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Abstract. We present a method to build a hypothesis on the condition of the en-
vironment in which a robotic multi-agent team moves. Initially the robots have
a default assumption about the conditions of the floor and on how moving under
these condition works. For certain parts of the environment however, the default
assumption may be wrong and moving around does not work in the expected way.
Now the robotic team builds a hypothesis on the conditions of the yet unvisited
part of the environment in a way similar to computing a diagnosis for electri-
cal circuits. Resources can be saved by avoiding areas that possibly also contain
obstacles.

1 Introduction

In RoboCup Simulation League, the simulated robots are situated in a two-dimensional
world where objects move according to some fixed rules, which are known to the play-
ers. Usually, during a regular tournament, these rules are not going to change. Addi-
tionally to the regular tournament during RoboCup 2001 there was an evaluation round
where parts of the physics of the simulation was changed before the matches started,
without that programmers knew of this in advance. The change in the physics had the
effect that dashing on the upper half of the field resulted in only half of normal speed
for all the players. Some of the teams did manage these matches better than others, but
to the best of our knowledge none of the teams could come up with a diagnosis of what
happened on the field, though this was immediately visible for human spectators.

In this paper, we present a solution to the problem how a team of robotic agents can
come up with a hypothesis of what might globally be wrong with the environment in
similar situations. Hypotheses should entail the currently observed behavior and provide
some kind of “forecast” for those areas that no other member of the team visited so far.
As time proceeds the hypothesis will be refined to match the actual situation more
closely. With a hypothesis about the condition of the environment, single robots can try
to avoid areas that potentially contain obstacles, take the shortest way out of these areas,
or instead enter these areas to (dis-)prove the hypothesis dependent on the strategy of
the team.
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2 From Problems to Hypotheses

What we essentially want the robots to do is related to the approach of model-based
diagnosis: abnormalities have to be identified and a kind of explanation for these abnor-
malities should be generated (see for instance [4]). Though we identify some differences
between doing model-based diagnosis for devices and building hypotheses for robots
in the first part of this section, we can apply the same procedure to compute the result
in our approach.

2.1 Differences between Model-Based Diagnosis for Devices
and Building Hypotheses for Robots

Though at first sight both problems seem to be very similar, there are differences with
respect to some general points:

Devices vs. Space. Model-based diagnosis is usually used for physical devices con-
sisting of several components. The “device” we are interested in in our approach is
space, i.e. the floor on which the robots move. To use a procedure like model-based
diagnosis, we artificially have to introduce components like smaller areas which
make up space.

Diagnosis vs. Hypothesis. Even if we introduce kinds of devices in both approaches
there is a difference with respect to result that should be computed: By taking a
description of the system and a description of the behavior of the system, model-
based diagnosis is usually used to explain the observed behavior by providing a
diagnosis which states possible faulty components. For our robots, we observe the
– possibly faulty – behavior of some of the components (parts of an area) and by
this observation, we want to build a hypothesis on the behavior of the whole system
(the complete area).

2.2 Identifying Abnormalities

The only way our robots can deduce the presence of an obstacle at their current location
is by moving forward and using position estimation or odometric information, that is
robots can execute a kind of move operation and recognize if it succeeded or if it failed.
A description of the (usual) behavior of the move operation, an observation of the be-
havior of the move operator and some knowledge concerning the accuracy of these both
are necessary to decide if a robot actually has a problem or not.

3 Representation of the Environment

The assumptions made in the previous section enable us to do two things: Firstly, robots
can clearly identify a part of the field as being defective if move does not work in a par-
ticular situation. Secondly, robots can exchange information on abnormal tiles by send-
ing logical facts to each other. These informations need only to be sent in unexpected
situations. By doing so, robots exchange and collect information about tiles on the field
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Fig. 1. Left: Area partitioned into atomic tiles with robotic team. On the gray tiles, robots cannot
move as fast. Right: Created hypothesis from this situation.

they already visited. To get an idea of how the yet unvisited tiles could be like, we set
up rules that relate tiles of different levels to each other. The basic assumption here is
that if there is an unexpected change in the environment, this change usually concerns
areas larger than the size of our atomic tiles. If there is a tile containing an obstacle,
its unvisited neighbors will probably also contain obstacles. In the next subsection we
are going to explain how we want to relate tiles of different levels to each other. We
will assume that the area is partitioned into squares, but other ways of partitioning are
possible. In the second part of this section we are going to describe the logical rules we
are using for the relation between tiles.

