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Introduction 1.1

When planning a research project an epidemiologist must consider how many
subjects should be studied. While factors such as available budget certainly present
constraints on the maximum number of subjects that might actually be included in
astudy, statistical considerationsareextremely important.Toaddress the statistical
questions about appropriate sample size, the researcher must first specify the study
design, the nature of the outcome variable, the aims of the study, the planned
analysis method, and the expected results of the study. Is the goal of the study
to distinguish between hypotheses about the value of a parameter or function of
parameters, or is the goal to provide a confidence interval estimate of a parameter
such as the odds ratio or relative risk?

This chapter is organized as follows. We introduce the issue of how to choose
sample size for estimation of a parameter or for a hypothesis test regarding a pa-
rameter in the context of one-sample studies in which it is desired to estimate
or test a population proportion. We continue on to two-sample studies involving
comparisons between two proportions, and one and two-sample studies involving
estimation or testing of population means. We conclude with a section on sample
size for logistic regression.

In this chapter we will provide a brief introduction to power and sample size
computation and only address sample size issues for a few of the procedures that
are most commonly used in epidemiologic research. However, we do hope that
the reader will gain a sense for what one can accomplish by planning a study with
appropriate attention to sample size considerations.

A focus on sample size considerations when the study is first being planned is
critical for the ultimate likelihood that a study proposal is accepted for funding
and that the final manuscript will be accepted for publication. To ignore the issue
of sample size would greatly increase the likelihood of embarking on a costly and
time-consuming epidemiologic study with little likelihood of finding any definitive
results.

One Group Designs,
Inferences About Proportions 1.2

The simplest study design is one in which interest focuses on results for a single
group. One is often interested in making inferences about the value of a population
proportion. In this section we will illustrate how to choose sample size for the
following examples:

Example 1 . A district medical officer seeks to estimate the proportion of chil-
dren in the district receiving appropriate childhood vaccinations.

Assuming a simple random sample is to be selected from a community, how many
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children must be studied if the resulting estimate is to fall within 10 percentage
points of the true proportion with 95% confidence? �

Example 2 . Consider the information given in Example 1, only this time we
will determine the sample size necessary to estimate the proportion

vaccinated in the population to within 10% (not 10 percentage points) of the true
value. �

Example 3 . During a virulent outbreak of neonatal tetanus, health workers wish
to determine whether the rate is decreasing after a period during

which it had risen to a level of 150 cases per thousand live births. What sample
size is necessary to test the null hypothesis that the population proportion is 0.15
at the 0.05 level if it is desired to have a 90% probability of detecting a decrease to
a rate of 100 per thousand if that were the true proportion? �

The first two examples involve estimation and confidence intervals while the
third involves a statistical hypothesis test.

The usual model underlying testing or estimation of a population proportion
assumes that the design involves a simple independent random sample from a pop-
ulation in which the probability of a “success” is constant. The distribution of the
number of successes in a sample of size n with a true underlying proportion of
successes denoted by π is given by the binomial distribution. However, formulas
are simplified when power and sample size determinations are made on the basis
of using the normal approximation to the binomial.

The samplingdistributionof the sampleproportion“p” is approximatelynormal
with mean of π (the expected value of p, E(p) = π) and variance of p, Var (p) =
π(1 − π)|n; the standard deviation is

√
π(1 − π)|n.

Webeginbydiscussingsamplesizedetermination forestimation(theconfidence
interval approach) and then turn to sample size determination for hypothesis
testing problems.

Confidence Intervals for a Single Population Proportion1.2.1

Two-sided 100(1 − α)% confidence intervals for a parameter, θ, based on using the
normal approximation can be stated in general as:

θ̂ ± z1−α|2ŜE
(̂
θ
)

, (1.1)

where z1−α|2 is the100(1−α|2)thpercentileof thenormal (orGaussian)distribution.
For the commonly used two-sided 95% confidence interval, z1−α|2 = 1.96. The
100(1 − α)% confidence interval for π based on the estimated proportion, p, is
given by
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p ± z1−α|2

√
p(1 − p)

n
. (1.2)

Letting, ω be the half-width of the confidence interval for the expected true value π,
we have

ω = z1−α|2

√
π(1 − π)

n
. (1.3)

The sample size necessary to achieve a confidence interval of width ω is given by

n =
(z1−α|2

ω

)2
[π(1 − π)] . (1.4)

Returning to Example 1, we begin by assuming that the rate of vaccinated children is
expected to be about 75%. We would then set π = 0.75, ω = 0.10 and z1−α|2 = 1.96.
From (1.4) we find that n = 72.03. Note that for sample size calculations we round
up. We conclude that to estimate the expected population proportion to within
±0.10, a sample of 73 children would be required.

If we don’t really know what rate to expect we can make use of the fact that n will
be largest for π = 0.50 and use this value to solve for n. For Example 1 we require
a sample size of 97 to be sure that the confidence interval width will be no wider
than plus or minus 10 percentage points no matter what the observed proportion
is.

Table 1.1 presents the required sample sizes for selected values of π and ω.

Table 1.1. Sample size for 95% two-sided confidence interval for a proportion (using the normal

approximation) to have expected width, ω

ω
π ±0.05 ±0.10

0.50 385 97

0.25 289 73

0.10 139 35

Proceeding to Example 2, we consider the information given in Example 1, only
this time we will determine the sample size necessary to estimate the proportion
vaccinated in the population to within 10% (not 10 percentage points) of the true
value.

Let θ be the unknown population parameter as before and let θ̂ be the estimate
of θ. Let ε, the desired precision, be defined as:

ε =

∣∣̂θ − θ
∣∣

θ
.
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In the present example, based on the confidence limits using the normal approxi-
mation to the distribution of p, it follows that∣∣p − π

∣∣ = z1−α|2

√
π(1 − π)√

n

and, dividing both sides by π, an expression similar to the one presented above for
ε is obtained. That is,

ε =

∣∣p − π
∣∣

π
= z1−α|2

√
1 − π√

nπ

and squaring both sides and solving for n gives:

n = z2
1−α|2

1 − π
ε2π

. (1.5)

Assuming π = 0.75, we would find that a sample size of 129 would be required to
assure that the 95% confidence interval would be within 10% of the true value.

Hypothesis Testing for a Single Population Proportion1.2.2

Suppose we would like to test a null hypothesis about the value of the population
proportion

H0 : π = π0

versus the one-sided alternative hypothesis

Ha : π > π0 .

Statistical hypothesis testing involves balancing the two types of errors that can be
made. Type I error is defined as the error of rejecting the null hypothesis when it is
in fact true. We denote the probability of making a Type I error as “α”; a commonly
used choice for α is 0.05. The critical value of the test statistic is then chosen so
that the probability of rejecting the null hypothesis when it is true will be α.

To choose the necessary sample size, we need to address Type II error as well.
A Type II error is the error of failing to reject the null hypothesis when it is in fact
false. To determine the probability of a Type II error (denoted by “β”), we must
specify a particular value of interest for the alternative hypothesis, say, πa. The
probability of rejecting the null hypothesis when it is false is defined as the power
of the test, 1 − β. Typically, we require the power at the alternative of interest to be
80% or 90%.

Based on the normal approximation to the binomial, the test statistic for a test
of the null hypothesis is given by

z =
p − π0√

π0(1 − π0)|n
.
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To set the probability of a Type I error equal to α, we plan to reject the null
hypothesis if z > z1−α. To choose n, we fix the probability that z > z1−α if the
population proportion equals πa to be 1 − β. This may be represented graphically
as shown in Fig. 1.1:

Distribution under H0 Distribution under Ha

Region where we fail to reject H0 Region where we reject H0

HaH0
c

β

Type I error

probability

Type II error

probability

α

Figure 1.1. Sampling distributions for one-sample hypothesis test

In this figure the point “c” represents the upper 100 αth percent point of the
distribution of p for the sampling distribution centered at π0 (i.e., the distribution
which would result if the null hypothesis were true):

c = π0 + z1−α

√
π0

(
1 − π0

)
|n .

