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Introduction7.1

Genetic epidemiology both emanates from and combines the scientific disci-
plines of human genetics and epidemiology as well as biometry. Strong inter-
disciplinary relationships exist among others with the fields of molecular genetics
and medicine|medical care. Some overlap exists with molecular epidemiology (see
Chap. III.6 of this handbook).

Genetic epidemiology is essential in the field of human genetics as it aims to
detect the genetic origin of phenotypic variability in humans (Vogel 2000). In
particular, genetic epidemiological studies unravel the genetic components that
contribute to the development or the course of a disease, or in general terms to
a phenotype, i.e. the observed trait.

Genetic epidemiology is the subdiscipline of epidemiology devoted to diseases|
phenotypes with genetic components and to their respective genetic risk factors.
The aims are (1) the description of genetically influenced phenotypes or diseases
in populations and families, (2) the identification of genetic risk factors associated
with the frequencies of phenotypes in the population and|or leading to familial
aggregation, and (3) the modelling of the role of these genetic risk factors in
populations and families (Khoury et al. 1993). Thus, both population-based and
family designs are complementary and play a central role in genetic epidemio-
logical studies. In contrast to classic epidemiology, the three main complications
in genetic epidemiology are dependencies, use of indirect evidence and complex
data sets: Genetic epidemiology is highly dependent on the direct incorpora-
tion of family structure and biology. The structure of families and chromosomes
leads to major dependencies between the data and thus to customized models
and tests. In many studies only indirect evidence can be used, since the disease-
related gene, or more precisely the functionally relevant DNA variant of a gene,
is not directly observable. In addition, the data sets to be analyzed can be very
complex.

Genetic epidemiology is also a highly specialised subdiscipline of biometry
and mathematical population genetics. The field has made major biometrical
contributions to human genetics or, relying on earlier biometrical work (since
the field was only recently endowed with the name) such as the description of
the central Hardy–Weinberg equilibrium (HWE) (Hardy 1908; Weinberg 1908)
and the development of statistical methods including segregation analysis, linkage
analysis, association analysis, simulation methods and computer algorithms for
all major study designs implemented.

The International Society of Genetic Epidemiology describes the field as a mar-
riage between the disciplines of genetics and epidemiology (IGES 2003). It empha-
sises the need to join the fields. Genetics tends to focus on the genotype-phenotype
correlation neglecting the environment. Epidemiology tends to focus on environ-
mental risk factors as well as demographic factors (e.g. age, sex, ethnicity) and
familial aggregation as a first step towards genetic risk factors. However, a full un-
derstanding of the etiology of complex traits may only be achieved by considering
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both, genetics and environment, and thereby explaining how genes are expressed
in the presence of different environmental contexts. This chapter is solely devoted
to methods dissecting the genotype-phenotype correlation with a binary pheno-
type (affected|unaffected). It is not covering the important subjects of quantitative
phenotypes and gene-environment interaction.

Section 7.2 presents an overview of major study designs and types of analysis.
Section 7.3 introduces the most important genetic models. Sections 7.4–7.6 will
cover the three major types of analysis, i.e. segregation, linkage and association
analysis.

Study Types 7.2

Genetic epidemiological investigations are usually triggered by epidemiological
studies that demonstrate a positive family history as a risk factor for disease indi-
cating putative genetic or shared environmental factors. Often the goal of initial
studies is to estimate the relative risk for relatives of affected individuals in relation
to the general population in order to support the genetic hypothesis.

To further investigate familial aggregation, a segregation analysis may be car-
ried out in pedigrees. The aim of such an analysis is to determine whether
a major gene is influencing a given phenotype in these families and if so to es-
timate the parameters of the underlying genetic model. All methods for segre-
gation analysis are based on probability calculations for observed phenotypes
conditional on hypothetical genetic model parameters and on family structure,
i.e. genealogies. Parameter estimation is often based on likelihood-ratio tests in
order to select the most plausible model nested within a hypothetical general
model.

The primary cause of a so-called monogenic disease such as cystic fibrosis is
a mutation within a single gene that segregates according to Mendelian laws (see
below). The predisposing variants, i.e. the alleles carrying the risk, of this major
gene are usually rare in the population. For complex or multifactorial diseases,
Mendelian subforms such as the subform of breast cancer caused by the major
gene BRCA1, genetic and non-genetic susceptibility factors, or risk modifying
genes can exist. For rare monogenic diseases and rare Mendelian subforms of
complex diseases, segregation analysis and subsequent further analyses perform
well. However, complex diseases in general require more sophisticated methods of
analysis than monogenic diseases. For example in Alzheimer’s disease at least three
major genes and several susceptibility genes confering moderate risk (oligogenes)
exist. Oligogenes as genetic risk factors can be frequent in the population.Polygenic
effects at many loci across the whole genome may contribute to disease, each with
a minor effect.

If there is sufficient evidence for the existence of genetic factors contributing to
a (complex) disease, the next step will be to locate or to identify susceptibility genes
in order to quantify the genetic influence and to understand the underlying genetic
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model and pathway to the phenotype. For this purpose, measures of correlation
between a genetic marker and the (unknown) disease locus are used. A genetic
marker is a DNA segment with multiple alleles for which the localisation on the
chromosome is known and the alleles can be determined. In general, methods
assume Mendelian segregation of the marker (see Sect. 7.3.2). The most frequently
used markers are multiallelic restriction fragment length polymorphisms (RFLPs)
or microsatellites and biallelic single nucleotide polymorphisms (SNPs). Usually the
frequency of the most common variant must be less than 99% before a marker is
termed a polymorphism.

For the analysis of complex diseases with genetic marker data we can distinguish
two major approaches. Both investigate the genotype-phenotype correlation. De-
pending on the context, either the first or the second approach is more efficient
(Clerget-Darpoux and Bonaïti-Pellié 1992). The first approach is a genome scan, i.e.
the systematic coarse grid search of the whole genome with a map of genetic mark-
ers, with the objective to locate a region harbouring a susceptibility gene. A typical
study would investigate approximately 350 markers with an average distance of
10cM (centiMorgan, see Sect. 7.3.3.) along the genome in families. The other ap-
proach is to investigate candidate genes (or candidate gene regions). Thereby, the
focus is set on genes for which their function on the pathway to the phenotype can
evidently be assumed. The most prominent example of a candidate gene system is
the HLA (human leucocyte antigen) complex on chromosome 6. HLA is involved in
immune resistance and is thus a natural candidate gene region for all autoimmune
diseases.

The aims of a candidate gene investigation are to find evidence of any contribu-
tion of the candidate gene to the disease and to model its influence on the disease.
The genotypes of the relevant functional component of the candidate genes are
not always observed. We therefore need to use the information on genetic markers
that lie in close proximity to the candidate gene in question. In general, nonpara-
metric approaches are to be preferred, since they need fewer assumptions about
the underlying genetic model.

There are two types of information that describe the correlation between a ge-
netic marker and the susceptibility locus of a disease. (The correlation is maxi-
mized, when the genetic marker is identical to the functional variant for suscepti-
bility):

Linkage (cosegregation at the family level): The common segregation of a mar-
ker and a disease is investigated. Inheritance is characterised by the transmis-
sions of DNA segments from parents to offspring. If the transmissions at the
marker locus and at the disease locus from one parent to a child are not inde-
pendent, then this is denoted as linkage. Under linkage relatives with a similar
disease status (e.g. both affected) are more similar at the marker locus than to
be expected under independence.
Linkage disequilibrium (association at the population level): Linkage disequi-
librium (LD) is present, if the probability for the existence of a specific marker
allele together with a specific disease allele in a population gamete differs from
the product of individual probabilities. Certain marker alleles of affected in-
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dividuals will be more frequent or less frequent than in a randomly selected
individual from the population.

