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Abstract. Recognition of relevant game field objects, such as the ball and 
landmarks, is usually based upon the application of a set of decision rules over 
candidate image regions. Rule selection and parameters tuning are often arbi-
trarily done. We propose a method for evolving the selection of these rules as 
well as their parameters with basis on real game field images, and a supervised 
learning approach. The learning approach is implemented using genetic algo-
rithms. Results of the application of our method are presented. 

1   Introduction 

Teams of the four legged league have generally reported good vision strategies for the 
recognition of objects on the game field [3,14], such as the ball, landmarks and goals. 
Approaches often rely on the sequential application of a set of recognition rules, such 
as making comparisons of sizes and distances between regions of connected pixels of 
certain colors. These rules are pre-engineered and their parameters are manually ad-
justed until they become useful at recognizing objects under different locations, illu-
minations, and poses into the image. After applying theory and models to the prob-
lem, the engineering task often falls into a trying and error optimization process. 
Some teams [14] have even reported their uncertainty with respect to the application 
of some rules.  

We believe that this engineering process can be supported or even automated by 
the use of a supervised learning approach, for which a large set of real pre-classified 
images can be used as a training data. These real images are expected to cover as 
much as the interesting examples that one might imagine. A main advantage of this 
approach is that such system will gain its knowledge from its own experience rather 
than being product of an arbitrary design.  

Machine learning methods like evolutionary computation provides optimization 
tools which are used in robotics for learning behaviors [5], such as the case of evolu-
tionary robotics, and also for the adaptation of perceptual systems [6,10,11,12]. A 
main idea is that genetic algorithms can search for solutions on highly dimensional 
spaces contaminated with natural noise. Evolved systems are expected to be more 
robust to unseen data sets than those resulting from simulated evolution. 

In this work we will explore a method for evolving the selection and tuning of a 
group of visual object recognition rules, intended for recognizing objects in the con-
text of the RoboCup four legged league. The proposed evolutionary learning approach 
is based on the use of a large set of pre-classified real images. In this paper are pre-
sented results for the detection of ball, goals, and landmarks. We are currently work-
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ing towards the final goal of this approach, which is to derive rules for the recognition 
of other robot players into the game field. Given the complexity of this problem, it has 
not yet received sufficient attention from the research community.  

In section 2 the related work is presented. Section 3 describes our implemented vi-
sion module which is used for extracting candidate object regions, and section 4 de-
scribes our proposed object recognition approach. Section 5 describes our results, and 
finally section 6 presents the conclusions and projections of our work.  

2   Related Work 

Cliff et al [4,5] uses genetic algorithms for evolving neural-network based controllers 
for visually guided robots. They use a computer graphics based model for simulating 
the robot vision, their model considers the introduction of certain amount of noise for 
preventing it from being entirely deterministic. The resulting approach was computa-
tionally expensive and with poor image resolution.  

The approach of using evolutionary computation for computer vision problems has 
been widely explored, for example Köppen et al [9] proposes framework for the 
automated generation of texture filters using both, genetic algorithms (GA), and ge-
netic programming (GP).  

The object recognition problem, addressed with evolutionary computation, has 
been first attacked for the character recognition task. Koza [7] shows an experiment 
using GP for the classification of just four characters on small bitmaps, this approach 
relies on using a computationally expensive attention marker method. He also pro-
poses a system which uses Automatically Defined Functions (ADFs) which were 
successful at finding solutions   [8], but required populations of extremely large size 
(8000 individuals). Andre [1] uses both GP and GA simultaneously, first a GA deter-
mines feature templates and then a GP is used for classifying character bitmaps. 

Teller and Veloso [13] used genetic programming for their proposed Parallel Algo-
rithm Discovery and Orchestration (PADO) system. This system performs object 
recognition on real gray scale images. Genetic programming is used to induce pro-
grams which operate on pixel values in the image and return a confidence value that 
the given image corresponds to the class which is intended to be recognized.  

3   Our Vision Module 

The software architecture of our UChile1 four legged team is divided in task oriented 
modules. One of them, the vision module, is in charge of recognizing relevant objects 
from the images captured with the robot cameras. This module in particular, is mainly 
inspired on the large experience showed by the UNSW and CMPack teams [3,14]. 
This module is decomposed into four processing sub-modules:  color segmentation, 
run-length encoding, labeling of connected regions, and finally object recognition.  

