
Specifying Agent Behaviors with UML Statecharts
and StatEdit

Jan Murray�

Institut für Informatik
Universität Koblenz-Landau, Campus Koblenz

Universitätsstraße 1, D-56070 Koblenz, Germany
murray@uni-koblenz.de

Abstract. The use of agents and multiagent systems is widespread in computer
science nowadays. Thus the need for methods to specify agents in a clear and
simple manner arises. One way of achieving this is by means of a graphical for-
malism. For using such a formalism the availability of tools, that support a devel-
oper, is of great importance. In this paper we present an approach to specifying
agent behaviors on different levels of abstraction with the help of UML state-
charts. Cooperation between different agents can explicitly be modeled. To help
a developer with applying this formalism to the specification of agent behaviors
the statechart editor StatEdit is presented. This development tool supports not
only the modelling of an agent but a simple form of code generation as well.

1 Introduction

The use of agent technologies and multiagent systems has gained entrance into almost
all branches of computer science. Thus the need for standards and design techniques
has arisen. In order to gain wide acceptance an agent specification and design procedure
must fulfill several constraints. It has to be as precise as possible to avoid ambiguities
in the design of an agent. Nevertheless, the formalism must be easy to understand and
use. It would also be desirable, that the application of formal methods is supported by
the specification mechanism. This calls for a formal semantics.

All of these requirements can be met by a graphical formalism. Such a formalism
is usually easy to understand. The definition of the individual graphical elements that
make up the formalism can be done in an unambiguous way. Defining a formal seman-
tics is also possible. Another thing that is always desirable for any formalism, especially
graphical ones, is the availability of development tools which help a developer model
and implement a system. In this paper we present both, a graphical way of modelling
agent behaviors and an editor for working with this formalism.

Our approach is based on UML statecharts [11]. With this approach it is possible to
specify not only behaviors for single agents on different levels of abstraction, but mul-
tiagent plans as well. Statecharts are a means for describing the behavior of a system in
response to external events. Their graphical notation is intuitive and easy to understand.
In addition to that the use of UML as a specification and modelling language is already

� Supported by the grant 263/8-1 from the German research foundation DFG.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 145–156, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



146 Jan Murray

widely accepted. Although the specification of UML statecharts does not provide a for-
mal semantics, work on this has already been done, mostly with the aim of verifying
properties of UML models, e.g. in [8, 14]. A tool for editing statecharts is also presented.
With the StatEdit editor an agent designer can easily create statecharts describing agent
behaviors. The resulting statecharts can also be exported to a number of other formats,
which helps a developer with creating running code from the specification.

The rest of the paper is organized as follows. Section 2 briefly summarizes the rele-
vant parts of the UML statechart formalism. Section 3 introduces our approach to agent
specification with UML. The specification is described on different levels of abstrac-
tion. Special attention is laid on the specification of multiagent plans (Section 3.3). In
Section 4 the statechart editor StatEdit, which is being developed at the University of
Koblenz, is presented. This editor allows for the graphical design of agent behaviors and
exporting the resulting statechart to different formats, e.g. Prolog or XML. Section 5 fi-
nally concludes the paper with an overview over related work, some final remarks and
an outlook to future work.

2 UML Statecharts

The behavior of a system – like a program or an agent – can be described as a sequence
of states the system is in. Depending on (external) events the system changes from one
state to another. Such a change may be accompanied by the execution of an action.

In the Unified Modelling Language (UML) [11] statecharts are used to model be-
havioral aspects of systems. Statecharts are basically directed graphs, where different
kinds of nodes represent states and pseudostates and edges stand for transitions. Labels
on the edges describe properties of the transitions. Statecharts are hierarchical state
transition diagrams, i.e. states in a statechart can contain other states or even whole
state machines. In the following we will briefly summarize those parts of the UML
statechart formalism that are employed by us for the design of agents.