Linkage analysis in families uses the concept of linkage. Association analysis in
populations or families uses the concept of linkage disequilibrium. Some designs
and corresponding statistical methods are capable of integrating both types of
information into the analysis.

Detailed information on diseases used as examples in this chapter may be
found in the standard reference of human genetics of McKusick (1998) or its online
version, Online Mendelian Inheritance in Man (OMIM 2000).

Genetic Models 7.3

Fundamental to all investigations regarding genetic hypotheses is the assumption
or the development of the genetic model. In the context of the parametrization
of genetic models, some necessary genetic terminology (Thompson 1986) will be
introduced. Only binary phenotypes are considered here. Quantitative phenotypes
including threshold models creating a binary phenotype from a latent quantitative
phenotype will not be considered.

Terminology 7.3.1

The genome is the complete collection of an individual’s genetic material present
in every cell. This material consists of chromosomes, i.e. long strands of DNA.
A gene is a piece of a chromosome coding for a function that can be seen as the
inheritable unit. The locus is the position of a piece of a chromosome along the
chromosome. Thus, the locus might denote the position of e.g. a gene, a gene
complex or a marker. The different variants of a gene are called alleles. Often the
term gene is also used for each single variant of a gene.

The human genome is diploid, i.e. chromosomes are all paired (homologous
chromosomes) with the exception of the sex-linked chromosome in males. Each
human somatic cell contains 22 autosomal chromosome pairs and 1 pair of sex
chromosomes. The autosomal chromosomes of a pair contain the same gene with
possibly different alleles at the same gene location. During meiosis, a diploid set of
chromosomes is reduced to a haploid chromosome set of a germ cell, the gamete.
In this chapter we will exclusively consider the analysis of autosomes.

A pair of alleles of an individual at a locus is called genotype. If the two alleles are
identical, the individual is called homozygous at the locus, otherwise heterozygous.
Twocopiesof a geneare called identical by descent (IBD) if both copies are the same
allele and they are copies of the same gene in a common ancestor. An individual
is homozygous by descent (HBD) when its gene pair is IBD. When considering
several loci simultaneously, the multilocus alleles which are inherited from the
same parent are called haplotype.
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Mendelian Single Locus Model7.3.2

Mendelian segregation (Mendel 1865) is the simplest and most applied model for
the mode of inheritance. It applies to a single locus. An individual randomly and
independently inherits one allele from father and mother respectively. Each parent
randomly and independently passes on a copy of one of two alleles to each of his|her
offspring (binomial distribution with probability 0.5). All segregation events from
parents to offspring are independent. The segregation process implies that copies
of some alleles are frequently present in offspring and other alleles are lost in
subsequent generations (genetic drift).
Consider the phenotype affected|unaffected of a certain disease. Let S denote a sus-
ceptibility gene with n alleles S1, S2, … , Sn. The distribution of allele frequencies
P(Sr) in the population is denoted by:

pr = P(Sr) , r = 1, … , n .

For ordered genotypes the origin of inheritance (father or mother) is distinguished,
for unordered genotypes not. There are four possible ordered genotypes and
three unordered genotypes. Usually unordered genotypes are used. Under Hardy–
Weinberg equilibrium (HWE), the (unordered) genotype frequencies are given by

P
(
SrSs

)
= 2prps = p2

r for r = s

P
(
SrSs

)
= 2prps for r ≠ s .

HWE assumes random mating. Thus the frequencies are yielded by independence
of the corresponding allele frequencies, while combining two ordered genotypes
for heterozygotes. The maintenance of HWE in a population can be derived by
applying Mendelian segregation to each possible parental mating type (see e.g.
Khoury et al. 1993).

The penetrance describes the relation between genotype and phenotype. It is the
conditional probability that an individual with a given genotype will be affected:

frs = P(affected|SrSs) , r, s = 1, … , n .

For classical monogenic diseases, the disease is caused by a single major gene. The
penetrances of the different genotypes will only take on the values 0 or 1. Often
a locus S is assumed to be biallelic, i.e. to have only two different alleles. Let S1

denote the ‘susceptibility’ allele (mutation) and S2 the ‘normal’ allele (wild type).
For a classical dominant disease all carriers of the susceptibility allele will become
affected such that f11 = f12 = f21 = 1 and f22 = 0. For a classical recessive disease
only homozygous carriers of the susceptibility allele will become affected such that
f11 = 1 and f12 = f21 = f22 = 0.

Many classical hereditary diseases follow a Mendelian mode of inheritance. Of-
ten the prevalence of classical Mendelian diseases is below 1 in 1000 live births.
Prominent examples are Chorea Huntington (autosomal dominant gene, CFTR,
on chromosome 4) and cystic fibrosis (autosomal recessive gene, Huntingtin, on
chromosome 7). Many different mutations of the gene CFTR (cystic fibrosis trans-
membrane regulator) cause cystic fibrosis. The gene Huntingtin causing Chorea
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Huntington contains a variable number of CAG trinucleotide repeats. This number
is low for unaffected individuals and high for those affected. Thus both genes are
characterized by allelic heterogeneity. However, the assumption of a biallelic locus
with two groups of alleles (susceptibility, normal) worked well in identifying these
two genes as causes of a Mendelian hereditary disease, even though it is clear that
the true inheritance is much more complicated. The aim in statistical genetics is
not to specify a completely correct model in the first place, but to address the
scientific question adequately with a parsimoneous mathematical model. If this
model is too simple then extended or new biologically motivated models need to
be implemented.

The relation of genotype to phenotype is not straightforward for many dis-
eases. Individuals with a susceptibility genotype can stay unaffected (incomplete
penetrance) and individuals with a non susceptibility genotype can become af-
fected (phenocopies). In general terms, given different genotypes, penetrances at
a specific gene locus may all be different. It may often be assumed, that the ori-
gin (father or mother) of an allele has no influence on a disease, i.e. f12 = f21.
For the general single locus mode of inheritance with susceptibility allele S1 we
assume 1 ≥ f11 ≥ f12 = f21 ≥ f22 ≥ 0. For a recessive mode of inheritance
we assume f12 = f21 = f22, and for a dominant mode of inheritance we assume
f11 = f12 = f21.

Linkage 7.3.3

For the joint inheritance at two loci, it may not generally be assumed that there is in-
dependent Mendelian segregation, owing to crossover events and recombinations.
Gametes are formed during meiosis. In this process, homologous chromosomes
are arranged next to each other and partly overlap. A chromosome breakage and
a crossover (or crossing over), i.e. an exchange between homologous chromosome
segments, can occur. A recombination between loci A and B occurs when a ga-
mete will have a haplotype other than the combination genes that occurred in the
parents, due to crossovers between the loci.

