Feature-Based Declarative Opponent-Modelling

Timo Steffens

Institute of Cognitive Science, Osnabrueck, Germany
timosteffensOgmx.de
http://www.cogsci.uos.de/ tsteffen

Abstract. In the growing area of multi-agent-systems (MAS) also the
diversity of the types of agents within these systems grows. Agent de-
signers can no longer hard-code all possible interaction situations into
their software, because there are many types of agents to be encoun-
tered. Thus, agents have to adapt their behavior online depending on
the encountered agents. This paper proposes that agent behavior can be
classified by distinct and stable tactical moves, called features, on differ-
ent levels of granularity. The classification is used to select appropriate
counter-strategies. While the overall framework is aimed to be applicable
in a wide range of domains, the feature-representation in the case-base
and the counter-strategies is done in a domain-specific language. In the
RoboCup domain the standard coach-language is used. The approach
has been successfully evaluated in a number of experiments.

1 Introduction

An important factor effecting the behavior of agents in MAS is the knowledge
which they have about each other [3]. Yet, in open domains like RoboCup agents
encounter a variety of opponents which are not known to them beforehand. Tra-
ditional methods for inferring the plans or actions are not always applicable. Plan
recognition [4] [5] focusses on deliberative agent architectures, so its application
in dynamic domains in which (partly) reactive agents are to be encountered is
not successful. Tambe attacked the problem of rapidly changing plans, but relies
on several simplifying assumptions, e. g. that modelling and modelled agent share
the same operator hierarchy and that the exact internal state of the modelled
agent is known [10].

A promising approach which this work builds upon is to compare the tactics
of new opponents to previously encountered ones and then select a strategy
which has been successful back then [7]. It has been successfully applied in
setplay-situations [8].

This work extends this case-based-reasoning approach by applying it to other
game situations as well, and more importantly, by introducing a more flexible
and more compact way of representation.

The remainder of this paper is organized as follows. Section two defines
the representation formalism, feature-based opponent models. Section three de-
scribes how this framework can be applied in RoboCup and shows first experi-
mental results. Finally, section four concludes.

D. Polani et al. (Eds.): RoboCup 2003, LNAT 3020, pp. 125-136, 2004.
© Springer-Verlag Berlin Heidelberg 2004

126 Timo Steffens
2 Feature-Based Models

This section defines features and feature-based models in a domain-independent
way. Also an architecture for agents employing this approach is proposed.

2.1 Features

The general idea is that humans use only the most typical properties of the op-
ponent’s behavior to retrieve a similar known opponent strategy. The assump-
tion is that a limited number of opponent models can describe a wide range of
opponents [8]. While Riley stores every observation in the opponent-models [7],
feature-based models contain only a small number of distinct and stable features.
An example of such a feature for the RoboCup domain:

The opponent often does long passes along the left wing

to the forwards.
And for the MODSAF domain [2], a military air-combat simulator:

If the aircraft comes into radar range, it turns onto

collision course.
We propose that rules which map actions to situations are the proper means to
express such features. It is obvious that the features depend on domain-specific
concepts like passing or radar-range. So a domain-specific language is necessary
which can formalize situation and action descriptions. In RoboCup this can be
accomplished by the standard coach language (CLang) [6].

Definition 1. Let S be the set of all situation descriptions. Let H be the set of
all possible actions. Let Hx be the powerset of H. A feature < s,A>,s€ S, A€
H=x is a mapping from a situation description s to a set of actions A.

On this abstract level, situation descriptions may range from raw sensor data
to preprocessed conceptualizations with domain-specific concepts. The situation
descriptions in S may be incomplete, thereby focussing on only some part of
the world. The actions in H are assumed to carry information on which of the
agents executes it. As an example, in RoboCup a pass from player 6 to player
11 is different from a pass from player 10 to 11.

