
A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 98–111, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Adding Agent-Oriented Concepts Derived
from Gaia to Agent OPEN

Brian Henderson-Sellers, John Debenham, and Q.-N.N. Tran

University of Technology, Sydney, NSW 2007 Australia
{brian,debenham}@it.uts.edu.au, numitran@yahoo.com

Abstract. Agent OPEN offers extensions of an object-oriented methodological
framework to support agent-oriented software developments. However, to date,
it is incomplete. Here, we extend the Agent OPEN repository of process com-
ponents to include contributions from the Gaia agent-oriented methodology.
We have identified one new Task, together with six new subtasks for some pre-
existing Tasks. Three extra Techniques and five new Work Products were iden-
tified and recommended to be added in order to support the Gaia approach for
agent-oriented software development.

1 Introduction

In a distributed computing environment, agents are increasingly being perceived as of
high potential applicability. Applying agent technology successfully in an industrial
setting requires the application of an appropriate methodology “tailored” to local
demands. Ensuring the methodology meets local requirements (both technical and
human) can be facilitated by the use of method engineering (ME) (Kumar and Welke,
1992; Brinkkemper, 1996) or, more specifically, situated method engineering (SME)
(Ter Hofstede and Verhoef, 1997). A combination of SME and agent technology is
the focus of this paper.

ME and SME provide a rational approach to the construction, either fully or par-
tially, of methods (a.k.a. methodologies) from method fragments (often called method
chunks (Rolland and Prakash, 1996) or process components1 (e.g. Firesmith and Hen-
derson-Sellers, 2002)), typically stored in a repository. The method itself is con-
structed by selection of appropriate method fragments followed by their configuration
in such a way as to satisfy the requirements for the method (Ralyté and Rolland,
2001) and create a meaningful overall method (Brinkkemper et al., 1998).

In the object-oriented context, SME has been realized through the OPEN Process
Framework (OPF) (Firesmith and Henderson-Sellers, 2002). The OPF is underpinned
by a full lifecycle metamodel and contains rules for both creating and using the re-
pository-stored process components. As part of this agent-oriented (AO) methodol-
ogy-focussed project, the OPF has had some initial enhancements to include support

1 We take the view that a methodology is a combination of a process and a set of products (e.g.

Rolland et al., 1999). Our focus here is on the process portion of a methodology and thus the
words “method”, “methodology” and “process” can be taken as synonyms in our discussion.

Adding Agent-Oriented Concepts Derived from Gaia to Agent OPEN 99

for agent concepts (Debenham and Henderson-Sellers, 2003). Thus an additional
number of tasks, techniques, work products and roles has been added to the OPF re-
pository. This paper reports on the next stage of the research: to ensure that the set of
process components created in the OPF repository specifically to support agency
concepts is as complete as possible. To do this, we analyze the Gaia AO methodology
(Wooldridge et al., 1999, 2000; Zambonelli et al., 2003) in order to see what must be
added to the OPF repository so that this particular AO methodology (i.e. Gaia) can be
(re)created by instantiation from the elements in the OPF.

In Section 2, we outline the OPEN Process Framework as used in the context of
SME and, in Section 3, we describe the basics of the Gaia methodology. In Section 4
we describe the elements of Gaia not currently supported in the OPF and which we
therefore propose for addition to the OPF repository.

2 An Overview of the OPEN Process Framework

The OPEN (Object-oriented Process, Environment, and Notation) Process Framework
(OPF) (Firesmith and Henderson-Sellers, 2002) combines a process metamodel and a
repository of process components (Figure 1). Elements from the repository are se-
lected and put together to form a specific process or situational method.

OPF’s Metamodel

Implemented Process(es)

OPF Repository
containing Individual
Process Component

Descriptions

Constructed Process
or Process Instance

OPF’s Metamodel

Implemented Process(es)

OPF Repository
containing Individual
Process Component

Descriptions

Constructed Process
or Process Instance

Fig. 1. The OPF defines a framework consisting of a metamodel and a repository of process
components.

Process construction is accomplished using a set of OPF guidelines and rules. A
major element is the use of deontic matrices, which allocate a possibility value to
pairs of process elements such as Activity/Task or Producer/Work Product. Deontic
values have one of five values ranging from mandatory through optional to forbidden.
This gives a high degree of flexibility to the process engineer, perhaps assisted by an
automated tool, who can allocate appropriate deontic values to any specific pair of
process components depending upon the context i.e. the specific project, skills set of
the development team etc.