Consider the formation of gametes during meiosis displayed in Fig. 7.1. Between
very distant loci A and B (see Fig. 7.1a) a crossover is likely to result in a recombina-
tion of the haplotypes A1B1 and A2B2 to give the new haplotypes A1B2 and A2B1. If
the two loci A and B are very close (see Fig. 7.1b) this is very unlikely. In fact, the map
distance is defined as the expected number of crossovers between two loci (Haldane
1919). Since the map distance is an expectation, this distance measure is additive.
Thus, for three (ordered) loci A, B and C the map distance between A and C is
given by the sum of the map distances between A and B and between B and C. The
map unit is Morgan, M, named after T.H. Morgan, 1866–1945. Often centiMorgan,
cM, are given. The total length of the human autosomal genome is approximately
35 M. Single chromosome lengths are between 0.5 M and 3 M. As a very rough
guide 1 cM corresponds to 1 Million base pairs in the physical map.

By genotyping it is possible to observe recombinations between two loci, but not
crossovers. Figure 7.1a shows recombination due to a single crossover. For a double
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Figure 7.1. Formation of gametes during meiosis from one parental pair of chromosomes with

a single crossover. Left: parental chromosome pair, middle: crossover event (crossover point denoted

by the circle), right: gametes for offspring formation. At the two loci A and B the parent is double

heterozygous A1A2 and B1B2. (a) The crossover occurred between locus A and B. The two middle

gametes show recombination. (b) The crossover occurred above locus A and B, so that the gametes

do not show recombination

crossover, i.e. two chromosomal exchanges between the loci A and B, no recombi-
nation would be observed. In mathematical terms a recombination between loci A
and B can be defined as an uneven number of crossovers between them.

The recombination rate θ, i.e. the ratio of the number of recombinant gametes
to the total number of gametes formed, is used as a measure of genetic distance
between two loci. If loci are on different chromosomes or far away on the same
chromosome they segregate independently during the formation of gametes. This
results in θ = 0.5, and the loci are designated unlinked. By definition there is
linkage between the loci if 0 ≤ θ < 0.5 and no linkage if θ = 0.5. If loci are
closer to each other, recombination is less likely. Complete linkage, i.e. complete
co-segregation, implies no recombination and thus θ = 0.

In Fig. 7.2 a double heterozygous parent with haplotypes A1B1 and A2B2, and
a double homozygous parent with haplotype A3B3 are considered. For the double
heterozygous parent a meiosis can create the non-recombinant haplotypes A1B1

and A2B2 or the recombinant haplotypes A1B2 and A2B1. In order to determine
recombination a parent homozygous even at one locus is not informative. Given
that recombination is present, each of the two recombinant haplotypes occurs
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Figure 7.2. Formation of recombinant and non-recombinant haplotypes by meiosis

with probability 0.5. Given that no recombination is present, each of the two
non-recombinant haplotypes occurs with probability 0.5. For θ = 0.5 there is
independent segregation so that all four possible haplotypes are equally likely.

If the distance between loci is small, i.e. θ ≤ 0.1, a recombination corresponds
to a crossover. If three ordered close loci A, B and C are considered, θAC ≈
θAB + θBC. In contrary to the map distance in Morgan, recombination distances
are not additive. A recombination between A and B and one between B and C
corresponds to an even number of crossovers for the interval A to C and thus will
not result in a recombination between A and C. With the help of so-called mapping
functions, recombination distances can be translated into Morgans. In the majority
of chromosomal regions recombination rates for women are higher than for men,
which is most often neglected in genetic epidemiological studies.

To fully describe the segregation process in a (chromosomal) pedigree along
a complete chromosome, it is sufficient to denote the paternal or maternal origin
by 0 or 1 respectively for each meiosis in a pedigree along the whole chromosome
(see Fig. 7.3). A crossover event is present at a particular position when the parental
origin switches at a particular meiosis.

The potential informativity of a single marker chosen from an existing marker
map (without consideration of the disease locus) is determined by its genetic
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Figure 7.3. Three-generation chromosomal pedigree. The pedigree describes the grandparental

inheritance of the haplotypes of three grandchildren which they inherited from the left grandparent.

Consider the ‘left’ grandparent with its two chromosomes denoted by P (white) for paternal and M

(black) for maternal. The segregation of these two chromosomes from the grandparent to its

offspring (with a double crossover) and to its three grandchildren can be followed. For each meiosis

the chromosomal segments are yielded by the crossover process. Chromosomal segments in the

grandchildren are in part inherited from the chromosomes O (dashed) of the other grandparent. At

each position along the chromosome and for each offspring chromosome, the paternal or maternal

inheritance can be denoted by 0 or 1. This is true in the parent generation and in the child

generation. Thus, the inheritance can be completely described by a vector of 0’s and 1’s with

dimension equal to the number of meioses considered

variability, i.e. allele distribution, and by the relation of the marker’s (laboratory)
phenotype to its corresponding genotype. In this laboratory context, phenotype
denotes the observed measure of the marker’s true underlying genotype. An exam-
ple of such an observed measure for a genotype is the length determined by a gel
electrophoresis for an RFLP marker instead of the exact base sequence. Two mea-
sures of marker informativity are heterozygosity H and polymorphism information
content PIC (Botstein et al. 1980). For a locus with n alleles, these are defined as
follows:

H =
n∑

r≠s

prps ,

PIC = 1 −
n∑

r=1

p2
r −

n−1∑
r=1

n∑
s=r+1

2p2
r p2

s = 2
∑∑

prps(1 − prps) .
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In HWE, the heterozygosity H equals the probability that a random individual
is heterozygous. PIC denotes the probability that one of two randomly mating
individuals is heterozygous and the other has a different genotype (Weiss 1993; Ott
1999).

Linkage Disequilibrium 7.3.4

Linkage and linkage disequilibrium (LD) are concepts that need to be distin-
guished. Linkage describes the co-inheritance at two loci and can only be observed
in families. Linkage is independent of the specific alleles. LD describes the relation
between alleles at two loci in a population.

Consider the frequencies of specific alleles at two loci S and M in a popula-
tion. They can be in linkage disequilibrium (or gametic disequilibrium, LD). LD is
present if the probability for the presence of specific S and M alleles in one gamete
is not equal to the product of the individual probabilities at the single loci.

Let S denote the locus with n alleles S1, S2, … , Sn and allele frequencies

pr = P(Sr) , r = 1, … , n ,

and M a locus with m alleles M1, M2, … , Mm and allele frequencies

qi = P(Mi) , i = 1, … , m .

A common measure of LD is the difference of the haplotype probability from
its expectation under no association. For two biallelic loci it is denoted by D
or δ. For multiallelic markers the parameter δir is often used to define the linkage
disequilibrium between Mi and Sr as

δir = P(MiSr) − P(Sr)P(Mi) , i = 1, … , m ; r = 1, … , n .

Linkage disequilibrium or LD is present if δir ≠ 0 for at least one pair of alle-
les Mi, Sr.

Linkage equilibrium is present if

δir = 0 for all i = 1, … , m ; r = 1, … , n .

Under linkage equilibrium the allele distribution at locus M is independent of the
specific S allele present.

Linkage disequilibrium can also be described by the coupling frequencies cir

defined as

cir = P(Mi|Sr) , r = 1, … , n ; i = 1, … , m ,

i.e. by the conditional probabilities that a gamete with Sr also has allele Mi. Other
parametrizations of LD are also commonly used.

