risks before forming ratios or as indirect standardization to compute the SMR (see
Sect. 2.6.1) fromrisks ina referencepopulation, it is oftenmoreappropriate toapply
stratified analyses to adjust the risk ratio for confounders (see also Sect. 2.6.1). For
example, a studyof cancer risk in individuals exposedornot exposed toa risk factor
may be stratified into age groups, or a study investigating outcomes in neonates
may be stratified by birth weight. Stratum-specific risk ratio estimates can be
calculated and then be combined for instance by the popular Mantel–Haenszel
estimator that is known to have good properties. It is given by

R̂RMH =
∑(

ai

(
bi + di

)
|ni

)/∑(
bi

(
ai + ci

)
|ni

)
,

where the sums are across strata and ni is the number of subjects in stratum i.
This estimator is stable in small samples, but has a larger standard error than the
corresponding estimator from regression modeling. Formulas for the standard
error are provided by Breslow and Day (1987) and by Rothman and Greenland
(1998).

From regression analysis, the risk ratio can be obtained as exp(βE) from fitting
the binary or binomial (grouped binary events) outcome to the model:

ln(πi) = β0 + βEEi + β1X1i + … .

This is a generalized linear model with error distribution reflecting each binary
outcome being independent with variance πi(1 − πi) and log link. Clearly, the log
link isnot ideal, asπi > 1canresult fromsomeexposure-confoundercombinations.
Nonetheless, this model tends to be reasonable with lowrisks. Maximum likelihood
or generalized estimating equation fitting automatically provides large sample
inference, with or without adjustment for deviations from the binomial error
structure by robust standard errors. Deviations from binomial structure may result
from clustering or correlation between events within subgroups, or from multiple
events per person (e.g., cavities in teeth when teeth are individually counted).

Another option for the link function when modeling the risk by a generalized
linear model is the so-called complementary log-log link resulting in the model:

ln(− ln(1 − πi)) = β0 + βEEi + β1X1i + … .

This model has the advantage of always estimating risks to be in the range 0 to 1.
However, exp(βE) is the rate ratio rather than the risk ratio.
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Estimation and Adjustment for Confounding for Odds Ratios
In the traditional setting, the odds ratio in an unmatched case-control or cohort
study is estimated from a 2 × 2 table (see Table 2.3) as ÔR = ad|bc. Inference can
be based on exact methods, which historically were difficult to implement, but
are now available in most statistical software packages, such as the SAS procedure
PROC FREQ. With the exact approach, the confidence interval for the odds ratio is
obtained from the non-central hypergeometric distribution. Over the years, many
approximations to this interval have been developed, the most accurate of which
is the Cornfield approximation (Cornfield 1956). Another, less accurate method is
based on the approximate standard error of ln( ÔR) known as the Woolf (1955) or
logit method, where se(ln( ÔR)) is calculated as (1|a + 1|b + 1|c + 1|d)1|2. The logit
method takes its name from being related to an approximation used for fitting
logistic regression. Although the approximation has limited use for reporting final
study results, it is useful to have an explicit approximation of the standard error
for study planning purposes.

Stratifiedmethods forestimating theoddsratioeitherbuildon takingaweighted
averageof the stratumspecific logodds ratios,using the inversesof the logitmethod
standard errors for each stratum as the weights, or using the Mantel–Haenszel
stratified odds ratio estimator (Mantel and Haenszel 1959),

ÔRMH =
(∑

aici|ni

)
|
(∑

bidi|ni

)
,

where the sums are across strata with tables as depicted in Table 2.3 for each
stratum and ni is the number of subjects in stratum i. This odds ratio estimator
has been shown to have excellent properties even when strata are very small
(Birch 1964; Breslow 1981; Breslow and Day 1980, Chaps. 4–5; Landis et al. 1978,
2000; Greenland 1987; Robins and Greenland 1989). The confidence interval for
a stratified odds ratio can be obtained by exact methods or by the approximation
of Miettinen (1976) where se(ln( ÔR)) is calculated as ln( ÔRMH)|χMH. Here χMH is
the square root of the Mantel–Haenszel stratified chi-square test used to test the
null hypothesis that the odds ratio equals one (Mantel and Haenszel 1959). This
test statistic is computed as

χ2
MH =

∑
[ai − (ai + bi)(ai + ci)|ni]

2 |[
(ai + bi)(ai + ci)(di + bi)(di + ci)|

(
n2

i (ni − 1)
)]

.

The 95% confidence interval for the odds ratio is then given by[
exp

(
ln
(

ÔR
)
−1.96

(
ln
(

ÔRMH
)

|χMH
))

, exp
(
ln
(

ÔR
)
+1.96

(
ln
(

ÔRMH
)

|χMH
))]

.

A special case of stratification occurs when data are pair matched, such that each
case is matched to a control, e.g., based on kinship or neighborhood. In this case,
the Mantel–Haenszel odds ratio estimator becomes m++|m−−, where m++ is the
number of pairs (matched sets) where both the case and the control are exposed,
and m−− is the number of pairs where neither is exposed. Breslow and Day (1980,
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Chap. 7) provide additional formulas for the situation when several controls are
matched to each case. Confidence intervals can again be obtained by exact formulas
(Breslow and Day 1980, Chap. 7). It is well known that although matched studies are
not technically confounded by the factors matched on because cases and controls
are balanced on these, odds ratios based on the matched formula are larger than
odds ratios not taking the matching into account. We discuss this phenomenon
further in the logistic model framework below.

Increasingly, logistic regression is used for the estimation of odds ratios from
clinical trials, cohort and case control studies. Logistic regression fits the equation:

ln
(
πi|(1 − πι)

)
= β0 + βEEi + β1X1i + … , (2.8)

with Ei denoting the exposure status and X1i, X2i, … the confounder variables of
individual i. For a cohort study β0 is ln(πi|(1 − πι)) for an unexposed individual
with all confounders equal to 0. For such a person, then, the risk of disease πi =
exp(β0)|[1+exp(β0)]. In a case-control study, the intercept in (2.11) is β0 = β0,cohort+
ln(P1|P0), with P1 and P0 the probabilities for being sampled into the study for cases
and controls, respectively. We see again that risk can be estimated from a case-
control study only when the sampling scheme of cases and controls is known. The
odds ratio for exposure, adjusted for confounders is exp(βE).

In the generalized linear model framework, (2.8) is said to use the logit link,
where the logit function is defined as g(π) = ln(π|(1 − π)). The logit link is the one
that follows most naturally from the mathematical formulation of the binomial
distribution (McCullagh and Nelder 1989), and is referred to as the canonical link,
whereas the log is the canonical link for rates. Just as for other generalized linear
models, maximum likelihood based and robust standard errors are available, with
the latter taking into account clustering of events. It should be noted, however, that
generalizations of logistic regression to the longitudinal or clustered setting by
generalized estimating equations do not work for case-control studies (Neuhaus
and Jewell 1990).

Matched data can be analyzed by conditional logistic regression that fits the
model:

ln(πji|(1 − πji)) = β0j + βEEji + β1X1ji + … (2.9)

for individual i in the matched set j. Estimation of βE and β1, … is based on
algorithms that compare individuals only within and not between matched sets.
For example, for matched pairs, estimation is based on differences in exposure and
confounders. These algorithms do not actually estimate the matched set specific
intercepts β0j that cancel out. All variables that do not vary within matched sets
are automatically absorbed into β0j although interactions of such variables with
those that vary within set can be included in the model. For example, in SAS,
PROC PHREG can be tricked into fitting this model (e.g., see Palta 2003). While
the conditional logistic regression model is usually fit by large sample methods,
such as maximum likelihood, exact procedures have also become available (e.g.,
Mehta et al. 2000). Again, taking matching into account in the analysis results in
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larger coefficients than those of the unmatched model (2.11). When all matching
variables are explicit (such as age and sex) they can be directly entered as covariates
in (2.11).

