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Introduction 3.1

Basic tabular and graphical methods are an essential component of epidemiologic
analysis and are often sufficient, especially when one need consider only a few
variables at a time. They are, however, limited in the number of variables that
they can examine simultaneously. Even sparse-strata methods (such as Mantel–
Haenszel) require that some strata have two or more subjects; yet, as more and
more variables or categories are added to a stratification, the number of subjects
in each stratum may eventually drop to 0 or 1.

Regression analysis encompasses a vast array of techniques designed to over-
come the numerical limitations of simpler methods. This advantage is purchased
at a cost of stronger assumptions, which are compactly represented by a regression
model. Such models (and hence the assumptions they represent) have the advan-
tage of being explicit; a disadvantage is that the models may not be well understood
by the intended audience or even the user. Regression models can and should be
tailored by the analyst to suit the topic at hand; the latter process is sometimes
called model specification. This process is part of the broader task of regression
modeling.

To ensure that the assumptions underlying the regression analysis are reason-
able approximations, it is essential that the modeling process be actively guided
by the scientists involved in the research, rather than be left solely to mechanical
algorithms. Such active guidance requires familiarity with the variety and inter-
pretation of models. Hence, the present chapter will focus primarily on forms
of models and their interpretation, rather than on the more technical issues of
model fitting and testing. Because this chapter provides only outlines of key topics,
it should be supplemented by readings in more detailed treatments of regres-
sion analysis, as can be found in Breslow and Day (1980, 1987), McCullagh and
Nelder (1989), Clayton and Hills (1993), and Hosmer and Lemeshow (2000). For
an in-depth treatment of the difficulties and limitations of regression analysis in
nonexperimental studies, see Leamer (1978) or Berk (2004).

Achieving working competence in regression analysis requires comfort with
basic geometry and algebra. While the ensuing discussion attempts to be self-
contained, readers who feel lacking or weak in mathematical skills would do
well to review a textbook in high school mathematics or college algebra (focusing
especiallyon functions, graphs, andnatural logarithms)before studying regression
methods.

Regression Functions 3.2

A regression function is distinct from a model for that function. A regression model
is another, simpler function used to approximate or estimate the true regression
function. This distinction is often obscured and even unrecognized in elementary
treatments of regression, which in turn has generated much misunderstanding
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of regression modeling. Therefore, this chapter provides separate discussions of
regression functions and regression models.

There are two primary interpretations of regression functions, frequentist and
Bayesian, which correspond to two different interpretations of probability (see
Rothman and Greenland 1998, Chap. 12). The present chapter uses the frequentist
interpretation, but briefly discusses the Bayesian interpretation at the end of this
section. In both interpretations, the term regression is often used to refer to the
regression function.

Frequentist Regression3.2.1

In the frequentist view, the regression of a variable Y on another variable X is
the function that describes how the average (mean) value of Y changes across
population subgroups defined by levels of X. This function is often written as
E(Y |X = x), which should be read as “the average of Y when the variable X takes
on the specific value x.” The “E” part of the notation stands for “expectation”,
which here is just another word for “population mean”.

As an example, suppose Y stands for “height” to the nearest centimeter at some
time t, X stands for “weight” to the nearest kilogram at time t, and the population
of interest is that of Denmark at time t. If we subclassify the Danish population
at t into categories of weight X, compute the average height in each category, and
tabulate or graph these average heights against the weight categories, the result
displays the regression, E(Y |X = x), of height Y on weight X in Denmark at time t.
Several important points should be emphasized:
1. The concept of regression involves no modeling. Some would describe this fact

by saying that the concept of regression is essentially “nonparametric”. The
regression of Y on X is just a graphical property of the physical world, like the
orbital path of the earth around the sun.

2. There is nothing mathematically sophisticated about the regression function.
Each point on a regression curve could be computed by taking the average
of Y within a subpopulation defined as having a particular value of X. In the
example, the value of the regression function at X = 50 kg, E(Y |X = 50), is just
average height at time t among Danes who weigh 50 kg at time t.

3. A regression function cannot be unambiguously computed until we carefully
define X, Y , and the population over which the averages are to be taken. We
will call the latter population the target population of the regression. This
population is all too often left out of regression definitions, often resulting in
confusion.

Some ambiguity is unavoidable in practice. In our example, is time t measured
to the nearest year, day, minute, or millisecond? Is the Danish population all
citizens, all residents, or all persons present in Denmark at t? We may decide that
leaving these questions unanswered is tolerable, because varying the definitions
over a modest range would not change the result to an important extent. But if we
left time completely out of the definition, the regression would become hopelessly
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ambiguous, for now we would not have a good idea of who to include or exclude
from our average: Should we include people living in Denmark in prehistoric
times, or in the time of King Canute (a thousand years ago), or in the distant future
(a thousand years from now)? The choice could have a strong effect on our answer,
because of the large changes in height-to-weight relations that have occurred over
time.

Other Concepts of Population 3.2.2

It is important to distinguish between a “target population” and a “source pop-
ulation”. The target population of regression is defined without regard to our
observations; for example, the regression of diastolic blood pressure on cigarette
usage in China is defined whether or not we conduct a study in China (the target for
this regression). A source population is a source of subjects for a particular study
and is defined by the selection methods of the study; for example, a random-sample
survey of all residents of Beijing would have Beijing as its source population. The
concepts of target and source populations connect only insofar as inferences about
a regression function drawn from a study are most easily justified when the source
population of the study is identical to the target population of the regression. Oth-
erwise, issues of generalization from the source to the target have to be addressed
(see Rothman and Greenland 1998, Chap. 8).

In some literature, regression functions (and many other concepts) are defined
in terms of averages within a “superpopulation” or “hypothetical universe”. A su-
perpopulation is an abstraction of a target population, sometimes said to represent
the distribution (with respect to all variables of interest) of all possible persons
that ever were or ever could be targets of inference for the analysis at hand. Be-
cause the superpopulation approach focuses on purely hypothetical distributions,
it has encouraged substitution of mathematical theory for the more prosaic task
of connecting study results to populations of immediate public-health concern.
Thus, the present chapter defines regression functions in terms of averages within
real (target) populations.

Binary Regression 3.2.3

The concept of regression applies to variables measured on any scale: The re-
gressand and the regressor may be continuous or discrete, or even binary. For
example, Y could be an indicator of diabetes (Y = 1 for present, Y = 0 for ab-
sent), and X could be an indicator for sex (X = 1 for female, X = 0 for male).
Then E(Y |X = 1) would represent the average of the diabetes indicator Y among
females, and E(Y |X = 0) would represent the average of Y among males.

When the regressand Y is a binary indicator (0, 1) variable, E(Y |X = x) is
called a binary regression, and this regression simplifies in a very useful manner.
Specifically,when Y canbeonly 0 or 1, theaverageE(Y |X = x) equals theproportion
of population members who have Y = 1 among those who have X = x. For example,
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if Y is the diabetes indicator, E(Y |X = x) is the proportion with diabetes (i.e., with
Y = 1) among thosewith X = x. To see this, let Nyx denote thenumberofpopulation
members who have Y = y and X = x. Then the number of population members
with X = x is N1x + N0x = N+x, and the average of Y among these members,
E(Y |X = x), is

N1x × 1 + N0x × 0

N1x + N0x
=

N1x

N+x
,

which is just the proportion with Y = 1 among those with X = x.
The epidemiologic ramifications of the preceding relation are important. Let

Pr(Y = y|X = x) stand for “the proportion (of population members) with Y = y
among those with X = x” (which is often interpreted as the probability of Y = y in
the subpopulation with X = x). If Y is a binary indicator, we have just seen that

E(Y |X = x) = Pr(Y = 1|X = x) ,

that is, the average of Y when X = x equals the proportion with Y = 1 when X = x.
Thus, if Y is an indicatorof disease presence at a given time, the regressionof Y on X,
E(Y |X = x), provides the proportion with the disease at that time, or prevalence
proportion, given X = x. For example, if Y = 1 indicates diabetes presence on
January 1, 2010and X isweighton thatday, E(Y |X = x) providesdiabetesprevalence
as a function of weight on that day. If Y is instead an indicator of disease incidence
over a time interval (cf. Chap. I.2 of this handbook and Chap. 3 of Rothman
and Greenland, 1998), the regression of Y on X provides the proportion getting
disease over that interval, or incidence proportion, given X = x. For example, if
Y = 1 indicates stroke occurrence in 2010 and X is weight at the start of the year,
E(Y |X = x) provides the stroke incidence (proportion) in 2010 as a function of
initial weight.

Multiple Regression3.2.4

The concept of multiple regression is a simple extension of the ideas discussed
above to situations in which there are multiple (two or more) regressors. To illus-
trate, suppose Y is a diabetes indicator, X1 stands for “sex” (coded 1 for females,
0 for males), and X2 stands for “weight” (in kilograms). Then the regression of Y on
X1 and X2, written E(Y |X1 = x1, X2 = x2), provides the average of Y among popula-
tion members of a given sex X1 and weight X2. For example, E(Y |X1 = 1, X2 = 70) is
the average diabetes indicator (and, hence, the diabetes prevalence) among women
who weigh 70 kg.

We can use as many regressors as we want. For example, we could include age
(in years) in the last regression. Let X3 stand for “age”. Then E(Y |X1 = x1, X2 = x2,
X3 = x3) would provide the diabetes prevalence among population members of
a given sex, weight, and age. Continuing to include regressors produces a very
clumsy notation, however, and so we adopt a simple convention: We will let X rep-
resent theordered list of all the regressorswewant to consider.Thus, inourdiabetes
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example, X will stand for the horizontal list (X1, X2, X3) of “sex”, “weight”, and
“age”. Similarly,wewill let x stand for thehorizontalordered listof values (x1, x2, x3)
for X = (X1, X2, X3). Thus, if we write E(Y |X = x), it is merely a shorthand for

E
(
Y |X1 = x1, X2 = x2, X3 = x3

)
,

when there are three regressors under consideration.
Moregenerally, if thereare n regressors X1, … , Xn,wewillwrite X for theordered

list (X1, … , Xn) and x for the ordered list of values (x1, … , xn). The horizontal
ordered list of variables X is called a row vector of regressors, and the horizontal
ordered list of values x is called a row vector of values. Above, the vector X is
composed of the n = 3 items “sex”, “weight”, and “age”, and the list x is composed
of specific values for sex (0 or 1), weight (kilograms), and age (years). The number
of items n in X is called the length or dimension of X.

The term multivariate regression is usually reserved for regressions in which
there are multiple regressands. To illustrate, suppose Y1 is an indicator of diabetes
presence, Y2 is diastolic blood pressure, and Y is the list (Y1, Y2) composed of these
two variables. Also, let X be the list (X1, X2, X3) composed of the sex indicator,
weight, and age, as before. The multivariate regression of diabetes and blood
pressure on sex, weight, and age provides the average diabetes indicator and
average blood pressure for each combination of sex, weight, and age:

E
(
Y1, Y2|X1 = x1, X2 = x2, X3 = x3

)
= E(Y |X = x) .

In general, there may be any number of regressands in the list Y and regressors in
the list X of a multivariate regression. Multivariate regression notation allows one
to express the separate regressions for each regressand in one equation.

Regression and Causation 3.2.5

When considering a regression function E(Y |X = x), the variable Y is termed the
dependent variable, outcome variable, or regressand, and the variable X is termed
the independent variable, predictor, covariate, or regressor. The “dependent|inde-
pendent” terminology is common but also problematic because it invites confusion
of distinct probabilistic and causal concepts of dependence and independence. For
example, if Y is age and X is blood pressure, E(Y |X = x) represents the average
age of persons given blood pressure, X. But it is blood pressure X that causally
depends on age Y , not the other way around.

More generally, for any pair of variables X and Y , we can consider either the
regression of Y on X, E(Y |X = x), or the regression of X on Y , E(X|Y = y). Thus,
the concept of regression does not necessarily imply any causal or even temporal
relation between the regressor and the regressand. For example, Y could be blood
pressure at the start of follow-up of a cohort, and X could be blood pressure after
1 year of follow-up; then E(Y |X = x) would represent the average initial blood
pressure among cohort members whose blood pressure after 1 year of follow-up
is x. This is an example of a noncausal regression.



632 Sander Greenland

Because regression functions do not involve any assumptions of time order or
causal relations, regression coefficients and quantities derived from them repre-
sent measures of association, not measures of effect. To interpret the coefficients
as measures of causal effects, it is important that the regression function being
modeled provide a representation of the effects of interest that is approximately
unconfounded (for a general discussion of the concept of confounding see Chap. I.9
of this handbook and Chap. 4 of Rothman and Greenland, 1998).

To make this no-confounding assumption more precise, suppose X contains the
exposures of interest and Z contains the other regressors. Following Pearl (1995),
we may then write

E [Y | Set(X = x), Z = z]

for the average value Y would have if everyone in the target population with
Z = z had their X value set to x. This potentially counterfactual average can be
very different from E(Y |X = x, Z = z). The latter refers only to those population
members with X = x and Z = z, whereas the former refers to all population
members with Z = z, including those who actually had X equal to values other
than x.

As an example, suppose the target population is all persons born during 1901–
1950 surviving to age 50, Y is an indicator of death by age 80, X contains only
X1 = pack-years of cigarettes smoked by age 50, and Z = (Z1, Z0) where Z1 = 1 if
female, 0 if male and Z2 = year of birth. Then

E [Y |X1 = 20, Z = (1, 1940)]

would be the average risk of dying by age 80 (mortality proportion) among women
born in 1940 and surviving to age 50 who smoked 20 pack-years by age 50. In
contrast,

E [Y | Set(X1 = 20), Z = (1, 1940)]

would be the average risk of dying by age 80 among all women born in 1940 and
surviving to age 50 if all such women had smoked 20 pack-years by age 50.

In regression analysis, we may define effect measures as contrasts of aver-
age outcomes (such as incidence) in the same population under different con-
ditions. Consider the ratio effect measure contrasting the average of Y in the
subpopulation with Z = z when X is set to x∗ versus that average when X is set
to x:

E [Y | Set(X = x∗), Z = z]

E [Y | Set(X = x), Z = z]
.

In the example,

E [Y | Set(X1 = 20), Z = (1, 1940)]

E [Y | Set(X1 = 0), Z = (1, 1940)]
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represents the effect of smoking 20 pack-years by age 50 versus no smoking on the
risk of dying by age 80 among women born in 1940. On the other hand, the ratio
measure

E [Y | Set(X1 = 20), Z = (1, 1940)]

E [Y | Set(X1 = 0), Z = (1, 1940)]

represents only the association of smoking 20 pack-years by age 50 versus no smok-
ing with the risk among women born in 1940, because it contrasts two different
subpopulations (one with X1 = 20, the other with X1 = 0).

To infer that all associational measures estimated from our analysis equal their
corresponding effect measures, we would have to make the following assumption
of no confounding given Z (which is sometimes expressed by stating that there is
no residual confounding):

E
(
Y |X = x, Z = z

)
= E [Y | Set(X = x), Z = z] .

This assumption states that the average we observe or estimate in the subpop-
ulation with both X = x and Z = z is equal to what the average in the larger
subpopulation with Z = z would have been if everyone had X set to x. It is im-
portant to appreciate the strength of the assumption. In the above example, the
no-confounding assumption would entail

E [Y |X1 = 20, Z = (1, 1940)] = E [Y | Set(X1 = 20), Z = (1, 1940)] ,

which states that the risk we will observe among women born in 1940 who smoked
20 pack-years by age 50 equals the risk we would have observed in all women
born in 1940 if they all had smoked 20 pack-years by age 50. The social variables
associated with both smoking and death should lead us to doubt that the two
quantities are even approximately equal.

If only a single summary measure of effect is desired, the covariate-specific
no-confounding assumption can be replaced by a less restrictive assumption tai-
lored to that measure. To illustrate, suppose in the above example we are only
interested in what the effect of smoking 20 versus zero pack-years would be on
everyone in the target, regardless of sex or birth year, as measured by the causal
risk ratio

E [Y | Set(X1 = 20)] /E [Y | Set(X1 = 0)] .

The corresponding measure of association is the risk ratio for 20 versus 0 pack-
years, standardized to the total population:∑

z
E
(
Y |X1 = 20, Z = z

)
Pr(Z = z)∑

z
E
(
Y |X1 = 0, Z = z

)
Pr(Z = z)

,

where Pr(Z = z) is the proportion with Z = z in the target. The no-confounding
assumption we need here is that the standardized ratio equals the causal ra-
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tio. This summary assumption could hold even if there was confounding within
levels of sex and birth year (although it would still be implausible in this exam-
ple).

The dubiousness of no-confounding assumptions is often the chief limitation in
using epidemiologic data for causal inference. This limitation applies to both tab-
ular and regression methods. Randomization of persons to levels of X can largely
overcome this limitation because it ensures that effect estimates follow a quantifi-
able probability distribution centered around the true effect. Randomization is not
an option in most settings, however.

The default strategy is to ensure there are enough well-measured confounders
in Z so that the no-confounding assumption is at least plausible. This strategy
often leads to few subjects at each level x of X and z of Z, which in turn lead to the
sparse-data problems that regression modeling attempts to address (Robins and
Greenland 1986; Greenland 2000a, b; Greenland et al. 2000). A major limitation of
this strategy is that, often, key confounders are poorly measured or unmeasured,
and so cannot be used in ordinary modeling; prior distributions for the missing
confounders must be used instead (Greenland 2003a).

