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Abstract. We propose a block-cipher mode of operation, EAX, for
solving the problem of authenticated-encryption with associated-data
(AEAD). Given a nonce N , a message M , and a header H , our mode
protects the privacy of M and the authenticity of both M and H .
Strings N , M , and H are arbitrary bit strings, and the mode uses
2�|M |/n� + �|H |/n�+ �|N |/n� block-cipher calls when these strings are
nonempty and n is the block length of the underlying block cipher.
Among EAX’s characteristics are that it is on-line (the length of a mes-
sage isn’t needed to begin processing it) and a fixed header can be pre-
processed, effectively removing the per-message cost of binding it to the
ciphertext.

Keywords: Authenticated encryption, CCM, EAX, message authenti-
cation, CBC MAC, modes of operation, OMAC, provable security.

1 Introduction

An authenticated encryption (AE) scheme is a symmetric-key mechanism by
which a message M is a transformed into a ciphertext CT with the goal that CT
protect both the privacy and the authenticity of M . The last few years has seen
the emergence of AE as a recognized cryptographic goal. With this has come the
development of new authenticated-encryption schemes and the analysis of old
ones. This paper offers up a new authenticated-encryption scheme, EAX, and
provides a thorough analysis of it. To understand why we are defining a new AE
scheme, we need to give some background.
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Flavors of authenticated encryption. It useful to distinguish two kinds
of AE schemes. In a two-pass scheme we make two passes through the data,
one aimed at providing privacy and the other, authenticity. One way of making
a two-pass AE scheme is by generic composition, wherein one pass constitutes
a (privacy-only) symmetric-encryption scheme, while the other pass is a message
authentication code (MAC). The encryption scheme and the MAC each use their
own key. Analyses of some generic composition methods can be found in [6, 20, 5].

In a one-pass AE scheme we make a single pass through the data, simultane-
ously doing what is needed to engender both privacy and authenticity. Typically,
the computational cost is about half that of a two-pass scheme. Such schemes
emerged only recently. They include IAPM, OCB, and XCBC [17, 25, 12].

Soon after the emergence of one-pass AE schemes it was realized that often
not all the data should be privacy-protected. Changes were needed to the basic
definitions and mechanisms in order to support the possibility that some infor-
mation, like a packet header, must not be encrypted. Thus was born the notion
of authenticated-encryption with associated-data (AEAD), first formally defined
in [24]. The non-secret data is called the associated data or the header. Like an
AE schemes, an AEAD scheme might make one pass or two.

Standardizing a two-pass AEAD scheme. Traditionally, it has been the
designers of applications and network protocols who were responsible for com-
bining privacy and authenticity mechanisms in order to make a two-pass AEAD
scheme. This has not worked well. It turns out that there are numerous ways to go
wrong in trying to make a secure AEAD scheme, and many protocols, products,
and standards have done just that. (For example, see [11] for a wrong one-pass
scheme, see [5] for weaknesses in the AEAD mechanism of SSH, and [6, 20] for
attacks on some methods of popular use.)

Nowadays, some standards bodies (including NIST, IETF, and IEEE 802.11)
would like to standardize on an AEAD scheme. Indeed IEEE 802.11 has already
done so. This is a good direction. Standardized AEAD might help minimize
errors in mis-combining cryptographic mechanisms.

So far, standards bodies have been unwilling to standardize on any of the
one-pass schemes due to pending patents covering them. There is, accordingly,
an established desire for standardizing on a two-pass AEAD scheme. The two-
pass scheme should be as good as possible subject to the limitation of falling
within the two-pass framework.

Generic-composition would seem to be the obvious answer. But defining a
generic-composition AEAD scheme is not an approach that has moved forward
within any of the standards bodies. There would seem to be a number of rea-
sons. One reason is a relatively minor inefficiency—the fact that generic com-
position methods must use two keys. Probably a bigger issue is that the archi-
tectural advantage of generic composition brings with it an “excessive” degree
of choice—after deciding on a generic composition method, one still needs two
lower-level specifications, namely a symmetric encryption scheme and a MAC,
for each of which numerous block-cipher based choices exist. Standards bodies
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want something self-contained, as well as being a patent-avoiding, block-cipher
based, single-key mechanism.

So far, there has been exactly one proposal for such a method (though see
the “contemporaneous work” section below). It is called CCM [26], and is due
to Whiting, Housley, and Ferguson [26]. CCM has enjoyed rapid success, and is
now the required mechanism for IEEE 802.11 wireless LANs as well as 802.15.4
wireless personal area networks. NIST has indicated that it plans to put out
a “Recommendation” based on CCM.

Our contributions. It is our view that CCM has a good deal of pointless
complexity and inefficiency. It is the first contribution of this paper to explain
these limitations. It is the second and main contribution of this paper to provide
a new AEAD scheme, EAX, that avoids these limitations.

CCM limitations. A description of CCM, together with a detailed description
of its shortcomings, can be found in the full version of this paper [8]. Some of the
points we make and elaborate on there are the following. CCM is not on-line,
meaning one needs to know the lengths of both the plaintext and the associ-
ated data before one can proceed with encryption. This may be inconvenient
or inefficient. CCM does not allow pre-processing of static associated data. (If,
for example, we have an unchanging header attached to every packet being au-
thenticated, we would like that the cost of authenticating this header be paid
only once, meaning header authentication should have no significant cost after
a single pre-computation. CCM fails to have this property.) CCM’s parameteri-
zation is more complex than necessary, including, in addition to the block cipher
and tag length, a message-length parameter. CCM’s nonce length is restricted
in such a way that it may not provide adequate security when nonces are chosen
randomly. Finally, CCM implementations could suffer performance hits because
the algorithm can disrupt word alignment in the associated data.