It is useful to know that, when an outcome is originally normally distributed, but
dichotomized and analyzed by logistic regression, the resulting coefficients in the
unconditional model (2.11) are approximately 1.7 times as large as the coefficients
that would have resulted from ordinary regression of the original continuous
outcome, “standardized” by being divided by its residual standard deviation. (Note
that theword standardizedhere isused todenoteaconversion tostandarddeviation
units, rather than in the sense of direct standardization discussed in Sect. 2.6.1.)
This result emerges from the relationship between the variances of the logistic and
normal distributions (Johnson and Kotz 1970). While the logit link is related to the
logistic distribution, another link function, the probit can be shown to arise directly
when a continuous outcome from ordinary regression with normally distributed
errors is dichotomized (Palta 2003). The probit link is defined as g(π) = Φ−1(π)
where Φ−1 is the inverse of the cumulative normal distribution. This link yields
the same coefficients as the “standardized” ones from ordinary regression of the
continuous outcome. Apart from this difference, the logit and probit provide a very
similar fit. In both cases, of course, dichotomizing the outcome results in loss of
information and thus in loss of statistical efficiency, which yields larger standard
errors relative to the size of the regression coefficients.

The idea of logistic regression providing coefficients that are related by “stan-
dardization” to those that would arise from regression analysis of an underly-
ing continuous variable (e.g., blood pressure being dichotomized into hyperten-
sion or not) also provides a framework for understanding the difference between
a matched and an unmatched analysis. In an unmatched analysis, the coefficients
are for theoutcome“standardized” to the scaleof theoverall residual standarddevi-
ation across the population. This means that the original continuous regression co-
efficient isdividedby that standarddeviation. Inamatchedanalysis, thecoefficients
are “standardized” to the residual standard deviation within each matched set.
This happens by explicitly including a matched set specific intercept in the model
(see (2.12)). Hence, the standard deviation within matched sets does not contain the
variationarising fromdifferentmatchedsetshavingadifferent levelof theoutcome,
and hence matched coefficients are larger (Palta et al. 1997; Palta and Lin 1999).

Estimation and Adjustment for Confounding for Rate Differences
Regression estimation of the rate difference with and without adjustment for
confounders can be done in the generalized linear model framework by specifying
the identity link function, resulting in linear regression of the rates with variance
arising from the Poisson distribution. Overdispersion can be handled the same way
as for ratios. However, unequal time intervals cannot be as easily accommodated
with the identity link. Instead, weighted ordinary regression of observed rates can
be employed, where inverse variance weights automatically account for the interval
length (Breslow and Day 1987, Chap. 4).
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Measures of Impact 2.5

Measures of impact are used to assess the contribution of one or several exposures
to the occurrence of incident cases at the population level. Thus, they are useful in
public health to weigh the impact of exposure on the burden of disease occurrence
and assess potential prevention programs aimed at reducing or eliminating expo-
sure in the population. They are sometimes referred to as measures of potential
impact to convey the notion that the true impact at the population level may be dif-
ferent from that reflected by these measures except under very specific conditions
(see Sect. 2.5.1). The most commonly used measure of impact is the attributable
risk. This measure is presented in some detail below. Then, other measures are
briefly described. Table 2.4 provides an overview of measures of impact discussed
in this chapter.

Attributable Risk 2.5.1

Definition
The term “attributable risk” (AR) was initially introduced by Levin in 1953 (Levin
1953) as a measure to quantify the impact of smoking on lung cancer occurrence.
Gradually, it has become a widely used measure to assess the consequences of an
association between an exposure and a disease at the population level. It is defined
as the following ratio:

AR =
{
Pr(D) − Pr

(
D|E)} |Pr(D) . (2.10)

The numerator contrasts the probability of disease, Pr(D), in the population,
which may have some exposed, E, and some unexposed, E, individuals, with the
hypothetical probability of disease in the same population but with all exposure
eliminated Pr(D|E). Thus, it measures the additional probability of disease in the
population that is associated with the presence of an exposure in the population,
and AR measures the corresponding proportion. Probabilities in (2.10) will usually
refer to disease risk although, depending on the context, they may be replaced with
incidence rates.

Unlike measures of association (see Sect. 2.4), AR depends both on the strength
of the association between exposure and disease and the prevalence of exposure in
the population pE. This can be seen for instance through rewriting AR from (2.10).
Upon expressing Pr(D) as

Pr(D|E)pE + Pr
(
D|E) pE with pE = 1 − pE ,

both in the numerator and the denominator, and noting that

Pr(D|E) = RR × Pr
(
D|E) ,

the term Pr(D|E) cancels out and AR is obtained as (Cole and MacMahon 1971;
Miettinen 1974):

AR =
{

pE(RR − 1)
}

|
{

1 + pE(RR − 1)
}

, (2.11)
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a function of both the prevalence of exposure in the population, pE, and the rate
ratio or relative risk, RR.

An alternative formulation underscores this joint dependency in yet another
manner. Again, upon expressing Pr(D) as

Pr(D|E)pE + Pr
(
D|E) pE with pE = 1 − pE

and noting that

Pr(D|E) = RR × Pr
(
D|E) ,

the numerator in (2.10) can be rewritten as

pEPr(D|E) − pEPr(D|E)|RR .

From using Bayes’ theorem to express Pr(D|E) as Pr(E|D)Pr(D)|pE , it then becomes
equal to

Pr(D)pE|D(1 − 1|RR) ,

after simple algebra. This yields (Miettinen 1974):

AR = pE|D(RR − 1)|RR , (2.12)

a function of the prevalence of exposure in diseased individuals, pE|D, and the rate
ratio or relative risk, RR.

A high relative risk can correspond to a low or high AR depending on the
prevalence of exposure, which leads to widely different public health consequences.
One implication is that, portability is not a usual property of AR, as the prevalence
of exposure may vary widely among populations that are separated in time or
location. This is in contrast with measures of association such as the relative
risk or rate ratio which are more portable from one population to another, as
the strength of the association between disease and exposure might vary little
among populations (unless strong interactions with environmental or genetic
factors are present). However, portability of RR can be questioned as well in the
case of imperfect specificity of exposure assessment, since misclassification of
non-exposed subjects as exposed will bias RR towards unity, which will affect
differentially RR estimates in various populations depending on their exposure
prevalence. This is not a problem with AR, which is not affected by imperfect
specificity of exposure assessment.

Range
When the exposure considered is a risk factor (RR > 1), it follows from the above
definition that AR lies between 0 and 1. Therefore, it is very often expressed as
a percentage. AR increases both with the strength of the association between
exposure and disease measured by RR, and with the prevalence of exposure in the
population.Aprevalenceof 1 (or 100%)yieldsavalueofARequal to theattributable
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risk among the exposed, that is (RR−1)|RR (see Sect 2.5.2). AR approaches 1 for an
infinitely high RR provided the exposure is present in the population (i.e., non-null
prevalence of exposure).

AR takes a null value when either there is no association between exposure and
disease (RR = 1) or there are no exposed subjects in the population. Negative
AR values are obtained for a protective exposure (RR < 1). In this case, AR
varies between 0 and −∞, a scale on which AR lacks a meaningful interpretation.
One solution is to reverse the coding of exposure (i.e., interchange exposed and
unexposed categories) to go back to the situation of a positive AR, sometimes
called the preventable fraction in this case (Benichou 2000c; Greenland 1987; Last
1983). Alternatively, one must consider a different parameter, namely the prevented
fraction (see Sect. 2.5.4).

Synonyms
Some confusion in the terminology arises from the reported use of as many as
16 different terms in the literature to denote attributable risk (Gefeller 1990, 1995).
However, a literature search by Uter and Pfahlberg (Uter and Pfahlberg 1999) found
some consistency in terminology usage, with “attributable risk” and “population
attributable risk” (MacMahon and Pugh 1970) the most commonly used terms by
far followed by “etiologic fraction” (Miettinen 1974). Other popular terms include
“attributable risk percentage” (Cole and MacMahon 1971), “fraction of etiology”
(Miettinen 1974), and “attributable fraction” (Greenland and Robins 1988; Last
1983; Ouellet et al. 1979; Rothman and Greenland 1998, Chap. 4).

Moreover, additional confusion may originate in the use by some authors
(MacMahon and Pugh 1970; Markush 1977; Schlesselman 1982) of the term “at-
tributable risk” to denote a measure of association, the excess incidence, that is
the difference between the incidence rates in exposed and unexposed subjects (see
Sect. 2.4.4). Context will usually help the readers detect this less common use.