For the sampling distribution centered at πa (i.e., the distribution which would
result if the alternatehypothesiswere true), “c” represents the lower 100 βthpercent
point of the distribution of p:

c = πa + zβ

√
πa
(
1 − πa

)
|n .

In order to find n we set the two expressions equal to each other. From this, it
follows that:

π0 + z1−α

√
π0

(
1 − π0

)
|n = πa + zβ

√
πa
(
1 − πa

)
|n .

Noting that z1−β = −zβ, we find

πa − π0 =

{
z1−α

√
π0

(
1 − π0

)
+ z1−β

√
πa
(
1 − πa

) }
√

n
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and, solving for n, we find that the necessary sample size, for this single sample
hypothesis testing situation, is given by the formula:

n =

{
z1−α

√
π0

(
1 − π0

)
+ z1−β

√
πa
(
1 − πa

) }2

(
πa − π0

)2 . (1.6)

Notice that as πa gets further and further away from π0, the necessary sample size
decreases.

To illustrate, we return to Example 3 in which we wish to test the null hypothesis
that π = 0.15 at the one-sided 5% level and have 90% power to detect a decrease
to a rate of 0.10. Using (1.6), it follows that

n =

{
1.645

√
0.15(0.85) + 1.282

√
0.10(0.90)

}2

(0.05)2
= 377.90 .

Hence we see that a total sample size of 378 live births would be necessary.
To plan sample size for a two-sided test, we need only substitute z1−α|2 for z1−α

in (1.6) to obtain:

n =

{
z1−α|2

√
π0

(
1 − π0

)
+ z1−β

√
πa
(
1 − πa

)}2

(
πa − π0

)2 . (1.7)

To have 90% power for a two-sided 5% level test for Example 3 would require a total
of 471 subjects to detect the difference between the null hypothesis proportion, π0,
of 0.15 and the alternative proportion, πa, of 0.10. Note that the sample size
required to achieve 90% power for the specified alternative is larger when a two-
sided 5% level test is planned than when a one-sided 5% level test is planned,
so that the investigator needs to be clear as to whether the planned test is to be
one-sided or two-sided when making sample size computations.

Table 1.2. Sample size for 0.05-level, two-sided test that the proportion equals π0 versus the

alternative πa for specified levels of power (based on normal approximation)

Power
π0 πa 80% 90%

0.50 0.40 194 259

0.50 0.30 47 62

0.20 0.10 108 137

0.15 0.10 363 471

0.10 0.05 239 301

Table 1.2 presents the required sample sizes for selected values of π0, πa and
power. For a two-sided test, unless the null hypothesis proportion equals 0.5,
computed sample sizes for alternative proportions given by πaL = π0 − δ and
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πaU = π0 + δ will differ; the larger estimate of sample size will be obtained for the
alternative proportion closer to 0.5.

Additional Considerations and References 1.2.3

Good introductions to sample size computations for tests and confidence intervals
for a single proportion can be found in Dixon and Massey (1983), Lemeshow et
al. (1990), Fleiss (1981) and Lachin (1981). Books containing sample size tables
are available (e.g. Machin and Campbell 1987; Machin et al. 1997; Lemeshow et al.
1990).Commercially available sample size software suchasnQueryAdvisorRelease
6 (Elashoff 2005) can be used to compute sample size for confidence intervals or
hypothesis tests (based on either the normal approximation or an exact binomial
test) for a single proportion as well as for a wide variety of other sample size
problems.

For values of π near 0 or 1 (or for small sample sizes), sample size methods
involving a continuity correction (Fleiss et al. 1980), methods designed for rare
events (e.g. Korn 1986; Louis 1981), or methods based on exact tests (Chernick and
Liu 2002) may be preferable.

Note that an actual field survey is unlikely to be based on a simple random
sample. As a result, the required sample size would go up by the amount of the
“design effect” which is determined by the details of the actual sampling plan.
The “design effect” is the ratio of the standard error of the estimated parameter
under the study design to the standard error of the estimate under simple random
sampling; a text on sample surveys should be consulted for details (see Levy and
Lemeshow (1999)). For example, if a cluster sampling plan with a design effect of 2
were to be employed, the sample size computed using the above formulas would
need to be doubled.

Comparison
of Two Independent Proportions 1.3

Study Designs, Parameters, Analysis Methods 1.3.1

More sample size literature exists for the problem of comparing two independent
proportions than for any other sample size problem. This has come about because
there are several basic sampling schemes leading to problems of this type. There
are different parameterizations of interest and a variety of test and estimation
procedures that have been developed. Sample size formulations depend on the
parameter of interest for testing or estimation as well as the specifics of the test or
estimation procedure.

The basic study designs relevant to epidemiological studies are experimental
trials, cohort studies, and case-control studies. We describe each study type briefly
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and give an example. The examples will be addressed in more detail in subsequent
sections.

Experimental Trial. 2n subjects are recruited for a study; n are randomly assigned
to group 1 and n to group 2. The intervention is applied according to the design.
Subjects are followed for a fixed time and success-failure status is recorded. Exper-
imental trials are usually randomized, often double blind, and always prospective.
For example, patients with intestinal parasites are randomly assigned to receive
either the standard drug or a new drug and followed to determine whether they
respond favorably. The observed proportion responding favorably in group i is
denoted by pi and the true population proportion in group i by πi.
Experimental trials are typically analyzed in terms of the difference in proportions,
or the risk difference.

Population risk difference = π1 − π2 (1.8)

Estimated risk difference = p1 − p2 (1.9)

Cohort Study. n subjects are recruited from group 1 and n from group 2; subjects
are followed for a fixed time and success-failure status is recorded. Cohort studies
are typically prospective studies. For example, workers with asbestos exposure
and workers in the same industry without asbestos exposure are followed for the
development of lung disease.
Cohort studies may be analyzed in terms of the risk difference or in terms of the
relative risk.

Population relative risk = RR = π2|π1 (1.10)

Estimated relative risk = rr = p2|p1 (1.11)

Referring to the example, π1 denotes the true proportion of diseased workers in
the unexposed group while π2 denotes the true proportion of diseased workers in
the exposed group, and p1 and p2 are the corresponding observed proportions.

Case-Control Studies. n subjects (cases) are recruited from among those who
have developed a disease and n subjects (controls) are recruited from a similar
group without the disease. Subjects from both groups are studied for the presence
of a relevant exposure in their background. For example, tuberculosis (TB) cases
and controls are assessed for whether they had been vaccinated with BCG (Bacil-
lus Calmette-Guérin vaccine). Case-control studies are inherently retrospective
studies and interest is focused on the odds ratio.

Population odds ratio = OR = π2

(
1 − π1

)
|
(
1 − π2

)
π1 (1.12)

Estimated odds ratio = or = p2

(
1 − p1

)
|
(
1 − p2

)
p1 (1.13)
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Referring to the example, π1 denotes the true proportion of vaccinated subjects
among the controls while π2 denotes the true proportion of vaccinated subjects
among the TB cases, and p1 and p2 are the corresponding observed proportions.

Webeginbydiscussingsamplesizedetermination forestimation(theconfidence
interval approach) and then turn to sample size determination for hypothesis
testing problems.

Confidence Intervals for the Risk Difference 1.3.2

Example 4 . A pilot study with 20 subjects randomized to receive the standard
drug to control intestinal parasites and 20 to receive a new drug found

that 13 subjects (65%) receiving the standard drug responded favorably while 17
(85%) of the subjects receiving the new drug responded favorably.

Question 4a: Do these data establish that the new drug is better (lower limit of
confidence interval is greater than zero) and, if not, might it still be enough better
to warrant a larger clinical trial? We address this question with a confidence interval
below.