LD may also be considered between multiple loci. Of course the parametrization
is more complicated in this case.
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Linkage disequilibrium can have different origins (Suarez and Hampe 1994).
At linked loci complete LD can be caused by a recent mutation at one locus.
However, LD is also possible without linkage between the loci. In extreme cases
the loci can even lie on different chromosomes. One important mechanism for the
development of LD at unlinked loci is population stratification. This is often a result
of the admixture of subpopulations (e.g. through immigration) with different allele
distributions in the subpopulations. Non-random mating (e.g. by religion or social
status) can also be such a cause.

The following formula describes a population genetics model for the degra-
dation in generation time of an existing LD at generation time 0, δ0, during g
generations caused by recombination|linkage (Maynard Smith 1989):

δg = (1 − θ)gδ0 .

An LD may not necessarily be caused by linkage (possible mechanisms given
above), but in the presence of tight linkage it can stay strong during many gener-
ations. Without tight linkage LD will degrade rapidly. Thus LD provides indirect
evidence for linkage.

As a conlusion of this section two additional widely used measures of LD for
fine-scale mapping with biallelic marker data will be introduced (Devlin and Risch
1995).

Considermarkers A and B, eachwith twoalleles A1 , A2 and B1, B2. In ahaplotype,
let the first position denote the allele at marker A, the second position the allele
at marker B. The haplotype probabilities are listed in Table 7.1. Rows and columns
portray the marginal probabilities. The LD as the difference of the haplotype
probability from its expectation under no association can be calculated by

D = π11 − π1+π+1 = π22 − π2+π+2 = π11π22 − π21π12 .

D is an absolute measure of LD. Its value is 0 if marker A and marker B are not
associated.

Table 7.1. Haplotype probabilities for two biallelic markers A and B

Marker B
Marker A Allele B1 Allele B2

Allele A1 π11 π12 π1+

Allele A2 π21 π22 π2+

π+1 π+2

Maximum and minimum possible values of D depend on the allele frequencies
in the population. Thus, define Dmax and Dmin by

Dmax = min(π1+π+2, π+1π2+)

Dmin = min(π1+π+1, π+2π2+) .
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Rescaling D relative to its maximum and minimum results in the relative measure
D′ (Lewontin’s D′, Lewontin 1964):

D′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D

Dmax
=

π11π22 − π21π12

min
(
π1+π+2, π+1π2+

) D > 0

D

Dmin
=

π11π22 − π21π12

min
(
π1+π+1, π+2π2+

) D < 0 .

Since in essence LD is a correlation between the marker and the susceptibility gene
in populations, the correlation coefficient can also be used as an LD measure (Hill
and Robertson 1968), denoted by ∆:

∆ =
π11π22 − π21π12√
(π1+π2+π+1π+2)

=
D√

(π1+π2+π+1π+2)
.

Another LD measure based on odds ratios and motivated by the epidemiological
measure ‘attributable risk’ (cf. Chap. I.2 of this handbook) is

δ =
π11|π21 − π12|π22

π11|π21 + 1
=

π11π22 − π12π21

π+1π22
=

D

π+1π22
.

Segregation Analysis 7.4

The aim of segregation analysis is to find evidence for the existence of a major gene
for the phenotype under investigation and to estimate the corresponding mode of
inheritance. Therefore, if possible, the pattern of inheritance over several genera-
tions within the structure of larger families is investigated. Sometimes segregation
analysis has to be carried out on the basis of many small families.

Consider a Mendelian single locus model for a major gene with the suscepti-
bility allele S1 and the normal allele S2. For classical Mendelian diseases the pene-
trances P(affected|genotype) take on only the values 0 and 1. For such diseases, the
genotype-phenotype relation is so obvious that the discrete genotype translates
into a discrete disease phenotype. Thus, families in which such a Mendelian di-
sease gene segregates display very characteristic disease patterns. For example, in
the case of autosomal dominant diseases generations should not be skipped by the
disease, an affected individual married to an unaffected individual should produce
an approximate 1 : 1 ratio of affected to unaffected offspring and the distribution
of the trait among sexes should be almost equal (Tamarin 1986). Ratios like the
above mentioned are called segregation ratios.

The simplest types of segregation analyses are based on tests for segregation
ratios hypothesising a particular mode of inheritance. To illustrate the princi-
ple, consider first a rare autosomal dominant disease and a random sample of
matings. Matings between an affected and an unaffected individual will usu-
ally be of the S1S2 × S2S2 mating type. Since the susceptibility allele is rare,
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S1S1 × S2S2 matings for affected-unaffected couples can be neglected as a first
approximation. Thus, for the moment consider only S1S2 × S2S2 families and
suppose that r of n offspring are affected. In the offspring generation the ex-
pected segregation ratio between affected and unaffected is 0.5. A test can be
built on the binomial distribution, considering n as the number of trials, q as
the probability for a single child to be affected, and r as the observed number
of affected children. If the null hypothesis of q = 0.5 is not rejected, it may be
concluded that the data are compatible (more precisely not inconsistent) with an
autosomal dominant disease pattern. For further test procedures see e.g. Sham
(1998).

More generally, the probability distribution of the six possible mating types
(S1S1 × S1S1; S1S1 × S1S2; S1S1 × S2S2; S1S2 × S1S2; S1S2 × S2S2; S2S2 × S2S2) can
be formed according to the parental genotypes. For each given mating type, the
distribution of genotypes and phenotypes in the offspring may be determined, on
which tests can then be built. However, families are most often sampled according
to recruitment criteria and not randomly, yielding an oversampling of families
enriched for disease. Therefore, for a test procedure to be valid the probability
distributions need to be corrected for ascertainment bias. Consider again the bi-
nomial distribution for the number of affected offspring in a sibship of a particular
mating type. We assume ascertainment for families with ‘at least one affected off-
spring’. The binomial distribution for the number of affected offspring could be
corrected for ascertainment by considering a truncated binomial distribution as-
suming at least one affected offspring per family. Unfortunately, the ascertainment
process could imply that families with more affected children have a higher chance
of being part of the sample. Proper ascertainment correction maybe complicated
and the ascertainment criteria should be known as precisely as possible. More-
over, mathematical assumptions must be made about the ascertainment sampling
process in order to estimate genetic parameters or to test genetic models. In gen-
eral, misspecification of the ascertainment process might cause serious bias in the
estimation of genetic parameters (see e.g. Shute and Ewens 1988).

The ascertainment process is often parametrized by the ascertainment proba-
bility

π = P(proband|affected) ,

i.e. the probability that an individual will be part of the family data set given that
the individual is affected. The following types of selection have been defined by
the parameter π: If π = 1, this is called truncate selection. For truncate selection an
individual will be recruited if he|she is affected. Families without affected members
are not recruited. If π → 0, we speak of single selection. In single selection families
with r affected children are recruited with probability rπ and almost all families
have only one affected child. Multiple selection is defined by 0 < π < 1.

For extended pedigrees with many individuals and several generations a numer-
ical procedure is needed for all probability calculations. Let L denote the likelihood
for the observed phenotypes Y , given a genetic model M and the pedigree struc-
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ture. L can be calculated by summing over all possible genotypic constellations
gi, i = 1, … , N, where N denotes the number of individuals in the pedigree:

L(Y) =
∑

g1

∑
g2

· · ·
∑
gN

P(Y |g1g2 · · · gN)P(g1g2 · · · gN ) .

It is assumed that the phenotype of an individual is independent of the other
pedigree members given its genotype.

