
Verifiable Shuffles: A Formal Model and a
Paillier-Based Efficient Construction with

Provable Security

Lan Nguyen1, Rei Safavi-Naini1, and Kaoru Kurosawa2

1 School of Information Technology and Computer Science
University of Wollongong, Wollongong 2522, Australia

{ldn01,rei}@uow.edu.au
2 Department of Computer and Information Sciences

Ibaraki University 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
kurosawa@cis.ibaraki.ac.jp

Abstract. We propose a formal model for security of verifiable shuffles
and prove security of a number of recently proposed shuffle schemes in
this model. The model is general and can be extended to mix-nets and
verifiable shuffle decryption. We propose a new efficient verifiable shuffle
system based on Paillier encryption scheme and prove its security in the
proposed model.

Keywords: Privacy, verifiable shuffles, formal security model, mix-nets,
Paillier public-key system.

1 Introduction

A shuffle takes an input list of ciphertexts and outputs a permuted and re-
encrypted version of the input list. Re-encryption of a ciphertext can be defined
for encryption systems such as El Gamal and Paillier encryption systems, and
allows generation of ciphertexts c′ from a given ciphertext c such that both
ciphertexts correspond to the same plaintext m under the same public key.

The main application (motivation for the study) of shuffles is to construct
mix-nets, a cryptographic system introduced by Chaum [3] for providing com-
munication unlinkability and anonymity. Mix-nets are among the most widely
used systems for providing communication privacy, and have found applications
in anonymous email system [3], Web browsing [9], electronic voting [18], anony-
mous payment systems [4], location privacy for mobile networks [16] and mobile
IP [4], secure multiparty computation [14] and privacy in advertisements [15].

A mix-net consists of a number of mix-centres that collectively permute and
decrypt the mix-net input list. Shuffles are used to implement mix-centres. A
basic shuffle permutes its input list of ciphertexts through re-encryption. Mix-
centres may also partially decrypt the list, hence called shuffle decryption. Mix-
nets that use shuffle decryption could be more efficient but in case of failure of
one of the mix-centres, they need more computation to recover [8].

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 61–75, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

62 L. Nguyen, R. Safavi-Naini, and K. Kurosawa

The main security property of shuffle systems is providing unlinkability of
elements of its input to the elements of the output list for outsiders, and so
effectively keeping the permutation secret. We refer to this property as shuffle
privacy. A second important property of shuffles is verifiability : that is providing
a proof that the output is correctly constructed. Verifiability of shuffles is used
to provide robustness for the mix-net: that is ensuring that the mix-net works
correctly even if a number of mix-servers are malicious. This is an important
property of mix-nets and so verifiability of shuffles has received much attention.
Shuffles must be efficient and the cost is measured in terms of the amount of
computation and communication that is required for providing privacy for n
users.

In this paper we focus on verifiable shuffles. Privacy of shuffles has tradi-
tionally been equated to the zero-knowledge property of the proof system used
for verifying correctness. Recently a number of efficient constructions for verifi-
able shuffles have been proposed. In Crypto’01, Furukawa and Sako [6] gave a
characterisation of permutation matrices in terms of two equations that can be
efficiently proved, hence proposing an efficient (3 round proof system) verifiable
shuffle. However in a subsequent paper [7], they noted that the proof system
was not zero-knowledge. They however gave a definition of privacy for shuffles
and showed that the protocol satisfied that definition. The definition requires
that the verifier cannot learn anything about the ’relation’ between the output
of the shuffle and its input, using the transcript of the protocol. Neff [18,19] and
later Groth [13] proposed shuffles that provide zero-knowledge property for their
proofs.

As noted above the notion of privacy varies among shuffles and no formal
model for verifiable shuffles has been suggested so far. Such a formalisation will
be also important for formalising security of mix-nets. Recently proposed attacks
[1,20,25] against mix-nets clearly demonstrate the need for such a model.