In UML a state (represented as a box with rounded corners) is considered a period
in the life of a system/agent during which a certain condition holds or an activity is
performed. An agent may for example remain in a state while it waits for some external
event to occur. In UML three different types of states are distinguished. Simple states
are atomic in the sense that they do not possess any internal structure. Composite states
can be further decomposed. They contain submachines which describe the activity asso-
ciated with the composite state. Concurrent states are special types of composite states.
A concurrent state contains two or more composite substates, which are called regions.
If an agent is in a concurrent state, it is in all regions simultaneously. Thus concurrent
states are used to model concurrent activities in a system or an agent.

The state of a system can be changed in reaction to external events. Such a transition
is shown as a directed edge from state s1 to state s2, which is labeled with e[c]/a, where
e is an event, c a boolean expression, and a an action. The (informal) semantics of t is
“if the system is in state s1 and event e occurs and the condition c holds, then the system
executes action a and changes to state s2”.

Pseudostates may be seen as transient simple states, i.e. a system cannot remain
in a pseudostate – it is left without delay. In other respects a pseudostate behaves just



Specifying Agent Behaviors with UML Statecharts and StatEdit 147

produce
part B

6

assemble
part A

include
parts B&C

produce B

produce−consume

consume B

e[c]/a

e’[c4]

composite state

simple 1

simple 3

e’[c2]
simple 2

Fig. 1. Statechart examples. On the left a composite state with simple substates is shown. The
right statechart shows a concurrent state modelling a producer consumer scenario.

like a simple state. With the help of fork and join pseudostates concurrent states may
be entered and left. The initial pseudostate points to a designated start state of a state
machine. The final state of a state machine is entered, if the activity modeled by this
machine is finished. In this case a completion event is generated. Figure 1 shows two
examples of statecharts.

Sometimes it is necessary to synchronize the concurrent activities in a statechart.
This can be done with a synch state, which is shown as a circle residing on the dashed
line separating different regions. The transition leaving a synch state may only be en-
abled if the transition entering the synch state has fired at least once. A synch state is
labeled either with a positive integer giving an upper bound on the number of times
the incoming and outgoing transitions have fired or with an asterisk, if there is no such
upper bound.

In a typical producer-consumer scenario, for example, goods are produced by an
agent and consumed by another. But the latter can only consume something that has
been produced beforehand, so the need for synchronization is obvious. Figure 1 shows
such a scenario on the right. Parts of type B are produced by one agent and used by
another to assemble components ABC. The upper bound on the synch state is 6, so only
six parts of type B may be produced, before one has to be consumed.

3 Designing Agents with UML

The behaviors of an agent can be seen as a sequence of states the agent is in. Each state
corresponds to an activity or indicates that he agent is idly waiting for something to
happen in its environment. Furthermore the behaviors of an agent can be specified on
different levels of abstraction. This makes it possible, for example, to design an agent
in a top-down manner by first specifying its tasks and behaviors on a very abstract level
and then refining the abstract behaviors more and more.

One important feature of multiagent systems is the (explicit) cooperation of several
agents to achieve a common goal or solve a problem. The agents play different roles in
a shared (or multiagent) plan, i.e. they execute behaviors that solve parts of the problem
or support other agents. Thus a role in a multiagent plan can once again be modeled as
a sequence of states an agent passes through, partially in response to (external) events.



148 Jan Murray

... ...

mode 
level

script
level

skill
level skills skills skills skills

mode 2mode 1

script 1 script n script 1 script m

Fig. 2. Layered Architecture of an Agent.

But there is an important difference between the design of a single agent behavior
and the role of an agent in a multiagent plan. When different agents work together to
achieve a goal, their behaviors are not completely independent of each other, although
most of the time they can be executed concurrently. But at several points of the multia-
gent plan synchronization of the individual behaviors of the agents is necessary, because
sometimes agents have to work together on a subtask, or one agent has to wait for an-
other agent to finish a subtask.

We present a layered approach to designing agents for the RoboCup Simulation
League. For the specification and implementation of an agent three levels are distin-
guished, each of which is more global than the layer below (cf. Fig. 2).

– On the highest level – the mode level – global patterns of behavior are specified.
They can be thought of as the most abstract desires an agent has, e.g. attacking or
handling standard situations like corner kicks. These abstract desires correspond to
different states an agent can be in. We will refer to them as modes.