Widely used in segregation analysis is the Elston–Stuart algorithm (Elston and
Stuart 1971), a recursive formula for the computation of the likelihood L given as

L =
∑

g1

∑
g2

· · ·
∑
gN

N∏
j=1

f (gj)
N1∏
k=1

P(gk)
N2∏

m=1

τ(gm|gm1gm2) .

The notation for the formula is as follows: N denotes the number of individuals
in the pedigree. N1 denotes the number of founder individuals in the pedigree.
Founders are individuals without specified parents in the pedigree. In general,
these are the members of the oldest generation and married-in spouses. N2 denotes
the number of non-founder individuals in the pedigree, such that N = N1 + N2.
gi, i = 1, … , N, denote the genotype of the ith individual of the pedigree. The
parameters of the genetic model M fall into three groups: (1) The genotype dis-
tribution P(gk), k = 1, … , N1, for the founders is determined by population para-
meters and often Hardy–Weinberg equilibrium is assumed. (2) The transmission
probabilities for the transmission from parents to offspring τ(gm|gm1, gm2), where
m1 and m2 are the parents of m, are needed for all non-founders in the pedi-
gree. It is assumed that transmissions to different offspring are independent given
the parental genotypes and that transmissions of one parent to an offspring are
independent of the transmission of the other parent. Thus, transmission probabil-
ities can be parametrized by the product of the individual transmissions. Under
Mendelian segregation the transmissionprobabilities forparental transmissionare
τ(S1|S1S1) = 1; τ(S1|S1S2) = 0.5 and τ(S1|S2S2) = 0. (3) The penetrances f (gi), i =
1, … , N, parametrise the genotype-phenotype correlation for each individual i.

This recursive formula works well on simple pedigrees of arbitrary size. Com-
putations on complex pedigrees, i.e. pedigrees with marriage and inbreeding loops
(such as consanguineous marriages) are often only possible with approximation
methods.

Segregation analysis is a successful tool for monogenic diseases. Major problems
in segregation analysis for complex diseases result in essence from the fact that the
relationship of genotype to phenotype is not a straightforward 1 to 1 function or n
to 1 function, i.e. the genotype does not unambiguously determine the phenotype.
This unclear relationship is such a critical issue that some use this as a definition of
complex diseases. Further, several genetic factors are assumed to have an influence
on complex diseases. The penetrance can be incomplete and phenocopies can exist.
In addition the penetrance can depend on other non-genetic factors such as age,
gender and exposure factors for example.
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For the definition of the phenotype, problems arise when specifying and apply-
ing diagnostic criteria. In addition, many complex diseases show a large pheno-
typic variation, which might be characterised by severity, by different diseases or
by different co-occurrence of diseases.

Genetic heterogeneity is a further problem (Evans and Harris 1992). The same
phenotype can be caused by different genes (locus heterogeneity). Different phe-
notypes can be caused by different alleles at the same locus (allelic heterogeneity).
Owing to modifying factors different phenotypes can segregate within a family
(intra-family heterogeneity). When different phenotypes segregate in different
families, but the phenotype is constant within one family, this might indicate that
a gene segregates in one family and not in the other (inter-family heterogeneity). In
addition, there are further types of genetic heterogeneity such as genomic imprint-
ing, where the penetrance of a heterozygous genotype depends on the (paternal
oder maternal) origin of the susceptibility allele.

In the presence of heterogeneity the formation of homogeneous subgroups is
a means to arrive at a clearer genotype-phenotype relation und thus, to identify
a possible Mendelian subform of the disease. Homogeneous subgroups can be
defined by e.g. clinical phenotypes, severity of the disease, age of onset of the
disease, family history or ethnicity.

An example of a highly successful segregation analysis for a complex disease
is breast cancer (Newman et al. 1988). The families were ascertained through
a population-based large epidemiological programme in San Francisco and De-
troit. The ascertainment criteria for index cases were women with breast cancer,
Caucasian, diagnosis before the age of 55, histologically confirmed primary tu-
mour, becoming incident in a specified period. No selection on positive family
history was taken. The personal interview of the index case on her nuclear family,
i.e. mothers and sisters, regarding breast cancer was considered sufficiently reli-
able. 1579 nuclear families were recruited and one large extended pedigree. This
sample also included some rare cases of male breast cancer.

Complex segregation analysis was applied to these breast cancer families using
the programme POINTER which is based on the so-called ‘unified’ model (Lalouel
et al. 1984). This model is called ‘unified’, since it unifies the so-called ‘mixed’
model (Morton and MacLean 1974) and the concept of transmission probabilities
mentioned above. The Mendelian ‘mixed’ model assumes an underlying normal
distribution for each of the three genotypes S1S1, S1S2, S2S2, of the major factor
which differ in their means. The disease status for breast cancer is considered as
resulting from an underlying quantitative trait (as a mixture of the three normal
distributions) by exceeding a certain threshold. In this threshold model, individ-
uals affected with breast cancer have exceeded the threshold deterministic for
disease, individuals not affected by breast cancer have a value for the quantitative
trait below the threshold. Thus, for a predisposing genotype the mean is shifted
in comparison to the distribution for the wildtype heterozygotes such that more
individuals will exceed the threshold. In addition, this model assumes an additive
effect of the major factor, a polygenic component and an environmental compo-
nent. The following parameters have to be estimated for the mixed model: the allele
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frequency p of the susceptibility allele S1, the displacement between the means for
S1S1 and S2S2, the dominance parameter defined as the difference in the means
for S2S2 and S1S2 and the heritability H, defined as the proportion of variance
due to the polygenic component (see Sect. 7.2). Further parameters for the uni-
fied model are the transmission probabilities. In this case, the values 1, 0.5 and 0
for a Mendelian major gene as major factor should not be rejected. Evaluation of
models with direct modelling (and estimation) of the transmission probabilities
allows the identification of the major factor as a major Mendelian gene. In the above
mentioned breast cancer study transmission probabilites were estimated close to
the values required by Mendelian segregation and a model without a Mendelian
inheritance factor could be rejected.

Several parameters need to be prespecified (as input parameters) for complex
segregation analysis. For the breast cancer families the ascertainment probability
was assumed within the bounds π = 0.01–0.27, the lower bound corresponding
to almost single ascertainment and the upper bound corresponding to the mean
proportion of breast cancer cases in the families. Liability classes for the popu-
lation based liabilities were estimated from cumulative incidences in the general
population of the regions under investigation. These are 0.0010 for women until
age 15 and all men regardless of age, 0.0045 for women aged 16–40 years, 0.0283
for women aged 41–55 years and 0.0819 for women older than 55 years. These
necessary parameters could be well estimated, since a large epidemiological study
had been carried out in the region.

Complex segregation analysis requires many likelihood ratio comparisons be-
tween different assumed models for the estimation of parameters and the ac-
ceptance of a most parsimonious model. In the breast cancer study example the
autosomal dominant major gene was postulated, since the general single locus
model with three penetrance parameters and the dominant single locus model
with only two penetrance parameters resulted in a comparable fit. In a first step
we investigate whether the data are consistent with a major gene model and in
a second step we consider with which mode of inheritance for the major gene
the data are consistent. Important for the avoidance of false-positive results is the
investigation into whether an identified major factor is really Mendelian by the
use of transmission probabilities. In the breast cancer family data evidence for an
autosomal dominant transmission was given both in the 1579 nuclear families and
the one large extended family. These results were supported by the same qualita-
tive results even under sensitivity analysis for the ascertainment probability and
by the well-defined liability parameters based on prior studies. Thus, segregation
analysis may be successful even for complex diseases. In the breast cancer example
an autosomal dominant rare gene with high penetrance could be postulated for
early onset breast cancer as a result of the segregation analysis.