For the color segmentation sub-module we use a look-up table of 64 levels in each 
YUV dimension, the table is generated by taking a large number of color samples 
(about 5000) from images of the game field. Once all samples have been collected, a 
median filter is operated over the look-up table values having the effect of clearing 
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the interfaces between clusters of different colors and filling empty elements inside 
clusters which were not assigned during data collection. This process is particularly 
useful for solving ambiguities between red and orange clusters for example. A main 
consideration is that we train not just our seven color classes, but also a class for the 
set of non-relevant colors.  

The output of the labeling sub-module is a set of connected regions of certain 
color, or blobs. Each blob can be characterized with a set of descriptors such as the 
size in pixels, the integer color index which in this case might take the values 
{0,1,2,3,4,5,6}, a set of coordinates describing the bounding box, and the coordinates 
of its center of mass. 

The task of the object recognition sub-module is to identify image regions which 
are related to the relevant game field objects. The recognition of objects is performed 
by evaluating the response of a set of rules. For example, the detection of a ball usu-
ally requires that the related blob has the color of the ball, and if this is not the case 
one might expect to reject this candidate blob. These rules operate over all the image 
blobs or over combinations of them, such as pairs of blobs.  

4   Learning Visual Object Recognition 

4.1   General Approach 

We propose to evolve the visual object recognition sub-module by first collecting 
reference region descriptors of objects which are present on a large set of real images; 
this stage is performed by an expert user. Then candidate regions are defined as those 
automatically extracted with the vision system, or combinations of them, see Figure 3 
(left). Then, under a supervised rule learning process, candidate regions are compared 
with corresponding reference regions on each image, and the overall degree of corre-
spondence serves as fitness for a genetic algorithm which learns the system recogni-
tion rules. Clearly, the effectiveness of the recognition sub-module is directly related 
to the degree of correspondence between candidate regions and reference regions. 

We have used in our experiments a set of 180 real images for reference accumula-
tion; these images contain objects such as the ball, landmarks and goals, as well as 
non relevant objects on the surroundings of the game field. The images consider a 
broad range of viewpoints, rotations, non canonical poses, and even variations on the 
illumination conditions. Figure 1 shows examples of these images.  

In order to generate a database containing object identifiers for each reference im-
age blob, or the so called references, we have developed a software which allows an 
expert user to define image regions related to relevant objects in terms of their bound-
ing rectangles, and linking them to their corresponding identifier by just pressing on 
the corresponding object button. Figure 2 shows a screenshot of this software tool. 

During the learning process a genetic algorithm evolves a population of   recogni-
tion rules intended for detecting a particular object. These rules operate over region 
descriptors which are automatically extracted from each image with our vision mod-
ule. In case a region, or a combination of them, is regarded as an object, its degree of 
correspondence with the reference is calculated by means of a correspondence quality 
function. The overall degree of correspondence between detected regions and refer-
ences is then used as fitness for each individual generated with the genetic algorithm. 
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Fig. 1. Examples of images collected from the game field. Each image is subject to inspection 
from both an expert and our visual system under adaptation.  

4.2   Fitness Function 

Assigning a good fitness function is not trivial in this case. This measure should take 
its maximum when there is a perfect overlap between reference and candidate image 
regions, but it is not necessarily clear how to handle partial overlaps between them. 
Köppen et al [9] has proposed a quality function which well fits on our problem. It 
consist on measuring the area A of the reference region which does not overlaps the 
candidate, the area B of the overlapping region, and  the area C of the candidate re-
gion which does not overlaps the reference, see Figure 3 (right). This results in the 
following three measures: 

 

r1 = B / (A+B), the relative amount of correct overlapping pixels within the refer-
ence,     
r2 = 1 - (C / (Q - A - B)), the relative amount of correct empty pixels within the 
image, where Q is the total number of image pixels, and 
r3 = B / (B+C), the relative amount of correct overlapping pixels within the candi-
date. 
 

The intention is that genetic search increases all these measures, but we can identify 
some priorities among them. For example it is desired that the correspondence degree 
counts better for subsets of the reference, as well as for subsets of the reference which 
are supersets of other subsets of the reference. We also would like to refuse to assign 
good correspondence degrees to false positives, i.e. empty regions. 

The following weighted correspondence degree, as proposed by Köppen, accounts 
for these requirements: 

321 4.05.01.0 rrrCD ++=  (1) 
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Fig. 2. A screenshot of the software developed for labeling image regions which are related to 
game objects. It can be seen how coordinates (left) defining rectangles, and object identifiers, 
are related to each object which is being selected. This task is performed by just pressing the 
corresponding object button (right). 