The first contribution of this paper is to give a formal model for shuffles
that allows us to have a unified approach for assessment of shuffle systems. Our
definition of shuffle privacy is motivated by observing the similarity between a
shuffle hiding the permutation, and an encryption system hiding the input mes-
sage. We consider adaptive attacks by an active adversary that uses a chosen
permutation attack (CPAS) (similar to chosen plaintext) and chosen transcript
attack (CTAS) (similar to chosen ciphertext). A subtle difference between this
model and the model of a traditional encryption system is that in this case the
adversary does not only specify the distribution of challenge permutation (i.e.
plaintext) but also another input, the list of input ciphertexts. We allow the
adversary to choose this input ciphertext list adaptively and also know the cor-
responding plaintext list. Using this approach, notions of privacy can be defined
in line with semantic security and indistinguishability. We prove that these two
notions of privacy are equivalent and can be interchangeably used. The definition
of verifiability is based on the notion of completeness and soundness of the proof
system. We note that the prover, the shuffle, does not have access to the pri-
vate key of encryption. This is the first complete model for shuffle security with
active adversary and under CPAS and CTAS . The model can be extended to

Verifiable Shuffles: A Formal Model 63

verifiable shuffle decryption and mix-nets, and so providing a unified framework
for security evaluation of these systems. We prove security of Furukawa-Sako,
Neff and Groth schemes in this model.

A second contribution of this paper is proposing a new efficient verifiable
shuffle based on Paillier encryption system [22]. Paillier encryption system pro-
vides semantic security against adaptive chosen plaintext attack (CPA) in stan-
dard model and similar to El Gamal cryptosystem, it is possible to define a
re-encryption operation for it. The shuffle uses Furukawa-Sako approach for
characterisation of permutation matrices but has computations over a composite
modulus which complicates security proofs (We have to prove Theorem 6 and
Theorem 7). We prove privacy and verifiability of the shuffle in our proposed
model. The proof technique can also be used to prove privacy of Furukawa-Sako,
Neff and Groth schemes in our model. Compared to Furukawa-Sako and Groth,
our proof system has a more efficient initialisation phase and similar to Groth’s
shuffle, does not require the message space to be prime (a product of two primes
instead). By using the NM-CCA robust threshold version of Paillier encryption
scheme [5], a robust mix-net can be constructed from our verifiable shuffle, as
will be shown in the full version of our paper [21].

The organization of the paper is as follows. In section 2, we recall some
background on public-key encryption schemes and shuffles. Section 3 provides
our formal definitions of verifiable shuffles and its security requirements. Section
4 gives a verifiable shuffle based on Paillier public-key system, its security proofs
and efficiency analysis.

2 Background

2.1 Public-Key Encryption Schemes

A public-key encryption scheme consists of three probabilistic polynomial time
(PPT) algorithms (G, E, D). The key generation algorithm G on input 1l outputs
(pk, sk) where pk is a public key, sk is the secret key and l is a security parameter.
The encryption algorithm E takes as input the public key pk and a plaintext and
outputs a ciphertext. The decryption algorithm D takes as input the secret key
sk and a ciphertext and outputs a plaintext. A public-key encryption scheme may
have a re-encryption function. Following the definition in [24], this means there
is a PPT algorithm R that takes as input the public key pk and a ciphertext and
outputs another ciphertext such that for every plaintext m and its ciphertexts
c and c′: Pr[c′ = Rpk(c)] = Pr[c′ = Epk(m)] (2.1). A public-key scheme with a
re-encryption function is denoted by (G, E, D, R). Note that we write Epk(m),
Dsk(c) and Rpk(c) instead of E(pk, m), D(sk, c) and R(pk, c) respectively.

Due to space limitation, for a discussion about encryption security require-
ments, including semantic security (SS), indistinguishability (IND) and non-
malleability (NM) against chosen plaintext attacks (CPA) and chosen ciphertext
attacks (CCA), we refer to the full version of this paper [21].

64 L. Nguyen, R. Safavi-Naini, and K. Kurosawa

2.2 Paillier Public-Key System

Key generation: Let N = pq, where p and q be large primes. Denote λ as
Carmichael value of N , so λ = lcm(p − 1, q − 1). The public key is pk = N
and the secret key is sk = λ. Hereafter, unless stated otherwise we assume all
modular computations are in modulo N2.
Encryption: Plaintext m ∈ ZN can be encrypted by choosing an r ∈R Z∗

N (i.e.
chosen randomly and with uniform distribution from Z∗

N) and computing the
ciphertext g = rN (1 + mN). 1

Re-encryption: A Paillier ciphertext g for a plaintext m can be re-encrypted as
g′ = r′N × g for the same plaintext m, where r′ ∈R Z∗