– For each mode an agent has a repertoire of skeleton plans that it can use as long
as it does not change its mode. The specification of these plans or scripts and their
assignment to the global states constitute the second level of the agent design. On
this level explicit specification of cooperation and multi agent behaviors can be
realized.

– On the third and lowest level of the hierarchy the simple and complex actions the
agents can execute are described. These actions, the skills of an agent, are used in
the scripts.

So each level shows details of a higher level. The result of the design process is a layered
specification of an agent. The connections between the three levels are not predefined in
a rigid manner. Thus a developer can adapt the modelling technique to the kind of agent
that ist to be designed. If, for example the statecharts created on all levels are merged
into one chart, the resulting statechart models a hysteretic agent as described in [13]. If
an agent for a special architecture (e.g. SOAR) is modeled, the statecharts are mapped
to components of the target architecture.

Throughout the rest of the section we will describe, how UML statecharts are em-
ployed in the specification of agents. Section 3.1 explains the high level specification of



Specifying Agent Behaviors with UML Statecharts and StatEdit 149

line up

defendattack
team got ball

team lost ball

line upline up

game over game over

kick off

simple player

Fig. 3. Modechart for a simple player. The line up event is generated after a goal and at the
beginning of each half time.

an agent, while the subsequent sections deal with the design of single agent behaviors
(Section 3.2) and multiagent plans (Section 3.3). The skill level will only be addressed
very briefly in Section 3.4.

3.1 Mode Level

In robotic soccer an agent frequently switches its behaviors on a very abstract level. For
example, an agent may either be defending or attacking, depending on which team is
controlling the ball. All changes of such global behaviors happen in response to one or
more external events. If a state is associated with each of the behaviors and the events
and conditions that lead to a change from one state to another are determined, the agent
can already be modeled by a statechart, called modechart, on this very abstract level.

Consider a very simple soccer playing agent with only three such modes. Whenever
the agent’s team controls the ball the agent is attacking. If the opponent team gains
control of the ball, the agent switches to a defensive behavior. Before each half of the
game, as well as after a goal, there is a period in which the teams line up. Figure 3
shows the resulting modechart. As the soccer teams line up on the field before the game
is started, the line-up state was chosen as the initial state. When the game is over, the
agent enters its final state and ceases its activities.

The transitions between different modes are usually triggered by easily observable
events and guided by guards, whose truth values can easily be determined. As a lot of
behaviors an agent performs only make sense in certain situations, its action selection
mechanism is guided on an abstract level by the current mode, and so the search space
for selecting an action is pruned. For example, in the line-up mode the agent only has
to consider a single action, namely moving to its home positon.

3.2 Script Level

Up to now only very abstract desires of an agent have been specified with the help of
modecharts. But nothing has been said about how to achieve those abstract desires.

Each agent is equipped with a repertoire of scripts, which are short local skeleton
plans for handling particular situations. In each mode an agent can access a subset of



150 Jan Murray

/(x,y) := pos(P)choose
partner P

no partner lost ball

kick to (x,y)

pass ball

Fig. 4. A script for passing.

all scripts, depending on the situations that can arise in the particular mode. If no script
is applicable, the agent has to fall back to a (possibly purely reactive) default behavior.
One of the main problems of a past approach [15] to specifying such scripts lay in the
rigidity of the plans. Once a script was selected for execution, it was hard to interrupt or
abort it. UML statecharts, however, are very well suited for this kind of specifications.

For an agent, the execution of a script means executing a sequence of activities,
some of which depend on the outcome of previous activities. As they can be associated
with (simple) states in UML statecharts, the whole script can easily be represented by
a composite state. Such a script state is entered at a designated state representing the
beginning of the activity and can be left at a variety of points according to the outcome
of the script. Interruption of a script in response to changes in the world are modeled by
transitions originating from the edge of the composite state.