3.1 Hierarchical Layering of Tiles

To build a hypothesis on defective tiles, we use a hierarchical layering of tiles inspired
by quad trees [6]. In the case of squared tiles, we use 2×2 atomic squares (level 0) to
make up a higher-level square (level 1), 2×2 squares of level 1 to make up a square of
level 2 and so forth. The last layer in this hierarchy covers the whole area accessible for
the robots. Like the atomic tiles, each of the higher-level tiles gets a symbolic label so
that it can be identified uniquely.

The idea behind building a hierarchical representation using tiles is the following:
Initially, all robots have the default assumption that move succeeds in the whole area.
If, for a tile of a certain level, it is known that it covers only unknown (smaller) tiles
and at least one tile where move succeeds, our hypothesis should be that move will work
for the complete tile. If the tile covers only unknown smaller tiles and at least one tile
where move fails, our hypothesis should be that move will fail for the complete tile.
Tiles containing both kind of smaller tiles (and possibly unknown tiles) have to be split
up into tiles of the next lower level. For an example hypothesis see the graphics on the
right in Fig. 1.

3.2 Logical Representation

Each tile in our representation can be identified by its level and its coordinates, so the
tiles are the “components” of the field. Logically, a tile is an atom al,x,y with level l,
where x and y denote the coordinate of the respective tile in that level. The non-atomic
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tiles contain lower level tiles. These connections including the resulting assumptions on
the state of respective tiles can be described using logical rules.

In model-based diagnosis, a model of a device is used to compute the expected
output given a particular input. Discrepancies between expected and the actual output
are used to detect faults in the system. In our setting, the attempt to move on a certain
position can be regarded as “input” to an atomic tile. Thus, we denote the fact that the
robot tries to move on location a0,i, j by move(a0,i, j, i).

The result of this attempt can be regarded as “output” of an atomic tile, and so
we denote the success of the operation move by move(a0,i, j,o), while a failure of this
operation is denoted by ¬move(a0,i, j,o).

There can be different kinds of faults in a system like this: in our approach, we
are aiming at faulty tiles, the components in the system. Possible are also faults in the
actuators or in the sensors measuring the output of the actuators; however for now we
ignore them.

Definition 1. An atomic tile a0,i, j is called defective (or abnormal), if it is known that
the move operation fails on a0,i, j (written: ab(a0,i, j)). An atomic tile a0,i, j is called
normal if it is known that the move operation succeeds on a0,i, j (written: ¬ab(a0,i, j)).

In our approach we use two definitions concerning the connections between atomic
and higher level tiles: Definition 2 deals with implications for a higher level tile from
knowing that the move operation succeeds on an atomic tile, while Definition 3 de-
scribes implications for higher level tiles from knowing that the move operation failed.
A third possibility for an atomic tile is that no robot visited the tile so far, so that there
is no knowledge on the behavior of the move operation on the respective tile.

Definition 2. A tile of level l (l > 0) containing a normal atomic tile is not abnormal.

This relation between atomic tiles and higher level tiles can be expressed used log-
ical formulæ. The number of formulæ for each tile is dependent on the level of the tile
and the used topology. In the case of square tiles the branching factor is 4, i.e. a tile of
level one contains four level 0 tiles, while a tile of level two contains sixteen level 0
tiles.

Example 1. In the case of square tiles consisting of four lower level tiles the rules for
Definition 2 look like this:

¬ab(a1,0,0) ← move(a0,0,0,o)∧move(a0,0,0, i).
¬ab(a1,0,0) ← move(a0,0,1,o)∧move(a0,0,1, i).
. . . . . . . . . . ← . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
¬ab(a2,0,0) ← move(a0,0,0,o)∧move(a0,0,0, i).
. . . . . . . . . . ← . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 3. (At least) one of the tiles containing an abnormal atomic tile is abnormal.