Frequentist versus Bayesian Regression3.2.6

In frequentist theory, an expectation is interpreted as an average in a specific
subgroup of a specific population. The regression E(Y |X = x) thus represents
an objective functional relation among theoretically measurable variables (the
average of Y as a function of the variables listed in X). It may be that this relation
has not been observed, perhaps because it exists but we are unable to measure it, or
because it does not yet exist. Examples of the former and latter are the regressions
of blood pressure on weight in Spain 10 years ago and 10 years from now. In either
situation, the regression is an external relation that one tries to estimate, perhaps
by projecting (extrapolating) from current knowledge about presumably similar
relations. For example, one might use whatever survey data one can find on blood
pressure and weight to estimate what the regression of blood pressure on weight
would look like in Spain 10 years ago or 10 years from now. In this approach, one
tries to produce an estimate Ê(Y |X = x) of the true regression E(Y |X = x).

In subjective Bayesian theory, an expectation is what we would or should expect
to see in a given target population. This notion of expectation corresponds roughly
to a prediction of what we would see if we could observe the target in question. The
regression E(Y |X = x) does not represent an objective relation to be estimated, but
instead represents a subjective (personal) expectation about how the average of Y
varies across levels of X in the target population. Like the frequentist regression
estimate, however, it is something one constructs from whatever data one may find
that seems informative about this variation.

Both frequentist and Bayesian authors have noted that the two approaches
often yield similar interval estimates (Cox and Hinkley 1974; Good 1983). It is
increasingly recognized that divergences are usually due to differences in the
criteria for a “good” point estimate: Frequentists traditionally prefer criteria of
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unbiasedprediction (e.g., havinganaverage errorof zero),whereasBayesiansmore
often prefer criteria of closeness (e.g., having the smallest average squared error
possible). When analogous criteria are adopted in both approaches, Bayesian and
frequentist methods can yield similar numeric results in standard epidemiologic
applications.

Nonetheless, Bayesians and frequentists interpret their results differently. The
Bayesian presents a prediction, denoted by E(Y |X = x), which he or she interprets
as his or her “best bet” about the average of Y when X = x, according to some
criteria for “best bet”. The frequentist presents aprediction, denotedby Ê(Y |X = x)
(or, more commonly, ŶX=x), which he or she interprets as “the” best estimate of
the average of Y when X = x, according to some criteria for “best estimate” (such
as minimum variance among statistically unbiased estimators). Too often, the
latter criteria are presumed to be universally shared, but are not really shared or
even properly understood by epidemiologists; one could and would reach different
conclusionsusingotherdefensible criteria (suchasminimummeansquarederror).
For these reasons, when conducting regression analyses we find it valuable to
consider both frequentist and Bayesian interpretations of methods and results.

Basic Regression Models 3.3

In any given instance, the true regression of Y on X, E(Y |X = x), is an extremely
complicated function of the regressors X. Thus, even if we observe this function
without error, we may wish to formulate simplified pictures of reality that yield
models for this regression. These models, while inevitably incorrect, can be very
useful. A classic example is the representation of the distance from the earth to the
sun, Y , as a function of day of the year T. To the nearest kilometer, this distance
is a complex function of T because of the gravitational effects of the moon and of
the other planets in the solar system. If we represent the orbit of the earth around
the sun as a circle with the sun at the center, our regression model will predict the
distance E(Y |T = t) by a single number (about 150 million kilometers) that does
not change with t. This model is adequate if we need only predict the distances
to 2% accuracy. If we represent the orbit of the earth as an ellipse, our regression
model will predict the earth-sun distance as smoothly and cyclically varying over
the course of a year (within a range of about 147 to 153 million kilometers).
Although it is not perfectly accurate, this model is adequate if we need to predict
the distances to within 0.2% accuracy.

Model Specification and Model Fitting 3.3.1

Our description of the above models must be refined by distinguishing between
the form of a model and a fitted model. “Circle” and “ellipse” refer to forms, that
is, general classes of shapes. The circular model form corresponds to assuming
a constant earth-sun distance over time; the elliptical model form allows this
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distance to vary over a temporal cycle. The process of deciding between these two
forms is a simple example of model specification.

If we decide to use the circular form, we must also select a value for the radius
(which is the earth-sun distance in the model). This radius specifies which circle
(out of the many possible circles) to use as a representation of the earth’s orbit
and is an example of a model parameter. The process of selecting the “best” radius
is an example of model fitting, and the circle that results is sometimes called the
fitted model (although the latter term is sometimes used to refer to the model form
instead). There are two important relations between a set of data and a model fit
to those data. First, there is “distance” from the fitted model to the data; second,
there is “resistance” or “stability” of the fitted model, which is the degree to which
the parameter estimates change when the data themselves are changed.

Depending on our accuracy requirements, we may have on hand several sim-
plified pictures of reality and hence several candidate models. At best, our choice
might require a trade-off between simplicity and accuracy, as in the preceding
example. There is an old dictum (often referred to as “Occam’s razor”) that one
should not introduce needless complexity. According to this dictum, if we need
only two percent accuracy in predicting the earth’s distance from the sun, then we
should not bother with the ellipse model and instead use the constant distance
derived from the circle model.

There is a more subtle benefit from this advice than avoiding needless mental
exertion. Suppose we are given two models, one (the more complex) containing the
other (the more simple) as a special case, and some data with which to fit the two
models. Then the more complex model will be able to fit the available data more
closely than the simpler model, in the sense that the predictions from the more
complex model will (on average) be closer to what was seen in the data than will
the predictions from the simpler model. This is so in the above example because
the ellipse contains the circle as a special case. Nonetheless, there is a penalty for
this closeness to the data: The predictions obtained from the more complex model
tend to be less stable than those obtained from the simpler model.

Consider now the use of the two different model forms to predict events outside
of the data set to which the models were fit. An example would be forecasting the
earth’s distance from the sun; another would be predicting the incidence of AIDS
five years in the future. Intuitively, we might expect that if one model is both closer
to the data and more stable than the other, that model will give more accurate
predictions. The problem is that the choice among models is rarely so clear-cut:
Usually, one model will be closer to the data, while the other will be more stable,
and it will be difficult to tell which will be more accurate. This is one dilemma we
often face in a choice between a more complex and simpler model.

To summarize, model specification is the process of selecting a model form,
while model fitting is the process of using data to estimate the parameters in
a model form. There are many methods of model fitting, and the topic is so vast
and technical that we will only superficially outline a few key elements. Nearly all
commercial computer programs are based on one of just a few fitting methods, so
that nearly all users (statisticians as well as epidemiologists) are forced to base their
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analyses on the assumptions of these methods. We will briefly discuss specification
and fitting methods below.

Background Example 3.3.2

The following epidemiologic example will be used at various points to illustrate
specific models. At the time of this writing, there is a controversy over whether
women with no history of breast cancer but thought to be of high risk (due to
family history and perhaps other factors) should be given the drug tamoxifen as
a prophylactic regimen. Current evidence suggests that tamoxifen might prevent
breast cancer but also cause or promote endometrial and liver cancer.

One measure of the net impact of tamoxifen prophylaxis up to a given age is
the change in risk of death by that age. Suppose the regressand Y is an indicator of
death by age 70 (Y = 1 for dead, 0 for alive). The regressors X include

X1 = years of tamoxifen therapy,

X2 = age (in years) at start of tamoxifen therapy,

X3 = age at menarche,

X4 = age at menopause,

X5 = parity.

The target population is American women born during 1945–1950 who survive to
age 50 and do not use tamoxifen before that age. If tamoxifen is not taken during
follow-up, we set age at tamoxifen start (X2) to 70 because women who start at
70 or later and women who never take tamoxifen have the same exposure history
during the age interval under study.

In this example, the regression E(Y |X = x) is just the average risk, or incidence
proportion, of death by age 70 among women in the target population who have
X = x. Therefore, we will write R(x) as a shorthand for E(Y |X = x). We will
also write R for the crude (overall) average risk E(Y), R(x1) for the average risk
E(Y |X1 = x1) in the subpopulation defined by having X1 = x1 (without regard to
the other variables), and so on.

Vacuous Models 3.3.3

A model so general that implies nothing at all, but simply re-expresses the overall
average risk R in a different notation, is

E(Y) = R = α , 0 < α < 1 . (3.1)

(this model does exclude R = 0 or 1, but it allows R to be arbitrarily close to 0
or 1, so this exclusion is of no practical consequence). There is only one regression
parameter (or coefficient) α in this model, and it corresponds to the average risk
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in the target population. A model such as model (3.1) that has no implication (i.e.,
that imposes no restriction or constraint) is said to be vacuous.

Two models are said to be equivalent if they have identical implications for the
regression. A model equivalent to model (3.1) is

E(Y) = R = exp(α) , α < 0 . (3.2)

This model has no implication. In this model, α is the natural logarithm of the
overall average risk:

α = ln(R) .

Another model equivalent to models (3.1) and (3.2) is

E(Y) = R = expit(α) , (3.3)

where expit(α) is the logistic transform of α, defined as

expit(α) =
exp(α)

1 + exp(α)
.

Again,model (3.3)hasno implication.Now,however, theparameterα inmodel (3.3)
is the logit (log odds) of the overall average risk:

α = ln

(
R

1 − R

)
= logit(R) .

For an introduction of risk measures in general see Chap. I.2 of this handbook and
Chap. 3 of Rothman and Greenland (1998).

Constant Models3.3.4

In comparing the complexity and implications of two models A and B, we say that
model A is more general, more flexible, or more complex than model B, or that
A contains B, if all the implications of model A are also implications of model B,
but not vice-versa (that is, if B imposes some restrictions beyond those imposed
by A). Other ways of stating this relation are that B is simpler, stronger, or stricter
than A, B is contained or nested within A, or B is a special case of A. The following
model is superficially similar to model (3.1), but is in fact much more strict:

E
(
Y |X1 = x1

)
= R(x1) = α (3.4)

for all x1. This model implies that the average risks of the subpopulations defined
by years of tamoxifen use are identical. The parameter α represents the common
value of these risks. This model is called a constant regression because it allows no
variation in average risks across levels of the regressor. To see that it is a special
case of model (3.1), note that E(Y), the overall average, is just an average of all the
X1-specific averages E(Y |X1 = x1). Hence, if all the X1-specific averages equal α, as
in model (3.4), then the overall average must equal α as well, as in model (3.1).
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The following two models are equivalent to model (3.4):

R(x1) = exp(α) , (3.5)

which can be rewritten

ln [R(x1)] = α ,

and

R(x1) = expit(α) = eα|(1 + eα) , (3.6)

which can be rewritten

logit [R(x1)] = α .

In model (3.5), α is the common value of the log risks ln[R(x1)], while in model (3.6),
a is the common value of the logits, logit[R(x1)]. Each of the equivalent models
(3.4)–(3.6) is a special case of the more general models (3.1)–(3.3).

A constant regression is of course implausible in most situations. For example,
age is related to most health outcomes. In the above example, we should expect
the average death risk to vary across the subgroups defined by age at start (X2).
There is an infinitude of ways to model these variations. The problem of selecting
a useful model from among the many choices is discussed below. For now, we
only describe some of the more common choices, focusing on models for average
risks (incidence proportions), incidence odds, and person-time incidence rates.
The models for risks and odds can also be used to model prevalence proportions
and prevalence odds.

Linear Risk Models 3.3.5

Consider the model

R(x1) = α + β1x1 . (3.7)

This model allows the average risk to vary across subpopulations with different
values for X1, but only in a linear fashion. The model implies that subtracting the
average risk in the subpopulation with X1 = x1 from that in the subpopulation
with X1 = x1 + 1 will always yield β1, regardless of what x1 is. Under model (3.7),

R(x1 + 1) = a + β1(x1 + 1)

and

R(x1) = α + β1x1 ,

so

R(x1 + 1) − R(x1) = β1 .
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Thus, in our example, β1 represents the difference in risk between the subpopula-
tion defined by having X1 = x1 + 1 and that defined by having X1 = x1. The model
implies that this difference does not depend on the reference level x1 for X1, used
for the comparison.

Model (3.7) is an example of a linear risk model. It is a special case of model (3.1);
it also contains model (3.4) as a special case (model (3.4) is the special case
of model (3.7) in which β1 = 0 and so average risks do not vary across levels
of X1). Linear risk models (such as model (3.7)) are easy to understand, but have
a severe technical problem that makes them difficult to fit in practice: There are
combinations of α and β1 that would produce impossible values (less than 0 or
greater than 1) for one or more of the risks R(x1). Several models partially or wholly
address this problem by transforming the linear term α + β1x1 before equating it
to the risk. We will study two of these models below.

Recentering3.3.6

Under model (3.7),

R(0) = α + β × 0 = α ,

so α represents the average risk for the subpopulation with X1 = 0. In the present
example, 0 is a possible value for X1 (tamoxifen) and so this interpretation of α
presents no problem. Suppose, however, we modeled X3 (age at menarche) instead
of X1:

R(x3) = α + β3x3 .

Because age at menarche cannot equal zero, α would have no meaningful inter-
pretation in this model. In order to avoid such interpretational problems, it is
a useful practice to recenter a variable for which zero is impossible (such as X3)
by subtracting some frequently observed value from it before putting it in the
model. For example, age 13 is a frequently observed value for age at menarche. We
can redefine X3 to be “age at menarche minus 13 years”. With this redefinition,
R(x3) = α + β3x3 refers to a different model, one in which R(0) = α represents the
average risk for women who were age 13 at menarche. We will later see that such
recentering is advisable when using any model, and is especially important when
product terms (“interactions”) are used in a model.

Rescaling3.3.7

A simple way of describing β1 in model (3.7) is that it is the difference in risk
per unit increase in X1. Often the units used to measure X1 are small relative
to exposure increases of substantive interest. Suppose, for example, that X1 was
diastolic blood pressure (DBP) measured in mm Hg; β1 would then be the risk
difference per mm increase in DBP. A 1 mm Hg increase would, however, be of
no clinical interest; instead, we would want to consider increases of at least 5 and
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possibly 10 or 20 mm Hg. Under model (3.7), the difference in risk per 10 mm Hg
increase would be 10β1. If we wanted to have β1 represent the difference in risk per
10 mm Hg, we need only redefine X1 as DBP divided by 10; X1 would then be DBP
in cm Hg.

Division of a variable by a constant, as just described, is sometimes called
rescaling of the variable. Such rescaling is advisable whenever it changes the mea-
surement unit to a more meaningful value. Unfortunately, rescaling is often done
in a way that makes the measurement unit less meaningful, by dividing the variable
by its sample standard deviation (SD). The sample SD is an irregular unit unique to
the study data, and depends heavily on how subjects were selected into the analysis.
For example, the SD of DBP might be 12.7 mm Hg in one study and 15.3 mm Hg in
another study. Suppose each study divided DBP by its SD entering it in model (3.7).
In the first study β1 would refer to the change in risk per 12.7 mm Hg increase
in DBP, whereas in the second study β1 would refer to the change in risk per
15.3 mm Hg. The rescaling would thus have rendered the coefficients interpretable
only in peculiar and different units, so that they could not be compared directly to
one another or to coefficients from other studies.

We will later see that rescaling is even more important when product terms are
used in a model. We thus recommend that rescaling be done using simple and easily
interpreted constants for the divisions. Methods that involve division by sample
SDs (such as transformations of variables to Z-scores), however, should be avoided.

Exponential Risk Models 3.3.8

Consider the following model:

R(x1) = exp
(
α + β1x1

)
. (3.8)

Since the exponential function (exp) is always positive, model (3.8) will produce
positive R(x1) for any combination of α + β1. Model (3.8) is sometimes called
an exponential risk model. It is a special case of the vacuous model (3.2); it also
contains the constant model (3.5) as the special case in which β1 = 0.

To understand the implications of the exponential risk model, we can recast it
in an equivalent form by taking the natural logarithm of both sides:

ln
[
R
(
x1

)]
= ln

[
exp

(
α + β1x1

)]
= α + β1x1 . (3.9)

Model (3.9) is often called a log-linear risk model. The exponential|log-linear
model allows risk to vary across subpopulations defined by X1, but only in an
exponential fashion. To interpret the coefficients, we may compare the log risks
under model (3.9) for the two subpopulations defined by X1 = x1 + 1 and X1 = x1:

ln
[
R
(
x1 + 1

)]
= α + β1

(
x1 + 1

)
and

ln
[
R
(
x1

)]
= α + β1x1 ,
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so

ln
[
R
(
x1 + 1

)]
− ln

[
R
(
x1

)]
= ln

[
R
(
x1 + 1

)
/R
(
x1

)]
= β1 .

Thus, under models (3.8) and (3.9), β1 represents the log risk ratio comparing the
subpopulation defined by having X1 = x1 +1 and that defined by X1 = x1, regardless
of the chosen reference level x1. Also, ln[R(0)] = α + β × 0 = α if X1 = 0; thus,
α represents the log risk for the subpopulation with X1 = 0 (and so is meaningful
only if X1 can be zero).

We can derive another (equivalent) interpretation of the parameters in the
exponential risk model by noting that

R
(
x1 + 1

)
= exp

[
α + β1

(
x1 + 1

)]
and

R
(
x1

)
= exp

(
α + β1x1

)
so

R
(
x1 + 1

)/
R
(
x1

)
= exp

[
α + β1

(
x1 + 1

)
−
(
α + β1x1

)]
= exp

(
β1

)
.

Thus, under models (3.8) and (3.9), β1 represents the ratio of risks between the
sub-populations defined by X1 = x1 +1 and X1 = x1, and this ratio does not depend
on the reference level x1 (because x1 does not appear in the final expression for the
risk ratio). Also, R(0) = exp(α + β × 0) = eα, so eα represents the average risk for
the subpopulation with X1 = 0.

As with linear risk models, exponential risk models have the technical problem
that some combinations of α and β1 will yield risk values greater than 1, which are
impossible. This will not be a practical concern, however, if all the fitted risks and
their confidence limits fall well below 1.