Interpretation and Usefulness
While measures of association such as the rate ratio and relative risk are used to
establish an association in etiologic research, AR has a public health interpretation
as a measure of the disease burden attributable or at least related to one or several
exposures. Consequently, AR is used to assess the potential impact of prevention
programs aimed at eliminating exposure from the population. It is often thought
of as the fraction of disease that could be eliminated if exposure could be totally
removed from the population.

However, this interpretation can be misleading because, for it to be strictly cor-
rect, the three following conditions have to be met (Walter 1976). First, estimation
of AR has to be unbiased (see below). Second, exposure has to be causal rather
than merely associated with the disease. Third, elimination of exposure has to be
without any effect on the distribution of other risk factors. Indeed, as it might be
difficult to alter the level of exposure to one factor independently of other risk fac-
tors, the resulting change in disease load might be different from the AR estimate.
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For these reasons, various authors elect to use weaker definitions of AR, such as
the proportion of disease that can be related or linked, rather than attributable, to
exposure (Miettinen 1974).

A fundamental problem regarding causality has been discussed by Greenland
andRobins (1988)andRobinsandGreenland(1989)whoconsidered theproportion
of disease cases for which exposure played an etiologic role, i.e., cases for which
exposure was a component cause of disease occurrence. They termed this quantity
the etiologic fraction and argued that it was a more relevant measure of impact
than AR. Rothman and Greenland (1998, Chap. 4) argued that AR and the etiologic
fractions are different quantities using logical reasoning regarding causality and
the fact that disease occurrence may require several component causal factors
rather than one. The main problem with the etiologic fraction is that it is usually
impossible to distinguish exposed cases for whom exposure played an etiologic
role from those where exposure was irrelevant. As a consequence, estimating
the etiologic fraction will typically require non-identifiable biologic assumptions
about exposure actions and interactions to be estimable (Cox 1984, 1985; Robins
and Greenland 1989; Seiler 1986). Thus, despite its limitations, AR remains a useful
measure to assess the potential impact of exposure at the population level and
can serve as a suitable guide in practice to assess and compare various prevention
strategies.

Several authors have considered an interpretation of AR in terms of etiologic
research. The argument is that if an AR estimate is available for several risk factors
jointly, then its complement to 1, 1 − AR, must represent a gauge of the proportion
of disease cases not explained by the risk factors used in estimating AR. Hence,
1 − AR would represent the proportion of cases attributable to other (possibly
unknown) risk factors. For instance, it was estimated that the AR of breast cancer
was 41% for late age at first birth, nulliparity, family history of breast cancer and
higher socioeconomic status, which suggested that at least 59% of cases had to be
attributable to other risk factors (Madigan et al. 1995). A similar type of reasoning
was used in several well-known reports of estimated percentages of cancer death
or incidence attributable to various established cancer risk factors (e.g., smoking,
diet, occupational exposure to carcinogens …). Some of these reports conveyed
the impression that little remained unexplained by factors other than the main
establishedpreventable risk factors and that cancerwasamostlypreventable illness
(Colditz et al. 1996, 1997; Doll and Peto 1981; Henderson et al. 1991; Ames et al.
1995). Such interpretation has to be taken with great care since ARs for different
risk factors may add to more than 100% because multiple exposures are usually
possible (e.g., smoking and occupational exposure to asbestos). Moreover, this
interpretation can be refuted on the basis of logical arguments regarding the fact
that disease occurrence may require more than one causal factor (see Rothman
and Greenland 1998, Chap. 2). Furthermore, one can note that once a new risk
factor is considered, the joint unexposed reference category changes from lack
of exposure to all previously considered risk factors to lack of exposure to those
risk factors and the new risk factor (Begg 2001). Because of this change in the
reference category, the AR for the new risk factor may surpass the quantity 1 − AR
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for previously considered risk factors. Thus, while it is useful to know that only
41% of breast cancer cases can be attributed to four established risk factors in
the above example, it is entirely conceivable that new risk factors of breast cancer
may be elicited which yield an AR of more than 59% by themselves in the above
example.

Properties
AR has two main properties. First, AR values greatly depend on the definition of
the reference level for exposure (unexposed or baseline level). A more stringent
definition of the reference level corresponds to a larger proportion of subjects
exposed and, as one keeps depleting the reference category from subjects with
higher levels of risk, AR values and estimates keep rising. This property has a major
impact on AR estimates as was illustrated by Benichou (1991) and Wacholder et al.
(1994). For instance, Benichou (1991) found that the AR estimate of esophageal
cancer for an alcohol consumption greater or equal to 80 g|day (reference level
of 0–79 g|day) was 38% in the Ille-et-Vilaine district of France, and increased
dramatically to 70% for an alcohol consumption greater or equal to 40 g|day (i.e.,
using the more restrictive reference level 0–39 g|day) (see Example 3 below). This
property plays a role whenever studying a continuous exposure with a continuous
gradient of risk and when there is no obvious choice of threshold. Therefore, AR
estimates must be reported with reference to a clearly defined baseline level in
order to be validly interpreted.

Example 3 . A case-control study of esophageal cancer conducted in the Ille-et-
Vilaine district of France included 200 cases and 775 controls selected

bysimple randomsampling fromelectoral lists (Tuyns,Pequignot and Jensen 1977).
The assessment of associations between alcohol consumption and smoking with
esophageal cancer has been the focus of detailed illustration by Breslow and Day
(1980) who presented various approaches to odds ratio estimation with or without
adjustment for age. As in previous work (Benichou, 1991), four levels of alcohol
consumption (0–39, 40–79, 80–119 and 120+ g|day) are considered here as well
as three levels of smoking (0–9, 10–29, 30+ g|day) and three age groups (25–44,
45–54, 55+ years). There were 29, 75, 51 and 45 cases with respective alcohol
consumptions of 0–39, 40–79, 80–119 and 120+ g|day. Corresponding numbers of
controls were 386, 280, 87 and 22, respectively. The first reference level considered,
0–79 g|day, included 104 cases and 666 controls, leaving 96 cases and 109 con-
trols in the exposed (i.e., 80+ g|day) category (see Table 2.5). The corresponding
crude (unadjusted) odds ratio was estimated as (96 × 666)|(104 × 109) = 5.6 (see
Sect. 2.4.6). Using methods described below, the crude AR estimate was 39.5% for
alcohol consumption and the age- and smoking-adjusted AR estimates were close
to 38%. The second reference level considered, 0–39 g|day, was more restrictive
and included only 29 cases and 286 controls, leaving 171 cases and 489 controls
in the exposed (i.e., 40+ g|day) category (see Table 2.5). The corresponding crude
odds ratio was estimated as (171 × 386)|(29 × 389) = 5.9 (see Sect. 2.4.6). Using
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Table 2.5. Numbers of cases and controls in the reference and exposed categories of daily alcohol

consumption according to two definitions of the reference category – Data from a case-control study

of esophageal cancer (from Tuyns, Pequignot and Jensen 1977)

More restrictive definition of reference category (0–39 g|day)
Reference Exposed Total
category category

(0–39 g|day) (40+ g|day)

Cases 29 171 200

Controls 386 389 775

Total 315 660 975

Less restrictive definition of reference category (0–79 g|day)
Reference Exposed Total
category category

(0–79 g|day) (80+ g|day)

Cases 104 96 200

Controls 666 109 775

Total 770 205 975

methods described below, the crude AR estimate was 70.9% and adjusted AR esti-
mates were in the range 70% to 72%. The marked increase mainly resulted from the
much higher proportion of subjects exposed with the more restrictive definition
of the reference category (63% instead of 14% of exposed controls). �

The second main property is distributivity. If several exposed categories are
considered instead of just one, then the sum of the category-specific ARs equals
the overall AR calculated from combining those exposed categories into a single
one, regardless of thenumber and thedivisionsof theoriginal categories (Benichou
1991; Wacholder et al. 1994; Walter 1976), provided the reference category remains
the same. This property applies strictly to crude AR estimates and to adjusted
AR estimates calculated on the basis of a saturated model including all possible
interactions (Benichou 1991). It applies approximately to adjusted estimates not
based on a saturated model (Wacholder et al. 1994). Thus, if an overall AR estimate
is the focus of interest, there is no need to break the exposed category into several
mutually exclusive categories, even in the presence of a gradient of risk with
increasing level of exposure. Of course, if the impact of a partial removal of
exposure is the question of interest, retaining detailed information on the exposed
categories will be necessary (Greenland 2001).