Question 4b: What sample size would be required for the larger clinical trial? We
address this question in the context of a confidence interval later in this section,
and in the context of a hypothesis test in the following section. �

The estimated value of the risk difference, π1 − π2, is given by p1 − p2, the observed
difference in proportions. The variance of p1 − p2 for independent proportions
when the sample sizes, n, in each group are equal is:

Var (p1 − p2) =
π1(1 − π1) + π2(1 − π2)

n
. (1.14)

This formula is based on the assumption that the data come from independent
random samples from the populations of interest. In population i, the probability
of a success is a constant, πi, and therefore the number of successes observed for
each group has a binomial distribution with parameters n and πi.

The standard error of this estimate, p1 − p2, is estimated by substituting the
observed proportions for the true proportions and is given by

SE(p1 − p2) =

√
p1(1 − p1) + p2(1 − p2)√

n
. (1.15)

Referring to the basic formula for a confidence interval based on the normal
approximation given in (1.1), a two-sided 95% confidence interval for the difference
in the proportions responding favorably to the new drug in comparison to the old
drug is given by

0.85 − 0.65 ± 1.96

√
0.85(1 − 0.85) + 0.65(1 − 0.65)√

20
.
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The limits are 0.20 ± 0.209 or −0.009 to 0.409, suggesting that although we cannot
rule out a difference of zero the data indicate that the new drug might work
markedly better than the standard.

The investigator wants to plan a definitive study to assess how much the success
rates really do differ. What sample size would be necessary to obtain a confidence
interval whose width is less than or equal to ±0.05?

We require that the confidence interval for π1 − π2, be p1 − p2 ± ω, where
for Example 4, ω ≤ 0.05. To obtain a confidence interval width satisfying these
conditions, we must have

z1−α|2

√
π1(1 − π1) + π2(1 − π2)√

n
≤ ω .

Solving this equation for n, the sample size in each group, we obtain (1.16).

n =
z2

1−α|2 [π1(1 − π1) + π2(1 − π2)]

ω2
. (1.16)

For Example 4, an n per group of 546 would be required to obtain an expected
95% two-sided confidence interval width of approximately ±0.05 if we expect to
see about the same proportions as we did in the pilot study.

Table 1.3 presents the sample size in each group necessary to obtain specified
confidence interval widths for a few selected examples. This table should provide
investigators with a quick idea of the order of magnitude of required sample
sizes. Note that since the confidence interval width depends on the postulated
proportions only through the terms πi

(
1 − πi

)
, this table can also be used for

proportions greater than 0.5.
If an investigator is a bit uncertain about what proportions to expect and wants

to ensure that the confidence interval width is less than some specified amount ±ω
no matter what proportions are observed, we can use the fact that the confidence
interval is widest when π1 = π2 = 0.5. In this case the sample size required for
each group is

n ≤ z2
1−α|2

2ω2
. (1.17)

Table 1.3. Sample size per group for 95% two-sided confidence interval (using normal approximation)

for risk difference to have expected width, ω

ω
π1 π2 ±0.05 ±0.10

0.50 0.50 769 193

0.50 0.25 673 169

0.50 0.10 523 131

0.25 0.25 577 145

0.25 0.10 427 107

0.10 0.10 277 70
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For a two-sided 95% confidence interval this becomes approximately 2|ω2. For
Example 4, the maximum sample size per group required for a confidence interval
width of no more than ±0.05 is 769.

Confidence Interval for Relative Risk (Ratio) 1.3.3

Example 5 . Workers with asbestos exposure and workers in the same industry
without asbestos exposure are followed for the development of lung

disease. Suppose that disease occurs in 20% of the unexposed group, how large
a sample would be needed in each of the exposed and unexposed study groups
to estimate the relative risk to within 10% of the true value with 95% confidence
assuming that the relative risk is approximately 1.75? �

For this purpose we define group 1 as the unexposed group and group 2 as the
exposed group. The estimate of the relative risk (cf. Chap. I.2 of this handbook) is

R̂R = rr = p2|p1 .

Since we are dealing with a ratio, which can be expected to have a skewed distri-
bution with a log-normal shape, we need to take logs to normalize the distribu-
tion so that the normal approximation can be used to construct the confidence
interval.

We obtain the standard deviation for the estimate for the case where the sample
sizes in the two groups are equal by using the approximation

Var
(
ln(rr)

) ≈ 1 − π1

nπ1
+

1 − π2

nπ2
. (1.18)

The estimated standard deviation is obtained by substituting the estimated pro-
portions for the population proportions and taking the square root.

The 100(1 − α)% confidence limits for ln(RR) are given by ln(rr) ± ω where

ω = z1−α|2ŜE
(
ln(rr)

)
= z1−α|2

√
1 − π1

nπ1
+

1 − π2

nπ2
.

Then the confidence limits for RR are given by exp
(
ln
(
rrL
))

and exp
(
ln
(
rrU
))

where ln
(
rrL
)

and ln
(
rrU
)

are the lower and upper confidence limits for ln(RR).
To choose the sample size necessary to obtain a confidence interval of a desired

width for ln(RR), we could simply specify ω and solve for n.

n =
z2

1−α|2 [(1 − π1)|π1 + (1 − π2)|π2]

ω2
. (1.19)

Alternatively, an investigator may wish to specify the width in terms of how close
the limits are to RR. For example, suppose that we are thinking in terms of values of
RR > 1, and that we want the difference between RR and RRL to be no greater than
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εRR; that is, we set RR − RRL = εRR which we rearrange to get RR(1 − ε) = RRL.
Then, taking logs, we have

ln(RR) + ln(1 − ε) = ln
(
RRL

)
and

ln(RR) − ln
(
RRL

)
= − ln(1 − ε) = ω

so

ω = z1−α|2

√
1 − π1

nπ1
+

1 − π2

nπ2
= − ln(1 − ε) .

Then to find the necessary sample size for each group, we solve for n to obtain

n =
z2

1−α|2 [(1 − π1)|π1 + (1 − π2)|π2]

[ln(1 − ε)]2
. (1.20)

A version of this, which substitutes the expected RR for π2, is

n =
z2

1−α|2 [(1 + RR)|(RRπ1) − 2]

[ln(1 − ε)]2
. (1.21)

Returning to Example 5, the expected RR = 1.75, π1 = 0.20, and we have requested
that the lower limit of the confidence interval for RR be within 10% of the true
value of RR. Therefore ε = 0.1, 1 − ε = 0.9 and the required sample size would be
2027 per group or 4054 total.

Table 1.4 presents the sample size in each group necessary to obtain specified
confidence interval widths for a few selected examples.

Table 1.4. Sample size per group for 95% two-sided confidence interval for the relative risk to have

lower limit (1 − ε)RR

ε
RR π1 0.10 0.20

1.25 0.20 2423 540

1.50 0.20 2192 489

1.75 0.20 2027 452

2.00 0.20 1904 424

1.25 0.40 866 193

Confidence Intervals for the Odds Ratio1.3.4

Example 6 . The efficacy of BCG vaccine in preventing childhood tuberculosis
is in doubt and a study is designed to compare the immunization

coverage rates in a group of tuberculosis cases compared to a group of controls.
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Available information indicated that roughly 30% of controls are not vaccinated
and we wish to estimate the odds ratio to within 20% of the true value. It is believed
that the odds ratio is likely to be about 2.0. �

For problems involving estimation of the odds ratio (cf. Chap. I.2 of this handbook)
we let group 1 denote the controls and group 2 denote the cases. Our estimate of
the odds ratio is

or =
p2

(
1 − p1

)(
1 − p2

)
p1

.

Since we are dealing with a ratio we need to take logs so that the normal approxi-
mation can be used to construct the confidence interval.

We obtain the standard deviation for the estimate for the case where the sample
sizes in the two groups are equal by using the approximation

Var
(
ln(or)

) ≈ 1

nπ1(1 − π1)
+

1

nπ2(1 − π2)
. (1.22)

The estimated standard deviation is obtained by substituting the estimated pro-
portions for the population proportions and taking the square root.