   

Fig. 3. Left: Illustration of how the candidate image region for the beacon detection is derived 
from two image regions. It can be seen how the resulting rectangle is defined in terms of the 
region bounding boxes. Right: An example of partial overlap between a reference region and a 
candidate region. The sub regions A, B and C are defined as the figure shows. 

Using this measure, we compute the fitness for each individual as the sum of the 
correspondence degrees over the whole set of images, only when at least one candi-
date region is being selected:  

∑=
i

iCDfitness  (2) 

As a consequence, genetic search evolves the population towards the higher 
weighted objective first, in this case r2, rejecting false positives, and then towards r3, 
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allocating correct portions of the reference. Once candidates correspond to subsets of 
the reference, the fitness is increased by expanding them to cover the whole reference.  

4.3   Genetic Rule Representation 

For each candidate region, detected with the vision process, a set of N binary rules 
Ri=f({pij},{Region_Descriptorsk}) is evaluated. Each rule is described in terms of M 
parameters pij. The rules have as argument the set of candidate region descriptors. In 
general the binary rules have the following structure:  



 ≥≥

=
notif

pCONDpif
R ii

i
21

0

1
 (3) 

Where COND might correspond to a value, as for example the size of a region, the 
quotient between regions sizes, and in general to the result of logical or arithmetic 
operations performed between the region descriptors. Each candidate region receives 
a score computed as the weighted sum of the rule outputs. The region having a maxi-
mum score is regarded as an object if and only if its score is greater than a certain 
threshold. This score is computed as follows: 

∑ ≥=
i

ii TRwScore  (4) 

In our implementation, the weights [ ]1,0∈iw , the thresholds [ ]NT ,0∈  and all 

the M parameters [ ]1,0∈ijp  are represented as 16 bit strings. Thus the chromosome 

which encodes a rule has length 16x(N+M+1), where M is the total number of rule  
parameters. In some cases, as it will be indicated, the parameters are re-scaled or 
discretized to a reduced set of values. These chromosomes will be evolved with a 
genetic algorithm. This algorithm uses fitness-proportionate selection with linear 
scaling, no elitism scheme, two-point crossover with a crossover probability Pc=0.75 
and mutation with a mutation rate of Pm=0.015 per bit. The population size is 8 indi-
viduals evolved over a course of 100 to 150 generations. 

5   Results 

5.1   Ball Recognition Experiment 

We have chosen a group of six rules for the ball recognition experiment. The shapes 
of these rules, as well as the range of their parameters are indicated on Table 1. Figure 
4 shows results of this experiment. We can first notice from these results, that the 
trivial color test implicit on rule R6, is satisfied, i.e. the system learns to choose the 
right color of the ball. The parameter P61 is discretized as the integer number 7 which 
correspond to exactly the index of the orange color. It is also recognized as the most 
important rule, since it has the maximum weight. The second rule on importance is 
R1 the low value of its parameter P11 indicates that the candidate region should have 
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a minimum width of two pixels. The third rule in importance, R4 indicates that the 
bounding box of the region should be relatively square with a minimum quotient 
between width and height, or vise versa, of P41=0.5754. The fourth rule, R5 indicates 
that the quotient between the region size and the bounding box size should fall be-
tween P51=0.027 and P52=0.553, which is quite logical for our implementation. The 
lower bound accounts for those cases in which the ball correspond to a silhouette of 
segmented orange pixels, i.e. a region small in size but with a large bounding box. 
The upper bound serves for rejecting orange regions which are too close to a square. 
The fifth rule, R2 indicates that the region height should be at least a quarter of the 
image height. The last rule, R3 establishes that the region size should be at least one 
third of the image size. However, we should notice that the weight of R3 is quite low 
therefore it is not a relevant rule. The resulting threshold scaled by 6 (the number of 
rules) correspond to T=0.99, which can be compared to the maximum theoretical 
score of 3.69 (the sum of weights). This means that the threshold is set at the 26% of 
the maximum score. 

Table 1. The six rules for the ball recognition experiment, described in terms of their shape, 
and parameters range. The region descriptors correspond to width_reg, the region width; 
height_reg, the region height; area_reg, the region area; hbb, the height of the region bounding 
box; wbb, the width of the region bounding box; and color_reg, the color of the region. 