EAX and its attributes. EAX is a nonce-using AEAD scheme employing
no tool beyond the block cipher E : Key × {0, 1}n → {0, 1}n on which it is
based. We expect that E will often be instantiated by AES, but we make no
restrictions in this direction. (In particular we do not require that n = 128.)
Nothing is assumed about the nonces except that they are non-repeating. EAX
provides both privacy, in the sense of indistinguishability from random bits, and
authenticity, in the sense of an adversary’s inability to produce a new but valid
〈nonce, header, ciphertext〉 triple. EAX is simple, avoiding complicated length-
annotation. It is a conventional two-pass AEAD scheme, making a separate
privacy pass and authenticity pass, using no known intellectual property.

EAX is flexible in the functionality it provides. It supports arbitrary-length
messages: the message space is {0, 1}∗. The key space for EAX is the key
space Key of the underlying block cipher. EAX supports arbitrary nonces, mean-
ing the nonce space is {0, 1}∗. Any tag length τ ∈ [0 .. n] is possible, to allow
each user to select how much security she wants from the authenticity guaran-
tees. The only user-selectable parameters are the block cipher E and that tag
length τ .
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EAX has desirable performance attributes. Message expansion is minimal:
the length of the ciphertext (which, following the conventions of [25], excludes
the nonce) is only τ bits more than the length of the plaintext. Implementations
can profitably pre-process static associated data. (If an unchanging header is
attached to every packet, authenticating this header has no significant cost after
a single pre-computation.) Key-setup is efficient: all block-cipher calls use the
same underlying key, so that we do not incur the cost of key scheduling more than
once. For both encryption and decryption, EAX uses only the forward direction
of the block cipher, so that hardware implementations do not need to implement
the decryption functionality of the block cipher. The scheme is on-line for both
the plaintext M and the associated data H , which means that one can process
streaming data on-the-fly, using constant memory, not knowing when the stream
will stop.

Provable security. We prove that EAX is secure assuming that the block
cipher that it uses is a secure pseudorandom permutation (PRP). Security for
EAX means indistinguishability from random bits and authenticity of cipher-
texts. The combination implies other desirable goals, like nonmalleability and
indistinguishability under a chosen-ciphertext attack.

The proof of security for EAX is surprisingly complex. The key-collapse of
EAX2 destroys a fundamental abstraction boundary. Our security proof relies
on a result about the security of a tweakable extension of OMAC (Lemma 3) in
which an adversary can obtain not only a tag for a message of its choice, but
also an associated key-stream.

Pragmatics. The main reason there is any interest in two-pass schemes, as
we have already discussed, is that one-pass schemes would seem to be subject
to patents. Motivated by this, standardization bodies have expressed the intent
of standardizing on a conventional, two-pass scheme, even understanding the
factor-of-two performance hit. The merit of this judgment is debatable, but the
pragmatic reality is that there has emerged a desire for a conventional scheme,
like EAX, that is as good as possible subject to the two-pass constraint. Lack
of a scheme like EAX will simply lead to an inferior scheme being standardized,
which is to the disadvantage of the user community. Accordingly, EAX addresses
a real and practical design problem. We took up work on this design problem
at the suggestion of the co-Chair of the IRTF (Internet Research Task Force),
which supports the standardization efforts of the IETF. We believe that EAX
has the potential for widespread adoption and use.

Afterwards. One non-goal of EAX was to be parallelizable. Another recent
two-pass design, CWC [19], is parallelizable. It pays for this advantage with
a somewhat complex algorithm, based on Carter-Wegman hashing using polyno-
mial evaluation over a prime field. More recent still is GCM [22], a parallelizable,
two-pass design based on multiplication in the finite field with 2128 elements.

Other recent AEAD mechanisms include Helix [10] and SOBER-128 [13].
These are stream ciphers that aim to provide authenticity. The provable-security
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methodology does not apply to these objects since they are built directly rather
than from lower level primitives.

2 Preliminaries

All strings in this paper are over the binary alphabet {0, 1}. For L a set of
strings and n ≥ 0 a number, we let Ln and L∗ have their usual meanings. The
concatenation of strings X and Y is denoted X ‖Y or simply X Y . The string of
length 0, called the empty string, is denoted ε. If X ∈ {0, 1}∗ we let |X | denote its
length, in bits. If X ∈ {0, 1}∗ and � ≤ |X | then the first � bits of X are denoted
X [first � bits]. The set Byte = {0, 1}8 contains all the strings of length 8, and
a string X ∈ Byte

∗ is called a byte string or an octet string. If X ∈ Byte
∗ we let

‖X‖8 = |X |/8 denote its length in bytes. For � ≥ 1 a number, we write Byte
<�

for all byte strings having fewer than � bytes. If X ∈ Byte
∗ and � ≤ ‖X‖n

then the first � bytes of X are denoted X [first � bytes]. When X ∈ {0, 1}n is
a nonempty string and t ∈ N is a number we let X+ t be the n-bit string that
results from regarding X as a nonnegative number x (binary notation, most-
significant-bit first), adding x to t, taking the result modulo 2n, and converting
this number back into an n-bit string. If t ∈ [0..2n − 1] we let [t]n denote the
encoding of t into an n-bit binary string (msb first, lsb last). If X and P are
strings then we let X ⊕→ P (the xor-at-the-end operator) denote the string of
length � = max{|X |, |P |} bits that is obtained by prepending

∣∣|X | − |P |∣∣ zero-
bits to the shorter string and then xoring this with the other string. (In other
words, xor the shorter string into the end of the longer string.) A block cipher
is a function E : Key × {0, 1}n → {0, 1}n where Key is a finite, nonempty set
and n ≥ 1 is a number and EK(·) = E(K, ·) is a permutation on {0, 1}n. The
number n is called the block length. Throughout this note we fix such a block
cipher E.