As suggested by the above examples, features are of a probabilistic nature.
Teams may only tend to execute certain moves to a certain degree of probability.
So features may even contradict each other, thereby reflecting the team’s ability
to decide between alternative options from their repertoire. This is treated in
the feature-based declarative opponent-model (FBDOM):

Definition 2. A feature-based declarative opponent model w is a set of 2-tupels
(F;,pi), where the F; are features and the p; are probabilities of the features to
occur in the strategy which is specified by the model.

Also the constraint (s; = s; N A; = Aj) — p; = p; has to be satisfied.

Two aspects of features need to be satisfied before a human deems them typical
for a strategy. These are distinctness and stableness which originate from image

Feature-Based Declarative Opponent-Modelling 127

recognition [12]. Distinctness means that a feature appears only seldom, but if
it does the probability of a certain class is high. A stable feature on the other
hand appears with a high probability in the class. Not identical notions, but
close approximations to them, are used for building the opponent models. In
this work, distinctness of a feature f is assumed if p(M|f) > «, where M is
an opponent model and « is a manually set threshold. Stableness is checked by
p(fIM) > 3, where 3 is another manually set threshold.

2.2 Architecture for FBDOM

This section outlines an architecture for an agent applying FBDOM. As shown in
figure 1, the basis are the opponent models containing tactical descriptions on dif-
ferent levels of granularity and specificity. E. g., some might specify the complete
strategy of a certain team, others might only specify the marking-assignment of
the left-wing defender. In order to detect the features in the opponent models,
the observations which come in as raw sensor data have to be processed by the
action- and situation-detectors. They try to match the observations into the fea-
tures of the models. The information if and how the observations match will
be passed on to the model selector. It handles for example cases which match
only partially (see below for a discussion of the different matching methods),
and implements one of the possible selecting methods, e. g. a Bayesian classifier,
or Tversky’s contrast model for similarity [11]. The opponent model with the
best value will be chosen and then a knowledge base will decide which counter-
strategy is applicable. Just like the opponent models, the counter-strategies can
vary in size. They can either contain full team strategies or just partial specifi-
cations, e.g. how a forward should shoot.

Y
N——1
N
~——
. N
Action-detector Model ¢)
Situation-detector selection L —
~——
4 Assignment
of counter-
strategies to
opponent
models
Opponent Counter-
models strategies
Sensory
data

Fig. 1. Architecture of a FBDOM system.

128 Timo Steffens

This architecture allows usage as an online- or offline-method. It depends on
the domain though, if the method needs only so much data as is provided during
the encounter with other agents, or if the histories or logfiles of previous encoun-
ters have to be analyzed in order to select the counter-strategy beforehand.

3 Application in RoboCup

This section provides a proof of concept for FBDOM by implementing it in the
RoboCup simulation league domain. The advantages and shortcomings of this
approach are highlighted, and a series of experiments is described.

3.1 Representing Features for RoboCup

The performance of FBDOM is expected to be highly dependent of the used
representation language. It has to be expressive enough to cover a variety of
situations and actions, and should provide different levels of granularity (e.g.
ranging from general descriptions of pass regions of a team to more specific
passing behaviors of a particular player).

For the experiments, the standard coach language (CLang) [6] was chosen,
because it fulfills these demands. Initially, CLang was designed to let the online
coach inform and advice its field players. But it is also suited to represent strate-
gies, since its messages are basically production rules, mapping situations to ac-
tions. The situations are crisp (possibly incomplete) descriptions of the world
state like player and ball positions, play modes, score, and time, combined by
logical operators. The actions are highlevel-actions which are more abstract than
the server primitives and include concepts such as passing-to-regions, passing-to-
players, positioning, and marking. As an example, the first example for a feature
given before would be expressed in CLang as follows:

(definerule rulel direc
(and (bowner opp {X}) (bpos BACK_LEFT_WING))
(do opp {X} (pass FRONT_LEFT_WING)))

The first line is due to the coach protocol and irrelevant here. The second line
is the situation description and denotes that the opponent has the ball and that
the ball is in a specific region (which is defined elsewhere). The action is specified
in the last line and says that the ballowner does a pass to another region.