Example 2. In the case of square tiles consisting of four lower level tiles the rules for
Definition 3 look like this:
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ab(a0,0,0)∨ab(a1,0,0)∨ab(a2,0,0) ← ¬move(a0,0,0,o)∧move(a0,0,0, i).
ab(a0,0,1)∨ab(a1,0,0)∨ab(a2,0,0) ← ¬move(a0,0,1,o)∧move(a0,0,1, i).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ← . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ab(a0,3,3)∨ab(a1,1,1)∨ab(a2,0,0) ← ¬move(a0,3,3,o)∧move(a0,3,3, i).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ← . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The number of formulæ of this kind necessary is equal to the number of atomic tiles
for the complete area. The right hand side of each formula denotes that move failed on
an atomic tile, while on the left hand side we have a disjunction of all tiles that contain
the respective atomic tile – including the atomic tile itself. The length of the right hand
side of these formulæ is logarithmic with respect to the number of atomic tiles.

4 Building a Hypothesis

Once the set of clauses as described in the last chapter is available, collected knowledge
from moving around and from communication and a theorem prover can be used to
solve the problem of building the actual hypothesis. We need to compute models of
the given set of clauses, where the extension of the ab-literal is minimal. That means
the theorem prover used should find solutions for the given clauses so that there exists
no solution containing a subset of true ab-literals. A procedure to compute minimal
diagnosis with a theorem prover can be found in [1], the theorem prover NIHIL1 we have
been using to compute hypotheses is based on this procedure. We briefly explain some
basics for this procedure in the following subsection; in principle any other procedure
for computing minimal models could be used.

4.1 Model-Based Diagnosis with Hyper Tableaux

Usually, for a diagnosis we need a system description (SD), a set of components of
the system (COMP), and an observation (OBS). As stated earlier, a component c can be
abnormal (ab(c)), or it can behave normal (¬ab(c)). According to Reiter [9], a diagnosis
is defined as follows:

Definition 4 (Reiter 87). A Diagnosis of (SD,COMP,OBS) is a set ∆ ⊆COMP, such
that SD∪OBS∪{ab(c)|c ∈ ∆}∪{¬ab(c)|c ∈ COMP−∆} is consistent. ∆ is called a
Minimal Diagnosis, iff it is the minimal set (wrt. ⊆) with this property.

As we shall see later, the set of observations is simply a set of logical facts. A basic
ingredient to the diagnosis method mentioned above are hyper tableaux [2]. Basically,
a hyper tableau is a finite ordered tree T where all nodes, besides the root node, contain
literals from a finite set S of ground clauses. A branch b in T is called regular if each
literal in b occurs at most once, otherwise it is called irregular. A tree T is regular iff
all its branches are regular. Branches containing containing contradicting literals are
labeled as closed, and as open otherwise. A tableau is closed if each of its branches is
closed, otherwise it is open. Computing minimal diagnoses is possible by finishing all
open branches and collecting the ab-literals from open branches.

1 NIHIL = New Implementation of Hyper In Lisp. Thanks to Peter Baumgartner for providing
helpful information on the calculus and on using his system.
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Fig. 2. Example with one robot on a defective tile (0,1) and two possible hypotheses.

4.2 Selecting a Hypothesis

Even if the computed diagnosis are minimal, for a given situation there could be several
minimal ones. Consider a robot put on the center of a square finding the atomic tile on
its place defective. In each level of the hierarchy of tiles there is one tile surrounding
the atomic tile that could be a hypothesis for being a defective tile. The least conser-
vative hypothesis covers only atomic tiles which are known to be defective. The most
conservative hypothesis expands to the largest tiles that contain at least one abnormal,
but no normal atomic tile.

Example 3. Consider the four robots from Fig. 2. The facts about their current locations
are like this:

move(a0,0,1, i)←�. ⊥←move(a0,0,1,o).

move(a0,2,0, i)←�. move(a0,2,0,o)←�.

move(a0,1,3, i)←�. move(a0,1,3,o)←�.

move(a0,2,2, i)←�. move(a0,2,2,o)←�.