In Figure 1 we define the algorithms CBC, CTR, pad, OMAC (no super-
script), and OMAC • (with superscript). The algorithms CBC (the CBC MAC)
and CTR (counter-mode encryption) are standard. Algorithm pad is used only to
define OMAC. Algorithm OMAC [14] is a pseudorandom function (PRF) that is
a one-key variant of the algorithm XCBC [9]. Algorithm OMAC • is like OMAC
but takes an extra argument, the integer t. This algorithm is a “tweakable”
PRF [21], tweaked in the most simple way possible.

We explain the notation used in the definition of OMAC. The value of iL
(line 40: i an integer in {2, 4} and L ∈ {0, 1}n) is the n-bit string that is ob-
tained by multiplying L by the n-bit string that represents the number i. The
multiplication is done in the finite field GF(2n) using a canonical polynomial to
represent field points. The canonical polynomial we select is the lexicographi-
cally first polynomial among the irreducible polynomials of degree n that have
a minimum number of nonzero coefficients. For n = 128 the indicated polyno-
mial is 128 +7 +2 + +1. In that case, 2L = L<<1 if the first bit of L is 0 and
2L = (L<<1)⊕ 012010000111 otherwise, where L<<1 means the left shift of L by
one position (the first bit vanishing and a zero entering into the last bit). The



394 Mihir Bellare et al.

Algorithm CBCK (M)

10 Let M1 · · ·Mm ←M where |Mi| = n
11 C0 ← 0n

12 for i← 1 to m do
13 Ci ← EK(Mi⊕Ci−1)
14 return Cm

Algorithm CTRN
K (M)

20 m← �|M |/n�
21 S ← EK(N) ‖ · · · ‖EK(N+m−1)
22 C ←M ⊕ S [first |M | bits]
23 return C

Algorithm pad (M ; B,P )

30 if |M | ∈ {n, 2n, 3n, . . .}
31 then return M ⊕→ B,

32 else return (M ‖ 10n−1−(|M| mod n)) ⊕→ P

Algorithm OMACK (M)

40 L←EK(0n); B←2L; P ← 4L
41 return CBCK(pad (M ; B, P ))

Algorithm OMAC t
K (M)

50 return OMACK([t]n ‖M)

Fig. 1. Basic building blocks. The block cipher E : Key × {0, 1}n → {0, 1}n is fixed
and K ∈ Key. For CBC, M ∈ ({0, 1}n)+. For CTR, M ∈ {0, 1}∗ and N ∈ {0, 1}n. For
pad, M ∈ {0, 1}∗ and B, P ∈ {0, 1}n and the operation ⊕→ xors the shorter string into
the end of longer one. For OMAC, M ∈ {0, 1}∗ and t ∈ [0..2n−1] and the multiplication
of a number by a string L is done in GF(2n)

value of 4L is simply 2(2L). We warn that to avoid side-channel attacks one
must implement the doubling operation in a constant-time manner.

We have made a small modification to the OMAC algorithm as it was orig-
inally presented, changing one of its two constants. Specifically, the constant 4
at line 40 was the constant 1/2 (the multiplicative inverse of 2) in the original
definition of OMAC [14]. The OMAC authors indicate that they will promulgate
this modification [15], which slightly simplifies implementations.

3 The EAX Algorithm

Algorithm. Fix a block cipher E : Key×{0, 1}n → {0, 1}n and a tag length τ ∈
[0..n]. These parameters should be fixed at the beginning of a particular session
that will use EAX mode. Typically, the parameters would be agreed to in an au-
thenticated manner between the sender and the receiver, or they would be fixed
for all time for some particular application. Given these parameters, EAX pro-
vides a nonce-based AEAD scheme EAX[E, τ ] whose encryption algorithm has
signature Key×Nonce×Header×Plaintext→ Ciphertext and whose decryption al-
gorithm has signature Key×Nonce×Header×Ciphertext→ Plaintext∪{Invalid}
where Nonce, Header, Plaintext, and Ciphertext are all {0, 1}∗. The EAX algo-
rithm is specified in Figure 2 and a picture illustrating EAX encryption is given
in Figure 3. We now discuss various features of our algorithm and choices un-
derlying the design.
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Algorithm EAX.EncryptN H
K (M)

10 N ← OMAC 0
K(N)

11 H ← OMAC 1
K(H)

12 C ← CTRN
K(M)

13 C ← OMAC 2
K(C)

14 Tag ← N⊕C⊕H

15 T ← Tag [first τ bits]
16 return CT ← C ‖ T

Algorithm EAX.DecryptN H
K (CT )

20 if |CT | < τ then return Invalid

21 Let C ‖ T ← CT where |T | = τ
22 N ← OMAC 0

K(N)
23 H ← OMAC 1

K(H)
24 C ← OMAC 2

K(C)
25 Tag ′ ← N⊕C⊕H

26 T ′ ← Tag ′ [first τ bits]
27 if T �= T ′ then return Invalid

28 M ← CTRN
K(C)

29 return M

Fig. 2. Encryption and decryption under EAX mode. The plaintext is M , the cipher-
text is CT , the key is K, the nonce is N , and the header is H . The mode depends on
a block cipher E (that CTR and OMAC implicitly use) and a tag length τ

No encodings. We have avoided any nontrivial encoding of multiple strings
into a single one.1 Some other approaches that we considered required a PRF
to be applied to what was logically a tuple, like (N, H, C). Doing this raises
encoding issues we did not want to deal with because, ultimately, there would
seem to be no simple, efficient, compelling, on-line way to encode multiple strings
into a single one. Alternatively, one could avoid encodings and consider a new
kind of primitive, a multi-argument PRF. But this would be a non-standard tool
and we didn’t want to use any non-standard tools. All in all, it seemed best to
find a way to sidestep the need to do encodings.