Logistic Models3.3.9

Neither linear nor exponential risk models can be used to analyze case-control data
if no external information is available to allow estimation of risks in the source
population, whereas the following model can be used without such information:

R
(
x1

)
= expit

(
α + β1x1

)
=

exp
(
α + β1x1

)
1 + exp

(
α + β1x1

) . (3.10)

This model is called a logistic risk model, after the logistic function (expit) in
the core of its definition. Because the range of the logistic function is between 0
and 1, the model will only produce risks between 0 and 1, regardless of the values
for α, β1, and x1. The logistic model is perhaps the most commonly used model
in epidemiology, so we examine it in some detail. Model (3.10) is a special case
of model (3.3), but unlike model (3.3) it is not vacuous because it constrains the
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X1-specific risks to follow a particular (logistic) pattern. The constant model (3.6)
is the special case of the logistic model in which β1 = 0.

To understand the implications of the logistic model, it is helpful to recast it as
a model for the odds. First, note that, under the logistic model (3.10),

1 − R
(
x1

)
= 1 −

exp
(
α + β1x1

)
1 + exp

(
α + β1x1

) =
1

1 + exp
(
α + β1x1

) .

Since R(x1)|[1 − R(x1)] is the odds, we divide each side of (3.10) by the last term
and find that, under the logistic model, the odds of disease O(x1) when X1 = x1 is

O
(
x1

)
=

R
(
x1

)
1 − R

(
x1

) =

exp
(
α + β1x1

)
1 + exp

(
α + β1x1

)
1

1 + exp
(
α + β1x1

) = exp
(
α + β1x1

)
. (3.11)

This equation shows that the logistic risk model is equivalent to an exponential
odds model.

Taking logarithms of both sides of (3.11), we see that the logistic model is also
equivalent to the log-linear odds model

ln
[
O
(
x1

)]
= α + β1x1 . (3.12)

Recall that the logit of risk is defined as the log odds:

logit
[
R
(
x1

)]
= ln

[
R
(
x1

)
/
(
1 − R(x1)

)]
= ln

[
O
(
x1

)]
.

Hence, from (3.12), the logistic model can be rewritten in one more equivalent form,

logit
[
R
(
x1

)]
= α + β1x1 . (3.13)

This equivalent of the logistic model is often called the logit-linear risk model, or
logit model.

As a general caution regarding terms, note that “log-linear model” can refer
to any of several different models, depending on the context: In addition to the
log-linear risk model (3.9) and the log-linear odds model (3.12) given above, there
are also log-linear rate models and log-linear incidence-time models, which will
be described below.

We can derive two equivalent interpretations of the logistic model parameters.
First,

ln
[
O
(
x1 + 1

)]
= α + β

(
x1 + 1

)
,

ln
[
O
(
x1

)]
= α + β1x1 ,

so

ln
[
O
(
x1 + 1

)]
− ln

[
O
(
x1

)]
= ln

[
O
(
x1 + 1

)
/O

(
x1

)]
= β1 .
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Thus, under the logistic model (3.10), β1 represents the log odds ratio comparing
the subpopulations with X1 = x1 + 1 and X1 = x1. Also, ln[O(0)] = α + β1 × 0 = α;
thus, α is the log odds (logit) for the subpopulation with X1 = 0 (and so is
meaningful only if X1 can be zero). Equivalently, we have

O
(
x1 + 1

)/
O
(
x1

)
= exp

(
β1

)
and

O(0) = exp(α) ,

so that exp(β1) is the odds ratio comparing the subpopulations with X1 = x1 + 1
and X1 = x1, and exp(α) is the odds for the subpopulation with X1 = 0.

Logistic models may be applied to case-control studies by re-interpreting the
odds O(x) as the case-control ratio in the study; see Breslow and Day (1980, Chap. 6)
or Rothman and Greenland (1998, pp 416–422) for details. For an introduction to
case-control studies we refer to Chap. I.6 of this handbook and Chap. 7 of Rothman
and Greenland (1998).

A Graphical Example3.3.10

Suppose a particular cohort has a 1-year risk of a cardiovascular event that is 0.02 at
age 50 rising to 0.32 at age 80, an absolute risk increase of 0.30, a ratio risk increase
of 0.32|0.02 = 16-fold, and a ratio odds increase of (0.32|0.68)|(0.02|0.98) = 23.06.
The average annual absolute risk increase is 0.30|30 = 0.01, but the way this
increase is distributed over ages could be quite different under different models.

If the risk increase is linear in age and x is age, the linear model for the risk from
age 51 to 80 would be R(x) = α1 +β1(x−50). Solving R(50) = 0.02 and R(80) = 0.32
we get α1 = 0.02 and β1 = 0.30|30 year = 0.01| year, a constant absolute increase in
risk of 0.01 for each of age.

Now suppose the increase is exponential rather than linear. The loglinear form
of the exponential model would be ln[R(x)] = α1 +β1(x −50). Solving R(50) = 0.02
and R(80) = 0.32 we now get α1 = ln(0.02) = −3.912 and β1 = ln(16)|30 year =
0.09242| year, corresponding to a constant proportionate risk increase of e0.09242 =
1.097 or about 9.7% for each year of age. This corresponds to an absolute risk
increase of only about 0.002 going from age 50 to 51, but of about 0.03 (15 times
more) going from age 79 to 80.

Finally, suppose the increase is logistic. The logit version of the logistic model
would be logit[R(x)] = α1 + β1(x − 50). Solving R(50) = 0.02 and R(80) = 0.32
we now get α1 = logit(0.02) = −3.892 and β1 = ln(23.06)|30 years = 0.1046| years,
corresponding to a constant proportionate odds increase of e0.1046 = 1.11 or about
11% for each year of age. This corresponds to an absolute risk increase of only
about 0.002 going from age 50 to 51, but of about 0.022 (11 times more) going from
age 79 to 80.

Figure 3.1a gives plots of the risks from the above three models from age 50 to 80.
The linear model produces a straight line, whereas the exponential model produces
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Figure 3.1. (a) Risks from linear, exponential and logistic model from age 50 to age 80 with a 1-year

risk of 0.02 at age 50 and 0.32 at age 80; (b) risks from linear, exponential and logistic model

extrapolated to age 110 with a 1-year risk of 0.02 at age 50 and 0.32 at age 80

an exponential curve; these shapes will always hold when x is not transformed. The
logistic curve is between the two, but is much closer in shape to the exponential for
risks below 0.25, and almost the same as the exponential for risks below 10%. As
shown in Fig. 3.1b as a projection of the above example, the logistic curve gradually
straightens out and is close to linear for risks between 40% and 60%; above that
point it begins to level off, becoming nearly flat (horizontal) as it approaches 1.
In contrast, the linear and exponential curves will eventually continue on above 1,
and so produce impossible values for risks (which is a problem if the actual risks
could get large). For negative β1 the curves would instead go downward from left
to right.

Other Risk and Odds Models 3.3.11

In addition to those given above, several other risk models are occasionally men-
tioned but rarely used in epidemiology. The linear odds model is obtained by
replacing the average risk by the odds in the linear risk model:

O(x1) = α + β1x1 . (3.14)

Here, β1 is the odds difference between subpopulations with X1 = x1 + 1 and
X1 = x1, and α is the odds for the subpopulation with X1 = 0. Like risk, the odds
cannot be negative; unfortunately, some combinations of α and β1 in model (3.14)
will produce negative odds. As a result, this model (like the linear risk model) is
difficult to fit and gives unsatisfactory results in many settings.

Another model replaces the logistic transform (expit) in the logistic model
(3.10) by the inverse of the standard normal distribution, which also has a range
between 0 and 1. The resulting model, called a probit model, has seen much use in
bioassay. Its absence from epidemiologic use may stem from the fact that (unlike
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the logistic) its parameters have no simple epidemiologic interpretation, and the
model appears to have no general advantage over the logistic in epidemiologic
applications.

Finally, several attempts have been made to use models that are mixtures of
different basic models, especially for multiple regressions (discussed below). These
mixtures have various drawbacks, including difficulties in fitting the models and
interpreting the parameters (Moolgavkar and Venzon 1987). We thus do not discuss
them here.

Rate Models3.3.12

Instead of modeling average risks, we could model person-time incidence rates. If
we let Y denote the rate observed ina study subpopulation (so that Y is theobserved
number of cases per unit of observed person-time), the regression E(Y |X = x)
represents the average number of cases per unit of person-time in the target
subpopulation defined by X = x. We will denote this expected rate or “average
rate” by I(x).

Most rate models are analogues of risk and odds models. For example, the
model

I(x1) = E(Y |X1 = x1) = α + β1x1 (3.15)

is a linear rate model, analogous to (but different from) the linear risk and odds
models (3.7), (3.14). This rate model implies that the difference in average rates
between subpopulations with X1 = x1 + 1 and X1 = x1 is β1, regardless of x1.
Also, α is the average rate for the subpopulation with X1 = 0. This model can
be problematic, because some combinations of α and β1 in model (3.15) would
produce negative rate values, which are impossible.

To prevent the latter problem, most rate modeling begins with an exponential
rate model such as

I(x1) = exp(α + β1x1) . (3.16)

Because the exponential (exp) can never be negative, this model will not produce
negative rates, regardless of α, β1, or x1. The model is equivalent to the log-linear
rate model

ln [I(x1)] = α + β1x1 . (3.17)

The parameter β1 in models (3.16) and (3.17) is the log of the rate ratio com-
paring the subpopulation with X1 = x1 + 1 to the subpopulation with X1 = x1,
regardless of x1; hence, exp(β1) is the corresponding rate ratio I(x1 + 1)|I(x1). Also,
α is the log of the rate for the subpopulation with X1 = 0; hence, exp(α) is the
average rate I(0) when X1 = 0. The exponential rate model (3.16) is analogous
to, but different from, the exponential risk model (3.8) and the exponential odds
model (3.11).
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Incidence-Time and Hazard Models 3.3.13

We can also model the average time to occurrence of an event, starting from some
designated zero time such as birth (in which case “time” is age), start of treatment,
or some calendar date. These are called incidence-time, waiting-time, failure-time,
or survival-time models (cf. Chap II.4 of this handbook). Let T stand for time of
the event measured from zero. One approach to incidence time regression is to use
a linear model for log incidence time, such as

E[ln(T)|X1 = x1] = α − β1x1 . (3.18)

Because T is always positive, ln(T) is always defined. In this model, α is the
average log incidence time in the subpopulation with X1 = 0, and −β1 is the
difference in average log incidence times when comparing the subpopulation with
X1 = x1 + 1 to the subpopulation with X1 = x1 (regardless of the value x1).
Model (3.18) is a generalization of the basic accelerated-life model (Cox and Oakes
1984).

Note that the sign of β1 in the model is reversed from its sign in earlier models.
This reversal is done so that, if the outcome event at T is undesirable, then as in
earlier models positive values of β1 will correspond to harmful effects from in-
creasing X1, and negative values will correspond to beneficial effects. For example,
under the model, if T is death time and β1 is positive, an increase in X1 will be
associated with earlier death.

Another generalization of the basic accelerated-life model, similar but not iden-
tical to model (3.18), is the log-linear model for expected incidence time

ln[E(T|X1 = x1)] = α − β1x1 . (3.19)

Model (3.19) differs from model (3.18) because the log of an average is greater
than the average of the logs (unless T does not vary). Model (3.19) can be rewritten

E(T|X1 = x1) = exp(α − β1x1) = exp(−β1x1)eα ,

= exp(−β1x1)T0 ,

where T0 = E(T|X1 = 0) = eα. Under model (3.19) eα is the average incidence time
in the subpopulation with X1 = 0, and e−β1 is the ratio of average incidence times
in the subpopulation with X1 = x1 + 1 and the subpopulation with X1 = x1. As with
model (3.18) the sign of β1 is negative so that positive values of β1 will correspond
to harmful effects.

More common approaches to modeling incidence times impose a model for
the risk of the event up to each point in time, or for the rate of the event at each
point in time. The most famous such model is the Cox model, also known as the
proportional hazards model. We can give an approximate description of this model
as follows: Suppose we specify a time span ∆t that is small enough so that the risk
of having the event in any interval t to t + ∆t among those who survive to t without
the event is very small. The Cox model then implies that the rates in any such short
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interval will follow an exponential model like (3.16) with α but not β1 allowed to
vary with time t.

If we write I(t; x1) for the average rate in the interval t to t + ∆t among persons
who survive to t and have X1 = x1, the Cox model implies that

I(t; x1) ≈ exp(αt + β1x1) . (3.20)

Under the model, the approximation (≈) improves as ∆t gets smaller. Note
that the intercept at may vary with time, but in this simple Cox model the X1-
coefficient β1 is assumed to remain constant. This means that, at any time t, the
rate ratio comparing subpopulations with X1 = x1 + 1 and X1 = x1 will be

I(t; x1 + 1)|I(t; x1) ≈ exp[αt + β1(x1 + 1)]| exp(αt + β1x1) = exp(β1) ,

so that β1 is the log rate ratio per unit of X1, regardless of either the reference
level x1 or the time t at which it is computed.

Under the Cox model (3.20) the rate at time t for the subpopulation with X1 = 0
is given by I(t; 0) = exp(αt). If we denote this “baseline” rate by λ0(t) instead of
exp(αt), we have

I(t; x1) ≈ exp(αt + β1x1) = exp(αt + β1x1) = λ0(t) exp(β1x1) = exp(β1x1)λ0(t) .

The last expression is the standard form of the model given in most textbooks.
The term “Cox model” has become fairly standard, although a special case of the
model was proposed by Sheehe (1962) some 10 years before Cox (1972).

The approximate form of the Cox model (3.20) may be seen as an extension
of the exponential rate model (3.16) in which the rates may vary over time. In
statistical theory, the assumption is made that, at each time t, the rate I(t; x1)
approaches a limit λ(t; x1) as ∆t goes to zero. This limit is usually called the hazard
or intensity of the outcome at time t. The Cox model is then defined as a model for
these hazards,

λ(t; x1) = exp(β1x1)λ0(t) .

In epidemiologic studies, these hazards are purely theoretical quantities; thus,
it is important to understand the approximate forms of the model given above and
what those forms imply about observable rates.

The Cox model may be extended to allow X1 to vary over time. Let us write X1(t)
as an abbreviation for “the exposure as of time t” and x1(t) for the actual numerical
valueof X1(t) at time t. Then theCox model with time-dependent covariates implies
that the incidence rate at time t in the subpopulation that has exposure level x1(t)
at time t is

I[t; x1(t)] ≈ exp[β1x1(t)]λ0(t) . (3.21)

This model may be the most widely used model for time-dependent expo-
sures. Usually, a time-dependent exposure X1(t) is not defined as the actual
amount at time t, but instead is some cumulative and lagged index of expo-
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sure up to t. For example, if time is measured in months and exposure is cu-
mulative tamoxifen lagged 3 months, X1(t) would mean “cumulative amount
of tamoxifen taken up to month t − 3” and x1(t) would be a value for this
variable.

There are biases that can arise in use of Cox models to estimate effects of time-
dependent exposures. These biases and alternative models are described in Robins
et al. (1992) and Robins and Greenland (1994).

Trend Models: Univariate Exposure Transforms 3.3.14

Consider again the linear risk model (3.7). If this model were correct, a plot
of average risk across the subpopulations defined by X1 (that is, a plot of risk
against X1) would yield a line. Ordinarily, however, there is no compelling reason
to think the model is correct, and we might wish to entertain other possible models
for the trend in risk across exposure levels. We can generate an unlimited variety
of such models by transforming exposure, that is, by replacing X1 in the model by
some function of X1.

To illustrate, we could replace years exposed in model (3.7) by its logarithm, to
get

R(x1) = α + β1 ln(x1) . (3.22)

This is still called a linear risk model, because a plot of average risk against
the new regressor ln(X1) would yield a line. But it is a very different model from
model (3.7) because if model (3.22) were correct, a plot of average risk against
years exposed (X1) would yield a logarithmic curve rather than a line. Such a curve
starts off very steep for X1 < 1, but levels off rapidly beyond X1 > 1. One technical
problem can arise in using the logarithmic transform: It is not defined if X1 is
negative or zero. If the original exposure measurement can be negative or zero, it
is common practice to add a number c to X1 that is big enough to insure X1 + c is
always positive. The resulting model is

R(x1) = α + β1 ln(x1 + c) . (3.23)

The shape of the curve represented by this model (and hence results derived
using the model) can be very sensitive to the value chosen for c, especially when
the values of X1 may be less than 1. Frequently, c is set equal to 1, although there is
usually no compelling reason for this choice.

Among other possibilities for exposure transforms are simple power curves of
the form

R(x1) = α + β1x
p
1 , (3.24)
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where p is some number (typically 1|2 or 2) chosen in advance according to some
desired property. For example, with X1 as years exposed, use of p = 1|2 yields the
square-root model

R(x1) = α + β1x1
1|2 ,

which produces a trend curve that levels off as X1 increases above zero. In contrast,
use of p = 2 yields the simple quadratic model

R(x1) = α + β1x2
1 ,

which produces a trend that rises more and more steeply as X1 increases above
zero. One technical problem can arise when using the power model (3.24). It is not
defined if p is fractional and X1 can be negative. To get around this limitation, we
may add some number c to X1 that is big enough to insure X1 + c is never negative,
and then use (X1 + c)p in the model; again, however, the result may be sensitive to
choice of c.

The trend implications of linear and exponential models are vastly different, and
hence the implications of exposure transforms are also different. Consider again
the exponential risk model (3.8). If this model were correct, a plot of average risk
against X1 would yield an exponential curve, rather than a line. If β1 is positive, this
curve starts out slowly but rises more and more rapidly as X1 increases; it eventually
rises more rapidly than does any power curve (3.24). Such rapid increase is often
implausible and we might wish to use a slower-rising curve to model risk.

One means of moderating the trend implied by an exponential model is to
replace x1 by a fixed power x

p
1 with 0 < p < 1, for example

R(x1) = exp
(
α + β1x

1|2
1

)
.