3.2 Situation-Matching

Since the CLang situation concepts are externally observable (i.e. they do not
rely on hidden or internal states), the situation descriptions of the features can
be matched easily to the actual worldstate. In fact, coachable teams have to
implement situation-matching in order to determine when coach advice is ap-
plicable to a situation. The situation-matching code for these experiments was
slightly adapted from the Dirty Dozen [1]. Although CLang conditions are made
up of logical operators and freely definable regions, situation-matching is decid-
able. It can be seen as checking the includedness of points (concrete observed
situations) into regions (general conditions) in the state space.

Feature-Based Declarative Opponent-Modelling 129

3.3 Action Detection

While the situation-matching is straight-forward, detection of actions is highly
ambiguous. E. g. for an external observer it is hard, if not impossible, to decide
if a kicked ball was passed to a player on the ball’s trajectory or if it was shot
to a certain point on that line. Thus, observed actions are often not singular
points in the state-space, but regions. To match actions, we chose an expectation-
driven approach. That is, observed actions are matched successfully to a feature’s
action, if any interpretation of the observed one is not mutually exclusive to the
feature’s action. To illustrate this:

Consider a ball that was kicked and travels along a certain line. Although
the intention of the shooter is not clear, its action would match any feature’s
action that describes a shot or pass to any point or player on that line. That is,
any overlap in situations is considered a match. For a more detailed discussion
about operationalizations of CLang actions see [9].

3.4 Building the Models

Having accurate models for different opponent classes is crucial. The models of
FBDOM are more complicated to build than those of Riley’s approach. While
Riley’s models can be built by just counting positional observations of the mod-
elled teams [8], the models here need distinct and stable features. That is, build-
ing such a model is basically about finding features that reliably describe the
behavior of opponents that belong into the class.

Up to now the models are defined by a domain expert. By definition, fea-
tures are typical moves. For the experiments opponent models for the offensive
behavior of five teams were created manually. Surprisingly, it was sufficient to
watch one or two games in order to build a model for a given team, because the
typical, characteristic behaviors of a team have high saliency. The number of
features in the models ranged from two to fifteen. The associated probabilities
were then acquired automatically by determining the frequencies in the modelled
team and in other teams. These frequencies were also used to ensure distinctness
and stableness. If the frequency of a feature f in a model w of team ¢ was not
significantly greater than the frequency of f in all other teams, f was removed
from w, because it was not distinct enough for ¢. f was also removed if its fre-
quency was not beyond a certain threshold, in order to ensure stableness. In
fact, only three features had to be removed (two due to indistinctness and one
due to instableness), owing to the expertise of the domain expert. Still, future
work aims at acquiring features and models by clustering or rule learning.

3.5 Determining the Best Matching Opponent Model

Feature-based models do not explain every observation, but just a subset. This
has to be taken into account when determining the best matching model. Several
methods are possible and need to be evaluated.

130 Timo Steffens

Matching Types: In MAS pairs of actions can be mutually exclusive (mutex).
This depends on the domain, e.g. in RoboCup an agent cannot turn and kick
at the same time. While in simple one-agent-domains all pairs of action may be
mutex, in MAS most of the action pairs involving two agents are not mutex.

Definition 3. Two actions a and a’ are mutually exclusive or short mutex
to each other, if they cannot be executed simultaneously. For two mutex actions
a and o' we write a + a’.

Definition 4. An action a is mutex to a set of actions A iff 3a’ : a’ € A N a+d.
We write a + A.

Definition 5. A situation s is subsumed by situation s', iff s is true whenever
s’ is true. We write s C s'.

Definition 6. Let S be the set of all situation descriptions. Let H be the set of
all actions. Let Hx be the powerset of H. An observation is a tupel < s, A >,
s €8, A€ Hx, where s is the description of a complete observed situation and
A is the set of observed actions in that situation.