Why not generic composition? Why have we specified a block-cipher based
(BC-based) AEAD scheme instead of following the generic-composition approach
of combining a (privacy-only) encryption method and a message authentication
code? In fact, there are reasonable arguments in favor of generic composition,
based on aesthetic or architectural sensibilities. One can argue that generic com-
position better separates conceptually independent elements (privacy and au-
thenticity) and, correspondingly, allows greater implementation flexibility [6, 20].
Correctness becomes much simpler and clearer as well. All the same, BC-based
AEAD modes have some important advantages of their own. They make it easier
for implementors to use a scheme without knowing a lot of cryptography, pre-
senting a simpler abstraction boundary. They make it easier to obtain interop-
erably. They reduce the risk that implementors will choose insecure parameters.
They can save on key bits and key-setup time, as generic-composition methods
invariably require a pair of separate keys.
1 One could view the prefixing of [t]n to M in the definition of OMAC t

K(M) as an
encoding, but [t]n is a constant, fixed-length string, and the aim here is just to
“tweak” the PRF. This is very different from needing to encode arbitrary-length
strings into a single string.
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N

T

OMAC 0
K

C

HM

N

H

C

CTRK

OMAC 1
K

OMAC 2
K

Fig. 3. Encryption under EAX. The message is M , the key is K, and the header is H .
The ciphertext is CT = C ‖ T

EAX can be viewed as having been derived from a generic-composition
scheme we call EAX2, described in Section 4. Specifically, one instantiates EAX2
using CTR mode (counter mode) and OMAC, and then collapses the two keys
into one. If one favors generic composition, EAX2 is a nice algorithm for it.

On-line. We say that an algorithm is on-line if it is able to process a stream
of data as it arrives, with constant memory, not knowing in advance when the
stream will end. Observe then that on-line methods should not require knowledge
of the length of a message until the message is finished. A failure to be on-line
has been regarded as a significant defect for an encryption scheme or a MAC.
EAX is on-line.

Now it is true that in many contexts where one would be encrypting a string
one does know the length of the string in advance. For example, many protocols
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CCM EAX

Functionality AE with AD AE with AD

Built from Block cipher E with 128-bit blocksize Block cipher E
with n-bit blocksize

Parameters Block cipher E
Tag length τ∈{4, 6, 8, 10, 12, 14, 16}
Length of message length field λ∈[2..8]

Block cipher E
Tag length τ ∈ [0..n]

Message space Parameterized: 7 choices: λ ∈ [2..8]. Each
possible message space a subset of Byte

∗,

from Byte
216−1 to Byte

<264−1

{0, 1}∗

Nonce space Parameterized, with a value of 15 − λ
bytes. From 56 bits to 104 bits

{0, 1}∗

Key space One block-cipher key One block-cipher key

Ciphertext
expansion

τ bytes τ bits

Block-cipher calls 2
⌈ |M|

128

⌉
+

⌈ |H|
128

⌉
+ 2 + δ, for δ ∈ {0, 1} 2

⌈ |M|
n

⌉
+

⌈ |H|
n

⌉
+

⌈ |N|
n

⌉

Block-cipher calls
with static header

2
⌈ |M|

128

⌉
+

⌈ |H|
128

⌉
+ 2 + δ, for δ ∈ {0, 1} 2

⌈ |M|
n

⌉
+

⌈ |N|
n

⌉

Key setup Block cipher subkeys Block cipher subkeys
3 block-cipher calls

IV requirements Non-repeating nonce Non-repeating nonce

Parallelizable? No No

On-line? No Yes

Preprocessing
(/msg)

Limited (key stream) Limited (key stream, header)

Memory rqmts Small constant Small constant

Provable security? Yes (if E is a good PRP)
Bound of Θ(σ2/2128)

Yes (if E is a good PRP)
Bound of Θ(σ2/2n)

Patent-
encumbered?

No No

Fig. 4. A comparison of basic characteristics of CCM and EAX. The count on block-
cipher calls for EAX ignores key-setup costs. We denote by τ the length of the EAX tag
in bits, and by τ (boldface) the length of the CCM tag in bytes

will already have “packaged up” the string length at a lower level. In effect, such
strings have been represented in the computing system as sequence of bytes
and a count of those bytes. But there are also contexts where one does not
know the length of a message in advance of getting an indication that it is over.
For examples, a printable string is often represented in computer systems as
a sequence of non-zero bytes followed by a terminal zero-byte. Certainly one
should be able to efficiently encrypt a string which has been represented in this
way.