Another approach is to take the logarithm of exposure. This transform produces
a new model:

R(x1) = exp[α + β1 ln(x1)] = exp(α) exp[β1 ln(x1)]

= eα exp[ln(x1)]β1 = eαx
β1
1 . (3.25)

A graph of risk against exposure under this model produces a power curve, but
now (unlike (3.24)), the power is the unspecified (unknown) coefficient β1 instead
of a prespecified value p, and the multiplier of the exposure power is eα (which must
be positive) instead of β1. Model (3.25) might thus appear more appropriate than
model (3.24) when we want the power of X1 to appear as an unknown coefficient β1

in the model, rather than as a pre-specified value p. As earlier, however, X1 must
always be positive in order to use model (3.25) otherwise, one must add a constant c
to it such that X1 + c is always positive.

When β1 is negative in model (3.25) risk declines more and more gradually
across increasingly exposed subpopulations. For example, if β1 = −1, then under
model (3.25) R(x1) = eαx−1

1 = eα|x1, which would imply risk declines 50% (from
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eα|1 to eα|2) when going from X1 = 1 to X1 = 2, but declines less than 10% (from
eα|10 to eα|11) when going from X1 = 10 to X1 = 11.

The exposure transforms and implications just discussed carry over to the
analogous models for odds and rates. For example, we can modify the logistic
model (which is an exponential odds model) by substituting the odds O(x1) for
the risk R(x1) in models (3.22) to (3.25). Similarly, we can modify the rate models
by substituting the rate I(x1) for R(x1). Each model will have implications for the
odds or rates analogous to those described above for the risk; because the risks,
odds, and rates are functions of one another (see Rothman and Greenland 1998,
Chap. 3), each model will have implications for other measures as well.

Any trend in the odds will appear more gradual when transformed into a risk
trend. To see this, note that

R(x1) = O(x1)|[1 + O(x1)] < O(x1) ,

and hence

O(x1)|R(x1) = 1 + O(x1) .

This ratio of odds to risk grows as the odds (and the risks) get larger. Thus,
the logistic risk model, which is an exponential odds model, implies a less-than-
exponential trend in the risk. Conversely, any trend in the risks will appear steeper
when transformed into an odds trend. Thus, the exponential risk model implies
a greater-than-exponential trend in the odds, although when risks are uniformly
low (under 10% for all possible X1 values), the risks and odds will be close and
so there will be little difference between the shape of the curves produced by
analogous risk and odds models.

The relation of risk and odds trends to rate trends is more complex in general,
but in typical applications follows the simple rule that rate trends tend to fall
between the less steep riskandmoresteepodds trends.Forexample, anexponential
rate model typically implies a less than exponential risk trend but more than
exponential odds trend. To see why these relations can be reasonable to expect,
recall that, if incidence is measured over a span of time ∆t in a closed cohort,
then R(x1) < I(x1)∆t < O(x1). When the risks are uniformly low, we obtain
R(x1)

.= I(x1)∆t
.= O(x1) (see Rothman and Greenland 1998, Chap. 3), and so there

will be little difference in the curves produced by analogous risk, rate, and odds
models.

Interpreting Models After Transformation 3.3.15

One drawback of models with transformed regressors is that the interpretation
of the coefficients depends on the transformation. As an example, consider the
model (3.25) which has ln(x1) in place of x1. Under this model, the risk ratio for
a one-unit increase in X1 is

R(x1 + 1)|R(x1) = eα(x1 + 1)β1 |eα(x1)β1 = [(x1 + 1)|x1]
β1 .



652 Sander Greenland

which will depend on the value x1 used as the reference level: If β1 equals 1 and
x1 is 1, the risk ratio is 2, but if β1 equals 1 and x1 is 2, the ratio is 1.5. Here,
β1 is the power to which x1 is raised, and so determines the shape of the trend.
The interpretation of the intercept α is also altered by the transformation. Under
model (3.25), R(1) = eα1β1 = eα, thus, α is the log risk when X1 = 1, rather than
when X1 = 0, and so is meaningful only if 1 is a possible value for X1.

As a contrast, consider again the model R(x1) = exp
(
α + β1x

1|2
1

)
. Use of x

1|2
1

rather than x1 moderates the rapid increase in the slope of the exponential dose-
response curve, but also leads to difficulties in coefficient interpretation. Under
the model, the risk ratio for a one-unit increase in X1 is

exp
[
α + β1(x1 + 1)1|2

]/
exp

(
α + β1x

1|2
1

)
= exp

{
β1

[
(x1 + 1)1|2 − x

1|2
1

]}
.

Here, β1 is the log risk ratio per unit increase in the square root of X1, which is
rather obscure in meaning. Interpretation may better proceed by considering the
shape of the curve implied by the model, for example, by plotting exp

(
α + β1x

1|2
1

)
against possible values of X1 for several values of β1. (The intercept α is less
important in this model, because it only determines the vertical scale of the curve,
rather than its shape.) Such plotting is often needed to understand and compare
different transforms.

Multiple Regression Models3.4

Suppose now we wish to model the full multiple regression E(Y |X = x). Each of
the previous models for the single regression E(Y |X1 = x1) can be extended to
handle this more general situation by using the following device: In any model for
the single regression, replace β1x1 by

β1x1 + β2x2 + … + βnxn . (3.26)

To illustrate the idea, suppose we wish to model average risk of death by age 70
across female subpopulations defined by

X1 = years of tamoxifen therapy,

X2 = age at start of tamoxifen use, and

X3 = age at menarche,

with X = (X1, X2, X3). Then the multiple linear risk model for R(x) is

R(x) = α + β1x1 + β2x2 + β3x3 ,
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while the multiple logistic risk model is

R(x) = expit(α + β1x1 + β2x2 + β3x3) .

If instead we wished to model the death rate, we could use the multiple linear
rate model

I(x) = α + β1x1 + β2x2 + β3x3

or a multiple exponential rate model

I(x) = exp(α + β1x1 + β2x2 + β3x3) .

Because (3.26) canbeclumsy towriteoutwhen thereare threeormore regressors
(n ≥ 3), several shorthand notations are in use. Let us write β for the vertical list
(column vector) of coefficients β1, … , βn. Recall that x stands for the horizontal
list (row vector) of values x1, … , xn. We will let xβ stand for β1x1 + … + βnxn. We
can then represent the multiple linear risk model by

R(x) = α + xβ = α + β1x1 + … + βnxn , (3.27)

the multiple logistic model by

R(x) = expit(α + xβ) , (3.28)

the multiple exponential rate model by

I(x) = exp(α + xβ) , (3.29)

and so on for all the models discussed earlier.

Relations Among Multiple-Regression Models 3.4.1

The multiple-regression models (3.27)–(3.29) are not more general than the single-
regression models given earlier, nor do they contain those models as special cases.
This is because they refer to entirely different subclassifications of the target popu-
lation: The single-regression models refer to variations in averages across subpop-
ulations defined by levels of just one variable; in contrast, the multiple-regression
models refer to variations across the much finer subdivisions defined by the levels
of several variables. For example, it is possible for R(x1) to follow the single-logistic
model (3.10) without R(x) following the multiple-logistic model (3.28) conversely,
it is possible for R(x) to follow the multiple-logistic model without R(x1) following
the single-logistic model.

The preceding point is often overlooked because the single-regression models
are often confused with multiple-regression models in which all regressor coef-
ficients but one are zero. The difference is, however, analogous to the differences
discussed earlier between the vacuous models (3.1)–(3.3) (which are so general as
to imply nothing) and the constant regression models (3.4)–(3.6) (which are so
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restrictive as to be unbelievable in typical situations). To see this, consider the
multiple-logistic model

R(x) = expit(α + β1x1) . (3.30)

The right side of this equation is the same as in the single-logistic model (3.10)
but the left side is crucially different: It is the multiple-risk regression R(x), instead
of the single-regression R(x1). Unlike model (3.10) model (3.30) is a special case of
the multiple-logistic model (3.28) the one in which β2 = β3 = … = βn = 0. Unlike
model (3.10) model (3.30) asserts that risk does not vary across subpopulations
defined by X1, X2, … , Xn except to the extent that X1 varies. This is far more strict
than model (3.28) which allows risk to vary with X2, … , Xn as well as X1 (albeit
only in a logistic fashion). It is also far more strict than model (3.10) which says
absolutely nothing about whether or how risk varies across subpopulations defined
by X2, … , Xn within specific levels of X1.

More generally, we must be careful to distinguish between models that refer
to different multiple regressions. For example, compare the two exponential rate
models:

I(x1, x2) = exp(α + β1x1 + β2x2) (3.31)

and

I(x1, x2, x3) = exp(α + β1x1 + β2x2) . (3.32)

These are different models. The first is a model for the regression of rates on X1

and X2 only, while the second is a model for the regression of rates on X1, X2, and
X3. The first model in no way refers to X3, while the second asserts that rates do
not vary across levels of X3 if one looks within levels of X1 and X2. Model (3.32) is
the special case of

I(x1, x2, x3) = exp(α + β1x1 + β2x2 + β3x3)

(the case in which β3 = 0), while model (3.31) is not, and this special case implies
model (3.31).

Many textbooks and software manuals fail to distinguish between models such
as models (3.31) and (3.32), and instead focus only on the appearance of the right-
hand side of the models. Most software fits the model that ignores other covariates
((3.31) in the above example) rather than the more restrictive model (3.32) when
requested to fit a model with only X1 and X2 as regressors. Note that if the less
restrictive model is inadequate, then the more restrictive model must also be
inadequate.

Unfortunately, if the less restrictive model appears adequate, it does not follow
that the more restrictive model is also adequate. For example, it is possible for
the model form exp(α + β1x1 + β2x2) to describe adequately the double regression
I(x1, x2) (which means it describes adequately rate variation across X1 and X2

when X3 is ignored), and yet at the same time describe poorly the triple regression
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I(x1, x2, x3) (which means that it describes inadequately rate variation across X1,
X2, and X3). That is, a model may describe poorly the rate variation across X1, X2,
and X3 even if it describes adequately the rate variation across X1 and X2 when X3

is ignored. The decision as to whether the model is acceptable should depend on
whether rate variation across X3 is relevant to the analysis objectives. For example,
if the objective is to estimate the effect of changes in X1 on the death rate, and X2

and X3 are both potential confounders (as in the tamoxifen example), we would
want the model to describe adequately rate variation across all three variables. But
if X3 is instead affected by the study exposure X1 (as when X1 is past estrogen
exposure and X3 is an indicator of current uterine bleeding), we would ordinarily
not want to include X3 in the regression model (because we would not want to
adjust our exposure effect estimate for X3).

Product Terms (Statistical Interactions) 3.4.2

Each model form described above has differing implications for measures of asso-
ciation derived from the models. Consider again the linear risk model with three
regressors X1, X2, and X3, and let x∗

1 and x1 be any two values for X1. Under the
model, the risks at X1 = x∗

1 and X1 = x1 and their difference RD when X2 = x2 and
X3 = x3 are

R
(
x∗

1 , x2, x3

)
= α + β1x∗

1 + β2x2 + β3x3 ,

R
(
x1, x2, x3

)
= α + β1x1 + β2x2 + β3x3 ,

RD = β1

(
x∗

1 − x1

)
.

Thus, the model implies that the risk difference between two subpopulations with
the same X2 and X3 levels depends only on the difference in their X1 levels. In other
words, the model implies that the risk differences for X1 within levels of X2 and X3

will not vary across levels of X2 and X3. Such an implication may be unacceptable,
in which case we can either modify the linear model or switch to another model.
A simple way to modify a model is to add product terms. For example, suppose we
want to allow the risk differences for X1 to vary across levels of X2. We then may
add the product of X1 and X2 to the model as a fourth variable. The risks and their
differences will then be

R
(
x∗

1 , x2, x3

)
= α + β1x∗

1 + β2x2 + β3x3 + γ12x∗
1x2 ,

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ12x1x2 , (3.33)

RD = β1(x∗
1 − x1) + γ12(x∗

1 − x1)x2 = (β1 + γ12x2)(x∗
1 − x1) . (3.34)

Under model (3.33), the risk difference for X1 = x∗
1 versus X1 = x1 is given

by (3.34), which depends on X2.
A model (e.g., (3.33)), that allows variation of the risk difference for X1 across

levels of X2 will also allow variation in the risk difference for X2 across levels of X1.



656 Sander Greenland

As an example, let x∗
2 and x2 be any two possible values for X2. Under model (3.33)

the risks at X2 = x∗
2 and X2 = x2 and their difference RD when X1 = x1, X3 = x3

are

R
(
x1, x∗

2 , x3

)
= α + β1x1 + β2x∗

2 + β3x3 + γ12x1x∗
2 ,

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ12x1x2 ,

RD = β2

(
x∗

2 − x2

)
+ γ12x1

(
x∗

2 − x2

)
= (β2 + γ12x1)

(
x∗

2 − x2

)
. (3.35)

Thus, under the model, the risk difference for X2 = x∗
2 versus X2 = x2 is given

by (3.35), which depends on X1. (3.34) and (3.35) illustrate how product terms
modify a model in a symmetric way. The term γ12x1x2 allows the risk differences
for X1 to vary with X2 and the risk differences for X2 to vary with X1.

If we have three regressors in a model, we have three unique two-way regressor
products (x1x2, x1x3, x2x3) that we can put in the model. More generally, with n re-

gressors, there are
(

n

2

)
pairs and hence

(
n

2

)
two-way products we can use. It is also

possible to add triple products (e.g., x1x2x3) or even more complex combinations
to the model, but such additions are rare in practice; notable exceptions are body
mass indices, such as kg|m2 (Michels et al. 1998). A model without product terms
is sometimes called a “main-effects only” model, and can be viewed as the special
case of a model with product terms (the special case in which all the product
coefficients γij are zero).

Consider next an exponential-risk model with the above three variables. Under
this model, the risks at X1 = x∗

1 and X1 = x1 and their ratio RR when X2 = x2,
X3 = x3 are

R
(
x∗

1 , x2, x3

)
= exp

(
α + β1x∗

1 + β2x2 + β3x3

)
,

R(x1, x2, x3) = exp(α + β1x1 + β2x2 + β3x3) ,

RR = exp
[
β1

(
x∗

1 − x1

)]
. (3.36)

Thus, the model implies that the risk ratio comparing two subpopulations with
the same X2 and X3 levels depends only on the difference in their X1 levels. In other
words, the model implies that the risk ratios for X1 will be constant across levels
of X2 and X3. If this implication is unacceptable, product terms can be inserted, as
with the linear model. These terms allow the risk ratios to vary in a limited fashion
across levels of other variables. The preceding discussion of product terms can be
applied to linear and exponential models in which the odds or rate replace the
risk. For example, without product terms, the logistic model implies that the odds
ratios for each regressor are constant across levels of the other regressors (because
the logistic model is an exponential odds model); we can add product terms to
allow the odds ratios to vary. Likewise, without product terms, the exponential
rate model implies that the rate ratios for each regressor are constant across levels
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of the other regressors; we can add product terms to allow the rate ratios to
vary.

Although product terms can greatly increase the flexibility of a model, the
type of variation allowed by product terms can be very limited. For example,
model (3.33) implies that raising X2 by one unit (i.e., comparing subpopulations
that have X2 = x2 + 1 instead of X2 = x2) will yield a risk difference for X1 of

[β1 + γ12(x2 + 1)](x∗
1 − x1) = (β1 + γ12x2)(x∗

1 − x1) + γ12(x∗
1 − x1) .

In other words, the model implies that shifting our comparison to subpopula-
tions that are one unit higher in X2 will change the risk difference for X1 in a linear
fashion, by an amount γ12(x∗

1 − x1), regardless of the reference values x1, x2, x3 of
X1, X2, X3.

Trends and Product Terms 3.4.3

Each of the above models forces or assumes a particular shape for the graph
obtained when average outcome (regression) is plotted against the regressors.
Consider again the tamoxifen example. Suppose we wished to plot how the risk
varies across subpopulations with different number of years exposed but with the
same age at start of exposure and the same age at menarche. Under the linear risk
model, this would involve plotting the average risk

R(x1, x2, x3) = α + βx1 + β2x2 + β3x3

against X1, while keeping X2 and X3 fixed at some values x2 and x3. In doing so, we
would obtain a line with an intercept equal to α+β2x2 +β3x3 and a slope equal to β1.
Whenever we changed X2 and X3 and replotted R(x) against X1, the intercept would
change (unless β2 = β3 = 0), but the slope would remain β1. Because lines with the
same slope are parallel, we can say that the linear risk model given above implies
parallel linear trends in risk with increasing tamoxifen (X1) as one moves across
subpopulations of different starting age (X2) and menarche age (X3). This means
that each change in X2 and X3 adds some constant (possibly negative) amount to
the X1 curve. For this reason, the linear risk model is sometimes called an additive
risk model.

If we next plotted risks against X2, we would get analogous results: The linear
risk model given above implies parallel linear relations between average risk and
X2 as one moves across levels of X1 and X3. Likewise, the model implies parallel
linear relations between average risk and X3 across levels of X1 and X2. Thus, the
linear model implies additive (parallel) relations among all the variables.

If we are unsatisfied with the linearity assumption but we wish to retain the
additivity (parallel-trend) assumption, we could transform the regressors. If we
are unsatisfied with the parallel-trend assumption, we can allow the trends to vary
across levels of other regressors by adding product terms to the model. For
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example, adding the product of X1 and X2 to the model yields model (3.33), which
can be rewritten

R(x1, x2, x3) = α + (β1 + γ12x2)x1 + β2x2 + β3x3 .

From this reformulation, we see that the slope for the line obtained by plotting
average risk against X1 while keeping X2, X3 fixed at x2, x3 would be β1 + γ12x2.
Thus, the slope of the trend in risk across X1 would vary across levels of X2 (if
γ12 ≠ 0), and so the trend lines for X1 would not be parallel. We also see that
γ12 is the difference in the X1-trend slopes between subpopulations with the same
X3-value but one unit apart in their X2-value.