Since observations may contain several typical moves at once (say a defender
stays in a certain region while the forward passes along a typical line), not
observations, but features have to be counted. A feature < s, A’ > can be
evaluated into the following primitive results wrt. an observation < s, A >. In
the following list of match-types the probability parameter of the features in the
model is abandoned, having no influence on matching. Because two actions are
either mutex or not, this list is complete:

— No-match: = (s’ C s)
The situation of the feature in the model does not match the observation.
— Partial Match: ' Cs A Ja:(a€ A" A a€ A)
The situation matches and there is at least one shared action in the feature
action set and the observation action set.
— Full Match: ' Cs A Va: (a€ A —ae€ A
The situation matches and all actions of the feature are in the observation
action set.
— Partial Mismatch:s' Cs A Ja: (a€ A" N a+ A)
The situation matches and there is at least one action in the feature action
set which is mutex to the observation action set.
— Full Mismatch: s’ Cs A Va: (a€ A'— a+ A)
The situation matches and all actions in the feature action set are mutex to
the observation action set.

Partial match and partial mismatch can apply together within a given feature.
In the selection process, partial matches or mismatches are ignored. On the other
hand, a given observation can result in any type for different features, e. g. in a
full match in feature 1 and a full mismatch in feature 2. This has to be taken into
account when comparing opponent models in terms of the number of matches.

Feature-Based Declarative Opponent-Modelling 131

Selection Parameters: The above considerations lead to several parameters
that can be combined and need to be evaluated:

— The first parameter (Once vs. All) determines how many matches will be
counted for each situation. In case of “Once”, the matching process aborts
after the first successful full match. In the other case several features may be
matched in the same situation. “Once” also means that a match overrules a
mismatch of another feature.

— The second parameter (Most vs. Ratio) triggers whether the model that has
the highest number of matches or the one that has the best match-mismatch
ratio will be selected (cf. Tversky’s ratio model [11]).

— The third parameter (Increasing vs. Normalized) specifies if the number of
full matches and full mismatches will be divided by the number of features
in the model. This way a normalization is done to overcome the variability
in the number of features.

Combining these parameters results in eight different selection methods which
were evaluated and compared to the Bayesian classifier, which is one of the most
common methods in feature-based approaches [12]:

P(a|M;)P(M;)

where M; are the models and « is the observation.

3.6 Benefitting from the Classification

Of course a classification of the opponent alone does not improve the team’s
performance. This knowledge about the opponent’s behavior must be exploited.
So for each model a counter-strategy has been created manually. The counter-
strategies were built depending on the characteristics of the model. To illustrate
this, some examples are listed:

— If the model specified a fixed formation, a counter-formation was used. L. e.
in defense players pool around the opponent’s forwards and offensive mid-
fielders, and in offense the forwards are located in the free spaces of the
opponent’s defenders.

— If the positions of the forwards were variable, but the forwards kept their role
throughout the game, then the defenders were assigned marking assignments.

— If a model used fixed setplays (positions and/or pass chains), the counter-
strategy incorporates marking assignments or positions for kick-offs based
on the opponent’s positions etc.

For the further experiments it was important to test the counter-strategies’
appropriateness against the modelled teams. This was tested by feeding the
counter-strategies into the Dirty Dozen (DD) team whose behavior is specified
by an extension of CLang. So the counter-strategies are directly executed [1].

132 Timo Steffens

It turned out that the counter-strategies indeed achieved significantly higher
scores against the modelled team than the baseline strategy which was used by
DD during RoboCup 2001 (see [9] for the statistical values). So the strategies
could be used in the following experiments.

3.7 Experiments

The experiments were designed to test if feature-based models are able to rep-
resent opponent behaviors, if they generalize to previously unseen teams, and
what effect the observation length (i.e. the amount of classification data) has.
Although FBDOM can be done decentralized, the classification was done by a
centralized coach agent in these experiments.

Experiment 1. Considering that the models were built from only one or two
games per team, the first experiment had to verify that the models are able to
code the behavior of the team they were built for in new games and against
other opponents. Additionally, the experiment was used to determine the best
parameter settings (cf. section 3.5).