Ability to process static AD. In many scenarios the associated data H
will be static over the course of a communications session. For example, the
associated data may include information such as the IP address of the sender,
the receiver, and fixed cryptographic parameters associated to this session. In
such a case one would like that the amount of time to compute EncryptN H

K (M)
and DecryptN H

K (C) should be independent of |H |, disregarding the work done in
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Algorithm EAX2.EncryptN H
K1,K2 (M)

10 N ← F 0
K1(N)

11 H ← F 1
K1(H)

12 C ← EN
K2(M)

13 C ← F 2
K1(C)

14 Tag ← N⊕C⊕H

15 T ← Tag [first τ bits]
16 return CT ← C ‖ T

Algorithm EAX2.DecryptN H
K1,K2 (CT )

20 if |CT | < τ then return Invalid

21 Let C ‖ T ← CT where |T | = τ
22 N ← F 0

K1(N)
23 H ← F 1

K1(H)
24 C← F 2

K1(C)
25 Tag ′ ← N⊕C⊕H

26 T ′ ← Tag ′ [first τ bits]
27 if T �= T ′ then return Invalid

28 M ← DN
K2(C)

29 return M

Fig. 5. Encryption and decryption under EAX2. The mode is built from a
PRF F : Key1 × {0, 1}∗ → {0, 1}n and an IV-based encryption scheme Π = (E ,D)
having key space Key2 and message space {0, 1}∗. The plaintext is M and the key
is (K1, K2) and the header is H . By F i

K we mean the function where F i
K(M) =

FK([i]n ‖M)

a preprocessing step. The significance of this goal was already explained in [24].
EAX achieves this goal.

Additional features. Invalid messages can be rejected at half the cost of
decryption. This is one of the benefits of following what is basically an encrypt-
then-authenticate approach as opposed to an authenticate-then-encrypt ap-
proach.

To obtain a MAC as efficient as the PRF underlying EAX define MACK(H)=
Encrypt0

n H
K (ε).

Comparison with CCM. Figure 4 compares CCM and EAX along a few rel-
evant dimensions. A description of CCM and an extended comparison can be
found in the full version of this paper [8].

4 EAX2 Algorithm

To understand the the proof of security of EAX and the approach taken for
its design, we introduce EAX2, a generic composition method. EAX is EAX2
for the particular case of CTR encryption and OMAC authentication, but then
collapsed to a single key.

EAX2 composition. Let F : Key1×{0, 1}∗ → {0, 1}n be a PRF, where n ≥ 2.
Let Π = (E ,D) be an IV-based encryption scheme having key space Key2
and IV space {0, 1}n. This means that E : Key2 × {0, 1}n × {0, 1}∗ → {0, 1}∗
and D : Key2 × {0, 1}n × {0, 1}∗ → {0, 1}∗ and Key2 is a set of keys and for
every K ∈ Key2 and N ∈ {0, 1}n and M ∈ {0, 1}∗, if C = EN

K (M) then
DN

K(C) = M . Let τ ≤ n be a number. Now given F and Π and τ we define
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an AEAD scheme EAX2[Π, F, τ ] = (EAX2.Encrypt, EAX2.Decrypt) as follows.
Set F t

K(M) = FK([t]n ‖M). Set Key = Key1 × Key2. Then the encryption al-
gorithm EAX2.Encrypt : Key × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and the decryption
algorithm EAX2.Decrypt : Key × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {Invalid} are
defined in Figure 5. Scheme EAX2[Π, F, τ ] is provably secure under natural as-
sumptions about Π and F . See Section 6.

EAX1 composition. Let EAX1 be the single-key variant of EAX2 where one
insists that Key = Key1 = Key2 and where one keys F , E , and D with a single
key K ∈ Key. One associates to F and Π the scheme EAX1[Π, F, τ ] that is
defined as with EAX2 but where the one key K keys everything. Notice that
EAX[E, τ ] = EAX1[CTR[E], OMAC[E], τ ]. This is a useful way to look at EAX.

5 Definitions

AEAD schemes. A set of keys is a nonempty set having a distribution (the
uniform distribution when the set is finite). A (nonce-based) authenticated-
encryption with associated-data (AEAD) scheme is a pair of algorithms Π =
(E,D) where E is a deterministic encryption algorithm E : Key × Nonce ×
Header×Plaintext→ Ciphertext and a D is a deterministic decryption algorithm
D : Key × Nonce× Header× Ciphertext→ Plaintext ∪ {Invalid}. The key space
Key is a set of keys while the nonce space Nonce and the header space Header
(also called the space of associated data) are nonempty sets of strings. We write
EN H

K (M) for E(K, N, H, M) and DN H
K (CT ) for D(K, N, H,CT ). We require

that DN H
K (EN H

K (M)) = M for all K ∈ Key and N ∈ Nonce and H ∈ Header
and M ∈ Plaintext. In this note we assume, for notational simplicity, that Nonce,
Header, Plaintext, and Ciphertext are all {0, 1}∗ and that |EN H

K (M)| = |M |. An
adversary is a program with access to one or more oracles.

Nonce-respecting. Suppose A is an adversary with access to an encryp-
tion oracle E · ·K (·). This oracle, on input (N, H, M), returns EN H

K (M). Let
(N1, H1, M1), . . . , (Nq, Hq, Mq) denote its oracle queries. The adversary is said
to be nonce-respecting if N1, . . . , Nq are always distinct, regardless of oracle re-
sponses and regardless of A’s internal coins.

Privacy of AEAD schemes. We consider adversaries with access to an en-
cryption oracle E · ·K (·). We assume that any privacy-attacking adversary is nonce-
respecting. The advantage of such an adversary A in violating the privacy of
AEAD scheme Π = (E,D) having key space Key is

Advpriv
Π (A) = Pr

[
K

$← Key : AE · ·
K (·) = 1

]
− Pr

[
K

$← Key : A$ · ·(·) = 1
]

where $ · ·(·) denotes the oracle that on input (N, H, M) returns a random string
of length |M |.
Authenticity of AEAD schemes. This time we provide the adversary with
two oracles, an encryption oracle E · ·K (·) as above and also a verification oracle
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D̂ · ·K (·). The latter oracle takes input (N, H,CT ) and returns 1 if DN H
K (CT ) ∈

Plaintext and returns 0 if DN H
K (CT ) = Invalid. The adversary is assumed to

satisfy three conditions, and these must hold regardless of the responses to its
oracle queries and regardless of A’s internal coins:
• Adversary A must be nonce-respecting. (The condition is understood to

apply only to the adversary’s encryption oracle. Thus a nonce used in an
encryption-oracle query may be used in a verification-oracle query.)