An entirely different approach to producing nonparallel trends begins with an
exponential model. For example, under the exponential risk model (3.36) a plot of
average risk against X1 while keeping X2 and X3 fixed at x2 and x3 would produce an
exponential curve rather than a line. This exponential curve would have intercept
exp(α + β2x2 + β3x3). If, however, we changed the value of X2 or X3 and replotted
risk against X1, we would not obtain a parallel risk curve. Instead, the new curve
would be proportional to the old: A change in X2 or X3 multiplies the entire X1

curve by some amount. For this reason, the exponential model is sometimes called
a multiplicative risk model. If we were unsatisfied with this proportionality-of-
trends assumption, we could insert product terms into the model, which would
allow for certain types of nonproportional trends. Proportional trends in risk
appear parallel when plotted on a logarithmic vertical scale; when product terms
with nonzero coefficients are present, logarithmic trends appear nonparallel.

Analogous comments and definitions apply if we substitute odds or rates for
risks in the above arguments. For example, consider the multiple-logistic model
in the exponential-odds form:

O(x) = exp(α + β1x1 + β2x2 + β3x3) .

A plot of the disease odds O(x) against X1 while keeping X2 and X3 fixed would
produce an exponential curve; a plot of the log odds (logit) against X1 while
keeping X2 and X3 fixed would produce a line. If we changed the value of X2 or
X3 and replotted the odds against X1, we would obtain a new curve proportional
to the old; that is, the new odds curve would equal the old multiplied by some
constant amount. Thus, the logistic model is sometimes called a multiplicative-
odds model. For analogous reasons, the exponential rate model is sometimes called
a multiplicative-rate model. In both these models, inserting product terms into the
model allows certain types of departures from proportional trends.

Interpreting Product-Term Models3.4.4

Several important cautions should be highlighted when attempting to build models
with product terms and interpret coefficients in models with product terms. First,
the so-called “main-effect” coefficient βj will be meaningless when considered
alone if its regressor Xj appears in a product with another variable Xk that cannot
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be zero. In the tamoxifen example, X1 is years of exposure, which can be zero, while
X3 is age at menarche (in years), which is always above zero. Consider the model

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ13x1x3

= α + β1x1 + β2x2 + (β3 + γ13x1)x3

= α + (β1 + γ13x3)x1 + β2x2 + β3x3 . (3.37)

Under this model, β1 + γ13x3 is the slope for the trend in risks across X1 given
X2 = x2 and X3 = x3. Thus, if X3 was 0, this slope would be β1 +

(
γ13 × 0

)
= β1,

and so β1 could be interpreted as the slope for X1 in subpopulations of a given X2

and with X3 = 0. But X3 is age at menarche and so cannot be zero; thus, β1 has no
simple epidemiologic interpretation. In contrast, because X1 is years exposed and
so can be zero, β3 does have a simple interpretation: Under model (3.37) β3 + γ13x1

is the slope for X3 given X1 = x1; hence, β3 + γ13 × 0 = β3 is the slope for X3 in
subpopulations with no tamoxifen exposure (X1 = 0).

As mentioned earlier, if a regressor Xj cannot be zero, one can insure a simple
interpretation of the intercept α by recentering the regressor, that is, by subtracting
a reference value from the regressor before entering it in the model. Such recenter-
ing also helps provide a simple interpretation for the coefficients of variables that
appear with Xj in product terms. In the example, we could recenter by redefining
X3 to be age at menarche minus 13 years. With this change, β1 in model (3.37)
would now be the slope for X1 (years of tamoxifen) in subpopulations of a given
X2 (age at start of tamoxifen) in which this new X3 was 0 (that is, in which the age
at menarche was 13).

Rescaling can also be important for interpretation of product-term coefficients.
As an example, suppose X1 is serum cholesterol in mg/dl and X2 is diastolic blood
pressure (DBP) in mm Hg, and that the product of X1 and X2 is entered into
the model without rescaling, say as γ12x1x2 in an exponential rate model. Then
γ12 would represent the difference in the log rate ratio for a 1 mg/dl increase in
cholesterol when comparing sub-populations 1 mm Hg apart in DBP. Even if this
term was important, it would appear very small in magnitude because of the small
units used to measure cholesterol and DBP. To avoid such deceptive appearances,
we could rescale X1 and X2 so that their units now represented important increases
in cholesterol and DBP. For example, we could redefine X1 as cholesterol divided
by 20 and X2 as DBP divided by 10. With this rescaling, γl2 would represent the
difference in the log rate ratio fora20 mg/dl increase incholesterolwhencomparing
subpopulations 10 mm Hg apart in DBP.

Another caution is that, in most situations, a product term in a model should
be accompanied by terms for all variables and products contained within that
product. For example, if one enters γ12x1x2 in a model, β1x1 and β2x2 should
also be included in that model; and if one enters δl23x1x2x3 in a model, all of
β1x1, β2x2, β3x3, γ12x1x2, γ13x1x3, and γ23x2x3 should be included in that model.
This rule, sometimes called the “hierarchy principle” (Bishop et al. 1975), is useful
in avoiding models with bizarre implications. As an example, suppose X1 is serum-
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lead concentration and X2 is age minus 50 years. If γ12 > 0, the 1-year mortality-risk
model

R(x1, x2) = exp(α + β2x2 + γ12x1x2)

implies that serum-lead is positively related to risk among persons above age
50 (X2 > 0), is unrelated to risk among persons of age 50 (X2 = 0), and is
negatively related to risk among persons below age 50 (X2 < 0); if γ12 < 0, it
implies a negative relation over 50 and a positive relation below 50. Rarely (if ever)
would we have grounds for assuming such unusual relations hold. To prevent use of
absurd models, many regression programs automatically enter all terms contained
within a product when the user instructs the program to enter the product into
the model.

Models violating the hierarchy principle often arise when one variable is not de-
fined for all subjects. As an example, suppose in a study of breast cancer in women
that X1 is age at first birth (AFB) and X2 is parity. Because X1 is undefined for
nulliparous women (X2 = 0), one sometimes sees the breast-cancer rate modeled
by a function in which age at first birth appears only in a product term with parity,
such as exp(α + β2x2 + γ1x1x2). The rationale for this model is that the rate will
remain defined even when age at first birth (X1) is undefined, because x1x2 will be
zero when parity (X2) is zero.

One can sometimes avoid violating the hierarchy principle if there is a rea-
sonable way to extend variable definitions to all subjects. Thus, in the tamoxifen
example, age at start of tamoxifen was extended to the untreated by setting it to
age 70 (end of follow-up) for those subjects, and for those subjects who started
at age 70 or later. The rationale for this extension is that, within the age interval
under study, untreated subjects and subjects starting tamoxifen at age 70 or later
would have identical exposures.

Our final caution is that product terms are commonly labeled “interaction
terms” or “statistical interactions”. We avoid these labels because they may inap-
propriately suggest the presence of biologic (mechanical) interactions between the
variables in a product term. In practice, regression models are applied in many
situations in which there is no effect of the regressors on the regressand (outcome).
Even in causal analyses, the connections between product terms and biologic in-
teractions can be very indirect, and can depend on many biologic assumptions.
For descriptions of these connections see Greenland (1993) and Rothman and
Greenland (1998, pp 386–387).

Categorical Regressors3.4.5

Consider a regressor whose possible values are discrete and few, and perhaps
purely nominal (that is, with no natural ordering or quantitative meaning). An
example is marital status (never married, currently married, formerly married).
Such regressors may be entered into a multiple-regression model using category
indicator variables. To use this approach, we first choose one level of the regressor
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as the reference level, against which we want to compare risks or rates. For each of
the remaining levels (the index levels), we create a binary variable that indicates
whether a person is at that level (1 if at the level, 0 if not). We then enter these
indicators into the regression model.

The entire set of indicators is called the coding of the original regressor. To code
marital status, we could take “currently married” as the reference level and define

X1 = 1 if formerly married, 0 if currently or never married,

X2 = 1 if never married, 0 if ever married

(i.e., currently or formerly married) .

There are 2 × 2 = 4 possible numerical combinations of values for X1 and X2,
but only three of them are logically possible. The impossible combination is X1 = 1
(formerly married) and X2 = 1 (never married). Note, however, that we need two
indicators to distinguish the three levels of marital status, because one indicator
can only distinguish two levels.

In general, we need J − 1 indicators to code a variable with J levels. Although
these indicators will have 2J−1 possible numerical combinations, only J of these
combinations will be logically possible. For example, we will need four indi-
cators to code a variable with five levels. These indicators will have 24 = 16
numerical combinations, but only five of the 16 combinations will be logically
possible.

Interpretation of the indicator coefficients depends on the model form and the
chosen coding. For example, in the logistic model

R(x1, x2) = expit(α + β1x1 + β2x2) , (3.38)

exp(β2) is the odds ratio comparing X2 = 1 persons (never married) to X2 = 0
persons (ever married) within levels of X1. Because one cannot have X2 = 1 (never
married) and X1 = 1 (formerly married), the only level of X1 within which we can
compare X2 = 1 to X2 = 0 is the zero level (never or currently married). Thus,
exp(β2) is the odds ratio comparing never married (X2 = 1) to currently married
(X2 = 0) people among those never or currently married (X1 = 0). In a simi-
lar fashion, exp(β1) compares those formerly married to those currently married
among those ever married.

In general, the type of indicator coding described above, called disjoint category
coding, results in coefficients that compare each index category to the reference
category. With this coding, for a given person no more than one indicator in the
set can equal 1; all the indicators are zero for persons in the reference category.
Another kind of coding is nested indicator coding. In this coding, levels of the
regressor are grouped, and then codes are created to facilitate comparisons both
within and across groups. For example, suppose we wish to compare those not
currently married (never or formerly married) to those currently married, and
also compare those never married to those formerly married. We can then use the
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indicators

Z1 = 1 if never or formerly married (i.e., not currently married),

0 otherwise (currently married);

Z2 = 1 if never married, 0 if ever married.

Z2 is the same as the X2 used above, but Z1 is different from X1. The combination
Z1 = 0 (currently married), Z2 = 1 (never married) is impossible; Z1 = Z2 = 1 for
people who never married. In the logistic model

R(z1, z2) = expit(α + β1z1 + β2z2) , (3.39)

exp(β2) is now the odds ratio comparing those never married (Z2 = 1) to those
ever married (Z2 = 0) within levels of Z1. Note that the only level of Z1 in which
this comparison can be made is Z1 = 1 (never or formerly married). Similarly,
exp(β1) is now the odds ratio comparing those formerly married (Z1 = 1) among
those never married (Z2 = 0).

There can be quite a large number of options for coding category indicators. The
choice among these options may be dictated by which comparisons are of most
interest. As long as each level of the regressor can be uniquely represented by the
indicator coding, the choice of coding will not alter the assumptions represented
by the model. There is, however, one technical point to consider in choosing codes.
The precision of the estimated coefficient for an indicator will directly depend
on the numbers of subjects at each indicator level. For example, suppose in the
data there were 1000 currently married subjects, 200 formerly married subjects,
and only 10 never married subjects. Then any indicator that had “never married”
as one of its levels (0 or 1) would have a much less precise coefficient estimate
than other indicators. If “never married” were chosen as the reference level for
a disjoint coding scheme, all the indicators would have that level as its zero level,
and so all would have very imprecise coefficient estimates. To maximize precision,
many analysts prefer to use disjoint coding in which the largest category (currently
married in the above example) is taken as the reference level.

In choosing a coding scheme, one need not let precision concerns dominate if
they get in the way of interesting comparisons. Coding schemes that distinguish
among the same categories produce equivalent models. Therefore, one may fit
a model repeatedly using different but equivalent coding schemes, in order to
easily examine all comparisons of interest. For example, one could fit model (3.38)
to compare those never or formerly married with those currently married, then fit
model (3.39) to compare the never with formerly married.

Although indicator coding is essential for purely nominal regressors, it can
also be used to study quantitative regressors as well, especially when one expects
qualitative differences between persons at different levels. Consider number of
marriages as a regressor. We might suspect that people of a given age who have had
one marriage tend to be qualitatively distinct from people of the same age who have
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had no marriage or two marriages, and that people who have had several marriages
are even more distinctive. We thus might want to code number of marriages in
a manner that allowed qualitative distinctions among its levels. If “one marriage”
was the most common level, we might take it as the reference level and use

X1 = 1 if never married, 0 otherwise;

X2 = 1 if two marriages, 0 otherwise;

X3 = 1 if three or more marriages, 0 otherwise.

We use one variable to represent “three or more” because there might be too few
subjects with three or more marriages to produce acceptably precise coefficients
for a finer division of levels. The coding just given would provide comparisons of
those never married, twice married, and more-than-twice married to those once
married. Other codings could be used to make other comparisons.

Trend Models in Multiple Regression 3.5

Multiple regression models can be extended to produce much more flexible trend
models than those provided by simple transformations. The latter restrict trends
to follow basic shapes, such as quadratic or logarithmic curves. The use of mul-
tiple terms for each exposure and confounder allows more detailed assessment
of trends and more complete control of confounding than possible with simple
transformations.

Categorical Trends 3.5.1

One way to extend trend models is to categorize the regressor and then use
a category-indicator coding such as discussed above. The resulting analysis may
then parallel the categorical (tabular) trend methods discussed for example in
Chap 17 of Rothman and Greenland (1998). Much of the advice given there also ap-
plies here. To the extent allowed by the data numbers and background information,
the categories should represent scientifically meaningful constructs within which
risk is not expected to change dramatically. Purely mathematical categorization
methods such as percentiles (quantiles) can do very poorly in this regard and so
are best avoided when such information is available. On the other hand, the choices
of categories should not be dictated by the results produced; for example, manip-
ulation of category boundaries to maximize the effect estimate will produce an
estimate biased away from the null, while manipulation of boundaries to minimize
a P-value will produce a downwardly biased P-value. Similarly, manipulation to
minimize the estimate or maximize the P-value will produce a null-biased estimate
or an upwardly biased P-value.
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There are two common types of category codes used in trend models. Disjoint
coding produces estimates that compare each index category (level) to the reference
level. Consider coding weekly servings of fruits and vegetables with

X1 = 1 for < 15, 0 otherwise;

X2 = 1 for 36–42, 0 otherwise;

X3 = 1 for > 42, 0 otherwise.

In the rate model

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 + β3x3 , (3.40)

exp(β1) is the rate ratio comparing the “< 15” category with the “15–35” category
(which is the referent), and so on, while exp(α) is the rate in the “15–35” category
(the category for which all the Xj are zero). When model (3.40) is fit, we can plot
the fitted rates on a graph as a step function. This plot provides a crude impression
of the trends across (but not within) categories.

Confounders may be added to the model in order to control confounding,
and these too may be coded using multiple indicators or any of the methods
described below. We may plot the model-adjusted trends by fixing each confounder
at a reference level and allowing the exposure level to vary.

Incremental coding (nested coding) can be useful when one wishes to compare
each category against its immediate predecessor (Maclure and Greenland 1992).
For “Number of servings per week”, we could use

Z1 = 1 for > 14, 0 otherwise;

Z2 = 1 for > 35, 0 otherwise;

Z3 = 1 for > 42, 0 otherwise.

Note that if Z2 = 1, then Z1 = 1, and if Z3 = 1, then Z1 = Z2 = 1. In the model

ln[I(z1, z2, z3)] = α + β1z1 + β2z2 + β3z3 , (3.41)

exp(β1) is the rate ratio comparing the 15–35 category (Z1 = 1 and Z2 = Z3 = 0) to
the < 15 category (Z1 = Z2 = Z3 = 0). Similarly, exp(β2) is the rate ratio comparing
the 36–42 category (Z1 = Z2 = 1 and Z3 = 0) to the 15–35 category (Z1 = 1 and
Z2 = Z3 = 0). Finally, exp(β3) compares the > 42 category (Z1 = Z2 = Z3 = 1)
to the 36–42 category (Z1 = Z2 = 1 and Z3 = 0). Thus, exp(β1), exp(β2), and
exp(β3) are the incremental rate ratios across adjacent categories. Again, we may
add confounders to the model and plot adjusted trends.

Regression with Category Scores3.5.2

A common practice in epidemiology is to divide each covariate into categories,
assign a score to each category, and enter scores into the model instead of the
original variable values. Ordinal scores or codes (e.g., 1, 2, 3, 4, 5 for a series of five
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categories) should be avoided, as they can yield quantitatively meaningless dose-
response curves and harm the power and precision of the results (Lagakos 1988;
Greenland 1995b, c; Rothman and Greenland 1998, pp 311–312). Category midpoints
can be much less distortive but are not defined for open-ended categories; category
means or medians can be even less distortive and are defined for open-ended
categories.Unfortunately, if thereare importantnonlineareffectswithincategories,
no simple scoring method will yield an undistorted dose-response curve, nor
will it achieve the power and precision obtainable by entering the uncategorized
covariates into the model (Greenland 1995b, c). We thus recommend that categories
be kept narrow and that scores be derived from category means or medians,
rather than category scores. We further recommend that one examine models with
uncategorized covariates whenever effects are clearly present.

Power Models 3.5.3

Another approach to trend analysis and confounder control is to use multiple
power terms for each regressor. Such an approach does not require categorization,
but does require care in selection of terms. Traditionally, the powers used are
positive integers (e.g., x1, x2

1, x3
1), but fractional powers may also be used (Royston

and Altman 1994). As an illustration, suppose X1 represents the actual number of
servings per week (instead of an indicator). We could model trends across this
regressor by using X1 in the model along with the following powers of X1:

X2 = X
1|2
1 = square root of X1 ,

X3 = X2
1 = square of X1 .