100 B. Henderson-Sellers, J. Debenham, and Q.-N.N. Tran

Work
Products

Producers

Work
Units

Stages

Languages

Essential
Process

Components

produce

are
documented

using

create
evaluate

iterate
maintain

perform

provide
macro organization

to the

Guidelineshelp to

Work
Products

Producers

Work
Units

Stages

Languages

Essential
Process

Components

produce

are
documented

using

create
evaluate

iterate
maintain

perform

provide
macro organization

to the

Guidelineshelp to

Fig. 2. The five major metaclasses of the OPF’s metamodel (after Firesmith and Henderson-
Sellers, 2002) © Addison-Wesley.

Underpinning the OPF framework is its full lifecycle metamodel that defines the
following five main high level classes of process components (Figure 2):

Work Product: “A Work Product is anything of value that is produced during the
development process” (Firesmith and Henderson-Sellers, 2002). Work Products are
the result of producers (people) executing Work Units and are used either as input to
other Work Units or delivered to a client. Typical examples are use case diagrams
and role diagrams.

Producer: “A Producer is responsible for creating, evaluating, iterating and maintain-
ing Work Products” (Firesmith and Henderson-Sellers, 2002). Producers play various
roles within the methodology and introduce the human element (although some pro-
ducers may be other software or indeed hardware). A large number of Producer and
Role instances (for example, the requirements engineer and the toolsmith) are de-
scribed in the OPF repository although it is a volatile set in comparison with, say, the
instances of the WorkUnit metaclass.

Work Unit: A Work Unit is defined as a functionally cohesive operation that is per-
formed by a Producer. There are three major classes of Work Unit: Activity, Task and
Technique.

• Activities describe, at a high level, what needs to be undertaken. The overall soft-
ware development process is often configured by the process engi-
neer/methodologist using half a dozen or so of these Activities so they are often
(but not always) the first to be identified. A typical example is the Requirements
Engineering (RE) Activity.

• Tasks also focus on “what” needs to be done rather than “how” it is do be done.
Tasks can be readily tracked and project managed. They are typically allocated to a
small team over a period of a few days. A typical example related to the RE Activ-
ity is “Elicit requirements”.

Adding Agent-Oriented Concepts Derived from Gaia to Agent OPEN 101

• Techniques describe the mechanism by which a Task is undertaken. They describe
the “how” as compared to the “what” of Activities and Tasks. A typical RE-
related Technique is storyboarding.

Language: A Language is defined as a medium for documenting a Work Product;
for example; English, UML.

Stage: A Stage is defined as an identified and managed duration within the process or
a point in time at which some achievement is recognized. Stages may be Phases or
Cycles – examples are the Build Phase and the Development Cycle, respectively.

Each of these metaclasses has many subclasses in the detailed metamodel (see Ap-
pendix G of Firesmith and Henderson-Sellers, 2002). From each of these subclasses,
one or more process component instances are generated and stored in the OPF reposi-
tory (Figure 1).

Initially, the OPF repository contained about 30 predefined instances of Activity,
160 instances of Task and 200 instances of Techniques (the three main kinds of Work
Unit) as well as multiple instances of Role, Stage, Language etc. Some of these are
orthogonal to all others in their group and some overlap. Consequently, during proc-
ess construction both association and integration strategies (Ralyté and Rolland, 2001)
are needed. For example, there are several Techniques in the repository for finding
objects e.g. textual analysis, use cases simulations, CRC card techniques.

Finally, when used on a specific project in real time, this is known as a process in-
stance or “implemented process” (Figure 1). A company-customized OPEN version is
then “owned” by the organization, becoming their own internal standard, while retain-
ing compatibility with the global OPEN user community.

Since its first publication in 1997, several additions have been made to the OPF re-
pository to enhance its support for various new technologies including additions of
relevance to agent technology (Debenham and Henderson-Sellers, 2003; Henderson-
Sellers et al., 2004a,b) . Here, we extend the OPF repository even further to offer
additional support for agent orientation (AO) by extracting new process components
from the Gaia AO methodology (Wooldridge et al., 2000; Zambonelli et al., 2003).