• Adversary A may never make a verification-oracle query (N, H,CT ) such
that the encryption oracle previously returned CT in response to a query
(N, H, M).

• Adversary A must call its verification-oracle exactly once, and may not
subsequently call its encryption oracle. (That is, it makes a sequence of
encryption-oracle queries, then a verification-oracle query, and then halts.)

We say that such an adversary forges if its verification oracle returns 1 in re-
sponse to the single query made to it. The advantage of such an adversary A in
violating the authenticity of AEAD scheme Π = (E,D) having key space Key is

Advauth
Π (A) = Pr

[
K

$← Key : AE· ·
K (·), D̂· ·

K (·) forges
]

.

IV-based encryption. An IV-based encryption scheme (an IVE scheme) is
a pair of algorithms Π = (E ,D) where E : Key× IV×Plaintext→ Ciphertext is a
deterministic encryption algorithm and D : Key× IV× Ciphertext→ Plaintext ∪
{Invalid} is a deterministic decryption algorithm. The key space Key is a set
of keys and the plaintext space Plaintext and ciphertext space Ciphertext and
IV space IV are all nonempty sets of strings. We write ER

K(M) for E(K, R, M)
and DR

K(C) for D(K, R, C). We require that DR
K(ER

K(M)) = M for all K ∈
Key and R ∈ IV and M ∈ Plaintext. We assume, as before, that Plaintext =
Ciphertext = {0, 1}∗ and that |ER

K(M)| = |M |. We also assume that IV = {0, 1}n
for some n ≥ 1 called the IV length.

Privacy of IVE schemes with random IVs. Let Π = (E ,D) be an IVE
scheme with key space Key and IV space IV = {0, 1}n. Let E$ be the proba-
bilistic algorithm defined from E that, on input K and M , chooses an IV R at
random from {0, 1}n, computes C ← ER

K(M), and then returns C along with the
chosen IV:

Algorithm E$
K(M) //The probabilistic encryption scheme built from IVE scheme E

R
$← {0, 1}n ; C ← ER

K(M) ; return R ‖ C

Then we define the advantage of an adversary A in violating the privacy of Π
(as an encryption scheme using random IV) by

Advpriv
Π (A) = Pr

[
K

$← Key : AE
$
K(·) = 1

]
− Pr

[
K

$← Key : A$(·) = 1
]
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where $(·) denotes the oracle that on input M returns a random string of length
n + |M |. This is just the ind$-privacy of the randomized symmetric encryption
scheme associated to Π . We comment that we have used a superscript of “priv”
for an IVE scheme and “priv” (bold font) for an AEAD scheme.

Pseudorandom functions. A family of functions, or a pseudorandom function
(PRF), is a map F : Key × D → {0, 1}n where Key is a set of keys and D is
a nonempty set of strings. We call n the output length of F . We write FK for the
function F (K, ·) and we write f

$← F to mean K
$← Key ; f ← FK . We denote

by R∗n the set of all functions with domain {0, 1}∗ and range {0, 1}n; by Rn
n

the set of all functions with domain {0, 1}n and range {0, 1}n; and by RI
n the

set of all functions with domain I and range {0, 1}n. We identify a function
with its key, making Rn

n, R∗n and RI
n pseudorandom functions. The advantage

of adversary A in violating the pseudorandomness of the family of functions
F : Key× {0, 1}∗ → {0, 1}n is

Advprf
F (A) = Pr

[
K

$← Key : AFK(·) = 1
]
− Pr

[
ρ

$←R∗n : Aρ(·) = 1
]

A family of functions E : Key×D → {0, 1}n is a block cipher if D = {0, 1}n and
each EK is a permutation. We let Pn denote all the permutations on {0, 1}n and
define

Advprp
E (A) = Pr

[
K

$← Key : AEK(·) = 1
]
− Pr

[
π

$←Pn : Aπ(·) = 1
]

Resources. If xxx is an advantage notion for which Advxxx
Π (A) has been defined

we write Advxxx
Π (R) for the maximal value of Advxxx

Π (A) over all adversaries A
that use resources at most R. When counting the resource usage of an adversary,
one maximizes over all possible oracle responses, including those that could
not be returned by any experiment we have specified for adversarial advantage.
Resources of interest are: t—the running time; q—the total number of oracle
queries; qe—the number of oracle queries to the adversary’s first oracle; qv—
the number of oracle queries to the adversary’s second oracle; and σ—the data
complexity. The running time t of an algorithm is its actual running time (relative
to some fixed RAM model of computation) plus its description size (relative to
some standard encoding of algorithms). The data complexity σ is defined as the
sum of the lengths of all strings encoded in the adversary’s oracle queries, plus
the total number of all of these strings.2 In this paper the length of strings is
measured in n-bit blocks, for some understood value n. The number of blocks
in a string M is defined as ‖M‖n = max{1, �|M |/n�}, so that the empty string
counts as one block. As an example, an adversary that asks queries (N1, H1, M1),
(N2, H2, M2) to its first oracle and query (N, H, M) to its second oracle has data
complexity ‖N1‖n +‖H1‖n+‖M1‖n+‖N2‖n+‖H2‖n +‖M2‖n+‖N‖n+‖H‖n+
‖M‖n +9. The name of a resource measure (t, t′, q, etc.) will be enough to make
clear what resource it refers to.
2 There is a certain amount of arbitrariness in this convention, but it is reasonable

and simplifies subsequent accounting.
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When we use big-O notation it is understood that the constant hidden inside
the notation may depend on n. We write Õ(f(x)) for O(f(x) lg(f(x)). When F
is a function we write TimeF (σ)) for the maximal amount of time to compute
the function F over inputs of total length σ. When Π = (E ,D) is an AEAD
scheme or an IVE scheme with key space Key we write TimeE(σ) for the time
to compute a random element K

$← Key plus the maximal amount of time to
compute the function EK on arguments of total length σ.