Example 3. (continued)
For the more restrictive definition of the reference category of daily

alcohol consumption (0–39 g|day), the crude AR was estimated at 70.9%. The sep-
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arate contributions of categories 40–79, 80-119 and 120+ g|day were 27.0%, 22.2%
and 21.7%, summing to the same value 70.9%. Similarly, for the less restrictive
definition of the reference category (0–79 g|day), the crude AR was estimated at
39.5% and the separate contributions of categories 80–119 g|day and 120+ g|day
were 18.7% and 20.8%, summing to the same value 39.5%. �

Estimability and Basic Principles of Estimation
AR can be estimated from cohort studies since all quantities in (2.10), (2.11)
and (2.12) are directly estimable from cohort studies. AR estimates can differ
depending on whether rate ratios, risk ratios or odds ratios are used but will
be numerically close for rare diseases. For case-control studies, exposure-specific
incidence rates or risks are not available unless data are complemented with follow-
up or population-based data (see Sect. 2.2.2). Thus, one has to rely on odds ratio
estimates, use (2.11) and estimate pE from the proportion exposed in the controls,
making the rare-disease assumption also involved in estimating odds ratios rather
than relative risks. For crude AR estimation, the estimate of the odds ratio is taken
as ad|bc and that of pE as c|(c + d), where, as in Table 2.3, a, b, c and d respectively
denote the numbers of exposed cases, unexposed cases, exposed controls and un-
exposed controls. Alternatively, one can use (2.12), in which the quantity pE|D can
be directly estimated from the diseased individuals (cases) as a|(a + b) and RR
can be estimated from the odds ratio again as ad|bc. Using either equation, the
resulting point estimate is given by (ad − bc)|{d(a + b)}.

Variance estimates of crude AR estimates are based on applying the delta-
method (Rao 1965). For instance, an estimate of the variance for case-control data
is given by the quantity

var
(

ÂR
)

= b(c + d){ad(c + d) + bc(a + b)}|{d3(a + b)3} .

Various (1−α)% confidence intervals for AR have been proposed that can be ap-
plied to all epidemiologic designs once point and variance estimates are obtained.
They include standard confidence intervals for AR based on the untransformed
AR point estimate, namely

ÂR ± z1−α|2se
(

ÂR
)

;

AR confidence intervals based on the log-transformed variable ln(1 − AR), namely

1 −
(
1 − ÂR

) [
exp

{±z1−α|2se
(

ÂR
)

|
(
1 − ÂR

)}]
(Walter 1975) ;

as well as confidence intervals based on the logit-transformed variable ln{AR|(1 −
AR)}, namely{

1 +
{(

1 − ÂR
)

| ÂR
} (

exp
[±z1−α|2se

(
ÂR
)

|
{
ÂR

(
1 − ÂR

)}])}−1

(Leung and Kupper 1981).
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In the previous formulae, z1−α|2 denotes the (1−α|2)th percentile of the standard
normal distribution, ÂR denotes the AR point estimate and se( ÂR) its correspond-
ing standard error estimate. Whittemore (1982) noted that the log-transformation
yields a wider interval than the standard interval for AR > 0. Leung and Kupper
(1981) showed that the interval based on the logit transform is narrower than the
standard interval for values of AR strictly between 0.21 and 0.79, whereas the
reverse holds outside this range for positive values of AR. While the coverage
probabilities of these intervals have been studied in some specific situations and
partial comparisons have been made, no general studies have been performed to
determine their relative merits in terms of coverage probability.

Detailed reviews of estimability and basic estimation of AR for various epi-
demiologic designs can be found in Walter (1976) and Benichou (2000b, 2001)
who provide explicit formulae for ÂR and se( ÂR) for cohort and case-control
designs.

Example 3. (continued)
For the more restrictive definition of the reference category of daily

alcohol consumption (0–79 g|day), the crude AR estimate was obtained as:

(171 × 386 − 29 × 389)|(386 × 200) = 0.709 ,

or 70.9%. Its variance was estimated as:

29 × 775 × (171 × 386 × 775 + 29 × 389 × 200)|
(
3863 × 2003

)
= 0.00261 ,

yielding a standard error estimate of 0.051, or 5.1%. The corresponding 95%
confidence intervals for AR are given by 60.9% to 80.9% (no transformation),
58.9% to 79.4% (log transformation), and 60.0% to 79.8% (logit transformation),
very similar to each other in this example. �

Adjusted Estimation
As is the case for measures of association, unadjusted (or crude or marginal)
AR estimates may be inconsistent (Miettinen 1974; Walter 1976, 1980, 1983). The
precise conditions under which adjusted AR estimates that take into account the
distribution and effect of other factors will differ from unadjusted AR estimates
that fail to do so were worked out by Walter (1980). If E and X are two dichotomous
factors taking levels 0 and 1, and if one is interested in estimating the AR for
exposure E, then the following applies. The adjusted and unadjusted AR estimates
coincide (i.e., the crude AR estimate is unbiased) if and only if (a) E and X are such
that Pr(E = 0, X = 0)Pr(E = 1, X = 1) = Pr(E = 0, X = 1)Pr(E = 1, X = 0), which
amounts to the independence of their distributions, or (b) exposure to X alone does
not increase disease risk, namely Pr(D|E = 0, X = 1) = Pr(D|E = 0, X = 0). When
considering one (or several) polychotomous factor(s) X forming J levels (J > 2),
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conditions (a) and (b) can be extended to a set of analogous sufficient conditions.
Condition (a) translates into a set of J(J − 1)|2 conditions for all pairs of levels j
and j′ of X, amounting to an independent distribution of E and all factors in X.
Condition (b) translates into a set of J − 1 conditions stating that in the absence of
exposure to E, exposure to any of the other factors in X, alone or in combination,
does not increase disease risk.

The extent of bias varies according to the severity of the departure from con-
ditions (a) and (b) above. Although no systematic numerical study of the bias of
unadjusted AR estimates has been performed, Walter (1980) provided a revealing
example of a case-control study assessing the association between alcohol, smok-
ing and oral cancer. In that study, severe positive bias was observed for crude AR
estimates, with a very large difference between crude and adjusted AR estimates
both for smoking (51.3% vs. 30.6%, a 20.7 difference in percentage points and 68%
relative difference in AR estimates) and alcohol (52.2% vs. 37.0%, a 15.2% absolute
difference and 48% relative difference). Thus, the prudent approach must be to
adjust for factors that are suspected or known to act as confounders in a similar
fashion as for estimating measures of associations.

Two simple adjusted estimation approaches discussed in the literature are in-
consistent. The first approach was presented by Walter (1976) and is based on
a factorization of the crude risk ratio into two components similar to those in Mi-
ettinen’s earlier derivation (Miettinen 1972). In this approach, a crude AR estimate
is obtained under the assumption of no association between exposure and disease
(i.e., values of RR or the odds ratio are taken equal to 1 separately for each level of
confounding). This term reflects the AR only due to confounding factors since it
is obtained under the assumption that disease and exposure are not associated. By
subtracting this term from the crude AR estimate that ignores confounding fac-
tors and thus reflects the impact of both exposure and confounding factors, what
remains is an estimate of the AR for exposure adjusted for confounding (Walter
1976). The second approach is based on using (2.11) and plugging in a common
adjusted RR estimate (odds ratio estimate in case-control studies), along with an
estimate of pE (Cole and MacMahon 1971; Morgenstern 1982). Both approaches,
while intuitively appealing, were shown to be inconsistent (Ejigou 1979; Greenland
and Morgenstern 1983; Morgenstern 1982) and, accordingly, very severe bias was
exhibited in simulations of cross-sectional and cohort designs (Gefeller 1995).