3 Major Elements of Gaia

Gaia views the process of multi-agent system (MAS) development as a process of
organizational design, where the MAS is modelled as an organized society with
agents playing different roles. The methodology allows a developer to move system-
atically from a statement of requirements to a design that is sufficiently detailed that it
can be implemented directly. It supports both macro (societal) and micro (agent) as-
pects of MAS design, and is also neutral to both application domain and agent archi-
tecture. The newest version of Gaia (Zambonelli et al., 2003) extends the original
version (Wooldridge et al., 1999; Wooldridge et al., 2000) with various organizational
abstractions, enabling it to be used for the design of open MAS (which was not
achievable previously). The discussion in this paper accounts for the new tasks and
models presented in the newest version as well as those in the original (1999/2000)
publications.

102 B. Henderson-Sellers, J. Debenham, and Q.-N.N. Tran

3.1 Tasks Characterizing Gaia

There are a number of tasks described in the publications on Gaia which, together,
permit its use for AO systems development. These are:

• ‘Identifying sub-organizations in the system’: To promote modularity, an analyst
should determine whether the target system contains multiple sub-organizations
that co-exist as autonomous interacting MASs.

• ‘Modeling the environment’: The MAS environment is modeled as a collection of
abstract computational resources, each characterized by the types of actions the
agents can perform on it.

• ‘Identifying roles in the system’: Gaia models each role by its responsibilities and
permissions. Responsibilities represent the role’s functionality, and are divided into
two types: : liveness and safety. Liveness responsibilities specify the states of af-
fairs that an agent must bring about, while safety responsibilities are typically
predicates, specifying the acceptable states of affairs that should be maintained
across all states of execution.

• ‘Identifying inter-role interactions’: Gaia defines inter-role interaction protocols
in terms of the essential nature and purpose of the interactions, rather than the pre-
cise ordering of particular message exchanges. Specifically, each protocol defini-
tion consists of an interaction’s purpose, initiator, responder, inputs, outputs and
processing (which is simply a brief textual description of the initiator’s processing
during interaction).

• ‘Defining organizational rules’: Organizational rules (liveness or safety) are re-
sponsibilities of the agent organization as a whole.

• ‘Choosing the organizational structure’: The designer needs to choose an organ-
izational structure that provides the most appropriate topology and control regime.

• ‘Identifying agent types and agent instances’: Gaia identifies agent types from
roles, and agent instances from these types. Agent types are arranged in an Agent
Type Hierarchy, which includes only aggregation relationships (if any) but no in-
heritance.

• ‘Specifying services of each agent’: A service is a single, coherent block of activ-
ity in which an agent will engage.

• ‘Specifying agent acquaintances’: This task involves identifying the communica-
tion links/pathways between agent types. It does not include defining what mes-
sages are sent or when messages are sent. The purpose of this task is simply to
identify any potential communication bottlenecks and to ensure that the system is
internally loosely-coupled.

3.2 Techniques Recommended by Gaia

As well as tasks, a number of specific techniques are recommended:

• For ‘Identifying sub-organizations in the system’: Gaia suggests considering
multiple sub-organizations when there are portions of the target system that exhibit
behaviour specifically oriented towards the achievement of a given sub-goal, that
interact loosely with other portions of the system, or that require competencies not
needed in other parts of the system.

Adding Agent-Oriented Concepts Derived from Gaia to Agent OPEN 103

• For ‘Modeling the environment’: GAIA does not commit to any specific model-
ing techniques for the specification of environmental resources.

• For ‘Identifying roles for the system’: The process of role identification roughly
goes through two phases. Firstly, the key roles in the system are identified from the
“basic skills” required by the organization to achieve its goals. However, Gaia does
not provide techniques for identifying these skills, or for identifying roles from
these skills. The output of this phase is a Preliminary Role Model which provides
informal, unelaborated descriptions of the key roles in the system. This is then re-
fined into a fully elaborated Role Model on the basis of the organizational struc-
ture. With regard to each role’s responsibilities, Gaia does not offer any explicit
techniques for the identification of responsibilities, except to suggest that liveness
responsibilities may follow certain patterns, being modelled in terms of activities
and protocols. With regard to a role’s permissions, the developer is recommended
to investigate the types and limits of the information resources that an agent ac-
cesses to carry out its roles.

• For ‘Identifying inter-role interactions’: Gaia offers no specific technique to
identify interactions between roles, except for stating that each protocol description
should focus on the nature/purpose of the interaction and the involved parties. No
precise ordering of message exchanges needs to be defined.