The multiple-regression model

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 + β3x3 ,

is now just another way of writing the power model

ln[I(x1)] = α + β1x1 + β2x
1|2
1 + β3x2

1 . (3.42)

We can plot fitted rates from this model using very fine spacings to produce
a smooth curve as an estimate of rate trends across X1. As always, we may also
include confounders in the model and plot model-adjusted trends.

Power models have several advantages over categorical models. Most impor-
tantly, they make use of information about differences within categories, which
is ignored by categorical models and categorical analyses (Greenland 1995a, b, c).
Thus, they can provide a more complete picture of trends across exposure and
more thorough control of confounders. They also provide a smoother picture of
trends. One disadvantage of power models is a potentially greater sensitivity of es-
timates to outliers, that is, persons with unusual values or unusual combinations of
values for the regressors. This problem can be addressed by performing delta-beta
analysis, as discussed below.
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Regression Splines3.5.4

Often it is possible to combine the advantages of categorical and power models
through the use of spline models. Such models can be defined in a number of equiv-
alent ways, and we present only the simplest. In all approaches, one first categorizes
the regressor, as in categorical analysis (although fewer, broader categories may be
sufficient in a spline model). The boundaries between these categories are called
the knots or join points of the spline. Next, one chooses the power (or order) of the
spline, according to the flexibility one desires within the categories (higher powers
allow more flexibility).

Use of category indicators corresponds to a zero-power spline, in which the
trend is flat within categories but may jump suddenly at the knots; thus, category-
indicator models are just special and unrealistic types of spline models. In a first-
power or linear spline, the trend is modeled by a series of connected line segments.
The trend within each category corresponds to a line segment; the slope of the
trend may change only at the knots, and no sudden jump in risk (discontinuity in
trend) can occur.

To illustrate how a linear spline may be represented, let X1 again be “Number of
servings per week” but now define

X2 = X1 − 14 if X1 > 14, 0 otherwise;

X3 = X1 − 35 if X1 > 35, 0 otherwise.

Then the log-linear rate model

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 + β3x3 (3.43)

will producea log-rate trend that is a seriesof three line segments that areconnected
at the knots (category boundaries) of 14 and 35. To see this, note that when X1 is
less than 14, X2 and X3 are zero, so the model simplifies to a line with slope β1:

ln[I(x1, x2, x3)] = α + β1x1

in this range. When X1 is greater than 14 but less than 35, the model simplifies to
a line with slope β1 + β2:

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 = α + β1x1 + β2(x1 − 14)

= α − 14β2 + (β1 + β2)x1 .

Finally, when X1 is greater than 35, the model becomes a line with slope β1 +
β2 + β3:

ln[I(x1, x2, x3)] = α + β1x1 + β2x2 + β3x3

= α + β1x1 + β2(x1 − 14) + β3(x1 − 35)

= a − 14β2 − 35β3 + (β1 + β2 + β3)x1 .
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Thus, β1 is the slope of the spline in the first category, β2 is the change in slope
in going from the first to second category, and β3 is the change in slope in going
from the second to third category.

The trend produced by a linear spline is generally more realistic than a cate-
gorical trend, but can suddenly change its slope at the knots. To smooth out such
sudden changes, we may increase the order of the spline. Increasing the power
to 2 produces a second-power or quadratic spline, which comprises a series of
parabolic curve segments smoothly joined together at the knots. To illustrate how
such a trend may be represented, let X1, X2, and X3 be as just defined. Then the
model

ln[I(x1, x2, x3)] = α + β1x1 + γ1x2
1 + γ2x2

2 + γ3x2
3 (3.44)

will produce a log-rate trend that is a series of three parabolic segments smoothly
connected at the knots of 14 and 35. The coefficient γ1 corresponds to the curvature
of the trend in the first category, while γ2 and γ3 correspond to the changes
in curvature when going from the first to second and second to third category.
A still smoother curve could be fit by using a third-power or cubic spline, but for
epidemiologic purposes the quadratic spline is often smooth and flexible enough.

One disadvantage of quadratic and cubic splines is that the curves in the end
categories (tails) may become very unstable, especially if the category is open-
ended. This instability may be reduced by restricting one or both of the end
categories to be a line segment rather than a curve. To restrict the lower category to
be linear in a quadratic spline, we need only drop the first quadratic term γ1x2

1 from
the model; to restrict the upper category, we must subtract the last quadratic term
from all the quadratic terms, and drop the last term out of the model. To illustrate
an upper category restriction, suppose we wish to restrict the above quadratic
spline model for log rates (3.44) so that it is linear in the upper category only.
Define

Z1 = X1 = number of servings per week,

Z2 = X2
1 − X2

3 ,

Z3 = X2
2 − X2

3 .

Then the model

ln[I(z1, z2, z3)] = α + β1z1 + β2z2 + β3z3 (3.45)

will produce a log-rate trend that comprises smoothly connected parabolic seg-
ments in the first two categories (“< 14” and “15–35”), and a line segment in the
last category (“> 35”) that is smoothly connected to the parabolic segment in the
second category. (If we also wanted to force the log-rate curve in the first category
to follow a line, we would drop Z2 from the model.)

To plot or tabulate a spline curve from a given spline model, we select a set
of X1 values spaced across the range of interest, compute the set of spline terms
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for each X1 value, combine these terms with the coefficients in the model to get
the model-predicted outcomes, and plot these predictions. To illustrate, suppose
X1 is servings per week and we wish to plot model (3.45) with α = −6.00, β1 =
−0.010, β2 = −0.001, and β3 = 0.001 over the range 0–50 servings per week in
5-serving increments. We then compute Z1, Z2, Z3 at 0, 5, 10, … , 50 servings per
week, and compute the predicted rate

exp(−6.00 − 0.010z1 − 0.001z2 + 0.001z3)

at each set of Z1, Z2, Z3 values and plot these predictions against the corresponding
X1 values 0, 5, 10, … , 50. For example, at X1 = 40 we get Z1 = 40, Z2 = 402 − (40 −
35)2 = 1575, and Z3 = (40 − 14)2 − (40 − 35)2 = 651, for a predicted rate of

exp[−6.00 − 0.010(40) − 0.001(1575) + 0.001(651)] = 2|1000 year .

As with other trend models, we may obtain model-adjusted trends by adding
confounder terms to our spline models. The confounder terms may be splines
or any other form we prefer; spline plotting will be simplified, however, if the
confounders are centered before they are entered into the analysis, for then the
above plotting method may be used without modification. For further discussion
of splines and their application, as well as more general nonparametric regression
techniques, see Hastie and Tibshirani (1990), Green and Silverman (1994), and
Greenland (1995a).

Models for Trend Variation3.5.5

We may allow trends to vary across regressor levels by entering products among
regressor terms. For example, suppose X1, X2, X3 are power terms for fruit and
vegetable intake, while W1, W2, W3, W4 are spline terms for age. To allow the fruit-
vegetable trend in log rates to vary with age, we could enter into the model all
3×4 = 12 products of the Xj and Wk, along with the Xj and Wk. If in addition there
was an indicator Z1 = 1 for female, 0 for males, the resulting model would be

ln[R(x1, x2, x3, w1, w2, w3, w4, z1)]

= α + β1x1 + β2x2 + β3x3 + β4w1 + β5w2 + β6w3 + β7w4 + β8z1

+ γ11x1w1 + γ12x1w2 + … + γ33x3w3 + γ34x3w4 .

The same model form may be used if X1, X2, X3 and W1, W2, W3, W4 represent
category indicators or other terms for fruit-vegetable intake and age.

Models with products among multiple trend terms can be difficult to fit and
may yield quite unstable results unless large numbers of cases are observed. Given
enough data, however, such models can provide more realistic pictures of dose-
response relations than can simpler models. Results from such models may be
easily interpreted by plotting or tabulating the fitted trends for the key exposures
of interest at various levelsof the“modifying” regressors. In theaboveexample, this
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process would involve plotting the model-fitted rates against fruit and vegetable
intake for each of several ages (e.g., for ages evenly spaced within the range of case
ages).

Extensions of Logistic Models 3.6

Outcomes that are polytomous or continuous are often analyzed by reducing
them to just two categories and applying a logistic model. For example, CD4

counts might be reduced to the dichotomy ≤ 200, > 200; cancer outcomes might
be reduced to cancer and no cancer. Alternatively, multiple categories may be
created with one designated as a referent, and the other categories compared one
at a time to the referent using separate logistic models for each comparison. While
not necessarily invalid, these approaches disregard the information contained
in differences within categories, in differences between non-reference categories,
and in ordering among the categories. As a result, models specifically designed
for polytomous or continuous outcomes can yield more precision and power than
simple dichotomous-outcome analyses.

This section briefly describes several extensions of the multiple logistic model
(3.28) to polytomous and ordinal outcomes. Analogous extensions of other models
are possible.

Polytomous Logistic Models 3.6.1

Suppose an outcome variable Y has I + 1 mutually exclusive outcome categories
or levels y0, … , yI , where category y0 is considered the reference category. For
example, in a case-control study of relations of exposures to types of cancer, Y is
a disease outcome variable, with y0 = all control as the reference category, and
I other categories y1, … , yI , which correspond to the cancer outcomes (leukemia,
lymphoma, lung cancer, etc.). Let Ri(x) denote the average risk of falling in outcome
category Yi(i = 1, … , I) given that the regressors X equal x; that is, let

Ri(x) = Pr(Y = yi|X = x) .

The polytomous logistic model for this risk is then

Ri(x) =
exp

(
α1 + xβ1

)
1 +

I∑
j=1

exp(αj + xβj)

(3.46)

This is a model for the risk of falling in cancer category yi. When Y has only two
levels, I equals 1, and so formula (3.46) simplifies to the binary multiple logistic
model (3.28).

Model (3.46) represents I separate risk equations, one for each nonreference
outcome level y1, … , yI . Each equation has its own intercept αi and vector of



670 Sander Greenland

coefficients βi = (βi1, … , βin), so that there is a distinct coefficient βik correspond-
ing to every combination of a regressor Xk and nonreference outcome level yi

(i = 1, … , I). Thus, with n regressors in X, the polytomous logistic model involves
I intercepts and I × n regressor coefficients. For example, with seven nonreference
outcome levels and three regressors, the model would involve seven intercepts and
7 × 3 = 21 regressor coefficients, for a total of 28 model parameters.

The polytomous logistic model can be written more simply as a model for the
odds. To see this, note that the risk of falling in the reference category must equal
one minus the sum of the risks of falling in the nonreference categories:

R0(x) = Pr(Y = y0|X = x) = 1 −

I∑
i=1

exp
(
αi + xβi

)
1 +

I∑
j=1

exp
(
αj + xβj

)

= 1

/⎡⎣1 +
I∑

j=1

exp
(
αj + xβj

)⎤⎦ . (3.47)

Dividing (3.47) into (3.46), we get a model for Oi(x) = Ri(x)|R0(x) = the odds
of falling in outcome category yi versus category y0:

Oi(x) =
exp(αi + xβi)|[1 +

∑
j exp(αj + xβj)]

1|[1 +
∑

j exp(αj + xβj)]
= exp(αi + xβi) . (3.48)

This form of the model provides a familiar interpretation for the coefficients.
Suppose x1 and x0 are two different vectors of values for the regressors X. Then
the ratio of the odds of falling in category yi versus y0 when X = x1 and X = x0 is

Oi(x1)

Oi(x0)
=

exp(αi + x1βi)

exp(αi + x0βi)
= exp [(x1 − x0)βi] .

From this equation, we see that the antilog exp(βik) of a coefficient βik corre-
sponds to the proportionate change in the odds of outcome i when the regressor
Xk increases by one unit.

The polytomous logistic model is most useful when the levels of Y have no
meaningful order, as with the cancer types. For further reading about the model,
see McCullagh and Nelder (1989) and Hosmer and Lemeshow (2000).

Ordinal Logistic Models3.6.2

Suppose that the levels y0, … , yI of Y follow a natural order. Order arises, for
example, when Y is a clinical scale, such as y0 = normal, y1 = dysplasia, y2 =
neoplasia, rather than just a cancer indicator; Y is a count, such as number of
malformations found in an individual; or the Y levels represent categories of
a physical quantity, such as CD4 count (e.g., > 500, 200–500, < 200). There are at
least four different ways to extend the logistic model to such outcomes.
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Recall that the logistic model is equivalent to an exponential odds model. The
first extensionusesanexponentialmodel to represent theoddsof falling inoutcome
category yi versus falling in category yi−1 (the next lowest category):

Ri(x)

Ri−1(x)
=

Pr(Y = yi|X = x)

Pr(Y = yi−1|X = x)
= exp(α∗

i + xβ∗) (3.49)

for i = 1, … , I. This may be called the adjacent-category logistic model, because
taking logarithms of both sides yields the equivalent adjacent-category logit model
(Agresti 2002). It is a special case of the polytomous logistic model: From (3.48),
the polytomous logistic model implies that

Ri(x)

Ri−1(x)
=

Ri(x)|R0(x)

Ri−1(x)|R0(x)
=

exp
(
αi + xβi

)
exp

(
αi−1 + xβi−1

) = exp[(αi − αi−1) + x(βi − βi−1)] .

The adjacent-category logistic model sets α∗
i = αi − αi−1, and forces the I

coefficient differences βi − βi−1(i = 1, … I) to equal a common value β∗. If there is
a natural distance di between adjacent outcome categories yi and yi−1 (such as the
difference between the category means), the model can be modified to use these
distances as follows:

Ri(x)|Ri−1(x) = exp(α∗
i + xβ∗di) (3.50)

for i = 1, … , I. This model allows the coefficient differences βi−βi−1 to vary with the
distances di between categories. Further information on adjacent-category models
may be found in Greenland (1994) and Agresti (2002).

The second extension uses an exponential model to represent the odds of falling
above category yi versus falling in or below category yi:

Pr(Y > yi|X = x)

Pr(Y ≤ yi|X = x)
= exp(α∗

i + xβ∗) , (3.51)

where i = 0, … , I. This is called the cumulative-odds or proportional-odds model.
It can be derived by assuming that Y was obtained by categorizing a special type
of continuous variable; for more details about this and other aspects of the model,
see McCullagh and Nelder (1989).

The third extension uses an exponential model to represent the odds of falling
above outcome category yi versus in category yi:

Pr(Y > yi|X = x)

Pr(Y = yi|X = x)
= exp(α∗

i + xβ∗) , (3.52)

where i = 0, … , I. This is called the continuation-ratio model. The fourth extension
uses an exponential model to represent the odds of falling in category yi versus
falling below yi:

Pr(Y = yi|X = x)

Pr(Y < yi|X = x)
= exp(α∗

i + xβ∗) , (3.53)
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where i = 1, … , I. This model may be called the reverse continuation-ratio model.
It can be derived by reversing the order of the Y levels in model (3.52) but in any
given application it is not equivalent to model (3.52) (Greenland 1994).

How does one choose from the above variety of ordinal models? Certain guide-
lines may be of use, although none is compelling. First, the adjacent-category and
cumulative-odds models are reversible, in that only the signs of the coefficients
change if theorderof the Y levels is reversed. In contrast, the twocontinuation-ratio
models are not reversible. This observation suggests that the continuation-ratio
models may be more appropriate for modeling irreversible disease stages (e.g., os-
teoarthritic severity), whereas the adjacent-category and cumulative-odds models
may be more appropriate for potentially reversible outcomes (e.g., blood pressure,
cell counts) (Greenland 1994). Second,because thecoefficientsof adjacent-category
models contrast pairs of categories, the model appears best suited for discrete out-
comes with few levels (e.g., cell types along a normal-dysplastic-neoplastic scale).
Third, because the cumulative-odds model can be derived from categorizing cer-
tain special types of continuous outcomes, it is often considered most appropriate
when the outcome under study is derived by categorizing a single underlying con-
tinuum (e.g., blood pressure) (McCullagh and Nelder 1989). For a more detailed
comparative discussion of ordinal logistic models and guidelines for their use, see
Greenland (1994).

All the above ordinal models simplify to the ordinary logistic model when there
are only two outcome categories (I = 2). One advantage of the continuation-ratio
models over their competitors is of special importance: Estimation of the coeffi-
cients β∗ in those models can be carried out if the levels of Y are numerous and
sparse; Y may even be continuous. Thus, one can apply the continuation-ratio
models without any categorization of Y . This advantage can be important because
results from all the above models (including the cumulative-odds model) may be
affected by the choice of the Y categories (Greenland 1994; Strömberg 1996). The
only caution is that conditional (as opposed to unconditional) maximum likeli-
hood must be used to fit the continuation-ratio model if the observed outcomes
are sparsely scattered across the levels of Y (as would be inevitable if Y were con-
tinuous). See Greenland (1994) for further details, and Cole and Ananth (2001) for
futher extensions of the model.

Generalized Linear Models3.7

Consider again the general form of the exponential risk and rate models, R(x) =
exp(α+xβ) and I(x) = exp(α+xβ) and the logistic risk model R(x) = expit(α+xβ).
There is no reason why we cannot replace the “exp” in the exponential models or
the “expit” in the logistic model by some other reasonable function. In fact, each
of these models is of the general form

E(Y |x) = f (α + xβ), (3.54)
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where f is some function that is smooth and strictly increasing (i.e., as α + xβ gets
larger, f (α + xβ) gets larger, but never jumps or bends suddenly).

For any such function f , there is always an inverse function g that “undoes”
f , in the sense that g[f (u)] = u whenever f (u) is defined. Hence, a general form
equivalent to (3.54) is

g[E(Y |x)] = α + xβ . (3.55)

A model of the form (3.55) is called a generalized linear model. The function g is
called the link function for the model; thus, the link function is ln for the log-linear
model and logit for the logit-linear model. The term α + xβ in it is called the linear
predictor for the model and is often abbreviated η; that is, η = α + xβ by definition.