If there are no major genes with high penetrances, but only a few genes with
a moderate effect on the disease, segregation analysis will not be a valuable tool.
It should be mentioned that many diseases are studied nowadays by linkage and
association analyses without segregation analyses which normally would have
been carried out prior to this.
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Linkage Analysis7.5

In linkage analysis the co-segregation between marker and disease is investigated
in related individuals. The aim is to find evidence for linkage and often to estimate
the recombination rate. Sometimes exclusion of linkage is possible.

The classical linkage analysis method is the lod score method (Morton 1955).
This is a test for linkage between a susceptibility gene locus and a marker locus
(null hypothesis H0 : θ = 0.5 versus alternative H1 : θ < 0.5) in combination with
the estimation of the recombination rate. For a detailed description see Ott (1999).

For the lodscoremethod, themodeof inheritance M0, that is theparameterof the
genetic model at the susceptibility locus, and the marker allele distribution, have
to be known. The mode of inheritance may be estimated by segregation analysis.
Let L(θ, M0) denote the likelihood for the observed phenotypes at a particular
value for θ conditional on M0, on the marker allele distribution and on the given
pedigrees. As in the usual notation, the underlying conditioning is sometimes left
out. The lod score function (‘log odds’) is the log likelihood ratio

Z(θ) = LOD(θ) = log10

L(θ, M0)

L(0.5, M0)

as a function of θ. Z(θ) compares the likelihood under linkage with recombination
rate θ with the likelihood under no linkage, i.e. θ = 0.5. Z(θ) will be maximized
over all possible values for θ, i.e. 0 ≤ θ ≤ 0.5. If Zmax > 3 then evidence for linkage
exists. The recombination rate will be estimated by θmax, the θ-value corresponding
to Zmax. If Zmax < −2 linkage can be excluded. The limits 3 and −2 are based on
a sequential Wald test, such that the a posteriori probability for linkage when
rejecting the null hypothesis is 95% for a single alternative θ (Morton 1955). As
logarithms of base 10 are used, the limits correspond to stopping limits of 1000
and 0.01 in the sequential testing procedure yielded by setting α = 0.001, β = 0.01.

Let us determine the likelihood L(θ) for linkage between two loci A and B
for a sibship of size n. The genotypes are observed directly. Thus, no underlying
genetic model needs to be considered. The genotypes of the mother are A1A2

and B1B2 and the genotypes of the father are A1A1 and B1B1. Only the double
heterozygous mother is informative for linkage. In general, it is not known which
allele combinations of the mother are the result of the grandpaternal and the
grandmaternal meiosis, i.e. which allele combinations form the haplotypes in
the grandparental gametes. The so-called phase for the mother could be either
composed of the haplotypes A1B1 and A2B2 (phase I with probability PI) or by the
haplotypes A1B2 and A2B1 (phase II with probability PII).

Assume that the phase is known to be phase I, for example when the grandpar-
ents pass on this information. Let nx and ny denote the number of meioses from
the mother to the n children, which are non-recombinants nx or recombinants ny,
respectively. Then the likelihood L(θ) is

L(θ) =

(
nx + ny

nx

)
(1 − θ)nx θny .
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For an unknown phase, phase I and phase II both have to be considered. If PII is
the true phase, then nx children show recombination and ny children show non-
recombination. Under the assumption of linkage equilibrium phase I and phase II
are both equally likely. Thus

L(θ) =

(
nx + ny

nx

)
[PI(1 − θ)nx θny + PIIθnx (1 − θ)ny ]

=

(
nx + ny

nx

)[
1

2
(1 − θ)nx θny +

1

2
θnx (1 − θ)ny

]
.

For the sibship in Fig. 7.4 let us now determine the likelihood L(θ), the lod score
function Z(θ), Zmax and θmax. The notation in this pedigree is motivated by an
autosomomal dominant susceptibility gene S with a rare susceptibility allele S1

and a normal allele S2. Thus, the affected father and all affected siblings have
genotypeS1S2. In thepedigree themarker M is segregatingwith threealleles M1, M2

and M3. The mother of the sibship of size 6 is homozygous and thus uninformative
for linkage. She will not be considered further.

Figure 7.4. Pedigree with a sibship of size 6 with marker information and with genotype information

concerning the susceptibility locus, owing to the clear-cut rare autosomal dominant mode of

inheritance

As a result of the genotyped grandparents, the father’s haplotypes are known:
S1M1 and S2M2. Thus the phase is known and the likelihood is

L(θ) =

(
6

0

)
(1 − θ)6θ0 = (1 − θ)6 .
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The lod score function is

Z(θ) = LOD(θ) = log10

L(θ)

L(0.5)
= log10

(1 − θ)6

(0.5)6

= 6 log10(1 − θ) + 6 log10 2

= 6 log10(1 − θ) + C ,

where C denotes a constant independent of θ. The maximum of the lod score
function is Zmax = 1.8 for θmax = 0. This corresponds to complete linkage as
supported by no observed recombinations.

Missing information on grandparental genotypes in Fig. 7.4 results in an un-
known phase. Then the lod score function would be

Z(θ) = LOD(θ) = log10

L(θ)

L(0.5)
= log10

0.5θ6 + 0.5(1 − θ)6

(0.5)6

= log10

(
θ6 + (1 − θ)6

)
+ 5 log10 2 .

In this case, the maximum of the lod score function is Zmax = 1.5 for θmax = 0. Due
to the uncertain phase, the maximum lod score is reduced. However, the estimate
for the recombination rate stays at θ = 0.

In Fig. 7.4, assume now that the second affected child has the genotype M2M3

(and the genotype S1S2). With the phase as indicated in the figure, one recombi-
nation needs to be taken into account now. Thus

Z(θ) = LOD(θ) = log10

L(θ)

L(0.5)
= log10

6θ(1 − θ)5

6(0.5)6

= log10 θ + 5 log10(1 − θ) + 6 log10 2 .

With one recombination the maximum of the lod score function is Zmax = 0.63 for
θmax = 1|6 = 0.17. Now linkage is estimated as not complete and Zmax is markedly
reduced.

If in Fig. 7.4 the genotypes of the father and his parents are unknown, the father’s
genotype can be inferred as either M1M1 or M1M2. If HWE can be assumed, the
likelihood of the recombination rate L(θ) can be calculated as a function of the
marker allele frequencies in offspring. A detailed calculation will show that in this
case, a rare marker allele M1 will result in a high lod score, a more common marker
allele M1 will result in a lower lod score.

The likelihood L(θ) can be computed for more complex pedigrees with the help
of the Elston–Stuart algorithm (Elston and Stuart 1971):

L =
∑

g1

∑
g2

· · ·
∑
gN

N∏
j=1

f (gj)
N1∏
k=1

P(gk)
N2∏

m=1

τ(gm|gm1gm2θ) .

The notation is provided in the previous section with the extension that gj, j =
1, … , N, now refers to the haplo-genotypes, i.e. to the genotypes formed by the
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haplotypes of the underlying susceptibility locus S and the marker M. The re-
combination rate θ is now part of the transmission probabilities of the haplo-
genotypes, since they describe the formation of gametes as recombinants or non-
recombinants.