To obtain a 100(1 − α)% confidence interval for ln(OR) of width ω where
ω = z1−α|2SE

(
ln(or)

)
when the sample sizes in the two groups are equal we require

a sample size per group of

n =
z2

1−α|2

[
1|
(
π2(1 − π2)

)
+ 1|

(
π1(1 − π1)

)]
ω2

. (1.23)

In situations where we assume that the odds ratio is greater than 1.0, to specify
that the lower limit of the confidence interval be no less than (1 − ε)OR, we would
set ω = − ln(1 − ε) as we did in the previous section for the relative risk. We then
obtain

n =
z2

1−α|2

[
1|
(
π2(1 − π2)

)
+ 1|

(
π1(1 − π1)

)]
[ln(1 − ε)]2

. (1.24)

Solving for π2 using (1.12), we have

π2 =
ORπ1

ORπ1 + (1 − π1)

and we can obtain sample size expressed in terms of π1 and OR.

n = z2
1−α|2

[
OR + (1 − π1 + ORπ1)2

π1(1 − π1)OR[ln(1 − ε)]2

]
. (1.25)

For Example 6, we have OR = 2, π1 = 0.30, (π2 = 0.462) and (1 − ε) = 0.8, so we
need 678 subjects per group.

Table 1.5 presents the sample size in each group necessary to obtain specified
confidence interval widths for OR for a few selected examples.
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Table 1.5. Sample size per group for 95% two-sided confidence interval for OR to have lower limit

(1 − ε)OR

ε
OR π1 0.10 0.20

1.25 0.30 3171 708

1.50 0.30 3101 692

1.75 0.30 3061 683

2.00 0.30 3040 678

1.25 0.50 2786 621

Testing the Difference Between Two Proportions1.3.5

The goal is to test

H0 : π1 = π2 versus H1 : π1 ≠ π2 .

If it can be assumed that the samples of size n from both groups arise from
independent binomial distributions, the test for H0 can be performed using the
normal approximation to the binomial.

The test statistic is

z =
√

n
(
p1 − p2

)√
2p̄
(
1 − p̄

) , (1.26)

where z ∼ N(0, 1), i.e. z is normally distributed with mean 0 and variance 1, and
where, in the general case with unequal sample sizes in the two groups,

p̄ =
n1p1 + n2p2

n1 + n2
,

whereas for equal sample sizes

p̄ =
p1 + p2

2
.

(Note that the two-sided z test given by (1.26) is algebraically equivalent to the
standard χ2 test.)

The sample size in each group required for a two-sided 100(1 − α)% test to have
power 1 − β is

n =

[
z1−α|2

√
2π̄(1 − π̄) + z1−β

√
π1(1 − π1) + π2(1 − π2)

]2

(
π1 − π2

)2 (1.27)

and π̄ is defined by analogy with p̄.
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Example 7 . Typically, the outcome measure for placebo controlled double-blind
trials for acute duodenal ulcer healing is the proportion of patients

whose ulcer has healed by four weeks as ascertained by endoscopy. The heal-
ing rate for the placebo group is typically about 40%. H2-blocking active drugs
usually result in 70% healed. The investigator wishes to evaluate a new drug
with the expectation of seeking FDA (US Food and Drug Administration) ap-
proval; the results will be assessed by comparing observed proportions healed
using the χ2 test at the two-sided 5% significance level. Such trials are expen-
sive to mount so that if the new drug is as effective as those currently ap-
proved, the investigator wants a 90% chance that the trial will yield a significant
result. �

Using (1.27) for a two-sided 5% test, a sample size of 56 patients per group or
a total sample size of 112 patients would be required to achieve 90% power.

Table 1.6 presents the sample size in each group necessary for a 5% two-sided
χ2 test comparing two independent proportions to have specified power for a few
selected examples.

Table 1.6. Sample size per group for 5% two-sided χ2 test for the difference between two independent

proportions to have specified power

Power
π1 π2 80% 90%

0.10 0.05 435 582

0.25 0.10 100 133

0.50 0.25 58 77

0.50 0.10 20 26

Testing the Relative Risk 1.3.6

In a cohort study, where we want to focus attention on a test of the relative risk

H0 : RR =
π2

π1
= 1 ,

the large sample test for this null hypothesis is the same as for the null hypothesis
that the difference in proportions is zero and therefore the sample size formulas
are the same. If we substitute RR into (1.27) we obtain

n =

[
z1−α|2

√
(1 + RR)[1 − π1(1 + RR)|2] + z1−β

√
[1 + RR − π1(1 + RR2)]

]2

π1(1 − RR)2
.

(1.28)
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Example 8 . Two competing therapies for a particular cancer are to be evaluated
by the cohort study strategy in a multi-center clinical trial. Patients

are randomized to either treatment A or B and are followed for recurrence of
disease for five years following treatment. How many patients should be studied in
each of the two arms of the trial in order to have 90% power to reject H0 : RR = 1
in favor of the alternative RR = 0.5, if the test is to be performed at the two-sided
α = 0.05 level and it is assumed that π1 = 0.35? �

For Example 8, we substitute π1 = 0.35 and RR = 0.5 into (1.28) and find that
the required sample size per group would be 131 or 262 total. Or we could have
noted that π2 = 0.175 and used (1.27).

Table 1.7 presents the sample size in each group necessary for a 5% two-sided
normal approximation test of the null hypothesis that the relative risk is 1.0 to have
specified power for a few selected examples.

Table 1.7. Sample size per group for 5% two-sided test that the relative risk equals 1 to have specified

power

Power
RR π1 80% 90%

1.25 0.20 1094 1464

1.50 0.20 294 392

1.75 0.20 138 185

2.00 0.20 82 109

1.25 0.40 388 519

Testing the Odds Ratio1.3.7

The null hypothesis that the odds ratio equals 1.0 can be tested using (1.26) as
for the test of difference in proportions. Sample size formulas can be modified
to be based on π2 and OR by algebraic substitution in (1.27) if desired, however
formulas are simpler if we use (1.12) to solve for the other proportion and use (1.27)
directly.

Example 9 . The efficacy of BCG vaccine in preventing childhood tuberculosis
is in doubt and a study is designed to compare the immunization

coverage rates in a group of tuberculosis cases compared to a group of controls.
Available information indicates that roughly 30% of the controls are not vacci-
nated, and we wish to have an 80% chance of detecting whether the odds ratio
is significantly different from 1 at the 5% level. If an odds ratio of 2 would be
considered an important difference between the two groups, how large a sample
should be included in each study group? �
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For Example 9, π1 = 0.3 and OR = 2 and thus π2 = 0.462; so using (1.27) we find
that to obtain 80% power for a two-sided 5% level test would require 141 subjects
per group or 282 total.

Table 1.8 presents the sample size in each group necessary to obtain specified
power for tests of OR = 1 for a few selected examples.

Table 1.8. Sample size per group for 5% two-sided test of OR = 1 to have specified power

Power
OR π1 80% 90%

1.25 0.30 1442 1930

1.50 0.30 425 569

1.75 0.30 219 293

2.00 0.30 141 188

1.25 0.50 1267 1695

Additional Considerations and References 1.3.8

Good introductions to sample size computations for tests and confidence intervals
for comparing two independent proportions can be found in Dixon and Massey
(1983), Lemeshow et al. (1990), Fleiss (1981) and Lachin (1981). Books containing
sample size tables are available (e.g. Machin and Campbell 1987; Machin et al.
1997; Lemeshow et al. 1990). Commercially available sample size software such as
nQuery Advisor Release 6 (Elashoff 2005) can be used to compute sample size (or
width) for confidence intervals and sample size (or power) for hypothesis tests for
the two proportion case (based on either the normal approximation, continuity
corrected normal approximation or Fisher’s exact test) as well as for a wide variety
of other sample size problems.

For values of π near 0 or 1 (or for small sample sizes), sample size methods
involving a continuity correction (Fleiss et al. 1980), or methods based on exact
tests (Chernick and Liu 2002) may be preferable.