There were five opponent models OM; —OM;5 which had been built for teams
Ty — T5. Now each team played several times against all other teams, including
itself. 20 games thus resulted in 40 test instances for the nine counting methods.
A classification was counted as correct, if OM,; was selected for team T;. To fare
better than random, more than 20% accuracy had to be achieved. Interestingly
all normalized methods performed better than the increasing ones (see table
1). All normalized methods and the best increasing method were significantly
better than random (p < 0.01), showing that the models were able to generalize
to new games against new opponents. Especially one parameter setting achieved
an accuracy of 82.5 %, which is a promising result for the following experiments.

Table 1. Parameters for counting methods and their identification success.

Normalized|Once |All || Increasing|Once |All Baves
Most 82.5 %(80 %||Most 25 % (35 % E
Ratio 75 % |65 %||Ratio [32.5 %|47.5 %| =2

Surprisingly, the Bayesian classifier performed on random niveau. A possible
explanation for this is that the inter-dependence of the features violated the
independence demand of Bayes. For example, a feature saying that a forward
shoots from the left wing on the goal is highly dependent on a feature that
specifies that the midfielders pass the ball on the left wing to the forward. These
feature dependencies are likely to render Bayesian classification unsuccessful.

Experiment 2. In order to test if the team can benefit from the models even
if it plays against a totally new opponent, experiment 2 had to test if classifying

Feature-Based Declarative Opponent-Modelling 133

a new opponent and then playing with the appropriate counter strategy yields
better goal-differences than playing with the baseline strategy, which was the
behavior specification of DD as it competed at RoboCup 2001.

There were six new teams N; — Ng, the baseline strategy DD, the opponent
models OM; — OMs5, and the counter strategies C'S; — C'S5. For each new team
N; a baseline goal-difference was found by running several games against DD. In
order to use the logfiles effectively, these games were also used to classify the new
teams. Subsequently, according to each single classification OM;, the new team
played against the counter strategy C'S;. This resulted in two sets of games per
new team with exactly the same number of instances, the baseline games (set 1)
and the counter strategy games (set 2). Note that in the course of experiments
some games had to be removed from consideration because of server crashes or
connection errors (see N7 and Ny in table 2). The results show that in five out of
six cases the classification and the related counter-strategy yielded significantly
better scores than the baseline.

Table 2. Goal-difference mean and number of games of the new teams against baseline
and selected counter-strategies. p is depicted if difference is significant (1-tailed t).

Team Mean of counter-strat.|/N; |Baseline mean|Nsy |p
Cyberoos 2000 -4.694 172]-5.125 183/

FC DrWeb 2001 -5.46 126(-6.89 128(0.05
Helli Respina 2001 |-13.84 72 |-18.19 83 [0.05
Virtual Werder 01 -0.839 30 |-1.375 31]0.05
Mainz Rolling Brains|-13.21 23 |-21.08 23 10.025
FC Portugal 2001 -34.27 21 |-44.58 23 10.005

Experiment 3. While the significant better goal-differences against the clas-
sified counter-strategies in experiment 2 are a necessary condition for showing
that the method is successful, they are not a sufficient condition. It might still
be the case that all counter-strategies are better in general than the baseline
strategy. Especially since the scores are partly very negative, the improvements
might be due to a floor effect. In such a case, the classification would be obso-
lete, because any choice between the counter-strategies would yield better results
than using the baseline strategy. So another experiment was run, in which sev-
eral games were run against the new teams in which the strategy was randomly
selected. That is, DD played against team N; by using randomly selected counter-
strategies C'S;. If the means of these games are less than the means of experiment
2 in which the classified counter-strategy was used, it can be assumed that the
optimal strategy was used in the classification & selection-runs. The outcome
of this experiment was non-uniform (see table 3). In three cases there was no
significant difference between the random selection and the selection based on
classification. One of those teams had not yielded significantly better results in
experiment 2, so this case was not surprising. At least in the three other cases,
the selection based on classification performed significantly better than the ran-
dom selection. This means that in these cases the most suitable opponent model

134 Timo Steffens

Table 3. Goal-difference mean of games in which the strategy was selected randomly
and of games, in which classified strategy was used. Differences to values in previous
tables are due to an increased number of games.