• For ‘Defining organizational rules’: Liveness organizational rules can be derived
from liveness responsibilities of different roles, i.e. from the way different roles
can play specific activities. Meanwhile, safety organizational rules can be related
to safety responsibilities of different roles or to expressions of the environmental
resources in different roles.

• For ‘Choosing the organizational structure’: Gaia suggests selecting an organiza-
tional structure that optimizes the organizational efficiency and simplicity (e.g.
balanced workload, low coordination costs) that respects the organizational rules
and that reflects the structure of the real-world organization..

• For ‘Identifying agent types and instances’: Gaia suggests a general rule of one-
to-one mapping between roles and agent types. However, it also recognizes the
need for grouping closely related roles to the same agent type for the purpose of
convenience and efficiency. Nevertheless, Gaia recommends considering a trade-
off between the coherence of an agent type and the efficiency considerations. Gaia
offers no techniques for the instantiation of agent types.

• For ‘Specifying services of each agent’: An agent’s services can be derived from
the list of responsibilities (both liveness and safety), protocols and activities of the
roles that the agent encapsulates. In general, there will be at least one service asso-
ciated with each protocol. Every activity identified in the agent role’s responsibili-
ties will correspond to a service, though not every service will correspond to an ac-
tivity. The safety responsibility may also imply a service, defined in terms of
inputs, outputs, pre- and post-conditions. The former two elements can be derived
from protocol definitions in the Interaction Model, while the latter two can be re-
vealed from the safety responsibilities of the role.

• For ‘Specifying agent acquaintances’: The communication pathways between
agent types can be directly derived from Role, Interaction and Agent Models.

3.3 Work Products Advocated by Gaia

Gaia suggests the creation of seven specific work products during AO software de-
velopment:

• Environment Model: containing a list of resources, each associated with a sym-
bolic name, types of actions that can be performed on it and possibly textual com-
ments and descriptions. No specific notation is mandated.

• Organizational Structure Model: The designer can either adopt a formal represen-
tation scheme or a more intuitive graphical notation for the organization structure
model depending on the application. Graphically, roles can simply be represented
as blocks, connected by arrows to represent organizational relationships (e.g. con-
trol, peer, dependency) as shown in Figure 3.

DependsDepends

Peer Planner

Web Searcher DB Searcher

User Interface

Fig. 3. Example of Gaia Organizational Structure Model.

• Role Model: containing a textual Role Schema for each role (Figure 4). Role re-

sponsibilities are modelled in Gaia using Fusion notation.

Role Schema: name of role

Description short English description of the role
Protocols and Activi-
ties

protocols and activities in which the role plays a part

Permissions “rights” associated with the role
Responsibilities

Liveness liveness responsibilities
Safety safety responsibilities

Fig. 4. Gaia’s Role Model (figure 3 from Wooldridge et al., 2000. With kind permission of
Kluwer Academic Publishers).

• Inter-role Interaction Model: containing a list of definitions of inter-role interac-

tion protocols. Each protocol definition consists of a purpose, initiator, responder,
inputs, outputs and processing description.
 In the exemplar protocol definition (Figure 5), the SearchForAnswer protocol is
initiated by the role Planner and involves the role WebSearcher. Input to the proto-
col is the sub-query derived from the user query.The protocol involves the Planner
forwarding the sub-query to the WebSearcher to process, and results in the answer
being returned by the WebSearcher.

Adding Agent-Oriented Concepts Derived from Gaia to Agent OPEN 105

SearchForAnswer
Planner WebSearcher sub-query

Description: Planner forwards a sub-query
to WebSearcher to process and return a
reply

answer

Fig. 5. Example of Gaia Interaction Model.

• Agent Model: Gaia suggests a simple diagram for the Agent Model which shows,
for each agent type, the roles that map to it (Figure 6). The bottom leaf nodes cor-
respond to roles, while other nodes represent agent types. The arrows denote map-
pings from roles to agent types. Agent instantiation is documented by Fusion-based
annotations below the agent types (e.g. an annotation ‘+’ means that there will be
one or more agents of the type at run-time)..

UserInterface UserFeedback
Processor

UserProfile
Manager

UserInterfaceAgent UserProfileAgent

Planner WebSearcher DBSearcher

PlannerAgent WebSearcherAgent DBSearcherAgent

1 1..5 + ++

Fig. 6. Example of Gaia Agent Model.