By contrast, two adjusted approaches based on stratification yield valid esti-
mates. The Mantel–Haenszel approach consists in plugging-in an estimate of the
common adjusted RR (odds ratio in case-control studies) and an estimate of the
prevalence of exposure in diseased individuals, pE|D, in (2.12) in order to obtain an
adjusted estimate of AR (Greenland 1984, 1987; Kuritz and Landis 1987, 1988a,b).
In doing so, it is possible to adjust for one or more polychotomous factors forming
J levels or strata. While several choices are available for a common adjusted RR or
odds ratio estimator, a usual choice is to use a Mantel–Haenszel estimator of RR in
cohort studies (Kleinbaum et al. 1982, Chaps. 9 and 17; Landis et al. 2000; Rothman
and Greenland 1998, Chaps. 15–16; Tarone 1981) or odds ratio in case-control studies
(Breslow and Day 1980, Chaps. 4–5; Kleinbaum et al. 1982, Chaps. 9, 17; Landis et al.,
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2000; Mantel and Haenszel 1959; Rothman and Greenland 1998, Chaps. 15–16) (see
Sect. 2.4.6). For this reason, the term “Mantel–Haenszel approach” has been pro-
posed to denote this approach to adjusted AR estimation (Benichou 1991). When
there is no interaction between exposure and factors adjusted for, Mantel–Haenszel
type estimators of RR or odds ratio have favorable properties, as they combine lack
of (or very small) bias even for sparse data (e.g., individually matched case-control
data) and good efficiency except in extreme circumstances (Birch 1964; Breslow
1981;BreslowandDay 1980,Chaps. 4–5; Landis et al. 1978; Landis et al., 2000).More-
over, variance estimators are consistent even for sparse data (“dually-consistent”
variance estimators) (Greenland 1987; Robins and Greenland 1989). Simulation
studies of cohort and case-control designs (Gefeller 1992; Greenland 1987; Kuritz
and Landis 1988a,b) showed that adjusted AR estimates are little affected by small-
sample bias when there is no interaction between exposure and adjustment factors,
but can be misleading if such interaction is present.

Example 3. (continued)
In order to control for age and smoking, nine strata (joint categories)

of smoking× age have to be considered. The Mantel–Haenszel odds ratio estimate
can be calculated from quantities aj, bj, cj and dj that respectively denote the
numbers of exposed cases, unexposed cases, exposed controls and unexposed
controls in stratum j, using the methods in Sect. 2.4.6. With the more restrictive
definition of the reference category for daily alcohol consumption, the Mantel–
Haenszel odds ratio was estimated at 6.2, thus slightly higher than the crude odds
ratio of 5.9. Combined with an observed proportion of exposed cases of 171|200 =
0.855, this resulted in an adjusted AR estimate of 0.855 × (6.2 − 1)|6.2 = 0.716 or
71.6% using (2.12) (allowing for rounding error), slightly higher than the crude AR
estimate of 70.9%. The corresponding estimate of the standard error was 5.1%.�

The weighted-sum approach also allows adjustment for one or more polychoto-
mous factors forming J levels or strata. The AR is written as a weighted sum over
all strata of stratum-specific ARs, i.e.,

∑J
j=1 wjARj (Walter 1976; Whittemore 1982,

1983). Using crude estimates of ARj separately within each stratum j and setting
weights wj as proportions of diseased individuals (cases) yields an asymptotically
unbiased estimator of AR, which can be seen to be a maximum-likelihood estima-
tor (Whittemore 1982). This choice of weights defines the “case-load method”. The
weighted-sum approach does not require the assumption of a common relative
risk or odds ratio. Instead, the relative risks or odds ratios are estimated separately
for each adjustment level with no restrictions placed on them, corresponding to
a fully saturated model for exposure and adjustment factors (i.e., a model with
all interaction terms present). From these separate relative risk or odds ratio esti-
mates, separate AR estimates are obtained for each level of adjustment. Thus, the
weighted-sum approach not only accounts for confounding but also for interac-
tion. Simulation studies of cohort and case-control designs (Gefeller 1992; Kuritz
and Landis 1988a,b; Whittemore 1982) show that the weighted-sum approach can
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be affected by small sample bias, sometimes severely. It should be avoided when
analyzing sparse data, and should not be used altogether for analyzing individually
matched case-control data.

Example 3. (continued)
As with the Mantel–Haenszel approach, nine strata (joint categories)

of smoking×age have to be considered in order to control for age and smoking. In
each stratum separately, an AR estimate is calculated using the methods for crude
AR estimation (see above). For instance, among heavy smokers (30+ g|day) in age
group 65+ years, there were 15 exposed cases, five unexposed cases, four exposed
controls, and six unexposed controls, yielding an odds ratio estimate of 4.5 and
an AR estimate of 58.3%. The corresponding weight was 20|200 = 0.1, so that
the contribution of this stratum to the overall adjusted AR was 5.8%. Summing
the contributions of all nine strata yielded an adjusted AR estimate of 70.0%,
thus lower than both the crude and Mantel–Haenszel adjusted AR estimates. The
corresponding standard error estimate was 5.8%, higher than the standard error
estimate from the Mantel–Haenszel approach because fewer assumptions were
made. Namely, the odds ratio was not assumed common to all strata, so that
nine separate odds ratios had to be estimated (one for each stratum) rather than
a single common odds ratio from all strata. To circumvent the problem of empty
cells, the standard error estimate was obtained after assigning the value 0.5 to all
zero cells. �

A natural alternative to generalize these approaches is to use adjustment proce-
dures based on regression models, in order to take advantage of their flexible and
unified approach to efficient parameter estimation and hypothesis testing. Regres-
sion models allow one to take into account adjustment factors as well as interaction
of exposures with some or all adjustment factors. This approach was first used by
Walter (1976), Sturmans et al. (1977) and Fleiss (1979) followed by Deubner et al.
(1980) and Greenland (1987). The full generality and flexibility of the regression
approach was exploited by Bruzzi et al. (1985) who developed a general AR estimate
based on rewriting AR as

1 −
J∑

j=1

I∑
i=0

ρijRR−1
i|j .

Quantities ρij represent the proportion of diseased individuals with level i of expo-
sure (i = 0 at the reference level, i = 1, … , I for exposed levels) and j of confounding
and can be estimated from cohort or case-control data (or cross-sectional survey
data) using the observed proportions. The quantity RR−1

i|j represents the inverse
of the rate ratio, risk ratio or odds ratio depending on the context, for level i of
exposure at level j of confounding. It can be estimated from regression models
(see Sect. 2.4.6), both for cohort and case-control data (as well as cross-sectional
data), which allows confounding and interactions to be accounted for. Hence,
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this regression-based approach to AR estimation allows control for confounding
and interaction and can be used for the main epidemiologic designs. Depend-
ing on the design, conditional or unconditional logistic, log-linear or Poisson
models can be used. Variance estimators were developed based on an extension
of the delta-method to implicitly related random variables in order to take into
account the variability in estimates of terms ρij and RR−1

i|j as well as their corre-
lations (Basu and Landis 1995; Benichou and Gail 1989, 1990b). This regression
approach includes the crude and two stratification approaches as special cases
and offers additional options (Benichou 1991). The unadjusted approach corre-
sponds to models for RR−1

i|j with exposure only. The Mantel–Haenszel approach
corresponds to models with exposure and confounding factors, but no interaction
terms between exposure and adjustment factors. The weighted-sum approach cor-
responds to fully saturated models with all interaction terms between exposure
and confounding factors. Intermediate models are possible, for instance models
allowing for interaction between exposure and only one confounder, or models
in which the main effects of some confounders are not modeled in a saturated
way.