Consider the example of a passing script in Fig. 4. The agent selects a teammate to
kick the ball to, gets its position on the field and finally kicks the ball to those coordi-
nates. If the agent cannot find a suitable teammate or loses the ball, the script is aborted.
The agent can lose the ball during either activity, so the transition handling this event
originates from the state representing the whole script. But only the choose partner ac-
tivity may fail because the agent cannot find a partner, so the corresponding transition
starts from the substate modelling this activity.

3.3 Multiagent Plans

Up to now we have shown how to model scripts or behaviors of a single agent with
the help of UML statecharts. But what about multiagent plans? In a multiagent plan or
script several agents act simultaneously in order to achieve a common goal. At certain
points their activities have to be synchronized. Those two additional requirements –
concurrency and synchronization – are modeled with the help of concurrent states. A
multiagent script is specified as a concurrent state with a region for each role hat has
to be played by an agent. If the activities carried out by different agents have to be
synchronized, this is modeled with the help of a synch state.

An example may help to clarify this. Consider a typical double passing situation. An
agent A controlling the ball wants to get past an opponent O by playing a double pass.
The agent passes the ball to a teammate B and runs past the opponent. The teammate B
dribbles a little with the ball and passes it back to A as soon as possible. To handle
this situation the agents can be equipped with a multiagent script with two roles that
correspond to the behaviors of the agents A and B. The concurrent state modelling this
script is shown by Figure 5. The simple states in the script correspond to the activities



Specifying Agent Behaviors with UML Statecharts and StatEdit 151

dribble

pass run ready

pass

✱ ✱

ready

double passing

after(15)

passed
partner

opponent

passed
opponent

Fig. 5. A multiagent script with two roles for double passing.

of the agents. Synchronization is necessary twice in this script, namely for passing the
ball. As an object (the ball) is passed between the agents and both agents can only con-
tinue their role at the respective positions if they are in possession of the ball, the need
for synchronization is evident. Finally, a timeout for the execution is modeled by the
transition labeled after(15), which means that the execution of the script is terminated
after 15 simulation steps. In this case the script has failed. Additional error transitions,
e.g. modelling loss of the ball, may be added.

So far we have modeled the script as a whole. But some aspects have still been
omitted. First of all, we only specified where synchronization has to take place, but we
did not clarify how the activities are synchronized. As the different roles are played by
different agents and their internal states are usually not known to teammates, means
have to be provided that enable an agent to determine whether its partner has already
reached a synchronization point or not. In addition to that an agent can only play one
of the roles in a script at a time. Therefore the specification should model not only the
script on the whole, but also the individual roles.

So we add a second step to the specification of a multiagent script, in which the
behaviors corresponding to each role are derived from the script state to yield an agent
state. This is done by “cutting along the dashed lines”. As each role in the script is
modeled by a region in the concurrent state, it is easy to see that the specification of
an agent’s behavior must be based upon the corresponding region. So the substates of
each region are simply copied to the corresponding agent state. This process is quite
straightforward, since most of the time the agents’ behaviors are independent of each
other.

The only spots that require special attention are the synch states. As we said before,
a synch state only models the need for synchronization but says nothing about how this
synchronization is realized. Unfortunately there is no unique way of handling synchro-
nization in the derivation of an agent state, so the designer has to tackle this issue as the
case arises. The required synchronization may, for example, be indicated by the change
of a guard condition or the occurrence of an event. It may, however, be necessary for
one of the agents to explicitly generate an event, for example by communicating its
internal state.

Transitions modelling interruptions or errors are just copied from the script state. If
such a transition starts on the edge of the composite state, it has to be copied to the edges



152 Jan Murray

run readypass
kickable
ball

double pass − role 1

after(15)

ready passdribble

kickable
ball

double pass − role 2

after(15)

passed
opponent

passed
partner

opponent

Fig. 6. The derived agent states for double passing. Bold transitions indicate synchronization.

of all agent states representing a role in the script. Finally, some events and guards have
to be chosen, which enable the agent to notice that a situation has arisen in which the
execution of a certain script is appropriate, and to determine its role in the script.