All the models we have discussed are generalized linear models. Ordinary linear
models (such as the linear risk model) are the simplest examples, in which f and
g are both the identity function f (u) = g(u) = u, so that

E(Y |x) = α + xβ .

The inverse of the exponential function exp is the natural log function ln(u).
Hence, the generalized-linear forms of the exponential risk and rate models are
the log-linear risk and rate models

ln[R(x)] = α + xβ and ln[I(x)] = α + xβ ;

that is, the exponential risk and rate models correspond to a natural-log link func-
tion, because ln[exp(u)] = u. Similarly, the inverse of expit, the logistic function, is
the logit function logit(u). Hence, the generalized-linear form of the logistic-risk
model is the logit-linear risk model

logit[R(x)] = α + xβ ;

that is, the logistic model corresponds to the logit link function, because
logit[expit(u)] = u.

The choices for f and g are virtually unlimited. In epidemiology, however, only
the logit link g(u) = logit(u) is in common use for risks, and only the log link
g(u) = ln(u) is in common use for rates. In practice, these link functions are
almost always the default, and are sometimes the only options in commercial soft-
ware for risk and rate modeling. Some packages, however, allow easy selection of
linear risk, rate, and odds models, which use the identity link. Some software (e.g.,
GLIM) allows the user to define their own link function.

The choice of link function can have a profound impact on the shape of the
trend or dose-response surface allowed by the model, especially if exposure is
represented by only one or two terms. For example, if exposure is represented
by a single term β1x1 in a risk model, use of the identity link results in a linear
risk model and a linear trend for risk; use of the log link results in an expo-
nential (log-linear) risk model and an exponential trend for risk; and use of
a logit link results in a logistic model and an exponential trend for the odds. Gen-
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eralized linear models encompass a broader range than the linear, log-linear,
and logistic forms, however. One example is the complementary log-log risk
model,

R(x) = 1 − exp[− exp(α + xβ)] ,

which translates to the generalized-linear form

ln[− ln(1 − R(x))] = α + xβ .

This model corresponds to the link function ln[− ln(l − u)] and arises naturally
in certain biology experiments. For further reading on this and other generalized
linear models, see McCullagh and Nelder (1989).

Model Searching3.8

How do we find a model or set of models acceptable for our purposes? There
are far too many model forms to allow us to examine most or even much of the
total realm of possibilities. There are several systematic, mechanical, and tradi-
tional algorithms for finding models (such as stepwise and best-subset regression)
that lack logical or statistical justification and that perform poorly in theoretical
and simulation studies; see Sclove et al. (1972), Bancroft and Han (1977), Freed-
man (1983), Flack and Chang (1987), Hurvich and Tsai (1990), and Weiss (1995).
For example, the P-values and standard-error (SE) estimates obtained when vari-
ables are selected using significance-testing criteria (such as “F-to-enter” and
“F-to-remove”) will be downwardly biased. In particular, the SE estimates ob-
tained from the selected model underestimate the standard deviations (SDs) of
the point estimates obtained by applying the algorithms across different random
samples. As a result, the algorithms will tend to yield P-values that are too small
and confidence intervals that are too narrow (and hence fail to cover the true
coefficient values with the stated frequency). Unfortunately, significance-testing
criteria are the basis for most variable-selection procedures in standard packaged
software.

Other criteria for selecting variables, such as “change-in-point-estimate” crite-
ria, do not necessarily perform better than significance testing (Maldonado and
Greenland 1993a). Viable alternatives to significance testing in model selection
have emerged only gradually with recent advances in computing and with deeper
insights into the problem of model selection. We first outline the traditional ap-
proaches after reinforcing one of the most essential and neglected starting points
for good modeling: laying out existing information in a manner that can help the
search avoid models in conflict with established facts. A powerful alternative to
model selection is provided by hierarchical regression, also known as multilevel,
mixed-model, or random-coefficient regression (Rothman and Greenland 1998,
pp 427–432; Greenland 2000a, b).
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Role of Prior Information 3.8.1

The dependence of regression results on the chosen model can be either an ad-
vantage or a drawback. The advantage comes from the fact that use of a model
structure capable of reasonably approximating reality can elevate the accuracy of
the estimates over those from the corresponding tabular analysis. The drawback
comes from the fact that use of a model incapable of even approximating reality
can decrease estimation accuracy below that of tabular analysis.

This duality underscores the desirability of using flexible (and possibly com-
plex) models. One should take care to avoid models that are entirely unsupported
by background knowledge. For example, in a cohort study of lung cancer, it is
reasonable to restrict rates to increase with age, because there is enormous back-
ground literature documenting that this trend is found in all human populations.
In contrast, one would want to avoid restricting cardiovascular disease (CVD) rates
to strictly increase with alcohol consumption, because there are considerable data
to suggest the alcohol-CVD relation is not strictly increasing (Maclure 1993).

Prior knowledge about most epidemiologic relations is usually too limited to
provide much guidance in model selection. A natural response might be to use
models as flexible as possible (a flexible model can reproduce a wide variety of
curves and surfaces). Unfortunately, flexible models have limitations. The more
flexible the model, the larger the sample needed for the usual estimation methods
(such as maximum likelihood) to provide approximately unbiased coefficient esti-
mates. Also, after a certain point, increasing flexibility may increase variability of
estimates so much that the accuracy of the estimates is decreased relative to esti-
mates from simpler models, despite the greater faithfulness of the flexible model to
reality. As a result, it is usual practice to employ models that are severely restrictive
in arbitrary ways, such as models without product terms (Robins and Greenland
1986). Hierarchical methods can help alleviate some of these problems by allowing
one to fit larger models than one can with ordinary methods (Greenland 2000b).

Fortunately, estimates obtained from the most common epidemiologic regres-
sion models, exponential (log-linear) and logistic models, retain some inter-
pretability even when the underlying (true) regression function is not particularly
close to those forms (Maldonado and Greenland 1993b, 1994). For example, under
reasonably common conditions, rate-ratio or risk-ratio estimates obtained from
those models can be interpreted as approximate estimates of standardized rate
or risk ratios, using the total source population as the standard (Greenland and
Maldonado 1994). To ensure such interpretations are reasonable, the model used
should at least be able to replicate qualitative features of the underlying regression
function. For example, if the underlying regression may have a reversal in the
slope of the exposure-response curve, we should want to use a model capable of
exhibiting such reversal (even if it cannot replicate the exact shape of the true
curve).

A major problem for epidemiology is that key variables may be unmeasured
or poorly measured. No conventional method can account for these problems.
Unmeasured variables may be modeled using prior information on their relation to



676 Sander Greenland

measured variables, but the results will be entirely dependent on that information
(Leamer 1978; Greenland 2003a). Occasionally, measurement-error information
may be in the form of data that can be used in special correction techniques
(Carroll et al. 1995; Chap. II.5 of this handbook); otherwise, sensitivity analyses
will be needed (Rothman and Greenland 1998, Chap. 19; Lash and Fink 2003).

Selection Strategies3.8.2

Even with ample prior information, there will always be an overwhelming number
of model choices, and so model search strategies will be needed. Many strategies
have been proposed, although none has been fully justified.

Some strategies begin by specifying a minimal model form that is among the
most simple credible forms. Here “credible” means “compatible with available
information”. Thus, we start with a model of minimal computational or conceptual
complexity that does not conflict with background information. There may be
many such models; in order to help insure that our analysis is credible to the
intended audience, however, the starting model form should be one that most
researchers would view as a reasonable possibility.

To specify a simple yet credible model form, one needs some knowledge of
the background scientific literature on the relations under study. This knowledge
would include information about relations of potential confounders to the study
exposures and study diseases, as well as relations of study exposures to the study
diseases. Thus, specification of a simple yet credible model can demand much
more initial effort than is routinely used in model specification.

Once we have specified our minimal starting model, we can add complexities
that seem necessary (by some criteria) in light of the data. Such a search process
is sometimes called an expanding search (Leamer 1978). Its chief drawback is that
often thereare toomanypossible expansions toconsiderwithina reasonable length
of time. If, however, one neglects to consider any possible expansion, one risks
missingan important shortcomingof the initialmodel. For example, if ourminimal
model involves only single “first-order” terms (“main effects”) for 12 variables,

we would have
(

12

2

)
= 66 possible two-way products among these variables to

consider, aswell as 12 quadratic terms, for a total of 78 possible expansionswith just
one second-order term. An analyst may not have the time, patience, or resources
to examine all the possibilities in detail; this predicament usually leads to use of
automatic significance-testing procedures to select additional terms, which (as
referenced above) can lead to distorted statistics.

Some strategies begin by specifying an initial model form that is flexible enough
to approximate any credible model form. A flexible starting point can be less
demanding than a simple one in terms of need for background information. For
example, rather than concern ourselves with what the literature suggests about
the shape of a dose-response curve, we can employ a starting model form that
can approximate a wide range of curves. Similarly, rather than concern ourselves
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with what the literature suggests about joint effects, we can employ a form that
can approximate a wide range of joint effects. We can then search for a simpler
but adequate model by removing from the flexible model any complexities that
appear unnecessary in light of the data. Such a search process, based on simplifying
a complex model, is sometimes called a contracting or simplifying search (Leamer
1978).

The chief drawback of a purely contracting search is that a sufficiently flexible
prior model may be too complex to fit to the available data. This is because more
complex models generally involve more parameters; with more parameters in
a model, more data are needed to produce trustworthy point and interval estimates.
Standard model-fitting methods may yield biased estimates or may completely fail
to yield any estimates (e.g., not converge) if the fitted model is too complex. For
example, if our flexible model for 12 variables contains all first and second-order
terms, there will be 12 first-order plus 12 quadratic plus 66 product terms, for
a total of 90 coefficients. Fitting this model may be well beyond what our data or
computing resources can support.

Because of potential fitting problems, contracting searches begin with some-
thing much less than a fully flexible model. Some begin with a model as flexible
as can be fit, or maximal model. As with minimal models, maximal models are
not unique. In order to produce a model that can be fit, one may have to limit
flexibility of dose-response, flexibility of joint effects, or both. It is also possible
to start a model search anywhere in between the extremes of minimal and max-
imal models, and proceed by expanding as seems necessary and contracting as
seems reasonable based on the data (although again, resource limitations usually
lead to mechanical use of significance tests for this process). Unsurprisingly, such
stepwise searches share some advantages and disadvantages with purely expand-
ing and purely contracting searches. Like other searches, care should be taken to
insure that the starting and ending points do not conflict with prior information.

The results obtained from a model search can be very sensitive to the choice of
starting model. One may check for this problem by conducting several searches,
starting at different models. However, there are always too many possible starting
models to check them all. Thus, if one has many variables (and hence many
possible models) to consider, model search strategies will always risk producing
a misleading conclusion.

Model Fitting 3.9

Residual Distributions 3.9.1

Different fitting methods can lead to different estimates; thus, in presenting results
one should specify the method used to derive the estimates. The vast majority of
programs for risk and rate modeling use maximum-likelihood (ML) estimation,
which is based on very specific assumptions about how the observed values of Y
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tend to distribute (vary) when the vector of regressors X is fixed at a given value x.
This distribution is called the error distribution or residual distribution of Y .

If Y is the person-time rate observed at a given level x of X, and T is the cor-
responding observed person-time, it is conventionally assumed that the number
of cases observed, A = YT, would tend to vary according to a Poisson distribu-
tion if the person-time were fixed at its observed value. Hence, conventional ML
regression analysis of person-time rates is usually called Poisson regression. If, on
the other hand, Y is the proportion of cases observed at a given level x of X out
of a person-count total N, it is conventionally assumed that the number of cases
observed, A = YN, would tend to vary according to a binomial distribution if the
number of persons (person count) N was fixed at its observed value. Hence, con-
ventional ML regression analysis of prevalence or incidence proportions (average
risks) is sometimes called binomial regression. Note that if N = 1, the proportion
diseased Y can be only 0 or 1; in this situation, A = YN can be only 0 or 14
and is said to have a Bernoulli distribution (which is just a binomial distribution
with N = 1). The binomial distribution can be deduced from the homogeneity
and independence assumptions discussed for example in Rothman and Greenland
(1998, pp 232–233). As noted there, its use is inadvisable if there are important
violations of either assumption, e.g., if the disease is contagious over the study
period.

If Y is the number of exposed cases in a 2 × 2 table, the conventionally assumed
distribution for Y is the hypergeometric; ML fitting in this situation is usually
referred to as conditional maximum likelihood (CML). CML fitting is closely
related to partial-likelihood methods, which are used for fitting Cox models in
survival analysis.

More details on maximum-likelihood model fitting in epidemiology can be
found in Breslow and Day (1980, 1987), Hosmer and Lemeshow (2000), and Clayton
and Hills (1993). More general and advanced treatments of maximum likelihood
can be found in many books, including Cox and Hinkley (1974) and McCullagh
and Nelder (1989).

Overdispersion3.9.2

What if the residual distribution of the observed Y does not follow the conven-
tionally assumed residual distribution? Under a broad range of conditions, it can
be shown that the resulting ML fitted values (ML estimates) will remain approx-
imately unbiased if no other source of bias is present (White 1994). Nonethe-
less, the estimated SDs obtained from the program will be biased. In particular,
if the actual variance of Y given X = x (the residual variance) is larger than
that implied by the conventional distribution, Y is said to suffer from overdis-
persion or extravariation, and the estimated standard deviations and P-values
obtained from an ordinary maximum-likelihood regression program will be too
small.

In Poisson regression, overdispersion is sometimes called “extra-Poisson varia-
tion”; in binomial regression, overdispersion is sometimes called “extra-binomial
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variation”. Typically, such overdispersion arises when there is dependence among
the recorded outcomes, as when the outcome Y is the number infected in a group,
or Y is the number of times a person gets a disease. As an example, suppose Y is
the number of eyes affected by glaucoma in an individual. In a natural population,
Y = 0 for most people and Y = 2 for most of the remainder, with Y = 1 very
infrequently. In other words, the Y values would be largely limited to the extremes
of 0 and 2. In contrast, a binomially distributed variable with the same possible
values (0, 1, or 2) and the same mean as Y would have a higher probability of 1
than 2, and hence a smaller variance than Y .

Two major approaches have been developed to cope with potential overdisper-
sion, both of which are based on modeling the residual distribution. One approach
is to use maximum likelihood, but with a residual distribution that allows a broader
range of variation for Y , such as the negative binomial in place of the Poisson or
the beta-binomial in place of the binomial (McCullagh and Nelder 1989). Such
approaches can be computationally intensive, but have been implemented in some
software. The second and simpler approach is to model only the residual variance
of Y , rather than completely specify the residual distribution. Fitting methods
that employ this approach are discussed by various authors under the topics of
quasi-likelihood, pseudo-likelihood, and generalized estimating-equation (GEE)
methods; see McCullagh and Nelder (1989), McCullagh (1991), and Diggle et al.
(2002) for descriptions of these methods. GEE methods are often used for logitu-
dinal data analysis (Diggle et al. 2002), but have some serious limitations in that
role (Robins et al. 1999).

Sample-Size Considerations 3.9.3

One drawback of all the above fitting methods is that they depend on “large-
sample” (asymptotic) approximations, which usually require that the number of
parameters in the model is much less than (roughly, not more than 10% of) the
number of cases observed. Methods that do not use large-sample approximations
(exact methods) can also be used to fit certain models. These methods require
the same strong distributional assumptions as maximum-likelihood methods. An
example is exact logistic regression (Cytel 2003).

Unfortunately, exact fitting methods for incidence and prevalence models are
so computationally demanding that, at the time of this writing, they can be used
to fit only a narrow range of models, and do not address all the problems aris-
ing from coefficient instability in small samples (Greenland et al. 2000). Penal-
ized likelihood estimation and the related methods of Stein estimation and ridge
regression address these problems and permit fitting of incidence and preva-
lence models while retaining acceptably (though still only approximately) valid
small-sample results (Efron and Morris 1975; Copas 1983; Titterington 1985; Le
Cessie and van Houwelingen 1992; Greenland 1997; Rothman and Greenland
1998, pp 429–430; Greenland 2001, Greenland 2003b, Greenland and Christensen
2001).
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Model Checking3.10

It is important to check a fitted model against the data. The extent of these checks
may depend on what purpose we wish the model to serve. At one extreme, we may
only wish the fitted model to provide approximately valid summary estimates or
trends for a few key relationships. For example, we might wish only to estimate the
average increment in risk produced by a unit increase in exposure. At the other
extreme, we may want the model to provide approximately valid regressor-specific
predictions of outcomes, such as exposure-specific risks by age, sex, and ethnicity.
The latter goal is more demanding and requires more detailed scrutiny of results,
sometimes on a subject-by-subject basis.

Model diagnostics can detect discrepancies between data and a model only
within the range of the data, and then only where there are enough observations
to provide adequate diagnostic power. For example, there is much controversy
concerning the health effects of low-dose radiation exposure (exposures that are
only modestly in excess of natural background levels). This controversy arises
because the natural incidence of key outcomes (such as leukemia) is low, and
few cases have been observed in low-dose cohorts. As a result, several proposed
dose-response models “fit the data adequately” in the low-dose region, in that each
model passes the standard battery of diagnostic checks. Nonetheless, the health
effects predicted by these models conflict to an important extent.

More generally, one should bear in mind that a good-fitting model is not the
same as a correct model. In particular, a model may appear correct in the central
range of the data, but produce grossly misleading predictions for combinations of
covariate values that are poorly represented or absent in the data.

Tabular Checks3.10.1

Both tabular methods (such as Mantel–Haenszel, Mantel and Haenszel (1959)) and
regression methods produce estimates by merging assumptions about population
structure (such as that of a common odds ratio or of an explicit regression model)
with observed data. When an estimate is derived using a regression model, espe-
cially one with many regressors, it may become difficult to judge how much the
estimate reflects the data and how much it reflects the model.