Example 3. (continued)
Still considering the more restrictive definition of the reference cate-

gory fordailyalcohol consumption,anunconditional logisticmodel (seeSect. 2.4.6)
with two parameters, one general intercept and one parameter for elevated alcohol
consumption, was fit, ignoring smoking and age. The resulting unadjusted odds
ratio estimate was 5.9 as above. The formula above for 1 − AR reduced to a single
sum with two terms (i = 0, 1) corresponding to unexposed and exposed categories,
respectively. The resulting unadjusted AR estimate was 70.9% (standard error es-
timate of 5.1), identical to the crude AR estimate above. Adding eight terms for
smoking and age in the logistic model increased the fit significantly (p < 0.001,
likelihood ratio test) and yielded an adjusted odds ratio estimate of 6.3, slightly
higher than the Mantel–Haenszel odds ratio estimate of 6.2 (see above). This re-
sulted in an adjusted AR estimate of 71.9%, slightly higher than the corresponding
Mantel–Haenszel AR estimate of 71.6%, and with a slightly lower standard error
estimate of 5.0%. Adding two terms for interactions of smoking with alcohol con-
sumption (thus allowing for different odds ratio estimates depending on smoking
level) resulted in a decreased AR estimate of 70.3% (with a higher standard error
estimate of 5.4% because of the additional parameters estimated). Adding six more
terms allowed for all two-by-two interactions between alcohol consumption and
joint age × smoking level and yielded a fully saturated model. Thus nine odds
ratios for alcohol consumption were estimated (one for each stratum) as with the
weighted-sum approach. This resulted in little change as regards AR, with an AR
estimate of 70.0%, identical to the AR estimate with the weighted sum approach,
which precisely corresponds to a fully saturated model. The corresponding stan-
dard error estimate was increased to 5.6% due to the estimation of additional
parameters. �
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A modification of Bruzzi et al.’s approach was developed by Greenland and
Drescher (1993) in order to obtain full maximum likelihood estimates of AR. The
modification consists in estimating the quantities ρij from the regression model
rather than simply relying on the observed proportions of cases. The two model-
based approaches seem to differ very little numerically (Greenland and Drescher
1993). Greenland and Drescher’s approach might be more efficient in small samples
although no difference was observed in simulations of the case-control design even
for samples of 100 cases and 100 controls (Greenland and Drescher 1993). It might
be less robust to model misspecification, however, as it relies more heavily on
the RR or odds ratio model used. Finally, it does not apply to the conditional
logistic model, and if that model is to be used (notably, in case-control studies with
individual matching), the original approach of Bruzzi et al. is the only possible
choice.

Detailed reviews of adjusted AR estimation (Benichou 1991, 2001; Coughlin
et al. 1994; Gefeller 1992) are available. Alternative methods to obtain estimates
of variance and confidence intervals for AR have been developed either based on
resampling techniques (Gefeller 1992; Greenland 1992; Kahn et al. 1998; Kooperberg
and Petitti 1991; Llorca and Delgado-Rodriguez 2000; Uter and Pfahlberg 1999) or
on quadratic equations (Lui 2001a,b, 2003).

Final Notes and Additional References
General problems of AR definition, interpretation and usefulness as well as proper-
ties have been reviewed in detail (Benichou 2000b; Gefeller 1992; Miettinen 1974;
Rockhill et al. 1998a,b; Walter 1976). Special issues were reviewed by Benichou
(2000b, 2001). They include estimation of AR for risk factors with multiple levels
of exposure or with a continuous form, multiple risk factors, recurrent disease
events, and disease classification with more than two categories. They also include
assessing the consequences of exposure misclassification on AR estimates. Specific
software for attributable risk estimation (Kahn et al. 1998; Mezzetti et al. 1996) as
well as a simplified approach to confidence interval estimation (Daly 1998) have
been developed to facilitate implementation of methods for attributable risk esti-
mation. Finally, much remains to be done to promote proper use and interpretation
of AR as illustrated in a recent literature review (Uter and Pfahlberg 2001).

Attributable Risk Among the Exposed 2.5.2

The attributable risk in the exposed (ARE) or attributable fraction in the exposed
is defined as the following ratio (Cole and MacMahon 1971; Levin 1953; MacMahon
and Pugh 1970; Miettinen 1974):

ARE =
{
Pr(D|E) − Pr

(
D|E)} |Pr(D|E) , (2.13)

where Pr(D|E) is the probability of disease in the exposed individuals (E) and
Pr(D|E) is the hypothetical probability of disease in the same subjects but with all
exposure eliminated. Depending on the context, these probabilities will refer to
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disease risk or may be replaced with incidence rates (see Sect. 2.5.1). ARE can be
rewritten as:

ARE = (RR − 1)|RR , (2.14)

where RR denotes the risk or rate ratio. Following Greenland and Robins (1988),
RothmanandGreenland(1998,Chap.4)proposed touse the terms“excess fraction”
for the definition of ARE based on risks or risk ratios and “rate fraction” for the
definition of ARE based on rates or rate ratios.

Like AR, ARE lies between 0 and 1 when exposures considered are risk factors
(RR > 1) with a maximal limiting value of 1, is equal to zero in the absence of
association between exposure and disease (RR = 1), and is negative for protective
exposures (RR < 1).

As for AR, ARE has an interpretation as a measure of the disease burden at-
tributable or at least related to one or several exposures among the exposed sub-
jects. Consequently, ARE could be used to assess the potential impact of prevention
programs aimed at eliminating exposure from the population. These interpreta-
tions are subject to the same limitations as corresponding interpretations for AR
however (see Sect. 2.5.1). Moreover, ARE does not have a clear public health inter-
pretation because it does not depend on the exposure prevalence but only on the
risk or rate ratio of which it is merely a one-to-one transformation. For the assess-
ment of the relative impact of several exposures, ARE will not be an appropriate
measure since ARE for different exposures refer to different groups of subjects in
the population (i.e., subjects exposed to each given exposure).

ARE being a one-to-one function of RR, issues of estimability and estimation
for ARE are similar to those for RR. They depend on whether rates or risks are
considered. For case-control studies, odds ratios can be used. Greenland (1987)
specifically derived adjusted point estimates and confidence intervals for ARE

based on the Mantel–Haenszel approach.

Sequential and Partial Attributable Risks2.5.3

Upon considering multiple exposures, separate ARs can be estimated for each
exposure as well as the overall AR for all exposures jointly. Except in very special
circumstances worked out by Walter (1983) (i.e., lack of joint exposure or additive
effects of exposures on disease risk or rate), the sum of separate AR estimates over
all exposures considered will not equal the overall AR estimate.

Because this property is somewhat counter-intuitive and generates misinterpre-
tations, three alternative approaches have been suggested, one based on consid-
ering variance decomposition methods (Begg et al. 1998) rather than estimating
AR, one based on estimating assigned share or probability of causation of a given
exposure with relevance in litigation procedures for individuals with multiple ex-
posures (Cox 1984, 1985; Lagakos and Mosteller 1986; Seiler 1986; Seiler and Scott
1987; Benichou 1993b; McElduff et al. 2002), and one based on an extension of the
concept of AR (Eide and Gefeller 1995; Land et al. 2001). This last approach relies on
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partitioning techniques (Gefeller et al. 1998; Land and Gefeller 1997) and keeps with
the framework of AR estimation by introducing the sequential AR that generalizes
the concept of AR. The principle is to define an order among the exposures consid-
ered. Then, the contribution of each exposure is assessed sequentially according
to that order. The contribution of the first exposure considered is calculated as the
standard AR for that exposure separately. The contribution of the second expo-
sure is obtained as the difference between the joint AR estimate for the first two
exposures and the separate AR estimate for the first exposure, the contribution of
the third exposure is obtained as the difference between the joint AR estimates
for the first three and first two exposures, etc …. Thus, a multidimensional vector
consisting of contributions of each separate exposure is obtained.

These contributions are meaningful in terms of potential prevention programs
that consider successive rather than simultaneous elimination of exposures from
the population. Indeed, each step yields the additional contribution of the elimi-
nation of a given exposure once higher-ranked exposures are eliminated. At some
point, additional contributions may become very small, indicating that there is not
much point in considering extra steps. By construction, these contributions sum
to the overall AR for all exposures jointly, which constitutes an appealing prop-
erty. Of course, separate vectors of contributions are obtained for different orders.
Meaningful orders depend on practical possibilities in implementing potential pre-
vention programs in a given population. Average contributions can be calculated
for each given exposure by calculating the mean of contributions corresponding
to that exposure over all possible orders. These average contributions have been
termed partial attributable risks (Eide and Gefeller 1995) and represent another
potentially useful measure. Methods for visualizing sequential and partial ARs are
provided by Eide and Heuch (2001). An illustration is given by Fig. 2.1. A detailed
review of properties, interpretation, and variants of sequential and partial ARs was
provided by Land et al. (2001).