Consider now a set of K families. Since the segregation process is independent
in different families, the total likelihood is given by the product of the individual
likelihoods. Thus, the logarithm of the total likelihood, l(θ), is given by the sum of
the individual logarithms of the likelihood li(θ):

l(θ) =
K∑

i=1

li(θ) .

The lod score method and its extensions have been very successful in localizing
major susceptibility genes, especially for rare monogenic diseases (e.g. cystic fi-
brosis). However, the analysis of complex diseases poses many difficulties (Lander
and Schork 1994). Often the mode of inheritance is unclear. Hence, the preas-
sumption of parameters for the mode of inheritance in the lod score analysis is
very critical. Often several modes of inheritance are ‘tried out’ (Terwilliger and
Ott 1994). A false model can lead to false negative tests, and thus the erroneous
exclusion of chromosomal regions, which indeed harbour susceptibility loci. The
use of LOD scores for exclusion mapping should be considered with caution. Max-
imizing LOD scores over several models or the whole range of recombination rates
increases the a posteriori false positive rate (Risch 1991), i.e. linkage is inferred
erroneously. False assumptions of marker allele frequencies can also lead to false
positive results (Ott 1999). Where possible, marker allele frequencies should be
estimated for a given study or population, since allele frequencies are often not
well known and may differ from population to population. The estimation of the
recombination fraction itself after concluding for linkage can be biased, i.e. the
true location of the susceptibility gene might be many centi Morgans apart from
the estimated location. Even a combined segregation and linkage analyses with
parallel estimation of the necessary parameters does not lead to meaningful and
significant results, owing to the flatness of the likelihood function.

The localization of the BRCA1 gene for breast cancer is an example of a successful
lod score analysis (Hall et al. 1990), which was based on the segregation analysis
described in the previous section (Newman et al. 1988). In this analysis, cumulative
LOD scores were calculated by ascending average age-of-onset for breast cancer
cases in the families. By this procedure, linkage could be demonstrated for early-
onset families.

The difficulties in employing a parametric linkage analysis become more and
more important with the degree of complexity of a disease. In order to avoid
the necessity of critical assumptions about the underlying genetic model, so-
called non-parametric methods or model-free methods have been developed. The
aim of model-free methods is to provide evidence for linkage without specifying
parameters of the underlying mode of inheritance and without estimating the
recombination rate (Elston 1998; Lander and Schork 1994).
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Many of these methods are based on the identity-by-descent (IBD) status. For
example consider a patient and one of his|her siblings (Penrose 1953). Their IBD
status can take on the values 0, 1 or 2, according to the number of marker al-
leles that have been transmitted to both siblings from exactly the same (grand-
paternal or grandmaternal) copy of a parent’s gene and are thus identical (see
Fig. 7.5).

Allele sharing methods are based on the fact, that in the presence of linkage
relatives with a similar disease status (e.g. both affected) are more frequently
similar at the marker locus – in the sense of IBD – than to be expected under
independent segregation. Relatives with a different disease status (e.g. discordant
sibs: affected, unaffected) are less frequently similar at the marker than under no
linkage. The aim of these methods is to provide evidence for linkage and not to
estimate the recombination rate.

In the affected-sib-pair (ASP) method (Day and Simons 1976), affected sib pairs
are classified according to the IBD status. The classical χ2-test compares the ob-
served number of (independent) sibling pairs with 0, 1 or 2 marker alleles IBD with
the expected number assuming independent segregation. If marker and disease
locus are unlinked, the probability for 0, 1, or 2 marker alleles IBD is 0.25, 0.5
or 0.25, respectively. If the observed IBD distribution significantly differs from the
expected distribution, this indicates linkage. It is possible to use the χ2-goodness-
of-fit-test to test for a hypothesised genetic model, taking the derived numbers
under the model as expected.

When considering only affected individuals, the method is robust towards in-
complete penetrance. Other allele sharing methods also incorporate unaffected
individuals in the analyses as well as different pairs of relatives other than sib-
lings. The literature is extensive and more powerful methods than the original ASP
method have been developed (e.g. Holmans 1993; Whittemore and Tu 1998).

The determination of the IBD status assumes that the marker is sufficiently
polymorphic and that the parents are genotyped for the marker (or neighbouring
loci and other relatives yield the missing information). If it is not possible to
determine IBD unambiguously (see Fig. 7.5) it needs to be estimated. Sometimes
the IBS status is used instead. IBS is the number of marker alleles that are identical
in the pair of individuals (“identity by state”) without considering ancestry, taking

Figure 7.5. An affected sib-pair with parents. Marker genotypes are given. The IBS status is 2. The

IBD status cannot be unambiguously determined, P(IBD = 1) = P(IBD = 2) = 0.5, since the mother

transmits the grandpaternal allele M1 or the grandmaternal allele M1 with equal probability
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on the values 0, 1, or 2. However, such methods are not robust towards imprecisions
in the marker allele frequencies.

Association Analysis 7.6

The aim of association studies is to show evidence for association or linkage dis-
equilibrium in a population. Linkage disequilibrium results in an association be-
tween marker alleles and alleles of a susceptibility gene, such that certain marker
alleles will be present more often in affected individuals than in a random sample
of individuals from the population.

In classic case-control studies marker allele frequencies or genotype frequencies
in a group of unrelated affected individuals are compared to those in a group
of unrelated unaffected individuals. Numerous associations have been identified
with case-control studies, e.g. associations of autoimmune diseases (e.g. diabetes,
multiple sclerosis) with the HLA system. A further example is the association of
apolipoprotein E (APOE) allele ε4 with Alzheimer’s disease (Corder et al. 1993).
The APOE ε4 allele frequency is approximately 35% in Alzheimer’s patients, but
only approximately 15% in the older population not suffering from dementia. If
a positively associated marker allele is frequent in a population, such as APOE ε4,
then it is by itself not a good predictor for disease status and the proportion of
homozygotes for the allele is high. Linkage analysis methods are in general not
very powerful in this situation.

Besides the usual limitations of classical case-control studies in epidemiology
(cf. Chap. I.6 of this handbook), case-control studies to investigate linkage dise-
quilibrium in genetic epidemiology must take a particular form of confounding
into account, i.e. population stratification: cases and controls must originate from
the same homogeneous (including ethnically homogeneous) source population.
This is especially difficult to achieve, to assess or test for in genetic epidemiology. If
individuals stem from subpopulations with different allele frequencies, and this is
not taken into account, then linkage disequilibrium can be simulated. This means
that stratified populations can evoke linkage disequilibrium without linkage. The
detection of such linkage disequilibrium detracts from the identification of sus-
ceptibility genes. It must be considered as an annoyance to this aim and as such
be evaluated as false positive. The technical term for such false positive results is
spurious association.

If an association is found that is not considered spurious, this may have two
causes (Lander and Schork 1994):

The positively (or negatively) associated allele is the susceptibility allele itself. If
so, this association is expected to occur in all populations harbouring this allele.
The positively (or negatively) associated allele is in linkage disequilibrium
with the susceptibility allele at the disease locus. If this is the case, then differ-
ent associations can occur in different populations due to different haplotype
frequencies of the allele combinations of both marker and susceptibility locus.
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In the first case, both marker and disease locus are identical. Thus, θ = 0 and
linkage disequilibrium is complete. In the second case marker and disease locus
are in general very close to each other. For this reason association studies are
highly valuable for the investigation of candidate genes.