Team random|N; |classif. [Na |«
Cyberoos 2000 -4.77 0 |126)-4.69 |172]/
FC DrWeb 2001 -5.50 |168|-5.85 |163|/

Helli Respina 2001 |-16.68 [173|-14.25 |173(0.05
Virtual Werder 01 |-1.352 |54 [-0.8197|61 |0.025
Mainz Rolling Brains|-15.65 |336|-14.11 |343|0.1
FC Portugal 2001 |-32.50 |42 |-33.96 |45 |/

and the corresponding counter-strategies were selected in experiment 2. It also
means that the opponent-models and counter-strategies did indeed generalize
over the new teams, making the FBDOM approach successful.

However, the three cases in which the approach was not better than random
selection have to be discussed. One possible explanation is that the strategies
of the involved teams are so similar, that the related counter-strategies perform
similarly well. Interestingly, two of these three cases were classified as ATTCMU
or FCPortugal most of the times (see [9] for details), which are very similar to
each other anyway, even for human observers. From this it can be concluded,
that also the counter-strategies for ATTCMU and FCPortugal might perform
similarly, which would contribute to the lack of significant difference. Another
reason for the outcome that several counter-strategies performed similar might
be that they are only different in the defensive parts, because the opponent
models focussed on offensive behaviors. So, whenever the team was in a defense
situation, there was no difference between any of the counter-strategies. Anyway,
in the three cases which did not achieve significant improvements, the counter-
strategy that was selected by the classification was not better than the others.
This might also be due to the fact that the five created opponent-model/counter-
strategy pairs cannot be assumed to cover all existing teams. As of now there
is no evidence how well the six new teams are covered by the opponent-models.
Based on this last thought it is strong evidence for the quality of FBDOM, that
three cases were nevertheless significantly better than the baselines.

Experiment 4. In order to test the amount of data needed for the classification,
six observation lengths were tested. The same recorded games and settings as in
experiment 1 were used, with the difference that only the best parameter setting
was used and that the observation length was variied. All observations started
at kick-off. The results show that the classification performs very well even for
very short observation windows (see table 4). After 100 cycles the classification
is significantly (p < 0.05) better than random selection (which is 20%). After
250 cycles the classification is already correct in more than 50% of the cases.
The accuracy gets better the more data is acquired.

Feature-Based Declarative Opponent-Modelling 135

Table 4. Accuracy of selection for different lengths of observation window.

Intervall length|accuracy
100 42.5 %
250 57.5 %
500 62.5 %
1000 62.5 %
3000 67.5 %
6000 82.5 %

This means that the classification cannot only be done offline by analysing
logfiles, but also online. This also renders the idea applicable to select rather
general models in the beginning of the game, and select more detailed models
when more data is acquired.

4 Conclusion

A method for representing opponent models in multi-agent-systems was intro-
duced and its performance was experimentally evaluated in the RoboCup do-
main. It was claimed that for classifying an opponent it is sufficient to focus
on distinct and stable features instead of processing the complete behavior for
all situations. The assumption was that a set of opponent models covers a great
amount of existing opponent behaviors. The experiments showed that the identi-
fication accuracy was high for the modelled teams, so the claim can be supported
that features are a well-suited method to describe opponent behaviors.

Regarding the coverage of new teams, the experiments were non-uniform,
but hint in a promising direction. There are some methodological difficulties to
measure the impact of counter-strategies. In a perfect experimentation setting,
each created counter-strategy would perform well against only one opponent
model, and bad against all other models. Yet, this can only be achieved in
restricted toy-domains or against manually created opponents, but not under
realistic conditions with using real teams. Obviously in the experiments the five
created opponent models were not enough to cover all new teams. In five of
six cases, the selected counter-strategy performed better than the baseline, and
three of these five cases were also better than random selection. More work is
needed to verify that the cause for the unsuccessful cases was the similarity
between the opponent models and the small number of models which cannot be
expected to generalize over all new teams. Creating more elaborate models that
also contain information about defensive situations or in-depth analysis of the
existing offensive behaviors could be helpful for this further work.