 UML Class Diagrams can be adapted for the modelling of agent types and their
relationships. Major considerations are whether the association relationships be-
tween agents have a different meaning from those between objects (e.g. inter-agent
associations represent communication pathways). UML also offers instanceOf re-
lationships that can be used to model agent class instantation.

• Service Model: Gaia suggests a tabular template for modelling services (Figure 6).

Service Inputs Outputs Pre-condition Post-condition
Accept user query userQuery awaitMessage true true
Create user profile userDetails custID,

custPassword
userStatus = nil userStatus =

member

Fig. 7. Example of Gaia Service Model (for User Agent).

Currently UML does not offer a separate diagram for service modelling. However,
in the AO version of the UML Class Diagram, services can be included as an inter-
nal component of an agent class (just as methods are a component of an object
class).

• Agent Acquaintance Model: Eliminated in Version 2 of Gaia (Zambonelli et al.,
2003), this information can probably best be depicted with a UML or AUML Inter-
action Diagram.

3.4 Stages Used in Gaia

In order to support development across the whole system lifecycle, we identify the
stages (cycles and phases) advocated in Gaia:

106 B. Henderson-Sellers, J. Debenham, and Q.-N.N. Tran

Cycle: Gaia is iterative within each phase as well as across all phases.. This descrip-
tion fits the ‘Iterative, Incremental, Parallel Life Cycle’ model of OPEN.

Phases: Gaia covers Analysis and Design (particularly from the statement of re-
quirements to a design that is sufficiently detailed that it can be implemented di-
rectly). In the context of OPEN, Gaia supports ‘Initiation’ and ‘Construction’.

3.5 Languages

Gaia’s notation mainly comes from Fusion (Coleman et al., 1994). Considering the
contents of Gaia’s models, UML (with necessary adaptations/extensions) can be em-
ployed as an efficient modelling language. In contrast, Gaia’s design models can be
implemented in any programming language.

4 Adding Support to the OPF Derived from Gaia

In this section, we outline the various Tasks, Techniques and Work Products that are
proposed here as additions and modifications to the OPEN repository in order to in-
corporate agency concerns as identified in Gaia.

In total, only one new Task is identified, six new subtasks, three Techniques and
five new Work Products are identified. These are all described in the following sub-
sections.

4.1 Existing Support and Mapping between OPF and Gaia

4.1.1 Tasks
Roles are of high importance in Gaia (and several other AO methodologies). How-
ever, the concept of “role” has not been well supported in the object-oriented litera-
ture. Although OPEN supports role modelling more than many OO methods via its
use of the “CIRT” (standing for Class, Instance, Role or Type), it does not consider
“role” as a first-class concept in system analysis and design. It also does not promote
the organisation-driven approach in the development of systems. Roles are covered in
OPEN through the ‘Construct the Object Model’ Task and ‘Identify CIRTs’ Task.
Therefore a new Task: Model agents’ roles was introduced by Debenham and Hen-
derson-Sellers (2003). Using this and the existing OPF Task: ‘Map roles on to
classes’ adequate support is offered for both the identification of agents and their
responsibilities and permissions. However, two new subtasks need to be made explicit
for Task: ‘Model agents’ roles’ (Section 4.2).

The specification of other organizational abstractions, including the MAS envi-
ronment, sub-organizations, organizational rules and organizational structure, is ad-
dressed to some extent by OPF requirement engineering Tasks: ‘Context modeling’
and ‘Analyze customer organization’. Debenham and Henderson-Sellers (2003) also
introduced Tasks ‘Model the agent’s environment’ and ‘Identify system organization’

Adding Agent-Oriented Concepts Derived from Gaia to Agent OPEN 107

that deal with MAS environmental and organizational design issues. However, due to
their significance, four new subtasks need to be made explicit: subtask ‘Model envi-
ronmental resources’ for Task ‘Model the agent’s environment’, and subtasks ‘Iden-
tify sub-organizations’, ‘Defining organizational rules’, and ‘Defining organizational
structures’ for Task ‘Identify system organization’.