To investigate the source of results, we recommend one compare model-based
results to the corresponding tabular (categorical-analysis) results. As an illustra-
tion, suppose we wish to check a logistic model in which X1 is the exposure under
study, and four other regressors X2, X3, X4, X5 appear in the model, with X1, X2, X3

continuous, X4, X5 binary, and products among X1, X2, and X4 in the model. Any
regressor in a model must appear in the corresponding tabular analysis. Because X2

and X4 appear in products with X1 and the model is logistic, they should be treated
as modifiers of the X1 odds ratio in the corresponding tabular analysis. X3 and X5

do not appear in products with X1 and so should be treated as pure confounders
(adjustment variables) in the corresponding tabular analysis. Because X1, X2, X3
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are continuous in the model, they must have at least three levels in the tabular
analysis, so that the results can at least crudely reflect trends seen with the model.
If all three of these regressors were categorized into four levels, the resulting table
of disease (two levels) by all regressors would have 2 × 43 × 22 = 512 cells, and
perhaps many zero cells.

From this table, we would attempt to compute 3 (for exposure strata 1, 2, 3,
versus 0) adjusted odds ratios (e.g., Mantel–Haenszel) for each of the 4 × 2 = 8
combinations of X2 and X4, adjusting all 3 × 8 = 24 odds ratios for the 4 × 2 = 8
pure-confounder levels. Some of these 24 adjusted odds ratios might be infinite
or undefined due to small numbers, which would indicate that the corresponding
regression estimates are largely model projections. Similarly, the tabular estimates
might not exhibit a pattern seen in the regression estimates, which would suggest
that the pattern was induced by the regression model rather than the data. For
example, the regression estimates might exhibit a monotone trend with increasing
exposure even if the tabular estimates did not. Interpretation of such a conflict
would depend on the context: If we were certain that dose-response was mono-
tone (e.g., smoking and esophageal cancer), the monotonicity of the regression
estimates would favor their use over the tabular results; in contrast, doubts about
monotonicity (e.g., as with alcohol and coronary heart disease) would lead us to
use the tabular results or search for a model that did not impose monotonicity.

Tests of Regression and R2 3.10.2

Most programs supply a “test of regression” or “test of model”, which is a test of
the hypothesis that all the regression coefficients (except the intercept α) are zero.
For instance, in the exponential rate model

I(x) = exp(α + xβ) ,

the “test of regression” provides a P-value for the null hypothesis that all the
components of β are zero, that is, that β1 = … = βn = 0. Similarly, the “test of
R2” provided by linear regression programs is just a test that all the regressor
coefficients are zero. A small P-value from these tests suggests that the variation
in outcomes observed across regressor values appears improbably large under the
hypothesis that the regressors are unrelated to the outcome. Such a result suggests
that at least one of the regressors is related to the outcome. It does not, however,
imply that the model fits well or is adequate in any way.

To understand the latter point, suppose that X comprises the single indicator
X1 = 1 for smokers,0 fornonsmokers, and theoutcomeY is averageyear riskof lung
cancer. In most any study of reasonable size and validity, “the test of regression”
(which here is just a test of β1 = 0) would yield a small P-value. Nonetheless,
the model would be inadequate to describe variation in risk, because it neglects
amount smoked, age at start, and sex. More generally, a small P-value from the test
of regression only tells us that at least one of the regressors in the model should be
included in some form or another; it does not tell us which regressor or what form
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to use, nor does it tell us anything about what was left out of the model. Conversely,
a large P-value from the “test of regression” does not imply that all the regressors
in the model are unimportant or that the model fits well. It is always possible that
transformations of those regressors would result in a small P-value, or that their
importance cannot be discerned given the random error in the data.

A closely related mistake is interpreting the squared multiple-correlation co-
efficient R2 for a regression as a goodness-of-fit measure. R2 only indicates the
proportion of Y variance that is attributable to variation in the fitted mean of Y .
While R2 = 1 (the largest possible value)does correspond toaperfect fit,R2 canalso
be close to zero under a correct model if the residual variance of Y (i.e., the variance
of Y around the true regression curve) is always close to the total variance of Y .

The preceding limitations of R2 apply in general. Correlational measures such as
R2 can become patently absurd measures of fit or association when the regressors
and regressand are discrete or bounded (Rosenthal and Rubin 1979; Greenland
et al. 1986; Cox and Wermuth 1992; Greenland 1996). As an example, consider
Table 3.1 showing a large association of a factor with a rare disease. The logistic
model R(x) = expit(α + βx) fits these data perfectly because it uses two parameters
to describe only two proportions. Furthermore, X = 1 is associated with a 19-fold
increase in risk. Yet the correlation coefficient for X and Y (derived using standard
formulas) is only 0.09, and the R2 for the regression is only 0.008.

Correlation coefficients and R2 can give even more distorted impressions when
multiple regressors are present (Greenland et al. 1986, 1991). For this reason, we
strongly recommend against their use as measures of association or effect when
modeling incidence or prevalence.

Tests of Fit3.10.3

Tests of model fit check for nonrandom incompatibilities between the fitted re-
gression model and the data. To do so, however, these tests must assume that the
fitting method used was appropriate; in particular, test validity may be sensitive to
assumptions about the residual distribution that were used in fitting. Conversely,
it is possible to test assumptions about the residual distribution, but these tests
usually have little power to detect violations unless a parametric regression model
is assumed. Thus, useful model tests cannot be performed without making some
assumptions.

Many tests of regression models are relative, in that they test the fit of an index
model by assuming the validity of a more elaborate reference model that contains

Table 3.1. Hypothetical cohort data illustrating inappropriateness of R2 for binary outcomes (see text)

X = 1 X = 0

Y = 1 1900 100

Total 100,000 100,000

Risk ratio = 19, R2 = 0.008.
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it. A test that assumes a relatively simple reference model (i.e., one that has only
a few more coefficients than the index model) will tend to have better power than
a test that assumes a more complex reference model, although it will be valid only
under narrower conditions.

When models are fit by maximum likelihood (ML), a standard method for
testing the fit of a simpler model against a more complex model is the deviance
test, also known as the likelihood-ratio test. Suppose that X1 represents cumulative
dose of an exposure, and that the index model we wish to test is

R(x1) = expit(α + β1x1) ,

a simple linear-logistic model. When we fit this model, an ML program should
supply either a “residual deviance statistic” D(α̃, β̃1), or a “model log-likelihood”
L(α̃, β̃1), where α̃, β̃1 are the ML estimates for this simple model. Suppose we wish
to test the fit of the index model taking as the reference the fractional-polynomial
logistic model

R(x1) = expit
(
α + β1x1 + β2x

1|2
1 + β3x2

1

)
.

We then fit this model and get either the residual deviance D(α̂, β̂1, β̂2, β̂3) or
the log-likelihood L(α̂, β̂1, β̂2, β̂3) for the model, where α̂, β̂1, β̂2, β̂3 are the ML es-
timates for this power model. The deviance statistic for testing the linear-logistic
model against the power-logistic model (that is, for testing β2 = β3 = 0) is
then

∆D(β2, β3) = D
(
α̃, β̃1

)
− D

(
α̂, β̂1, β̂2, β̂3

)
.

This statistic is related to the model log-likelihoods by the equation

∆D(β2, β3) = −2
[
L
(
α̃, β̃1

)
− L

(
α̂, β̂1, β̂2, β̂3

)]
(McCullagh and Nelder 1989; Clayton and Hills 1993). If the linear-logistic model
is correct (so that β2 = β3 = 0) and the sample is large enough, this statistic has an
approximate χ2 distribution with 2 degrees of freedom, which is the difference in
the number of parameters in the two models.

A small P-value from this statistic suggests that the linear-logistic model is
inadequate or fits poorly; in some way, either or both the terms β2x

1|2
1 and β3x2

1
capture deviations of the true regression from the linear-logistic model. A large
P-value does not, however, imply that the linear-logistic model is adequate or
fits well; it means only that no need for the terms β2x

1|2
1 and β3x2

1 was de-
tected by the test. In particular, a large P-value from this test leaves open the
possibility that β2x

1|2
1 and β3x2

1 are important for describing the true regression
function, but the test failed to detect this condition; it also leaves open the pos-
sibility that some other terms not present in the reference model may be im-
portant in the same sense. These unexamined terms may involve X1 or other
regressors.
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Now consider a more general description. Suppose that we wish to test an
index model against a reference model in which it is nested (contained) and
that this reference model contains p more unknown parameters (coefficients)
than the index model. We fit both models and obtain either residual deviances
of Di and Dr for the index and reference models, or log-likelihoods Li and
Lr. If the sample is large enough and the index model is correct, the deviance
statistic

∆D = Di − Dr = −2(Li − Lr) (3.56)

will have an approximate χ2 distribution with p degrees of freedom. Again,
a small P-value suggests that the index model does not fit well, but a large
P-value does not mean the index model fits well, except in the very narrow
sense that the test did not detect a need for the extra terms in the reference
model.

Whatever the size of the deviance P-value, its validity depends on three as-
sumptions (in addition to absence of the usual biases). First, it assumes that ML
fitting of the models is appropriate; in particular, there must be enough subjects
to justify use of ML to fit the reference model, and the assumed residual distri-
bution must be correct. Second, it assumes that the reference regression model
is approximately correct. Third, it assumes that the index model being tested is
nested within the reference model. The third is the only assumption that is easy
to check: In the previous example, we can see that the linear-logistic model is just
the special case of the power-logistic model in which β2 = β3 = 0. In contrast,
if we used the linear-logistic model as the index model (as above) but used the
power-linear model

R(x1) = α + β1x1 + β2x
1|2
1 + β3x2

1

as the reference model, the resulting deviance difference would be meaningless,
because the latter model does not contain the linear-logistic model as a special
case.

Comparison of non-nested models is a more difficult task unless the compared
models have the same number of parameters. In the latter case, it has been sug-
gested that (absent other considerations) one should choose the model with the
highest loglikelihood (Walker and Rothman 1982).

Global Tests of Fit3.10.4

One special type of deviance test of fit can be performed when Y is a proportion
or rate. Suppose that, for every distinct regressor level x, at least four cases would
be expected if the index model were correct; also, if Y is a proportion, suppose
at least four noncases would be expected if the index model were correct. (This
criterion, while somewhat arbitrary, originated because it ensures that the chance
of a cell count being zero is less than 2% if the cell variation is Poisson and the
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index model is correct.) We can then test our index model against the saturated
regression model

E(Y |X = x) = αx ,

where αx is a distinct parameter for every distinct observed level x of X; that is, αx

may represent a different number for every level of X and may vary in any fashion
as X varies. This model is so general that it contains all other regression models as
special cases.

The degrees of freedom for the test of the index model against the saturated
model is the number of distinct X-levels (which is the number of parameters in
the saturated model) minus the number of parameters in the index model, and is
often called the residual degrees of freedom for the model. This residual deviance
test is sometimes called a “global test of fit” because it has some power to detect
any systematic incompatibility between the index model and the data. Another
well-known global test of fit is the Pearson χ2 test, which has the same degrees of
freedom and sample-size requirements as the saturated-model deviance test.

Suppose we observe K distinct regressor values and we list them in some order,
x1, … , xK . The statistic used for the Pearson test has the form of a residual sum-
of-squares:

RSSPearson =
∑

k

(
Yk − Ŷ k

)2
|V̂ k =

∑
k

[(
Yk − Ŷ k

)
|Ŝk

]2
,

where the sum is over all observed values 1, … , K, Yk is the rate or risk observed
at level xk, Ŷ k is the rate or risk predicted (fitted) at xk by the model, V̂ k is the
estimated variance of Ŷ k when X = xk, and Ŝk = V̂ k

1|2 is the estimated standard
deviation of Yk under the model. In Poisson regression, Ŷ k = exp(α̂ + xkβ̂) and
V̂ k = Ŷ k|Tk, where Tk is the person-time observed at xk; in binomial regression,
Ŷ k = expit(α̂ + xkβ̂) and V̂ k = Ŷ k(1 − Ŷ k)|Nk, where Nk is the number of persons
observed at xk. The quantity (Yk − Ŷ k)|Ŝk is sometimes called the standardized
residual at level xk; it is the distance between Yk and Ŷ k expressed in units of the
estimated standard deviation of Yk under the model.

Other global tests have been proposed that have fewer degrees of freedom
and less restrictive sample-size requirements than the deviance and Pearson tests
(Hosmer and Lemeshow 2000). A major drawback of all global tests of fit, however,
is their low power to detect model problems (Hosmer et al. 1997). If any of the tests
yields a low P-value, we can be confident the tested (index) model is unsatisfactory
and needs modification or replacement (albeit the tests provide no clue as to
how to proceed). If, however, they all yield a high P-value, it does not mean the
model is satisfactory. In fact, the tests are unlikely to detect any but the most gross
conflicts between the fitted model and the data. Therefore, global tests should be
regarded as crude preliminary screening tests only, to allow quick rejection of
grossly unsatisfactory models.

The deviance and Pearson statistics are sometimes used directly as measures
of distance between the data and the model. Such use is most easily seen for the



686 Sander Greenland

Pearson statistic. The second form of the Pearson statistic shows that it is the sum
of squared standardized residuals; in other words, it is a sum of squared distances
between data values and model-fitted values of Y . The deviance and Pearson global
test statistics can also be transformed into measures of prediction error under the
model; for example, see McCullagh and Nelder (1989) and Hosmer and Lemeshow
(2000).

Model Diagnostics3.10.5

Suppose now we have found a model that has passed preliminary checks such as
tests for additional terms and global tests of fit. Before adopting this model as
a source of estimates, it is wise to further check the model against the basic data,
and assess the trustworthiness of any model-based inferences we wish to draw.
Such activity is subsumed under the topic of model diagnostics, and its subsidiary
topics of residual analysis, influence analysis, and model-sensitivity analysis. These
topics are vast, and we can only mention a few approaches here. In particular, we
neglect the classical topic of residual analysis, largely because its proper usage
involves a number of technical complexities when dealing with the censored data
and nonlinear models predominant in epidemiology (McCullagh and Nelder 1989).
Detailed treatments of diagnostics for such models can be found in Breslow and
Day (1987), Hosmer and Lemeshow (2000), and McCullagh and Nelder (1989).

Delta-Beta Analysis3.10.6

One important and simple diagnostic tool available in some packaged software is
delta-beta (∆β) analysis. For a data set with N subjects total, estimated model
coefficients (or approximations to them) are recomputed N times over, each
time deleting exactly one of the subjects from the model fitting. Alternatively,
for individually-matched data comprising N matched sets, the delta-beta analysis
may be done deleting one set at a time. In either approach, the output is N different
sets of coefficients estimates: These sets are then examined to see if anyone subject
or matched set influences the resulting estimates to an unusual extent.

To illustrate, suppose our objective is to estimate the rate-ratio per unit in-
crease in an exposure X1, to be measured by exp(β̂1), where β̂1 is the estimated
exposure coefficient in an exponential-rate model. For each subject, the entire
model (confounders included) is re-fit without that subject. Let β̂1(−i) be the es-
timate of β̂1 obtained when subject i is excluded from the data. The difference
β̂1(−i) − β̂1 ≡ ∆β̂1(−i) is called the delta-beta for β1 for subject i. The influence of
subject i on the results can be assessed in several ways. One way is to examine the
impact on the rate-ratio estimate. The proportionate change in the estimate from
dropping subject i is

exp
(
β̂1(−i)

)
| exp

(
β̂1

)
= exp

(
β̂1(−i) − β̂1

)
= exp

(
∆β̂1(−i)

)
,

for which a value of 1.30 indicates dropping subject i increases the estimate by 30%,
and a value of 0.90 indicates dropping subject i decreases the estimate by 10%. One
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can also assess the impact of dropping the subject on confidence limits, P-values,
or any other quantity of interest.

Some packages compute “standardized” delta-betas, ∆β̂1(−i)|ŝ1 where ŝ1 is the
estimated standard deviation for β̂1. By analogy with Z-statistics, any standardized
delta-beta below −1.96 or above 1.96 is sometimes interpreted as being unusual.
This interpretation can be misleading, however, because the standard deviation
used in the denominator is not that of the delta-beta. A standardized delta-beta is
only a measure of the influence of an observation expressed in SE units.

It is possible that one or a few subjects or matched sets are so influential that
deleting them alters the conclusions of the study, even when N is in the hundreds
(Pregibon 1981). In such situations, comparison of the records of those subjects to
others may reveal unusual combinations of regressor values among those subjects.
Such unusual combinations may arise from previously undetected data errors, and
should at least lead to enhanced caution in interpretation. For instance, it may
be only mildly unusual to see a woman who reports having had a child at age 45
or a woman who reports natural menopause at age 45. The combination in one
subject, however, may arouse suspicion of a data error in one or both regressors,
a suspicion worth the labor of further data scrutiny if that woman or her matched
set disproportionately influences the results.

Delta-beta analysis must be replaced by a more complex analysis if the exposure
of interest appears in multiple model terms, such as indicator terms, power terms,
product terms, or spline terms. In that situation, one must focus on changes in
estimates of specific effects or summaries, for example, changes in estimated risk
ratios.

Conclusions 3.11

This chapter has reviewed basic principles and forms of parametric regression
models and model fitting. Regression analysis is a vast subject, however, and many
topics and details have been omitted. For further reading on fundamentals of
parametric modeling a standard text is McCullagh and Nelder (1989). A standard
introduction to nonparametric regression is Hastie and Tibshirani (1990). Non-
parametric methods are connected to algorithmic modeling (machine learning)
methods; for a comparison of parametric and algorithmic approaches see Breiman
(2001). For an integrated coverage of parametric, nonparametric, and algorithmic
methods see Hastie et al. (2001).
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