N . The re-encryption
satisfies the condition (2.1) above.
Decryption: Ciphertext g ∈ Z∗

N2 can be decrypted as m = L(gλ mod N2)/λ mod
N , where the function L takes its input from the set {u < N2|u = 1 mod N}
and is defined as L(u) = (u− 1)/N .
Decisional Composite Residuosity Assumption (DCRA): A number z ∈ Z∗

N2 is said
to be an e-th residue mod N2 if there exists a number y ∈ Z∗

N2 such that z = ye.
DCRA states that there is no polynomial time distinguisher for the N -th residues
modulo N2.
Security: Paillier encryption scheme has SS-CPA if and only if DCRA holds.
NM-CCA robust threshold encryption scheme: Using the twin-encryption paradigm
of [17], Shamir sharing scheme [23], the proof of equality of discrete logs and a
simulation-sound proof of equality of plaintexts, Fouque and Pointcheval [5] pro-
posed a NM-CCA robust threshold encryption scheme based on Paillier public-
key system that is proved secure in the random oracle model. This encryption
system can be used to construct a robust mix-net.

2.3 Furukawa-Sako Shuffle

Furukawa and Sako [6] proposed an efficient verifiable shuffle based on El Gamal
public-key system. In their scheme, a permutation is represented as a matrix
(Definition 1) and their proof system is based on proving two equations based on
the matrix (Theorem 1). However, Furukawa-Sako’s proof of zero-knowledgeness
is not correct [7].

Definition 1. A matrix (Aij)n×n is a permutation matrix modulo k if it satisfies
the following for some permutation π

Aij =
{

1 mod k if π(i) = j
0 mod k otherwise

1 Paillier encryption is originally defined as g = rNem, where e ∈ Z∗
N2 and its order in

modulo N2 is a non-zero multiple of N . For efficiency we use e = 1+N . Our results
do not depend on this choice and are true for all values of e.

Verifiable Shuffles: A Formal Model 65

Theorem 1. A matrix (Aij)n×n is a permutation matrix modulo q, where q is
a prime, if and only if for all i, j and k, both

n∑
l=1

AliAlj =
{

1 mod q if i = j
0 mod q otherwise

n∑
l=1

AliAljAlk =
{

1 mod q if i = j = k
0 mod q otherwise

hold.

3 Security of Verifiable Shuffles

3.1 Notation and Terminology

For a list L of elements, |L| denotes the size of the list, L[i] denotes the ith

element of the list and π(L) the list of elements in L permuted by a permutation
π. Let Tn denote the set of all permutations on {1, ..., n}. A positive polynomial
is a polynomial for which the leading coefficient is positive. Let poly(n) refer
to some fixed but unspecified polynomial and Un denote a random variable
uniformly distributed over {0, 1}n. When a PPT algorithm M takes an input x

and produces an output y, we write y
R←M(x) and denote Cx,y

M the probabilistic
input (sequence of internal random coin tosses) of M . For example, if Paillier
ciphertext g = rN (1 + mN), then C

(N,m),g
E = r. We can abuse this notation by

writing Cm,c
Epk

instead of C
(pk,m),c
E and similar for Dsk and Rpk. We use C

Lx,Ly

M

to denote the list of probabilistic inputs of M where the ith element of the list
is the probabilistic input that takes the ith element of the list Lx to the ith
element of the list Ly. The set of possible outputs of M on input x is denoted
by [M(x)].

The adversary is modelled by an oracle machine which is a Turing machine
with additional tapes and states allowing access to some oracles that provide
answers to queries of the defined types. An interactive proof system (P,V) con-
sists of two party: a prover P and a verifier V. Each party can be modelled by
an interactive machine, which is a Turing machine with additional tapes and
states allowing joint communication and computation with another interactive
machine. Formal descriptions of oracle machines and interactive machines can
be found in [10]. For a proof system (P,V), V iewP

V (x) denotes all that V can see
from the execution of the proof system on input x (in other words, the transcript
of the proof system on input x).

3.2 Syntax of Shuffles

First, we define a language to describe that a list of ciphertexts is a permuted
and re-encrypted version of another ciphertext list.

66 L. Nguyen, R. Safavi-Naini, and K. Kurosawa

Definition 2. Suppose RP = (G, E, D, R) is a public-key scheme with a re-
encryption function. Define a language LRP of tuples (pk, L1, L2) such that pk
is a public key generated by G and L2 is a permutation of re-encryptions of
ciphertexts in L1 produced by Rpk. The witness w(pk, L1, L2) includes the per-
mutation and the list of probabilistic inputs of Rpk.