So it is known that tile a0,0,1 is defective, whereas tiles a0,2,0, a0,1,3 and a0,2,2 are
known to be working. There is nothing known about the other tiles. The rules describ-
ing the relation of tiles between the different levels are selected as in Example 1 and
Example 2. One diagnosis as shown in Fig. 2 b) (ab(a0,0,1)) will be computed, and the
other one as shown in Fig. 2 c) (ab(a1,0,0)). To select the most conservative hypothesis,
one has to choose the diagnosis with the least number of faults. If there is more than
one diagnosis with this property, the one containing tiles al,i, j with the largest levels l is
the most conservative one.

4.3 Why Logic?

Looking at the hypothesis and the way it gets computed the question arises why one
should do it this way instead of using the quad trees directly. There are different answers
to this question.

Firstly, we have chosen to use a theorem prover because it was available. Creating
the rules to represent the environment was done automatically by a simple program,
so the programming effort to solve the problem was very small. But there are other
advantages of this approach:
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Flexibility. The approach using a theorem prover is flexible with respect to the selected
topology, because the representation is independent of the computation. A robot
moving in a building consisting of several different rooms can select a topology
dependent on the room it is in.

Robustness. The use of logic for communicating facts about the environment can add
robustness to the negotiation process among different team members. We assume
that robots communicate an observation only if it contradicts their current hypoth-
esis about the environment. By receiving known information robots can possibly
still improve their current hypothesis, because it can be deduced that a previous
message must have been lost.

Use of Additional Knowledge. By using additional knowledge about potential obsta-
cles, the selection of hypotheses can be controlled. This is possible because the
theorem prover computes all minimal diagnosis, from which we can select an ap-
propriate one. By choosing the hypothesis containing the tiles with the largest lev-
els we select the most conservative one. Dependent on knowledge or assumptions
about the environment we can also prefer hypothesis with obstacles of a certain
size, if applicable.

However, a disadvantage of our approach is that with larger areas and increasing
number of tiles calculation of hypothesis becomes slow. This is due to the fact that the
number of formulæ increases quadratic with the number of tiles.

5 Related Work

As mentioned earlier, model-based diagnosis [9, 4] is usually concerned with computing
an explanation for a certain behavior of technical devices. Logical descriptions of the
device and of the components of the device are used to predict the expected behavior
of the device, given a particular input. The diagnostic task is to identify possible faulty
components by comparing the actual with the predicted output. The ab-literal is used to
denote faulty components. Approaches as described in [1] take the system description
and the observation of the behavior as a set of clauses to compute models so that the
extension of the ab-literal is minimal. Besides the reasoning strategies the assumptions
made for the reasoning process are a matter of concern, see for example [5]. For an
overview about symbolic diagnosis in general see [7].

As in our approach to specify and implement a team of agents [8], the authors in
[3] use a logical approach to specify the knowledge of an agent. The agent architecture
ALIAS is introduced, where agents are equipped with hypothetical reasoning capabili-
ties. Hypothesis are raised by an agent and it is checked if the hypothesis complies with
the other agents knowledge, contrary to our approach where the knowledge is collected
prior to raising hypotheses.

6 Conclusions and Future Work

In this paper we showed a way to build hypotheses about the environment of robotic
teams with a theorem prover. A hypothesis about unknown areas can be useful to guide



Using Model-Based Diagnosis to Build Hypotheses about Spatial Environments 525

the selection of actions, so that resources can possibly be saved. The logical description
of the environment can be generated automatically for different topologies. Because
the method to actually compute the hypothesis is separated from the description of the
environment, topologies could be switched at run time. Should the time of computation
take too long due to a large number of atomic tiles the approach can be used to compare
different kinds of topologies and to be reimplemented in a more efficient fashion later
on. In our approach we looked at changes in the environment only, incorporating sensor
and actuator faults into our model is left to future work. Other points for future work are
methods to recover from message loss, and using methods to acquire knowledge from
teammates without communication. For large areas with a low density of facts a logical
description with variables could be tried.
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