When an association is identified, it can be quantified with the help of odds
ratios (Woolf 1955) (see also Chap. I.2 of this handbook). With rare diseases the
odds ratio approximates the relative risk. In addition, parameters of the underlying
genetic model may be estimated e.g. with the likelihood ratio method (Thomson
1983; Risch 1983).

As mentioned above, uncontrolled stratification of populations may result in
spurious associations. For case-control studies, there are essentially two methods
for taking the existence of subpopulations into account during statistical testing.
Both methods require a set of additional markers along the genome to be geno-
typed. In the genomic control method (Devlin and Roeder 1999) a variance inflation
factor is used to adjust the test statistic, taking into account correlations between
individuals in subpopulations. The structured association method (Pritchard et al.
2000) initially aims at directly identifying the population structure and assign-
ing individuals to a subgroup. Association is subsequently investigated by testing
against the null hypothesis of independent association within subgroups.

Association studies with internal controls, or so-called family based association
studies, are intended by design to avoid possible bias through inadequate controls
and population stratification. The concept of internal controls was developed by
Falk and Rubinstein (1987). For the original design nuclear families with at least
one affected child have to be recruited. The two parental alleles not transmitted to
the affected child are used as internal controls (Fig. 7.6).

This design has the important property that information is used on both, linkage
and association between a marker and the susceptibility gene.

For a biallelic marker, the data resulting from this study design may be presented
in different ways in a 2×2 contingency table (Table 7.2) and analysed with statistical
tests (Terwilliger and Ott 1992; Schaid and Sommer 1994). All test procedures test
for association (H0 : δ = 0 vs. H1 : δ ≠ 0) and most for linkage as well. In principal,
the tests investigate whether certain alleles are transmitted from the parents to an
affected child more often than not.

Figure 7.6. Nuclear family with one affected child. Alleles transmitted from the parents to the affected

children are denoted in white. Alleles not transmitted from the parents to the affected child are

denoted in black
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The test procedures can be classified according to several criteria. Tests can
be separated on the basis of whether genotypes or haplotypes are analysed.
Haplotype-basedanalyses compare the transmittedallelewith thenon-transmitted
allele. Genotype-based analyses compare the genotype transmitted to the affected
child with the artifical genotype constructed from the two non-transmitted al-
leles. Another criterion is whether the tests are procedures for matched samples
or not. The samples are indeed matched since one transmitted and one non-
transmitted allele together describe the segregation from a single parent to an
offspring.

Let M denote a biallelic marker with alleles M1 and M2; let M1 be positively
associated with the disease. Let genotypes, which are homozygous or heterozygous
for M1, be denoted with M1 positive. Then, N families with an affected child can be
presented in a 2 × 2 table as in Table 7.2. The traditional χ2-test for independence
can be applied to unmatched samples (Tables 7.2b and 7.2d) and the McNemar-test
can be applied to matched samples (Tables 7.2a and 7.2c). The table for unmatched
samples uses the marginal table of the corresponding table for matched samples.

The original Haplotype Relative Risk (HRR) method (Falk and Rubinstein 1987)
is a genotype-based analysis for unmatched samples. The odds ratio in Table 7.2b,
also called Haplotype Relative Risk (HRR), is a measure of association that is never
more extreme, i.e. farther away from 1, than the estimator RR for the relative risk
in a classic non-family based approach (Knapp et al. 1993). For θ = 0, HRR = RR.

The most commonly used test is the Transmission|Disequilibrium Test (TDT)
(Spielman et al. 1993). The TDT is a haplotype-based analysis of the matched
sample (Table 7.2c). The test statistic is

TDT = (b − c)2|(b + c) .

The TDT compares whether the M1 allele is more often transmitted to an affected
child (b) than the M2 allele (c) from heterozygous parents, or visa versa. The test
only considers M1M2 parents, since homozygous parents are not informative for
preferential transmission of either allele. This separation can be made due to the
matched analysis. In addition matching reduces the variance of the test statistic,
thereby yielding a higher power.

The literatureon family-basedassociationanalysis is vast (seee.g.Whittakerand
Morris 2001). Important extensions of the above methods allow the application to
multiallelic markers, to tightly linked loci and to quantitative traits. In addition, the
design also allows for other types of nuclear families, such as sibships with affected
and unaffected individuals (Spielmann and Ewens 1998). If a particular mode of
inheritance is suspected specialized versions of the TDT or related likelihood
methods may yield higher power (Schaid 1999).

If a candidate gene is to be investigated in detail, then a haplotype analysis
will be carried out considering several biallelic polymorphisms (SNPs) in the
same gene. The first step in a haplotype analysis is the estimation of the hap-
lotype frequency in a population or the estimation of the most probable haplo-
genotype (haplotype pair) in an individual. For cases and controls see Excoffier
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Table 7.2. 2 × 2 contingency table for family-based association methods based on N families with one

affected child and both parents. Consider a biallelic marker with alleles M1, M2 and let M1 be

positively associated with the disease. Genotypes, which are homozygous or heterozygous for M1,

are denoted with M1 positive. Capital letters denote genotype counts, small letters denote allele

counts. A, B, C and D are defined as in Table 2a. a, b, c and d are defined as in Table 2c. N and 2N

denote the total number of transmitted genotypes and alleles, respectively, to the affected child from

the 4N parental alleles

(a) Genotype-based analysis for matched samples
Non-transmitted genotype

Transmitted genotype M1 positive M1 negative Total

M1 positive A B A + B

M1 negative C D C + D

Total A + C B + D N

(b) Genotype-based analysis for unmatched samples (HRR method)
M1 positive M1 negative Total

Transmitted genotype A + B C + D N

Non-transmitted genotype A + C B + D N

Total 2A + B + C 2D + C + B 2N

(c) Haplotype-based analysis for matched samples (TDT)
Non-transmitted allele

Transmitted allele M1 M2 Total

M1 a b a + b

M2 c d c + d

Total a + c b + d 2N

(d) Haplotype-based analysis for unmatched samples
M1 M2 Total

Transmitted allele a + b c + d 2N

Non-transmitted allele a + c b + d 2N

Total 2a + b + c 2d + c + b 4N

and Slatkin (1995), for family samples see Rhode and Fürst (2001) and Qian and
Beckmann (2002). In the second step linkage disequilibrium is investigated on
the basis of the estimated haplotypes or haplotype frequencies. Some of the im-
plemented LD measures have already been described above (Devlin and Risch
1995).
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Conclusions 7.7

This chapter could only introduce the basic methods of genetic epidemiological
studies. Important topics had to be completely left out, such as quantitative phe-
notypes or gene-environment and gene-gene interaction. Others could only be
mentioned, such as genome-wide linkage analysis. Some topics of general epi-
demiology interest are also not covered in this chapter, such as study designs
appropriate for the discussed study types (cf. Chap. I.7 of this handbook), power,
multiple testing and (genotyping) errors.

In addition, the area of genetic epidemiology is rapidly evolving. At the mo-
ment, most developments are made in the area of association analysis where the
current technological need is highest. Initial progress has been made considering
haplotype tagging SNPs as being representative for the genetic information in a LD
block across a chromosomal region. Progress is needed in the area of genome wide
scans using SNP chips in case-control samples as the corresponding technology is
available and will be used.
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