6 Security Results

We first obtain results about the security of EAX2 and then prove a result about
the security of a tweakable-OMAC extension. These results are applied to derive
results about the security of EAX. The notation and security measures referred
to below are defined in Section 5.

Security of EAX2. We begin by considering the EAX2[Π, F, τ ] scheme with F
being equal to Rn

n, the set of all functions with domain {0, 1}n and range {0, 1}n.
In other words, we are considering the case where FK1 is a random function with
domain {0, 1}n and range {0, 1}n. First we show that EAX2[Π,Rn

n, τ ] inherits
the privacy of the underlying IVE scheme Π . The proof of the following is in
the full version of this paper [8].

Lemma 1. [Privacy of EAX2 with a random PRF] Let Π be an IVE
scheme with IV space {0, 1}n and let τ ∈ [0..n]. Then

Advpriv
EAX2[Π,Rn

n,τ ](t, q, σ) ≤ Advpriv
Π (t′, q, σ)

where t′ = t + Õ(σ). �

We now turn to authenticity. The following shows that EAX2[Π,Rn
n, τ ] provides

authenticity under the assumption that the underlying IVE scheme Π provides
privacy. The proof is in the full version of this paper [8].

Lemma 2. [Authenticity of EAX2 with a random PRF] Let Π be an IVE
scheme with IV space {0, 1}n and let τ ∈ [0..n]. Then

Advauth
EAX2[Π,Rn

n,τ ](t, q, σ) ≤ Advpriv
Π (t′, q, σ) + 2−τ

where t′ = t + Õ(σ). �

Our definition of authenticity allows the adversary only one query to its veri-
fication oracle, meaning only one forgery attempt. A standard argument says
that the advantage of an adversary making qv verification queries can grow by
a factor of at most qv. As per the above this means it is at most qv · [2−τ +
Advpriv

Π (t′, q, σ)]. We believe that in fact the bound is better than this, namely
that it is qv2−τ + Advpriv

Π (t′, q, σ). However, we do not have a proof of this
stronger bound.
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The above allows us to obtain results about the security of the general
EAX2[Π, F, τ ] scheme based on assumptions about the security of the compo-
nent schemes. The proof of the following is in the full version of this paper [8].

Theorem 1. [Security of EAX2] Let F : Key1×{0, 1}∗ → {0, 1}n be a family
of functions, let Π = (E ,D) be an IVE scheme with IV space {0, 1}n and let
τ ∈ [0..n]. Then

Advauth
EAX2[Π,F,τ ](t, q, σ) ≤ Advpriv

Π (t2, q, σ) + Advprf
F (t1, 3q + 3, σ) + 2−τ (1)

Advpriv
EAX2[Π,F,τ ](t, q, σ) ≤ Advpriv

Π (t2, q, σ) + Advprf
F (t3, 3q, σ) (2)

where t1 = t+TimeE(σ)+Õ(σ) and t2 = t+Õ(σ+nq) and t3 = t+TimeE(σ)+
Õ(σ). �

We remark that although “birthday” terms of the form σ2/2n or q2/2n do not
appear explicitly in the bounds above, they may appear when we bound the
Advpriv

Π (·, ·, ·) and Advprf
F (·, ·, ·) in terms of their arguments.

Security of a Tweakable-OMAC Extension. This section develops the
core result underlying why key-reuse “works” across OMAC and CTR modes.
To do this, we consider the following extension of the tweakable-OMAC con-
struction. Fix n ≥ 1 and let t ∈ {0, 1, 2} and ρ ∈ Rn

n and M ∈ {0, 1}∗ and
s ∈ N. Then define

Algorithm OMACρ(t, M, s)

10 R← OMACt
ρ(M)

11 for j ← 0 to s− 1 do Sj ← ρ(R + j)
12 return R S0S1 · · ·Ss−1

Thus an OMACρ oracle, when asked (t, M, s), returns not only R = OMACt
ρ(M)

but also a key stream S0S1 . . . Ss formed using CTR-mode and start-index R.
We emphasize that the key stream is formed using the same function ρ (that is,
the same key) that underlies the OMAC computation. Note too that we have
limited the tweak t to a small set, {0, 1, 2}.

We imagine providing an adversary A with one of two kinds of oracles. The
first is an oracle OMACρ(·, ·, ·) for a randomly chosen ρ ∈ Rn

n. The second
is an oracle $n(·, ·, ·) that, on input (t, M, s), returns n(s + 1) random bits.
Either way, we assume that the adversary is length-committing: if the adversary
asks a query (t, M, s) it does not ask any subsequent query (t, M, s′). As the
adversary runs, it asks some sequence of queries (t1, M1, s1), . . . , (tq, Mq, sq). The
resources of interest to us are the sum of the block lengths of the messages being
MACed, σ1 =

∑ ‖Mi‖n, and the total number σ2 =
∑

si of key-stream blocks
that the adversary requests. We claim that a reasonable adversary will have
little advantage in telling apart the two oracles, and we bound its distinguishing
probability in terms of the resources σ1 and σ2 that it expends. Recall that
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for oracles X and Y and an adversary A we measure A’s ability to distinguish
between oracles X and Y by the number Advdist

X,Y (A) = Pr[AX = 1]−Pr[AY =
1]. The proof of the following is in the full version of this paper [8].