When plans call for the sample sizes in the two groups to be unequal, the
formulas for sample size and power must incorporate the expected ratio of the
sample sizes, see references above. Generally for the same total sample size, power
will tend to be higher and confidence interval widths narrower when sample sizes
are equal; for comparisons of proportions, total sample size will depend on whether
the proportion closer to 0.5 has the larger or the smaller sample size.

Note that the sample size methods discussed above do not apply to correlation|
agreement|repeated measures (or pair-matched case-control) studies in which
N subjects are recruited and each subject is measured by two different raters, or
is studied under two different treatments in a cross-over design. These designs
cannot be analyzed using the methods described for independent proportions;
for example, sample size computations for the difference between two correlated
proportions are based on the McNemar test (Lachin 1992).
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One Group Designs,
Inferences About a Single Mean1.4

We turn to consideration of continuous outcomes and to inferences about the
populationmean.Wedenote the truebutunknownmean in thepopulationby µand
assume that the standard deviation for the population is given by σ. For a random
sample of size n from a population with a normal (Gaussian) distribution, the
distribution of the observed sample mean, x̄, will also be normal with mean µ and
standard deviation (also referred to as the standard error) given by SE(x̄) = σ|

√
n.

By the central limit theorem, the sampling distribution of the sample mean can
usually be expected to be approximately normal for sample sizes of 30 or above
even when the underlying population distribution is not normal.

Confidence Intervals for a Single Mean1.4.1

Example 10 . Suppose an estimate is desired of the average retail price of twenty
tablets of a commonly used tranquilizer. A random sample of retail

pharmacies is to be selected. The estimate is required to be within 10 cents of the
true average price with 95% confidence. Based on a small pilot study, the standard
deviation in price, σ, can be estimated as 85 cents. How many pharmacies should
be randomly selected? �

Using the normal approximation, the two-sided 100(1 − α)% confidence interval
for the true mean, µ, for the case where the standard deviation is known, is given
by

x̄ ± z1−α|2σ|
√

n . (1.29)

So the sample size required to obtain a confidence interval of width ω is

n =
z2

1−α|2σ2

ω2
. (1.30)

For Example 10, expressing costs in dollars,

n =
(1.96)2(0.85)2

(0.10)2
= 277.6 .

Therefore a sample size of 278 pharmacies should be selected.
We should note however that usually the standard deviation must be estimated

from the sample. Then, the actual confidence interval for a sample mean would be
given by

x̄ ± tn−1,1−α|2s|
√

n , (1.31)

where s is the observed standard deviation and tn−1,1−α|2 denotes the 100
(
1 − α|2

)
th

percentile of the t distributionwith n−1 degreesof freedom. Thevalueof tn−1,1−α|2 is
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always greater than z1−α|2; the values are close for large n, but t may be considerably
larger than z for very small samples.

The required sample size would need to be larger than given by (1.30) simply
to reflect the fact that tn−1,1−α|2 > z1−α|2. In addition, the value of the standard
deviation estimated from the sample will differ from the true standard deviation.
The observed value of s may be either smaller or larger than the true value of the
standard deviation, σ, and it can be expected to be larger than σ in about half of
samples. So, even for large n, the observed confidence interval width will be greater
than the specified ω in about half of planned studies.

To ensure that the observed confidence width will be shorter than ω more than
half the time, we must take the distribution of s into account in the sample size
computations. To solve for the required sample size for a confidence interval whose
width has a specified probability, 1−γ, of being narrower than ω requires the use of
sample size software since an iterative solution based on the F and χ2 distributions
must be used (Kupper and Hafner 1989).

Returning to Example 10, specifying in nQuery Advisor that the observed con-
fidence interval width needs to be shorter than 0.1 with a probability of 50%
(1 − γ = 0.5) yields a required sample size of 280, only slightly larger than that
given by (1.30). However, to increase the likelihood that the observed confidence
interval width will be shorter than ω from 50% to 90% would require an increase
in sample size from 280 to 309 (see Table 1.9).

Table 1.10 shows the required sample sizes for two-sided 95% confidence inter-
vals to have specified widths (expressed in terms of ω|σ).

Table 1.9. Confidence interval for mean based on t (with coverage probability)

1 2

Confidence level, 1 − α 0.950 0.950

1 or 2 sided interval? 2 2

Coverage probability, 1 − γ 0.500 0.900

Standard deviation, σ 0.850 0.850

Distance from mean to limit, ω 0.100 0.100

n 280 309

Table 1.10. Sample size for 95% two-sided confidence interval for a single mean to have width less

than or equal to ω with probability

100
(
1 − γ

)
ω|σ 50% 90%

0.05 1539 1609

0.10 386 421

0.20 98 116

0.30 45 56

0.50 18 24
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Note that nQuery Advisor has been used to compute the sample sizes displayed
in all the rest of the tables in this chapter.

Hypothesis Testing for a Single Population Mean1.4.2

Suppose we would like to test the hypothesis

H0 : µ = µ0

versus the alternative hypothesis

Ha : µ > µ0

and we would like to fix the level of the Type I error to equal α and the Type II error
to equal β. That is, we want the power of the test to equal 1−β. We denote the actual
value of the population mean under the alternative hypothesis as µa. Following the
same development as for hypothesis testing about the population proportion (with
the additional assumption that the variance of x̄ is equal to σ2|n under both H0

and Ha), the necessary sample size for this hypothesis testing situation is given by:

n =
σ2
[
z1−α + z1−β

]2

[µ0 − µa]
2 . (1.32)

Alternatively, defining the effect size as

δ =
µ0 − µa

σ
, (1.33)

we have

n =

[
z1−α + z1−β

]2

δ2
. (1.34)

Example 11 . Pre and post studies with placebo in a variety of studies indicated
that the standard deviation of blood pressure change was about

6 mm Hg and that the mean reduction in the placebo group was typically close
to 5 mm Hg. To make a preliminary estimate of the value of a new interven-
tion designed to lower blood pressure it was planned to enroll subjects and test
the null hypothesis that mean reduction was 5 mm Hg. The new intervention
would be of interest if the mean reduction was 10 or greater. How large a sample
would be necessary to test, at the 5% level of significance with a power of 90%,
whether the average blood pressure reduction is 5 mm Hg versus the alternative
that the reduction is 10 mm Hg when it is assumed that the standard deviation is
6 mm Hg? �

Using (1.32) we have

n =
62(1.645 + 1.282)2

(10 − 5)2
= 12.33 .

Therefore, a sample of 13 patients with high blood pressure would be required.
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A similar approach is followed when the alternative is two-sided. That is, when
we wish to test

H0 : µ = µ0

versus

Ha : µ ≠ µ0 .

In this situation, the null hypothesis is rejected if x̄ is too large or too small.
We assign area α|2 to each tail of the sampling distribution under H0. The only
adjustment to (1.32) is that z1−α|2 is used in place of z1−α resulting in

n =
σ2
[
z1−α|2 + z1−β

]2

[µ0 − µa]
2 . (1.35)

Returning to Example 11, a two-sided test could be used to test the hypothesis
that the average reduction in blood pressure is 5 mm Hg versus the alternative
that the average reduction in blood pressure has increased, and that a reduction
of 10 mm Hg would be considered important. Using (1.35) with z1−α|2 = 1.960,
z1−β = 1.282 and σ = 6,

n =
62(1.960 + 1.282)2

(10 − 5)2
= 15.1 .

Thus, 16 patientswouldbe required for the sample if the alternativewere two-sided.
Since usually the true standard deviation is unknown, a more accurate solution

for the necessary sample size would require use of sample size software (com-
putations are based on the central and non-central t distributions). Unlike the
situation for confidence intervals, the normal approximation formula works well
for computing sample size for a test; its accuracy can be improved by adding the
correction factor

z2
1−α|2

2
(1.36)

before rounding up. For Example 11 this would lead to a sample size estimate of 18
(which agrees with the result given by nQuery Advisor).

Table 1.11 presents the sample sizes necessary for 80% or 90% power for two-
sided 5% level tests for specified effect sizes, δ.