Agent interactions can be described by a variety of existing Tasks in the OPF, par-
ticularly augmented by the Agent OPEN Task: ‘Determine agent interaction protocol’
and Task: ‘Determine agent communication protocol’. These offer similar and ade-
quate support for the Gaian Tasks of ‘Identifying inter-role interactions’ and ‘Specify-
ing agent acquaintances’. Services are identified and specified using tasks (and tech-
niques) similar to those for classes in OO developments but extended to include
agents as part of the OPF CIRT.

Each of the tasks above is related to the new Task: ‘Construct the agent model’
(see Section 4.2) which also offers support for the Gaia task of ‘Identifying agent
types and agent instances’.

4.1.2 Techniques
For Gaia’s ‘Identifying roles for the system’ techniques, OPEN offers the Technique:
‘Role Modelling’, which covers various aspects of role modelling, although is weak
on guidance for the identification of roles.

Support for responsibility and permissions identification and modelling is found in
OPEN’s original Technique: ‘Responsibility identification’ and supplemented by the
use of various user requirements Techniques such as ‘CRC card modelling’ and ‘Sce-
nario development’.

Techniques for inter-role interactions are found in the ‘Collaboration Analysis’
Technique of OPEN (Henderson-Sellers et al., 1998) and the ‘Reactive reasoning
(ECA) rules’ of Agent OPEN (Debenham and Henderson-Sellers, 2003).

OPEN offers various techniques for OO class identification/modelling (such as
‘Abstract Class Identification’ and ‘Class Naming’). These techniques are useful but
need to be oriented more towards agent classes, for example, taking into account the
major differences between OO classes and agent classes - agent classes are generally
more coarse-grained than OO classes (Wooldridge et al., 2000) and thus the OPF
Technique: ‘Granularity’ should be extended to account for this difference. The OPF
Technique: ‘Relationship modelling’ may also be useful although Gaia appears to
eschew the generalization and association relationships common in OO modelling
languages, such as the UML (OMG, 2001).

To support Gaia’s ‘Specifying services of each agent’, OPEN offers Technique:
‘Service Identification’ that can be applied (with necessary adaptations) to the specifi-
cation of agents’ services. Furthermore, the OPF Technique: ‘Collaborations analysis’
serves well to support the Gaian task of ‘Specifying agent acquaintances’. Although
Gaia’s scope does not include the specification of communication messages between
agent classes, Gaia does state that its design models should be further realized by
traditional design techniques. In this case, the OPF Technique: ‘Interaction model-
ling’ provides a useful basis for modelling the communications between agent classes.

No techniques exist in the OPF to directly support the definition and modeling of
system environment’s resources, organizational rules and organizational structures.
Therefore, these need to be added.

108 B. Henderson-Sellers, J. Debenham, and Q.-N.N. Tran

4.1.3 Work Products
While role models are supported within the OPF, say using UML, there is no docu-
ment to capture the requirements for an individual role in terms of responsibilities and
protocols. Thus the Gaia Role Schema needs to be made available through the OPF
Repository (Section 4.3).

Interaction protocols in OPEN are modelled via UML Sequence Diagrams and
Collaboration Diagrams. These diagrams can be readily adapted for the modelling of
AO interactions by means of an Agent Protocol diagram as found in Prometheus
(Padgham and Winikoff, 2002). Consequently, the Gaian template for an Interaction
Model as shown in Figure 4 is probably unnecessary; however, it is added to the OPF
repository for completeness. There it is renamed Protocol Schema in order to avoid
confusion with UML interaction diagrams.

While the Gaia agent model is readily subsumed by UML diagrams, it is worth
adding its service model as a new OPF Work Product component: the Service table.

Both the Environment Model and Organizational Structure Model can be repre-
sented as UML class diagrams. However, they should be explicitly specified as new
products in the OPF repository.

4.2 New Tasks

One new Task and six subtasks are identified from Gaia tasks in Section 3.1 for inclu-
sion in the OPF repository.

TASK NAME: Construct the agent model
Focus: Static architecture
Typical supportive techniques: Intelligent agent identification, Control architecture
Explanation: An analogue of the “object model” as the main description of the

static architecture needs to be constructed. This model will show the agents, their
interfaces and how they are connected both with other agents and other objects within
the system being designed.

New subtasks for Task: Model agents’ roles
Subtask: Model responsibilities: these include the accepted OO responsibilities

(knowing, doing, enforcing) but classified in terms of liveness and safety properties.
Subtask: Model permissions: these are associated with the responsibilities allocated

to each agent role.