Lemma 3. [Pseudorandomness of OMAC] Fix n ≥ 2. Then, for length-
committing adversaries,

Advdist
OMAC[Rn

n],$n
(σ1, σ2) ≤ (σ1 + σ2 + 3)2

2n
�

Security of EAX. We are now ready to consider the security of EAX. The
proof of the following is in the full version of this paper [8].

Theorem 2. [Security of EAX] Let n ≥ 2 and τ ∈ [0..n]. Then

Advpriv
EAX[Rn

n,τ ](σ) ≤ 9 σ2

2n

Advauth
EAX[Rn

n,τ ](σ) ≤ 10.5 σ2

2n
+

1
2τ

�

Finally, we may, in the customary way, pass to the corresponding complexity-
theoretic result where we start with an arbitrary block cipher E.

Corollary 1. [Security of EAX] Let n ≥ 2 and E : Key×{0, 1}n×{0, 1}n be
a block cipher and let τ ∈ [0..n]. Then

Advpriv
EAX[E,τ ](t, σ) ≤ 9.5 σ2

2n
+ Advprp

E (t′, σ)

Advauth
EAX[E,τ ](t, σ) ≤ 11 σ2

2n
+

1
2τ

+ Advprp
E (t′, σ)

where t′ = t + O(σ). �

We omit the proof, which is completely standard.
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A Definition of CCM

Since CCM [26] was a major motivation for our work, we recall its definition,
writing it in a new form. First some notation. Write string constants in hex-
adecimal, as in 0xFFFE. When X ∈ {0, 1}� is a nonempty string and i ∈ N is
a number we let X + i be the �-bit string that results from regarding X as a
nonnegative number x (binary notation, msb first), adding x to i, taking the
result modulo 2n, and converting this number back into an �-bit string. Now
CCM depends on three parameters:
• E — the block cipher — where E : Key × {0, 1}128 → {0, 1}128
• τ — the tag length — where τ ∈ {4, 6, 8, 10, 12, 14, 16}
• λ — the length-of-the-message-length-field — where λ ∈ {2, 3, 4, 5, 6, 7, 8}

Once parameters (E, τ , λ) have been fixed, where E : Key×{0, 1}128 → {0, 1}128
is a block cipher, CCM is the AE scheme specified in Figure 6. The nonce space
is Nonce = Byte

15−λ and the header space is Header = Byte
<264

and the
message space is Plaintext = Byte

<28λ

. There is a tradeoff between the length
of nonces, η = |N | = 15− λ bytes, and the longest permitted message, 256λ− 1
bytes.
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Algorithm CCM.EncryptN H
K (M)

100 B ← 0 ‖ if H = ε then 0 else 1 endif ‖ [τ/2− 1]3 ‖ [λ − 1]3 ‖
101 N ‖ [‖M‖n]8λ ‖
102 if H = ε then ε elseif ‖H‖n < 62580 then [‖H‖n]16 elseif ‖H‖n < 232

103 then 0xFFFE ‖ [‖H‖n]32 else 0xFFFF ‖ [‖H‖n]64 endif ‖
104 H ‖
105 if H = ε then ε elseif ‖H‖n < 62580 then [0]n

(14−‖H‖n) mod 16

106 elseif ‖H‖n <232 then [0]n
(10−‖H‖n) mod 16 else [0]n

(6−‖H‖n) mod 16 endif
107 ‖ M ‖
108 [0]n

(−‖M‖n) mod 16

109 U ← CBCK(B)

110 A0 ← [λ− 1]8 ‖ N ‖ [0]n
15−λ

111 V ‖ C ← CTR
A0
K (U ‖M) where |V | = 128

112 T ← V [first τ bytes]
113 return CT ← C ‖ T

Algorithm CCM.DecryptN H
K (CT)

200 if ‖CT‖n < τ then return Invalid

201 Partition CT into C ‖ T where ‖T‖n = τ

202 if ‖C‖n > 2λ − 1 then return Invalid

210 A0 ← [λ− 1]8 ‖ N ‖ [0]n
15−λ

211 M ← CTR
A0+1
K (C)

220 B ← 0 ‖ if H = ε then 0 else 1 endif ‖ [τ/2− 1]3 ‖ [λ − 1]3 ‖
221 N ‖ [‖M‖n]8λ ‖
222 if H = ε then ε elseif ‖H‖n < 62580 then [‖H‖n]16 elseif ‖H‖n < 232

223 then 0xFFFE ‖ [‖H‖n]32 else 0xFFFF ‖ [‖H‖n]64 endif
224 ‖ H ‖
225 if H = ε then ε elseif ‖H‖n < 62580 then [0]n

(14−‖H‖n) mod 16

226 elseif ‖H‖n <232 then [0]n
(10−‖H‖n) mod 16 else [0]n

(6−‖H‖n) mod 16 endif
227 ‖ M ‖
228 [0]n

(−‖M‖n) mod 16

230 U ← CBCK(B)
231 V ← EK(A0)⊕U
232 T ′ ← V [first τ bytes]
233 if T �= T ′ then return Invalid

234 return M

Fig. 6. Encryption and decryption under CCM[E, τ , λ]
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