(a) (b)

Neither
alcohol nor

smoking
13.8%

Neither
alcohol nor

smoking
13.8%

2. Smoking
15.3% 1. Smoking

32.4%

1. Alcohol
70.9%

2. Alcohol
53.8%

Figure 2.1. Sequential attributable risk estimates for elevated alcohol consumption (80+ g|day) and

heavy smoking (10+ g|day) for two different orders of removal (a: alcohol, then smoking; b:

smoking, then alcohol) – Case-control data on esophageal cancer (Tuyns, Pequignot and Jensen 1977;

cf. Example 3)

Example 3. (continued)
Smoking is also a known risk factor of esophageal cancer so that it

is important to estimate the impact of smoking and the joint impact of smoking
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and alcohol consumption on esophageal cancer in addition to that of alcohol
consumption alone. Using the first category (i.e., 0–9 g|day) as the reference level
of smoking, there were 78 cases in the reference level of smoking, 122 cases in the
exposed level (i.e., 10+ g/day), 447 controls in the reference level and 328 controls
in the exposed level. From these data, the crude odds ratio estimate for smoking at
least 10 g|day was 2.1 and the crude AR estimate for smoking at least 10 g|day was
32.4%. Moreover, there were nine cases and 252 controls in the joint reference level
of alcohol consumption and smoking (i.e., 0–39 g|day of alcohol and 0–9 g|day of
tobacco), which yielded a crude joint odds ratio estimate of 10.2 and a crude joint
AR estimate for drinking at least 40 g|day of alcohol or smoking at least 10 g|day
of tobacco of 86.2%.

Furthermore, the crude AR estimate for alcohol consumption of at least 40 g|day
was estimated at 70.9% in Sect. 2.5.1. Hence, considering the first order of risk factor
removal (i.e., eliminating alcohol consumption above 39 g|day followed by elimi-
nating smoking above 9 g|day) yields sequential AR estimates of 70.9% for elevated
daily alcohol consumption and 86.2% − 70.9% = 15.3 percentage points for heavy
smoking so that, once elevated alcohol consumption is eliminated, the additional
impact of eliminating heavy smoking appears rather limited (Fig. 2.1a). Consid-
ering the second order (i.e., eliminating heavy smoking first) yields sequential
AR estimates of 32.4% for heavy smoking and 86.2% − 32.4% = 53.8 percentage
points for elevated alcohol consumption so that, once heavy smoking is eliminated,
the additional impact of eliminating elevated alcohol consumption remains major
(Fig. 2.1b). A summary of these results is provided by partial ARs for elevated alco-
hol consumption and heavy smoking, with estimated values of 62.4% and 23.9%,
respectively, again reflecting the higher impact of elevated alcohol consumption
on esophageal cancer. �

Preventable and Prevented Fractions2.5.4

Whenconsidering aprotective exposureor intervention, anappropriate alternative
to AR is the preventable or prevented fraction (PF) defined as the ratio (Miettinen
1974):

PF =
{
Pr
(
D|E) − Pr(D)

}
|Pr(D|E) , (2.15)

where Pr(D) is the probability of disease in the population, which may have some
exposed (E) and some unexposed (E) individuals, and Pr(D|E) is the hypothetical
probability of disease in the same population but with all (protective) exposure
eliminated. Depending on the context, these probabilities will refer to disease risk
or may be replaced with incidence rates (see sections above). PF can be rewritten
as:

PF = pE(1 − RR) , (2.16)
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a function of both the prevalence of exposure, pE, and the risk or rate ratio, RR.
Thus, a strong association between exposure and disease may correspond to a high
or low value of PF depending on the prevalence of exposure, as for AR. Moreover,
portability is not a typical propertyofPF, as forAR.As forARagain, itmaybeuseful
to compare PF estimates among population subgroups to target prevention efforts
to specific subgroups with a potentially high impact (as measured by the PF).

For a protective factor (RR < 1), PF lies between 0 and 1 and increases with the
prevalence of exposure and the strength of the association between exposure and
disease.

PF measures the impact of an association between a protective exposure and
disease at the population level. It has a public health interpretation as the pro-
portion of disease cases averted (“prevented fraction”) in relation to the presence
of a protective exposure or intervention in the population, among the totality of
cases that would have developed in the absence of that factor or intervention in
the population. In this case, it is useful to assess prevention programs a posteriori.
Alternatively, it can be used to assess prevention programs a priori by measuring
the proportion of cases that could be potentially averted (“preventable fraction”)
if a protective exposure or intervention were introduced de novo in the population
(Gargiullo et al. 1995). These interpretations are subject to the same limitations as
corresponding interpretations for AR however (see Sect. 2.5.1).

PF and AR are mathematically related through (Walter 1976):

1 − PF = 1|(1 − AR) . (2.17)

From (2.17), it appears that, for a protective factor, PF estimates will usually differ
from AR estimates obtained by reversing the coding of exposure. This follows
from the respective definitions of AR and PF. While AR, with reverse coding,
measures the potential reduction in disease occurrence that could be achieved if all
subjects in the current population became exposed, PF measures the reduction in
disease occurrence obtained from introducing exposure at the current prevalence
in a formally unexposed population (Benichou 2000c).

In view of (2.17), estimability and estimation issues are similar for AR and PF.
Specific PF adjusted point and confidence interval estimates were derived using
the Mantel–Haenszel approach (Greenland 1987) and weighted-sum approaches
(Gargiullo et al. 1995).

Generalized Impact Fraction 2.5.5

The generalized impact fraction (GIF) or generalized attributable fraction was
introduced by Walter (1980), and Morgenstern and Bursic (1982) as the ratio:

GIF =
{
Pr(D) − Pr∗(D)

}
|Pr(D) , (2.18)

where Pr(D) and Pr∗(D) respectively denote the probability of disease under the
current distribution of exposure and under a modified distribution of exposure.
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As for AR and PF, these probabilities denote risks or can be replaced by incidence
rates depending on the context.

The generalized impact fraction not only depends on the association between
exposure and disease as well as the current distribution (rather than just the preva-
lence) of exposure, but also on the target distribution of exposure considered that
will yield Pr∗(D). It is a general measure of impact that includes AR and PF as
special cases. AR contrasts the current distribution of exposure with a modified
distribution defined by the absence of exposure. Conversely, PF contrasts a distri-
bution defined by the absence of exposure with the current distribution of exposure
(prevented fraction) or target distribution of exposure (preventable fraction).

The generalized impact fraction can be interpreted as the fractional reduction
of disease occurrence that would result from changing the current distribution of
exposure in the population to some modified distribution. Thus, it can be used
to assess prevention programs or interventions, targeting all subjects or subjects
at specified levels, and aimed at modifying or shifting the exposure distribution
(reducing exposure), but not necessarily eliminating exposure. For instance, heavy
smokers couldbe specifically targetedby interventions rather thanall smokers. The
specialARcasecorresponds to thecompleteeliminationofexposurebyconsidering
a modified distribution putting unit mass on the lowest risk configuration and
can be used to assess interventions aimed at eliminating (rather than reducing)
exposure. Alternatively, the general impact fraction could be used to assess the
increase in disease occurrence as a result of exposure changes in the population,
such as the increase in breast cancer incidence as a result of delayed childbearing
(Kleinbaum et al. 1982, Chap. 9). Such interpretations are subject to the same
limitations as for AR and PF (see Sect. 2.5.1).

The generalized impact fraction has been used for instance by Lubin and Boice
(1989) who considered the impact on lung cancer of a modification in the distribu-
tion of radon exposure consisting in truncating the current distribution at various
thresholds and by Wahrendorf (1987) who examined the impact of various changes
in dietary habits on colo-rectal and stomach cancers.

Issues of estimability are similar to those for AR and PF. Methods to estimate
the generalized impact fraction are similar to methods for estimating AR and PF.
However, unlike for AR or PF, it might be useful to retain the continuous nature of
exposures to define the modification of the distribution considered (for instance
a shift in the distribution), and extensions of methods for estimating AR for
continuous factors (Benichou and Gail 1990b) are relevant in this context. Drescher
and Becher (1997) proposed extending model-based approaches of Bruzzi et al.
(1985) and Greenland and Drescher (1993) to estimate the generalized impact
fraction in case-control studies and considered continuous as well as categorical
exposures.

Person-Years of Life Lost2.5.6

Person-years of life lost (or potential years of life lost, PYLL) for a given cause of
death is a measure defined as the difference between current life expectancy of



Rates, Risks, Measures of Association and Impact 143

the population and potential life expectancy with the cause of death eliminated
(Smith 1998). For instance, one may be interested in PYLL due to prostate cancer in
men, breast cancer in women, or cancer as a whole (all sites) in men and women.
Methods for estimating PYLL rely on calculating cause-deleted life tables. Total
PYLL at the population level or average PYLL per person may be estimated. As
an example, a recent report from the Surveillance, Epidemiology and End Results
(SEER) estimated that 8.4 million years of life overall were lost due to cancer in
the US population (both sexes, all races) in the year 2001, with an average value of
potential years of life lost per person of 15.1 years. Corresponding numbers were
779,900 years overall and 18.8 years on average for breast cancer in women, and
275,200 years overall and 9.0 years on average for prostate cancer in men (Ries
et al. 2004).