New subtask for Task: Model the agent’s environment
Subtask: Model environmental resources: these are abstract computational re-

sources that are available to agents for sensing, effecting or consuming.

New subtasks for Task: Identifying system organization
Subtask: Identify sub-organizations: this task analyzes the target system organiza-

tion to identify sub-organizations that co-exist as autonomous interacting MASs.
Subtask: Define organizational rules: focussed on modelling the responsibilities of

the organization as a whole in terms of liveness and safety organizational rules.
Subtask: Define organizational structures: focussed on selecting an organizational

structure that offers the most appropriate topology and control regime.

Adding Agent-Oriented Concepts Derived from Gaia to Agent OPEN 109

4.3 New Techniques

Three new OPF Techniques, derived from Gaia’s techniques described in Section 3.2,
are to be added to the OPF repository.

TECHNIQUE NAME: Environmental resources modelling
Focus: System environment
Typical tasks for which this is needed: Model the agent’s environment
Technique description: Each resource should be described in terms of its symbolic

name, types of actions that agents can perform on it, and if appropriate or necessary,
its detailed data structure. Graphical representation of the logical/physical relation-
ships between resources, and the specification of how and from where a resource can
be accessed may be useful.

Technique usage: Identify and describe each resource in the MAS environment.
The resources’ details and the model’s representation notation can be decided by the
designer depending on the application at hand.

Deliverables: Environment model

TECHNIQUE NAME: Organizational rules specification
Focus: System organization
Typical tasks for which this is needed: Identify system organization
Technique description: Roles that affect the system organization as a whole should

be described in terms of liveness and safety organizational rules. Liveness rules define
how the dynamics of the organization should evolve over time, while safety rules
define time-independent global invariants that the organization should respect.

Technique usage: Liveness organizational rules can be derived from liveness re-
sponsibilities of different roles, while saftety rules can relate to safety responsibilities
of different roles or to expressions of the environmental resources in different roles.
The definition of organizational rules is particularly necessary when the system is
open.

Deliverables: Organizational rules specification

TECHNIQUE NAME: Organizational structure specification
Focus: Static architecture
Typical tasks for which this is needed: Identify system organization
Technique description: The organizational structure selected for the target system

should offer the most appropriate topology and control regime. Forces affecting this
choice may include: the need to achieve organizational efficiency; the need to respect
organizational rules; and the need to minimize the distance from the real-world or-
ganization.

Technique usage: Together with the analysis of the above factors, the designer
should exploit the existing libraries of organizational patterns. Organizational struc-
tures can be modelled either by a formal notation or a more intuitive graphical repre-
sentation.

Deliverables: Organizational structure model

110 B. Henderson-Sellers, J. Debenham, and Q.-N.N. Tran

4.4 New Work Products

From Section 3.3, five new work products are recommended for inclusion in the OPF
repository in order to support AO development using a Gaia-based approach/ philoso-
phy.

Role schema: Textual description of each role. One schema per identified agent
role. Information is displayed about the protocols, permissions and responsibilities for
each agent role (Figure 3).

Protocol schema: The Gaia-based interaction model is used here to define and de-
scribe the agent protocol schema. It shows the purpose, the initiator, the responder,
the inputs and outputs and the processing.

Service table: A tabular representation of each service, indicating the inputs, out-
puts, preconditions and postconditions for each service.

Environment Model: Specification of each resource. Typical information include
the resource’s name, types of actions to be performed on it, internal data structure,
and textual comments.

Organizational structure model: Organizational structure is modelled using either
a formal notation or a graphical representation. The model should show the topology
and the control regime of the structure. Typical control relationships are control, peer
and dependency.

5 Summary and Conclusions

As part of an extendive research programme to combine the benefits of method engi-
neering and existing object-oriented frameworks (notably the OPF) to create a highly
supportive methodological environment for the construction of agent-oriented infor-
mation systems, we have analysed here contributions from the Gaia AO methodology.
We have identified one new Task, six new subtasks (to pre-existing tasks), three new
Techniques and five new Work Products, although no additional Roles or Stages were
identified and no changes to the OPF metamodel were necessary.

Acknowledgements

We wish to acknowledge financial support from the University of Technology, Syd-
ney under their Research Excellence Grants Scheme. This is Contribution number
03/27 of the Centre for Object Technology Applications and Research.

References

Brinkkemper, S., 1996, Method engineering: engineering of information systems development
methods and tools, Inf. Software Technol., 38(4), 275-280.