Let us now continue our example from above. The double passing script consists
of two roles, so two agent states have to be generated, which are shown in Figure 6. In
this example synchronization is needed, because the ball has to be transported (kicked)
from one player to another.

As the ball entering the kick range of a player is an observable event and does not
involve the knowledge of internal states of the teammate, synchronization can easily
be handled by using a change event or by putting a guard on the respective transition
edges, which prevents the transition from firing unless the ball has become kickable
for the recipient of the pass. Last but not least, the transition modelling the timeout of
the script has been copied to the edges of both agent states, indicating that both agents
terminate the double pass after 15 cycles as a failure. The determination of the roles the
agents play in the script is handled by the possession of the ball.

3.4 Skill Level

With the use of the server commands (dash, turn, kick, turn neck,. . . ) alone, the ability
of an agent to interact with its environment is very limited. Therefore there are proce-
dures or functions that provide more sophisticated skills for an agent at the bottom level
of almost all RoboCup simulation teams.

Dribbling, for example, is modeled as a sequence of controlled kicks and dashes.
The dribbling skill of an agent is responsible for generating the sequence of dash, turn
and kick commands needed to keep the ball under control while running to a particular
position. Figure 7 shows a statechart describing a simplified dribbling skill.

From the viewpoint of agent modelling the skill level is very similar to the script
level. Skills are modeled like single agent behaviors. There are, however, no analogues
to multiagent scripts, as skills are abilities of one agent only.



Specifying Agent Behaviors with UML Statecharts and StatEdit 153

calculate
way(X,Y)

kick dash

dribble to (X,Y)

lost ball

[ball kickable] [else]

still going

when(at(X,Y))

Fig. 7. A statechart modelling a simple dribbling skill.

4 StatEdit – A Statechart Editor

In order to assist an agent designer in modelling the behaviors of an agent with the help
of the presented formalism the statechart editor StatEdit (Fig. 8) has been developed at
the University of Koblenz [4]. With this editor the designer can easily create statecharts
that specify the desired agent behaviors. Apart from the usual functionality provided
by an editor for graphical elements, such as drawing, moving, erasing, or grouping
objects, StatEdit offers a number of functions to support the modelling tasks of an agent
developer. Two of them will be presented in greater detail, namely splitting (Sec. 4.1)
and exporting (Sec. 4.2) of statecharts.

States and transitions are created and edited via pop up dialogues. The syntax of
a statechart or a selection can automatically be checked, and a selected statechart can
mechanically be beautified. In order to enhance the readability of a diagram, not all
labels are shown at the respective elements. Transitions are only labeled with a unique
identifier. The corresponding transition string is shown in a separate window when the
pointer is over the transition (cf. Fig. 8). The same holds for the entry and exit actions
of composite states.

4.1 Splitting Concurrent States

As we explained in Sec. 3.3 the specification of a multiagent script is done in two steps.
First a concurrent script state is created. In a second step the script state is split into
agent states and means of synchronization are specified.

StatEdit offers the functionality to split a concurrent state c between two regions,
simply by clicking on the border between them. The result of this process are two
(possibly concurrent) composite states c1 and c2, each corresponding to one (group) of
the regions comprising the original state c. Transitions originating on the border of c
are copied to the borders of both c1 and c2, while transitions from a substate are only
moved with the corresponding state.

If a concurrent state is split between synchronized regions, synchronization is re-
solved with the help of events. Whenever this has to be done a unique signal event eID

sync



154 Jan Murray

Fig. 8. The StatEdit main window with opened export menu. Prolog is selected as export format.
The showinfo window on the right shows the transition string of tr1.

is generated by StatEdit. The appropriate transitions in the resulting statecharts are
labeled with transition strings, that either create eID

sync or are triggered by this event.
Bounded sync states are resolved by putting additional guards on the transitions and in-
crementing resp. decrementing a global variable. Of course the user has the possibility
to avoid the use of these generic events and resolve synchronization interactively.