PYLL represents an assessment of the impact of a given disease. Thus, it is not
directly interpretable as a measure of exposure impact, except perhaps for diseases
with a dominating risk factor, such as asbestos exposure for mesothelioma or
human papilloma virus for cervical cancer.

However, it is possible to obtain a corresponding measure of the impact of
a given exposure by converting PYLL due to a particular cause of death to PYLL
due to a particular exposure. Estimation of an exposure-specific PYLL is obtained
through applying an AR estimate for that exposure to the disease-specific PYLL,
namely calculating the product PYLL times AR, which yields the fraction of PYLL
attributable to exposure. In this process, several causes of deaths may have to
be considered. For instance, the fractions of PYLL for mesothelioma and lung
cancer would need to be added in order to obtain the overall PYLL for asbestos
exposure. In contrast with AR that provides a measure of exposure impact as
a fraction of disease incidence (or death), such calculations of PYLL will provide
a measure of exposure impact on the life expectancy scale. As for AR, the impact
of a given exposure on the PYLL scale will depend on the prevalence of exposure
in the population and strength of association between exposure and disease(s).
Moreover, it will depend critically on the age-distribution of exposure-associated
diseases and their severity, i.e. case fatality.

Other Topics 2.6

Standardization of Risks and Rates 2.6.1

Risks and rates can usually not be directly compared between countries, regions
or time periods because of differences in age structure. For example, an older
population may appear to have higher rates of certain cancers, not because of the
presence of risk factors, but because of the higher age itself. This is a form of
confounding. In the tradition of demography, so called standardization is applied
to reported rates and risks to adjust for differences in age and possibly other
confounders. Direct standardization is the most commonly used technique. It
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proceeds by forming a weighted average of age specific rates or risks, where the
weights reflect a known population structure. This structure is typically chosen
as that of a country in a given census year, the so-called standard population.
A directly standardized rate can be written:

SR =
∑

nS
j hj|

∑
nS

j =
∑

wS
j hj , (2.19)

where nS
j is the number of individuals in age group j in the standard population, hj

are age specific rates in the population under study, and wS
j are weights such that∑

wS
j = 1. A standardized risk can be computed in the same manner. Since the

weights are fixed and not estimated, the variance of the estimated standardized
rate is

var
(∑

wS
j hj

)
=
∑(

wS
j

)2
hj , (2.20)

based on the Poisson assumption for the age specific rates. For risks, the binomial
assumption may be used for the age specific risks.

When age-specific rates or risks are not available in the population under study,
indirect standardization may be used. This technique is less common, but requires
knowledge only of the age distribution, and not the age-specific rates, in the pop-
ulation under study. The indirectly standardized rate is obtained by (SMR)(CR0),
where SMR is the standardized mortality or morbidity ratio (see below), and CR0

is the crude (i.e., original overall) rate in a reference population that provides
stratum-specific rates.

The standardized mortality or morbidity ratio is a ratio between observed
and expected event counts, where the expected count is based on age specific
rates or risks in a reference population, which is a non-exposed or general pop-
ulation group. Then the standardized mortality (or morbidity or incidence) ra-
tio

SMR or SIR = DE|E0 =
∑

njhj|
∑

njh0j ,

where DE is the number of events in the exposed and E0 is the expected number
of events obtained from the rates h0j in the unexposed applied to the sample com-
position of the exposed. The SMR can also be re-written as a weighted average
of sex- and age-specific (say) rate ratios hj|h0j with weights wj = njh0j. It can be
shown that these weights minimize the standard error of the weighted average
(Breslow and Day 1987, Chap. 2) as long as the rates in the reference population
are assumed to be known rather than estimated. Stratified analyses as discussed
above, on the other hand, choose weights that minimize the standard errors when
the rates are estimated among both the exposed and the unexposed. The SMR
has the advantage that age- and sex-specific rates are not needed for the exposed
group.

The denominator of the SMR is generally obtained from age- and sex-specific
rates in the entire regional population. This allows the random variation of the
denominator to be considered to be none, and confidence intervals can be based
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on the estimate 1|D1|2
E for the standard error of ln(SMR). This standard error

computation also assumes that the events among the exposed are uncorrelated (do
not cluster), ormore specifically, that the event count followsaPoissondistribution.

It may be noted that directly standardized rates are based on a choice of stan-
dard population to generate weights. While the weights used for the SMR result
from the composition of the comparison group and do not involve a true standard
population, the weights used in direct standardization are external as they result
from information outside the samples being compared. In principle, the latter
weights are similar to survey weights applied in for examples the National Health
and Nutrition Examination Survey (NHANES), where the sample must be stan-
dardized to the US population to account for the methodology used in drawing it.
While improving external validity, weights from direct standardization and survey
weights always result in loss of statistical efficiency, i.e., standard errors will be
larger than for crude, or non-weighted rates and risks. In contrast, many of the
methods to adjust for confounding discussed in Sect. 2.4 are internal to the specific
comparison and designed to optimize statistical efficiency.

Measures Based on Prevalence 2.6.2

Prevalence is the number of cases either at a given point in time (point prevalence)
orovera timeperiod(periodprevalence)dividedby thepopulationsize.Prevalence
can be easier to obtain than incidence. For example, a population survey can
determine how many individuals in a population suffer from a given illness or
health condition at a point in time.

Measures of association based on prevalence parallel those for risk (for point
prevalence) or incidence rates (for period prevalence). For example, one can form
prevalence ratios, prevalence differences and prevalence odds ratios. Measures of
impact based on prevalence can also be obtained.

Prevalence and the measures of association based on it are useful entities for
health policy planning and for determining the level of services needed for indi-
viduals with a given health condition in the population. It is usually considered
less useful for studying the etiology of a disease. The reason for this is that un-
der certain assumptions prevalence of a disease equals its incidence multiplied
by its duration (Kleinbaum et al. 1982, Chap. 8). These assumptions are that the
population is stable, and that both the incidence and prevalence remain constant.
Under more general conditions, prevalence still reflects both incidence and dura-
tion, but in a more complex manner. For a potentially fatal or incurable disease,
duration means survival, and the exposures that increase incidence may reduce or
increase survival and hence the association of an exposure with prevalence may
be very different than its association with incidence. On the other hand, when
a disease or condition can be of limited duration due to recovery or cure, and its
duration is maintained by the same exposures that caused it, prevalence can be
more meaningful than incidence. For example, it is conceivable that weight gain
in a person may have caused hypertension, and when the person loses the same
amount of weight she|he moves out of being hypertensive. In this latter case, the
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prevalence ratio between the percentages with hypertension in those exposed and
unexposed to the risk factor captures the increase in the risk of living with the
condition caused by the exposure, while the incidence ratio captures only part of
the etiologic association.

Conclusions2.7

Disease frequency is measured through the computation of incidence rates or
estimation of disease risk. Both measures are directly accessible from cohort data.
They can be obtained from case-control data only if they are complemented by
follow-up or population data. Using regression techniques, methods are available
to derive incidence rates or risk estimates specific to a given exposure profile.
Exposure-specific risk estimates are useful in individual prediction.

Awidevarietyofoptionsand techniquesareavailable formeasuringassociation.
The odds ratio is presently the most often used measure of association for both
cohort and case control studies. Adjustment for confounding is key in all analyses
of observational studies, and can be pursued by standardization, stratification and
by regression techniques. The flexibility of the latter, especially in the generalized
linear model framework, and availability of computer software, has made it widely
applied in the last several years.

Several measures are available to assess the impact of an exposure in terms
of the occurrence of new disease cases at the population level, among which the
attributable risk is the most commonly used. Several approaches have been de-
veloped to derive adjusted estimates of the attributable risk from case-control as
well as cohort data, either based on stratification or on more flexible regression
techniques. The concept of attributable risk has been extended to handle pre-
ventive exposures, multiple exposures, as well as assessing the impact of various
modifications of the exposure distribution rather than the mere elimination of
exposure.
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