Rules for Ball Detection 
Rule Activation Condition Parameters Range 
R

1
 width_reg  > P

11
 integer [0,image_width] 

R
2
 height_reg > P

21
 integer [0,image_height] 

R
3
 area_reg   > P

31
 integer [0,image_size] 

R
4
 min(w

bb
/h

bb
,h

bb
/w

bb
) > P

41
 double [0,1] 

R
5
 P

51
 < area_reg/area_bbox < P

52
 double [0,1]  

R
6
 color_reg = P

61
 integer[1,num_colors=7] 

 

 

 

Fig. 4. Resulting evolution of fitness (left), and the resulting weights, parameters, and threshold 
for the best evolved individual (right), for the ball recognition experiment. 

Best  Evolved Individual 
Pr. Value Interpretation 
w1 0.952347 Ranking 2 
w2 0.45491 Ranking 5  
w3 0.07095 Ranking 6 
w4 0.805679 Ranking 3 
w5 0.459213 Ranking 4 
w6 0.961151 Ranking 1 
P11 0.00372314 Minimum width 2 pix. 
P21 0.253232 1/4 image height 
P31 0.308493 1/3 image size 
P41 0.575424 Relatively square 
P51 0.0270081 Counts for silhouettes 
P52 0.552963 Rejects false balls 
P61 0.98053 Orange color index. 
T 0.166499 Equivalent to  0.99 
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Best  Evolved Individual Light Blue Goal Best  Evolved Individual Yellow Goal 
Pr. Value Interpretation Pr. Value Interpretation 
W1 0.802551 Ranking 1 W1 0.999039 Ranking 1 
W2 0.784454 Ranking  2 W2 0.524292 Ranking 5 
W3 0.348038 Ranking  5 W3 0.859741 Ranking 2 
W4 0.366501 Ranking  6 W4 0.0393372 Ranking 6 
W5 0.606674 Ranking  3 W5 0.83844 Ranking 3 
W6 0.661896 Ranking  4 W6 0.743652 Ranking 4 
P11 0.0901642 Min width 9% P11 0.0493469 Min width 5% 
P21 0.0627899 Min height 6% P21 0.589996 Min height 6% 
P31 0.647183 Min size 6% P31 0.503348 Min size 5% 
P41 0.65889 Square-like ratio P41 0.0301056 Square-like ratio 
P51 0.400696 Lower area bound P51 0.173755 Lower area bound 
P52 0.864853 Upper area bound P52 0.9658875 Upper area bound 
P61 0.779999 L-blue. color indx. P61 0.134277 Yellow color indx. 
T 0.0565796 Equivalent to 0.34 

 

T 0.0552063 Equivalent to 0.33 

Fig. 5. Results for the light blue goal experiment (left), and for the yellow goal experiment 
(right). The evolution of fitness (top), and resulting weights, parameters, and thresholds for best 
evolved individuals (bottom), are indicated.  

5.2   Goal Recognition Experiment 

In general there are fewer rules reported for the goal detection than for the case of the 
ball. We will use the same group of rules which were used for the ball detection ex-
periment, see Table 1. This group seems to be a good super set of relevant rules for 
our analysis. Figure 5 shows the results for the detection of the light blue and yellow 
goals. We have again that the color rule R6 obtains right parameters corresponding to 
light blue and yellow for each corresponding experiment. This rule is ranked in fourth 
place in both experiments. The most important rule is in both cases R1, which estab-
lishes a 9% and a 5% of the image width as lower bounds for candidate regions. The 
second place is for R2 in the light blue goal experiment and R3 in the yellow goal 
experiment. In both experiment it is established a minimum region height of 6% of 
the image height. Similarly, in both experiments, R3 establishes that the minimum 
region size should be 6% and 5% of the total image size. The third place is for R5 in 
both experiments, it establishes bounds for the quotient between the region size and 
its bounding box sizes, the resulting parameters are similar in both experiments. The 
fifth place is for R3 in the light blue goal experiment and for R2 in the yellow goal 
experiment. The less important rule as indicated in both experiments is R4, taking 
quite different parameters on each experiment. One interpretation of this is that ge-
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netic search concentrates on optimizing the parameter of relevant rules, leaving the 
irrelevant ones with arbitrary parameters. The thresholds are quite similar in both 
experiments; their corresponding scaled values are 0.33 and 0.34. The sum of weights 
is 3.569 for the light blue goal experiment, and 4 for the yellow goal experiment. 
Therefore the threshold is established at the 10% of the maximum score. 

Table 2. The six rules for the ball recognition experiments, described in terms of their shape, 
and parameters range. The region descriptors correspond to distX, the distance between regions 
in the x axis; distY, the distance between regions in the y axis; Sreg, the region size; and co-
lor_reg, the color of the region. 