4.2 Exporting a Statechart

Implementing a system that fulfills a given specification is a difficult and error prone
process, especially for agent systems, which interact with their environment and have a
certain degree of autonomy. In order to simplify this task StatEdit offers functions for
exporting the created statechart to several other formats. This includes graphical formats
for easy integration of figures into documentation, XML, and functions or function
skeletons in different programming languages for (semi-)automatic code generation.
Currently StatEdit supports conversion to EPS, XML, and a subset of Prolog, which
can be interpreted by a statemachine built into our RoboCup team RoboLog [9, 10].

Exporting a statechart is done in two steps. First the internal representation of a
statechart is converted to an XML structure which is then translated to the desired target
format. This two step translation makes it easy to add further export modules, as there
are already lots of XML based development tools available, which can easily be adapted
for working as export functions.

5 Conclusion

This section closes the paper with some final remarks. First an overview over related
work is briefly discussed. Then a short summary and an outlook to some future work
will be presented.



Specifying Agent Behaviors with UML Statecharts and StatEdit 155

Bergenti and Poggi [3] state that agent oriented software engineering adds another
level of abstraction to the process of modelling software systems. This level, the agent
level, treats agents as atomic units and models multiagent systems as interactions be-
tween agents. They present four agent oriented diagrams using standard UML notation.
With these diagrams ontologies, agent classes and protocols are described. With this
approach only aspects of the interactions among agents can be modeled. The agents
themselves are treated as atomic entities. In contrast to this, our approach allows for the
modelling of interactions between agents as well as describing the behavior of a single
agent, i.e. the internals of an agent with only one formalism.

In [12] Odell et. al propose a number of extensions to UML for modelling multi-
agent systems or interactions between agents under the name of AUML (Agent UML).
A layered approach to specifying interaction protocols for agents is presented. At the
top agent interaction is specified in different levels of detail with (extended) sequence
diagrams and collaboration diagrams. Activity diagrams and statecharts are also used
on this levels to emphasize certain aspects of the specification. On the lowest level intra-
agent processes are specified with extensions of activity diagrams and statecharts. This
approach is continued in [2] with the introduction of protocol diagrams into AUML,
which extend the semantics of agent messages and improve inter-agent protocols. In
contrast to the proposed Agent UML, our approach needs only one formalism to de-
scribe both the inter-agent and intra-agent behaviors in a multiagent system. In addition
no extensions to the existing formalisms of UML have to be made.

In [7] an approach to agent specification and modelling of multiagent-systems based
on object oriented formalisms is presented. Kinny and Georgeff use several object ori-
ented modelling techniques, e.g. class diagrams and statecharts, for specifying agents.
The plans that an agent may apply to reach a certain goal are described by plan dia-
grams which are based on statecharts. In contrast to the method presented in this paper
plan diagrams are not used to express multiagent plans or explicit cooperation among
agents. Multiagent systems are rather modeled by a class diagram, which describes the
different classes of agents and the relationships among them. Object oriented mecha-
nisms like inheritance are then used to distribute attributes between agent classes.

5.1 Summary and Outlook

We presented a graphical formalism for the layered specification of agent behaviors and
multiagent systems. The formalism is based on UML statechart diagrams, which are
used for modelling the behavior of systems in the object oriented software development
paradigm. The approach allows for the explicit modelling of cooperation between two
or more agents to achieve a common goal. From the specification of such a behavior the
individual roles of the participating agents can be derived in a straightforward manner.
To support a developer using our modelling technique the statechart editor StatEdit has
been developed. With this editor statecharts can be created and exported to a variety of
formats for further processing.

Future work includes applying the presented methods to other applications as well.
First steps in this direction have already been taken [1]. The statechart editor StatEdit
will be extended by further export modules. In the near future modules for integrating
StatEdit with Golog [6] and the double pass architecture [5] will be implemented.



156 Jan Murray

References

1. Toshiaki Arai and Frieder Stolzenburg. Multiagent systems specification by UML state-
charts aiming at intelligent manufacturing. In Cristiano Castelfranchi and W. Lewis John-
son, editors, Proceedings of the first international joint conference on Autonomous Agents
and Multiagent Systems (AAMAS 2002). ACM Press, 2002.