However, features form compact opponent models which successfully general-
ized over several new teams, so that the related counter-strategies were effective
against previously unknown opponents. This also revealed that tactics can be
identified by certain typical features, which are at this state of RoboCup still
independent of the opponent, as the experiments suggest. Because of this, oppo-
nent models can easily be created for a team by observing arbitrary opponents
playing against that team.

136

Timo Steffens

Acknowledgements

Thanks to Claus Rollinger and Wilfried Teiken for many useful comments.

References

1.

10.

11.
12.

S. Buttinger, M. Diedrich, L. Hennig, A. Hoenemann, P. Huegelmeyer, A. Nie,
A. Pegam, C. Rogowski, C. Rollinger, T. Steffens, W. Teiken: The Dirty Dozen
Team and Coach Description. In: A. Birk, S. Coradeschi, S. Tadokoro, editors:
RoboCup-2001: Robot Soccer World Cup V, Springer, Berlin, 2002

R.B. Calder, J.E. Smith, A.J. Courtemarche, J. M.F. Mar, A.Z. Ceranowicz:
Modsaf behavior simulation and control. In Proceedings of the 2nd Conference on
Computer Generated Forces and Behavioral Representation, STRICOM-DMSO,
1993

David Carmel, Shaul Markovitch: Incorporating Opponent Models into Adversary
Search. Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence, AAAI Press, Portland, Oregon (1996)

Gal Kaminka, D. V. Pynadath, Milind Tambe: Monitoring Deployed Agent Teams.
Proceedings of the Fifth International Conference on Autonomous Agents (Agents-
2001), Montreal, Canada (2001)

A. Kautz, F. Allen: Generalized plan recognition. In Proceedings of the National
Conference on Artificial Intelligence, pp. 32-37, AAAT Press, Menlo Park, CA, 1986

. M. Chen, E. Foroughi, F. Heintz, Z. X. Huang, S. Kapetanakis, K. Kostiadis, J.

Kummeneje, 1. Noda, O. Obst, P. Riley, T. Steffens, Yi Wang, and Xiang Yin.
Soccerserver Manual v7. RoboCup Federation, 2001.

Patrick Riley, Manuela Veloso: On Behavior Classification in Adversarial Environ-
ments. In Lynne E. Parker, George Bekey, Jacob Barhen (eds.): Distributed Au-
tonomous Robotic Systems 4, Springer, Heidelberg, Germany, pp. 371-380 (2000)
Patrick Riley, Manuela Veloso: Planning for distributed execution through use of
probabilistic opponent models. In Proceedings of the IJCAI-2001 Workshop PRO-
2: Planning under Uncertainty and Incomplete Information, 2001

. Timo Steffens: Feature-based Declarative Opponent-Modelling in Multi-Agent-

Systems. Master thesis, University of Osnabrueck (2002)

Milind Tambe, Paul S. Rosenbloom: Architectures for Agents that Track Other
Agents in Multi-Agent Worlds. In M. Wooldridge, Joerg P. Mueller, M. Tambe
(eds.): Proceedings on the IJCAI Workshop on Intelligent Agents 1T : Agent The-
ories, Architectures, and Languages, Springer, Heidelberg, Germany, pp. 156-170
(1996)

A. Tversky: Features of similarity, Psych. Review, 84(4), July 1977, pp. 327-352
Paul Viola: Complex feature recognition: A bayesian approach for learning to rec-
ognize objects. Technical report AIM-1591, AI Lab, MIT, 11, 1996

	1 Introduction
	2 Feature-Based Models
	2.1 Features
	2.2 Architecture for FBDOM

	3 Application in RoboCup
	3.1 Representing Features for RoboCup
	3.2 Situation-Matching
	3.3 Action Detection
	3.4 Building the Models
	3.5 Determining the Best Matching Opponent Model
	3.6 Benefitting from the Classification
	3.7 Experiments

	4 Conclusion
	References