Rules for Bacon Detection 
Rule Activation Condition Parameters Range 
R

1
 distX(reg1,reg2)  < P

11
 integer [0,image_width] 

R
2
 distY(reg1,reg2)  < P

21
 integer [0,image_height] 

R
3
 min(Sreg1/Sreg2,Sreg2/Sreg1) > P

31
 double [0,1] 

R
4
 1/2 (Sreg1+Sreg2)/sqrt(dist(reg1,reg2)) > P

41
 double [0,1] 

R
5
 color  reg1 = P

51  
OR color  reg2 = P

51
 integer[1,num_colors=7] 

R
6
 Color_reg2 = P

61  
OR color  reg2 = P

61
 integer[1,num_colors=7] 

5.3   Beacon Recognition Experiment  

In this experiment candidate regions are generated as a combination of the bounding 
boxes of two image regions, see Figure 3 (left). In this case it is necessary not to just 
evaluate the rules over each region extracted from the image, but also to evaluate 
these rules over all the possible pairs of them, clearly the rules of this experiment 
have two region descriptors as input. The pair of regions which obtains the maximum 
score is selected if satisfies equation 4, and a candidate region is derived from them as 
indicated in Figure 3 (left), this region is used for calculating the correspondence 
degree as indicated in equation 1. For this experiment we have selected a group of six 
rules, presented in Table 2. We will explore the particular case of the category beacon 
of colors pink-light-blue and light-blue-pink without distinguishing between the verti-
cal orders of the colors.  

 

 

Fig. 6. Resulting evolution of fitness (left), and the resulting weights, parameters, and thresh-
olds for the best evolved individual (right), for the beacon recognition experiment. 

Best  Evolved Individual 
Pr. Value Interpretation 
W1 0.549803 Ranking 3 
W2 0.40321 Ranking 5  
W3 0.101231 Ranking 6 
W4 0.538501 Ranking 4 
W5 0.633870 Ranking 2 
W6 0.875532 Ranking 1 
P11 0.032041 Min distance in X 3% 
P21 0.083218 Min distance in Y 8% 
P31 0.0031345 Quotient sizes. 
P41 0.832451 Relative distances 
P51 0.896420 Color is pink 
P61 0.7559361 Color is light blue. 
T 0.138913 Equivalent to  0.83 
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It can be seen form these results that the two color rules R6 and R5 are regarded as 
the more important ones, their corresponding parameters fit exactly to the expected 
colors. The third rule on importance correspond to W1 which performs a minimal 
check for the horizontal distance between the blobs, the corresponding parameter 
establishes a threshold of 3% of the image width. The fourth rule in importance is R4 
which checks for the distances between blobs with invariance to the scale of the ob-
jects, this rule was proposed in [14]. The fifth rule is R2 establishing a minimum 
vertical distance between regions of 8% of the image height. Finally R3 is regarded as 
the less important rule.  

The maximum theoretical score is in this case 3.1 which means that the threshold 
was established at the 27% of the maximum score. 

6   Conclusions and Projections 

We have presented a method for automating and aiding the selection and tuning of 
visual object recognition rules in the domain of the RoboCup four legged league. The 
system shows to be consistent with the training data sets, and it allows the extraction 
of interesting parameters for different rules as well as the identification of the more 
relevant ones from a given set. It was particularly explored the case of ball, goal and 
landmark detection. We aim at extending this research, first we will explore rules for 
the detection of other robots into the game field, and then we will explore the applica-
tion of a similar learning method for aiding the visual estimation of robot pose.  

In the presented approach, the resulting parameters are dependent on the color 
calibration stage. If the color detection is poor or noisy, the resulting recognition sys-
tem will be adapted to these specific conditions, with the consequence of having to re-
train the system for each different lighting condition. This inconvenient is solved by 
ensuring accurate color detection. Our color detection system is accurate under differ-
ent lighting conditions, and its calibration is performed in just about 15 minutes. In 
practice, we haven’t had to perform the rule training when changing the lighting con-
ditions.  

The intention of this work is to present a method for the improvement of a vision 
system. Although we have just analyzed a particular blob-based vision system, we 
believe that a similar methodology can be applied for evolving other vision systems, 
such as grid based or corner based. Our intention is not necessarily to assess im-
provements of our vision system with respect to others, but to show that the result of 
this learning platform performs similarly. In a future work we expect to evaluate our 
system in terms of standard quantitative measures, using larger data sets. We also aim 
at comparing our visual system with those which are known to be successful within 
the RoboCup domain.  
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