2. Bernhard Bauer, Jörg P. Müller, and James Odell. Agent UML: A Formalism for Speci-
fying Multiagent Interaction. In Paolo Cinacarini and Michael Wooldridge, editors, Agent-
Oriented Software Engineering, 2001.

3. Frederico Bergenti and Agostino Poggi. Exploiting UML in the Design of Multi-Agent
Systems. In Proceedings of Engineering Societies in the Agents’ World, pages 96–103,
2000.

4. Michael C. Bruhn. StatEdit – a state chart editor. Diplomarbeit, Universität Koblenz-Landau,
Campus Koblenz, Germany, 2003. to appear (German only).

5. Hans-Dieter Burkhard. Mental models for robot control. In Advances in Plan-Based Con-
trol of Robotic Agents, volume 2466 of Lecture Notes in Artificial Intelligence. Springer,
Heidelberg, 2002. Postproceedings of Dagstuhl Seminar 01431 (Oct 21-26, 2001).

6. Frank Dylla, Alexander Ferrein, and Gerhard Lakemeyer. Acting and deliberating using
GOLOG in robotic soccer — a hybrid architecture. In Proceedings of the 2002 Workshop on
“Cognitive Agents”, September 2002. (Workshop during KI 2002, Germany).

7. David Kinny and Michael Georgeff. Modelling and design of multi-agent systems. In J. P.
Müller, Michael Wooldridge, and Nicholas R. Jennings, editors, Intelligent Agents III: Pro-
ceedings of the Third International Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-96), volume 1193 of Lecture Notes in Artificial Intelligence. Springer-Verlag:
Heidelberg, Germany, 1997.

8. Johan Lilius and Iván Porres Paltor. The semantics of UML state machines. Technical Report
273, TUCS - Turku Centre for Computer Science, 1999.

9. Jan Murray, Oliver Obst, and Frieder Stolzenburg. RoboLog Koblenz 2001. In Andreas
Birk, Silvia Coradeschi, and Satoshi Tadokoro, editors, RoboCup 2001: Robot Soccer World
Cup V, volume 2377 of Lecture Notes in Artificial Intelligence. Springer, Berlin, Heidelberg,
New York, 2002. Team description.

10. Jan Murray, Oliver Obst, and Frieder Stolzenburg. RoboLog Koblenz 2002 – short team
description. In Gal A. Kaminka, Pedro U. Lima, and Raul Rojas, editors, RoboCup 2002:
Robot Soccer World Cup VI, Fukuoka, Japan, 2002. Pre-Proceedings.

11. Object Management Group, Inc. OMG Unified Modeling Language Specification, September
2001. Version 1.4.

12. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Extending UML for Agents. In
Proc. of the Agent-Oriented Information Systems Workshop at the 17th National conference
on Artificial Intelligence (AOIS Worshop at AAAI 2000), 2000.

13. Mikhail Prokopenko. Situated reasoning in multi-agent systems. Working Notes of the
AAAI-99 Spring Symposium on Hybrid Systems and AI., 1999.

14. Frieder Stolzenburg. Reasoning about cognitive robotics systems. In Reinhard Moratz and
Bernhard Nebel, editors, Themenkolloquium Kognitive Robotik und Raumrepräsentation des
DFG-Schwerpunktprogramms Raumkognition, Hamburg, 2001.

15. Frieder Stolzenburg, Oliver Obst, Jan Murray, and Björn Bremer. Spatial agents implemented
in a logical expressible language. In Manuela Veloso, Enrico Pagello, and Hiroaki Kitano,
editors, RoboCup-99: Robot Soccer WorldCup III, volume 1856 of Lecture Notes in Artificial
Intelligence. Springer, 2000.


	1 Introduction
	2 UML Statecharts
	3 Designing Agents with UML
	3.1 Mode Level
	3.2 Script Level
	3.3 Multiagent Plans
	3.4 Skill Level

	4 StatEdit – A Statechart Editor
	4.1 Splitting Concurrent States
	4.2 Exporting a Statechart

	5 Conclusion
	5.1 Summary and Outlook

	References