Table 1.11. Sample size for two-sided 5% level t test to detect effect size δ = µ1 − µ2|σ

δ 80% power 90% power

0.2 199 265

0.4 52 68

0.6 24 32

0.8 15 19

1.0 10 13

1.2 8 10
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Comparison of Two Independent Means1.5

Confidence Intervals
for the Difference Between Two Means1.5.1

The difference between two population means is represented by a new parameter,
µ1 − µ2. An estimate of this parameter is given by the difference in the sample
means, x̄1 − x̄2. The mean of the sampling distribution of x̄1 − x̄2 is

E
(
x̄1 − x̄2

)
= µ1 − µ2

and the variance of this distribution when the two samples are independent is

Var
(
x̄1 − x̄2

)
= Var

(
x̄1

)
+ Var

(
x̄2

)
=

σ2
1

n1
+

σ2
2

n2
,

where n1 and n2 are the sample sizes in the two groups.
In order for the distribution of the difference in sample means, x̄1 − x̄2 to have

a t distribution, we must assume that σ2
1 = σ2

2 = σ2. When the variances are equal
and both sample sizes are equal to n, the formula for the variance of the difference
can be simplified to

Var
(
x̄1 − x̄2

)
=

2σ2

n
.

The value σ2 is an unknown population parameter, which can be estimated from
sample data by pooling the individual sample variances, s2

1 and s2
2 to form the

pooled variance, s2
p, where, in the general case,

s2
p =

(
n1 − 1

)
s2
1 +

(
n2 − 1

)
s2
2(

n1 − 1
)

+
(
n2 − 1

) .

Example 12 . Nutritionists wish to estimate the difference in caloric intake at
lunch between children in a school offering a hot school lunch

program and children in a school that does not. From other nutrition studies, they
estimate that the standard deviation in caloric intake among elementary school
children is 75 calories, and they wish to make their estimate to within 20 calories
of the true difference with 95% confidence. �

Using the normal approximation, the two-sided 100
(
1 − α|2

)
% confidence in-

terval for the true mean, µ1 − µ2, is given by

x̄1 − x̄2 ± z1−α|22σ|
√

n . (1.37)

So the sample size in each group required to obtain a confidence interval of width ω
is
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n =
z2

1−α|22σ2

ω2
. (1.38)

For Example 12,

n =
(1.96)2(2)(75)2

(20)2
= 108.05 .

Thus, a sample size of 109 children from each school should be selected.
We note, however, that the actual confidence interval for the difference in sample

means would be given by

x̄1 − x̄2 ± t2n−2,1−α|2sp

√
2|

√
n , (1.39)

where sp is the observed pooled standard deviation and t2n−2,1−α|2 denotes the
100

(
1 − α|2

)
percentile of the t distribution with 2(n − 1) degrees of freedom.

So, as explained in the section on confidence intervals for a single mean, to solve
for the required sample size for a confidence interval whose width has a specified
probability, 1−γ, of being narrower than ω requires the use of sample size software.

For Example 12, we show in Table 1.12 (pasted from nQuery Advisor) that
a sample of 109 per group provides a 50% probability that the observed 95%
confidence intervalwill havehalf-width less than20,while tohavea 90%probability
that the confidence interval half-width will be less than 20 would require a sample
of 123 children per school.

Table 1.12. Confidence interval for difference of two means (coverage probability) (equal n’s)

1 2

Confidence level, 1 − α 0.950 0.950

1 or 2 sided interval? 2 2

Coverage probability, 1 − γ 0.500 0.900

Common standard deviation, σ 75.000 75.000

Distance from difference to limit, ω 20.000 20.000

n per group 109 123

Table 1.13. Sample size per group for 95% two-sided confidence interval for the difference in means to

have width less than or equal to ±ω with probability
(
1 − γ

)
100

(
1 − γ

)
ω|σ 50% 90%

0.05 3075 3145

0.10 770 805

0.20 193 211

0.30 87 98

0.50 36 39
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Table 1.13 presents the sample sizes in each group required so that the two-sided
95% confidence interval for the difference in two independent means will be no
wider than ±ω with probability

(
1 − γ

)
.

Testing the Difference Between Two Means
(Two-Sample t Test)1.5.2

The two-sample t test is used to test hypotheses about the population means in two
independent groups of subjects. It is based on the assumptions that the underlying
population distributions have equal standard deviations, and that the population
distributions are Gaussian (normal) in shape or that the sample sizes in each group
are large. (In most cases, the distribution of the sample mean will be approximately
Gaussian for sample sizes greater than 30.)

We consider tests of the null hypothesis:

H0 : µ1 = µ2 or

H0 : µ1 − µ2 = 0

versus either

Ha : µ1 ≠ µ2 for a two-sided test, or

H′
a : µ1 > µ2 or H′′

a : µ1 < µ2 for one-sided tests .

To avoid repetitions of formulas with minor changes, we write formulas only in
terms of a two-sided test.

The sample size required in each group, to achieve a power of 1 − β is

n =
2σ2(z1−α|2 + z1−β)2(

µ1 − µ2

)2 . (1.40)

Setting

δ =
µ1 − µ2

σ
, (1.41)

where δ is the effect size, we have a simpler version

n =
2(z1−α|2 + z1−β)2

δ2
. (1.42)

To improve the approximation, the correction factor in (1.43) may be added to (1.42)
before rounding up.

z2
1−α|2

4
. (1.43)
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Example 13 . A two-group, randomized, parallel, double-blind study is planned
in elderly females after hip fracture. Patients will be studied for

two weeks; each patient will be randomly assigned to receive either new drug or
placebo three times per week. The sample sizes in the two groups will be equal.
Plans call for a 5% level two-sided t test. The outcome variable will be change in
hematocrit level during the study. Prior pilot data from several studies suggests that
the standard deviation for change will be about 2.0% and it would be of interest to
detect a difference of 2.2% in the changes observed in placebo and treated groups.
What sample size in each group would be required to achieve a power of 90%? �

For Example 13, the effect size is 2.2|2 = 1.1. Using (1.42) we find

n =
2(1.96 + 1.28)2

(1.1)2
= 17.4 .

Adding the correction factor of 0.96 and rounding up, we have a required sample
size of 19 per group, which is the solution given using nQuery Advisor (computa-
tions are based on iterative methods and the central and non-central t, see Dixon
and Massey 1983 or O’Brien and Muller 1983).

Table 1.14 shows the sample size needed in each group for a two-sided 5% level
t test to achieve 80% or 90% power for the specified alternative, δ.

Table 1.14. Sample size in each group for two-sided 5% level t test to have specified power

δ 80% power 90% power

0.2 394 527

0.4 100 133

0.6 45 60

0.8 26 34

1.0 17 23

1.2 12 16

Additional Considerations and References 1.5.3

Good introductions to sample size computations for tests and confidence intervals
for a single mean or for comparing two independent means can be found in Dixon
and Massey (1983), O’Brien and Muller (1983), Lemeshow et al. (1990), Lachin
(1981), and Rosner (2000). Books containing sample size tables are available (e.g.
Machin and Campbell 1987; Machin et al. 1997). Commercially available sample
size software such as nQuery Advisor Release 6 (Elashoff 2005) can be used to
compute sample size (or width) for confidence intervals and sample size or power
for hypothesis tests for means for either the single group or two group designs, as
well as for a wide variety of other sample size problems.



586 Janet D. Elashoff, Stanley Lemeshow

When plans call for the sample sizes in the two groups to be unequal, the
formulas for sample size and power must incorporate the expected ratio of the
sample sizes, see references above. For the two-sample t test, for any given total
sample size, N, power will be highest when both groups have the same sample
size. For this reason we generally prefer to plan equal sample sizes for a two-
group study. However, sometimes investigators wish to plan a study with un-
equal n’s; perhaps one type of subject is easier to accrue, or perhaps the in-
vestigator wants to maximize the number of subjects receiving the presumably
superior treatment, or to accumulate extra safety information for the new treat-
ment.