Brinkkemper, S., Saeki, M. and Harmsen, F., 1998, Assembly techniques for method engineer-
ing. Proceedings of CAISE 1998, Springer Verlag, 381-400.

Adding Agent-Oriented Concepts Derived from Gaia to Agent OPEN 111

Coleman, D., Arnold, P., Bodoff, S., Dollin, C. and Gilchrist, H., 1994, Object-Oriented Devel-
opment. The Fusion Method, Prentice Hall, Englewood Cliffs, NJ, USA, 313pp

Debenham, J. and Henderson-Sellers, B., 2003, Designing agent-based process systems - ex-
tending the OPEN Process Framework, Chapter VIII in Intelligent Agent Software Engi-
neering (ed. V. Plekhanova), Idea Group Publishing, 160-190.

Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework. AN Intro-
duction, Addison-Wesley, Harlow, Herts, UK

Henderson-Sellers, B., Simons, A.J.H. and Younessi, H., 1998, The OPEN Toolbox of Tech-
niques, Addison-Wesley, UK, 426pp + CD

Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2004a, Enhancing Agent OPEN with
concepts used in the Tropos methodology, Procs. ESAW’03 (Engineering Societies in the
Agents World), LNCS, Springer-Verlag, Berlin (in press)

Henderson-Sellers, B., Debenham, J. and Tran, N., 2004, Incorporating the elements of the
MASE methodology into Agent OPEN, Procs. ICEIS2004 (eds. I. Seruca, J. Cordeiro, S.
Hammoudi and J. Filipe), INSTICC Press, Portugal (in press)

Kumar, K. and Welke, R.J., 1992, Methodology engineering: a proposal for situation-specific
methodology construction, in Challenges and Strategies for Research in Systems Develop-
ment (eds. W.W. Cotterman and J.A. Senn), J. Wiley, Chichester, 257-269

OMG, 2001, OMG: OMG Unified Modeling Language Specification, Version 1.4, September
2001, OMG document formal/01-09-68 through 80 (13 documents) [Online]. Available
http://www.omg.org (2001)

Padgham, L. and Winikoff, M., 2002, Prometheus: A Methodology for Developing Intelligent
Agents. In proceedings of the Third International Workshop on Agent-Oriented Software
Engineering, at AAMAS’02.

Ralyté, J. and Rolland, C., 2001, An assembly process model for method engineering, in K.R.
Dittrich, A. Geppert and M.C. Norrie (Eds.) Advanced Information Systems Engineering),
LNCS2068, Springer, Berlin, 267-283.

Rolland, C. and Prakash, N., 1996, A proposal for context-specific method engineering, IFIP
WG8.1 Conf. on Method Engineering, 191-208, Atlanta, GA, USA

Rolland, C., Prakash, N. and Benjamen, A., 1999, A multi-model view of process modelling,
Requirements Eng. J., 4(4), 169-187

Ter Hofstede, A.H.M. and Verhoef, T.F., 1997, On the feasibility of situational method engi-
neering, Information Systems, 22, 401-422

Wooldridge, M., Jennings, N.R. and Kinny, D., 1999. A Methodology for Agent-Oriented
Analysis and Design. Proceedings of the 3rd International Conference on Autonomous
Agents (AA’99), 69-76.

Wooldridge, M., Jennings, N.R. and Kinny, D., 2000, The Gaia methodology for agent-oriented
analysis and design, J. Autonomous Agents and Multi-Agent Systems, 3, 285-312

Zambonelli, F., Jennings, N. and Wooldridge, M., 2003, Developing multiagent systems: the
Gaia methodology, ACM Transaction on Software Engineering and Methodology, 12(3),
317-370

	1 Introduction
	2 An Overview of the OPEN Process Framework
	3 Major Elements of Gaia
	3.1 Tasks Characterizing Gaia
	3.2 Techniques Recommended by Gaia
	3.3 Work Products Advocated by Gaia
	3.4 Stages Used in Gaia
	3.5 Languages

	4 Adding Support to the OPF Derived from Gaia
	4.1 Existing Support and Mapping between OPF and Gaia
	4.1.1 Tasks
	4.1.2 Techniques

	4.2 New Tasks
	4.3 New Techniques
	4.4 New Work Products

	5 Summary and Conclusions
	Acknowledgements
	References