When the standard deviations in the two groups are markedly unequal, the
usual t test with pooled variances is no longer the appropriate test. In many sit-
uations, the standard deviations show a patterned lack of homogeneity in which
groups with higher means have higher standard deviations. In such cases, it is fre-
quently advisable that sample size predictions (and later analysis) should be done
on a transformed version of the variable. If the relationship between variance and
mean is linear, this suggests using the square root of the variable. Such a transfor-
mation is likely to be desirable if the data represent counts or areas (note that the
variable cannot be less than zero). If the relationship between standard deviation
and mean is linear, this suggests using the log of the variable. This transformation
is likely to be desirable for biological measures like viral load, triglyceride level, or
variables ranging over several orders of magnitude (note that the variable cannot
be negative or zero). If transformation does not seem to provide a solution to
the problem of inequality of variances, it is possible that comparison of means
is no longer the most appropriate method of analysis to address the question of
interest. Assuming that transformation is not useful and comparison of means
using a two-sample t test is still deemed appropriate, a modification of the t test
may be planned; see for example, Moser et al. (1989) and sample size tables for the
Satterthwaite t in nQuery Advisor.

If non-normality is an issue, planning a large study or considering transforma-
tions as above may be helpful; another possibility is to plan to use a non-parametric
procedure instead, such as the two-sample Mann-Whitney|Wilcoxon rank test. For
a description of this test, see Rosner (2000), and for methods to determine sample
size and power see Hettmansperger (1984), Noether (1987), or sample size tables
in nQuery Advisor.

Note that the sample size methods for comparisons of two independent means
discussed above do not apply to correlation|agreement|repeated measures (or
pair-matched case-control) studies in which N subjects are recruited and each
subject is measured by two different raters, or is studied under two different
treatments in a cross-over design. These designs cannot be analyzed using the
methods described for independent means but must be analyzed using the paired
t test or a repeated measures analysis of variance; see Rosner (2000) for infor-
mation on the paired t test, and Muller and Barton (1989) or sample size tables
in nQuery Advisor for information about sample size and power for repeated
measures tests.
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Logistic Regression Models 1.6

In prior sections of this chapter, we discussed sample size problems for estimation
or testing of a proportion in one or two groups. In this section, we consider study
designs in which it is planned to evaluate several predictor variables for a binary
outcome variable. Specifically we consider studies in which we plan to fit a logistic
regressionmodel.Readersneedingan introduction to the logistic regressionmodel
and test procedures should consult Hosmer and Lemeshow (2000).

In our experience there are two sample size questions, prospective and retro-
spective. The prospective question is: How many subjects do I need to observe to
test the significance of a specific predictor variable or set of variables? The retro-
spective question is: Do I have enough data to fit this model? In this section we
consider methods for choosing a sample size first and then discuss the importance
of having an adequate number of events per covariate.

With respect to planning sample size for logistic regression, we distinguish two
situations: (1) only a single covariate is of interest, (2) the addition of one covariate
to a model already containing k covariates is of interest. In addition, we must
distinguish whether the covariate of interest is dichotomous or continuous.

The basic sample size question is as follows: What sample size does one need
to test the null hypothesis that a particular slope coefficient, say for covariate 1, is
equal to zero versus the alternative that it is equal to some specified value.

Single Dichotomous Covariate 1.6.1

If the logistic regression model is to contain a single dichotomous covariate, then
one may use conventional sample size formulas based on testing for the equality
of two proportions. Hsieh et al. (1998) recommend using the following method to
obtain sample sizes for logistic regression with a dichotomous covariate. (Although
Whitemore 1981 provides a sample size formula for a logistic regression model
containing a single dichotomous covariate, this formula, based on the sampling
distribution of the log of the odds ratio, was derived under the assumption that
the logistic probabilities are small and may be less accurate than the method we
outline.)

Let the covariate X define two groups; group 1 contains those subjects for which
x = 0 and the probability that the outcome of interest y = 1 for the subjects in
this group is π1, while group 2 contains those subjects for which x = 1 and the
probability that y = 1 for these subjects is π2.

Example 14 . Suppose that about 1% of the population is expected to have a par-
ticular adverse reaction to a certain drug used to treat a severe

illness. It is thought that those with a specific pre-existing condition (expected to
be about 20% of the population) will be much more likely to have such a reaction;
it will be important to detect an odds ratio of two for the likelihood of a reaction
in this group using a 5% two-sided likelihood ratio test. �
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Table 1.15. Two group χ2 test of equal proportions (odds ratio = 1) (unequal n’s)

Test significance level, α 0.050 0.050 0.050

1 or 2 sided test? 2 2 2

No condition proportion, π1 0.010 0.010 0.010

Pre-existing proportion, π2 0.020 0.029 0.039

Odds ratio, ψ = π2(1 − π1)|[π1(1 − π2)] 2.000 3.000 4.000

Power (%) 90 90 90

n1 7620 2468 1345

n2 1905 617 337

Ratio: n2|n1 0.250 0.250 0.250

N = n1 + n2 9525 3085 1681

To compute the required sample size for Example 14 by hand would require
using a modification of (1.27) for comparison of two proportions with unequal
sample sizes, see references given in that section. Table 1.15 shows the table of
results pasted from nQuery Advisor. (In this table, the symbol ψ is used to denote
the odds ratio.) Defining group 1 as those without the pre-existing condition and
group 2 as those with, the ratio of the sample size in group 2 to the sample size
in group 1 will be 20|80 = 0.25. Using π1 = 0.01 for group 1 (no pre-existing
condition), and OR = 2, we find π2 = 2(0.01)|

(
2(0.01) + 0.99

)
= 0.02. Table 1.15

shows that to detect an odds ratio of 2 with 90% power for this example would
require a sample size of 9525. Consequently, the investigator may be interested in
looking at the sample sizes required to detect odds ratios of 3 or of 4 (3085 and
1681 respectively).

Single Continuous Covariate1.6.2

If the single covariate we plan to include in the model is continuous, approximate
formulas for this setting have been derived by Hsieh (1989) and implemented in
sample size software packages such as nQuery Advisor. However, Hsieh et al. (1998)
demonstrate that this approximate formula gives larger than required sample sizes
and recommend using the following method to obtain sample sizes for logistic
regression with a continuous covariate.

Let the response Y define two groups; group 1 contains cases in which Y = 1
with Nπ1 cases expected, while group 2 contains cases in which Y = 0 with
N
(
1 − π1

)
cases expected. The ratio of the expected sample size in group 2 to

the expected sample size in group 1, r, is
(
1 − π1

)
|π1. The natural log of the

odds ratio, the coefficient β of the covariate, x, is equal to the difference between
the mean of the covariate in group 1 and the mean of the covariate in group 2
divided by the within-group standard deviation of x (denote this by δ). There-
fore, a sample size formula or table for the two group t test with unequal n’s
can be used to estimate sample size for logistic regression with one continuous
covariate.
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Example 15 . Patients with blocked or narrowed coronary arteries may undergo
interventions designed to increase blood flow. Typically, about 30%

of patients followed for a year will have renewed blockage, called “restenosis”, of
the artery. A study is to be planned to use logistic regression to assess factors related
to the likelihood of restenosis. One such factor is serum cholesterol level. Based on
the results of a large screening trial, mean serum cholesterol in middle-aged males
is about 210 mg/dL; one standard deviation above the mean (which corresponds to
about the 85th percentile) is approximately 250 mg/dL. In the screening study, the
odds ratio for the six-year death rate for these two cholesterol levels was about 1.5.
The study should be large enough to detect an effect of serum cholesterol on
arterial restenosis of a size similar to that seen for death rate. We plan to conduct
the test of the predictive effect of cholesterol level on the probability of restenosis
using a 5% two-sided test and want to have 90% power to detect an odds ratio of
1.5 for values of cholesterol of 250 mg/dL versus 210 mg/dL. We set the effect size,
δ =

(
µ1 − µ2

)
|σ = 0.405, which is the value of the natural log of the odds ratio, 1.5.

The ratio of sample sizes expected to be in the no-restenosis versus the restenosis
groups, r, equals 0.7|0.3 = 2.333. �

The required sample size could be computed using a version of (1.42) modified
for unequal sample sizes, see references in the preceding section. In Table 1.16 we
show the table of results pasted from the software nQuery Advisor.

Table 1.16. Two group t-test of equal means (unequal n’s)

Test significance level, α 0.050

1 or 2 sided test? 2

Effect size, δ =
∣∣µ1 − µ2

∣∣ |σ 0.405

Power (%) 90

n1 93

n2 217

Ratio: n2|n1 2.333

N = n1 + n2 310

To obtain a power of 90% to detect an odds ratio of 1.5 using the covariate
cholesterol to predict restenosis at one-year, we find that a total sample size of 310
is required.

Adjusting Sample Size for Inclusion of k Prior Covariates
(Variance Inflation Factor) 1.6.3

It is rare in practice to have final inferences based on a univariate logistic regression
model. However, the only sample size results currently available for the multivari-
able situation are based on very specific assumptions about the distributions of the
covariates. We can however, use a “variance inflation factor” to adjust the sample
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size results obtained for a single covariate for the situation in which k covariates
have already been added to the model before the new covariate is considered.

The sample size, Nk, required to test for the significance of a covariate after
inclusion of k prior covariates in the model, is given by

Nk = N

(
1

1 − ρ2

)
, (1.44)

where the factor 1|
(
1 − ρ2

)
is called the “variance inflation factor”,

VIF =
(

1

1 − ρ2

)
, (1.45)

and ρ2 is the squared multiple correlation of the covariate of interest with the
covariates already included in the model. This can be estimated using any multiple
regression software.

For Example 14, the total sample size was computed as N = 1681 for testing the
significance of one dichotomous covariate. Now assume that four patient demo-
graphic variables will be entered into the logistic regression model prior to testing
the covariate indicating presence or absence of the pre-existing condition (x1 say),
and that these demographic variables have a squared multiple correlation with x1

of 0.2. Then a total sample size of at least 2100 patients would be required,

N4 = 1681

(
1

1 − 0.2

)
= 2101 .

In Example 15 if two other covariates with a squared multiple correlation with
cholesterol of 0.15 are to be entered into the logistic regression first, multiply the
sample size obtained for a single covariate by the variance inflation factor, (1.44),
1|
(
1 − ρ2

)
= 1.18, to increase the required sample size to 365.

Assessing the Adequacy of Data Already Collected1.6.4

So far we have discussed planning what sample size should be obtained to fit
specific logistic regression models. A second consideration, and one relevant to
any model being fit, is the issue of what is the maximum number of covariates
it is reasonable to enter into the model and still obtain reliable estimates of the
regression coefficients and avoid excessive shrinkage when the model is assessed
for new cases. An ad hoc rule of thumb is to require that there be 10 “events” per
variable included in the model. Here the “event” of relevance is the least frequent
of the outcomes. For example, suppose the study discussed in Example 15 was
planned with 365 cases. Further suppose that complete one-year follow-up was
only obtained for 351 cases of which 81 had restenosis at one year. There are 81
cases with restenosis and 270 without, so the least frequent “event” is restenosis.
Based on these 81 cases, only 8 variables should be fit; this means that no more
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than 8 covariates (or covariates plus covariate interaction terms) should be entered
into the model.

This rule of thumb was evaluated and found to be reasonable by Peduzzi et al.
(1996) using only discrete covariates. However, as is the case with any overly simple
solution to a complex problem, the rule of 10 should only be used as a guideline and
a final determination must consider the context of the total problem. This includes
the actual number of events, the total sample size and, most importantly, the mix
of discrete, continuous and interaction terms in the model. The “ten events per
parameter” rule may work well for continuous covariates and discrete covariates
with a balanced distribution. However, its applicability is less clear in settings
where the distributions of discrete covariates are weighted heavily to one value.

Practical Issues in Sample Size Choice 1.7

Inearlier sections,weoutlined formulas for sample sizecomputation for estimation
and testing in simple designs for proportions and for means. We have shown only
formulas to compute sample size from specifications of confidence interval width
or desired power, but it is also possible to compute the confidence interval width
or power which would be obtainable with a specified sample size. Sample size
methods exist for many more complex designs and for other parameters. Software
such as nQuery Advisor (Elashoff 2002) can be helpful.

For complex study designs or complex statistical methods, however, there may
be no easily applied formulas or available software solutions. In such cases, sample
size choices may be based on simplifications of the design or statistical methods (as
we illustrated in the section on logistic regression), or in some cases a simulation
study may be warranted.

For studies involving complex survey designs, sample size computations might
be based on one of several approaches: (1) regarding the cluster itself as the study
“subject” and using intraclass correlation values to estimate the appropriate vari-
ance to use in making computations, (2) multiplying sample sizes for a simpler
design by a computed “design effect” (2 may be a sensible ad hoc choice), or
(3) using simulation methods.

Although study sample sizes are usually chosen to assure desired precision or
power for the primary outcome variable, investigators may also need to investigate
whether that sample size choice will be adequate for evaluations of secondary
outcomes, or for analyses of pre-defined subsets.

Sample size values obtained from formulas or software will generally need to
be inflated to allow for expected dropout or loss to followup of study subjects or
other sources of missing data (cf. Chap. II.6 of this handbook). It is important
to remember however, that subjects who drop out may not be similar to those
remaining in the study. This consideration may affect the parameter values which
should be used for sample size computations; and even analyses using missing
data techniques may not remove biases due to dropout.
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Another issue of great concern to epidemiologists is that exposure or response
may be misclassified. Such misclassification might have a dramatic impact on the
actual power of a planned study unless sample sizes are computed based on mod-
eling the expected type and extent of misclassification using simulation methods.

For brevity, our examples used only one set of parameter values to compute
required sample sizes. In practice, investigators need to keep in mind that the
estimated parameter values used in computations are only estimates and perhaps
not very accurate ones. It is a good idea to compute necessary sample size for
several different sets of parameter choices to evaluate sample size sensitivity to
varying realistic possibilities for the true parameter values. Tables and plots can
be helpful in these evaluations.

Finally, sample size justification statements in protocols, grant proposals, and
manuscripts need to be complete. Details of the outcome variable, the study design,
the planned analysis method, confidence level or power, one or two-sided, and all
the relevant distributional parameters (proportions, means, standard deviations)
need to be included in the statement. For Example 13 a minimal sample size justifi-
cation might read as follows: A sample size of 19 in each group will have 90%
power to detect a difference in means of 2.2 (the difference between an active
drug mean change in hematocrit of 2.2% and a placebo mean change of 0.0)
assuming that the common standard deviation is 2.0 and using a two group
t test with a 0.05 two-sided significance level. The planned enrollment will be
25 subjects per group (50 total) to allow for 20% dropout. It is also desirable to pro-
vide information about sample size for other parameter choices and details about
how these parameter values were selected, including references to previous studies
which were consulted in selecting the values.

Conclusions1.8

An important part of planning any research study is to assess what sample size is
needed to assure that meaningful conclusions can be drawn about the primary out-
come. To do this, the investigator must detail the study design, define the primary
outcome variable, choose an analysis method, and specify desired or expected
results of the study. Then formulas, tables, and sample size software of the sort
outlined in this chapter can assist with computations. The most essential part of the
process, though, is to make a thorough investigation of other information and re-
search results concerning the outcome variable to support reasonable specification
of hypothesized values for use in making computations. Beginning investigators
often protest: “But this study has never been done before; how do I know what the
results will be?” In most cases, however much information about rates, means, and
standard deviations can be gleaned from other contexts and used to infer what
kinds of outcomes would be important to detect or likely to occur. Sample size com-
putations are not just a pro forma requirement from funding agencies but provide
the basis for deciding whether a planned study is likely to be worth the expense.
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