LRP = {(pk, L1, L2)|(|L1| = |L2|) ∧
(∃π ∈ T|L1|,∀i ∈ {1, ..., |L1|} : L2[π(i)] ∈ [Rpk(L1[i])])}

w(pk, L1, L2) = (π, C
π(L1),L2
Rpk

)

A shuffle takes a list of ciphertexts and outputs a permuted list of their re-
encryptions. If verifiable, it then runs a proof system to prove that the output
is really a permutation of the re-encryptions of input ciphertexts. This can be
formally defined as follows.

Definition 3. A shuffle is a pair, (RP, S), such that:

– RP is a public-key scheme with a re-encryption function (G, E, D, R). Sup-
pose the algorithm G generates a pair (pk, sk).

– The PPT algorithm S takes as input a public key pk, a list of n input cipher-
texts Lin and a random permutation π ∈ Tn, and outputs a list of n output
ciphertexts Lout. S performs correctly if Lout is a list of re-encryptions of
ciphertexts in Lin permuted by π.

Definition 4. A verifiable shuffle is a tuple, (RP, S, (P,V)), such that:

– RP and S are defined as in Definition 3.
– The proof system (P,V) takes input pk, Lin and Lout from S and proves

that (pk, Lin, Lout) ∈ LRP . The private input to P includes only the witness
w(pk, Lin, Lout) and does not include the private key sk.

3.3 Security Definitions

There are 2 security requirements. Privacy requires an honest shuffle to pro-
tect its secret permutation whereas verifiability requires that any attempt by a
malicious shuffle to produce an incorrect output must be detectable.

We assume an honest verifier for the proof system (P,V).

Verifiability. The proof system proves that the output of the shuffle is a per-
mutation of the re-encryptions of the input ciphertexts. In other words, it is a
proof system for the language LRP . The proof system should satisfy two con-
ditions, completeness and soundness. The completeness condition states that
for all x ∈ LRP , the proof system accepts with overwhelming probability. The
soundness condition means that for all x /∈ LRP the proof system accepts with
negligible probability. In both definitions of completeness and soundness, we
capture the non-uniform capability of the adversary by using a (non-uniform)
auxiliary input t.

Verifiable Shuffles: A Formal Model 67

The private input y of the prover does not include the private key sk but
may include information about the lists of plaintexts L

(p)
in , L

(p)
out and the corre-

sponding probabilistic inputs C
L

(p)
in ,Lin

Epk
, C

L
(p)
out,Lout

Epk
. The following definition is for

interactive proof systems but can be trivially modified for non-interactive proof
systems.

Definition 5. A shuffle (RP, S, (P,V)) is verifiable if its proof system (P,V)
has a polynomial-time V and satisfies two conditions:

– Completeness: For every PPT algorithm A and every positive polynomial
p(), there exists an l0 such that for all l > l0 and t ∈ {0, 1}poly(l), it holds
that

Pr



〈P(y),V〉(pk, Lin, Lout) = 1 given (pk, Lin, Lout) ∈ LRP
where (pk, sk) R← G(1l),

(Lin, Lout)
R← A(pk, t),

y ← w(pk, Lin, Lout)


 > 1− 1

p(l)

– Soundness: For every interactive machine B, every PPT algorithm A and
every positive polynomial p(), there exists an l0 such that for all l > l0 and
t ∈ {0, 1}poly(l), it holds that

Pr




〈B(y),V〉(pk, Lin, Lout) = 1 given (pk, Lin, Lout) /∈ LRP
where (pk, sk) R← G(1l),

(π, Lin, Lout)
R← A(pk, t),

y ← (π, L
(p)
in , C

L
(p)
in ,Lin

Epk
, L

(p)
out, C

L
(p)
out,Lout

Epk
)


 <

1
p(l)

Privacy. First assume the algorithm S performs correctly and the aim is to
model concealment of the permutation. The shuffle is a public key transforma-
tion that hides the permutation through re-encryption. This can be viewed as
’encryption’ of permutation through the process of re-encryption hence using
notions of ’concealment’ of plaintexts in encryption systems to model privacy.
We consider 2 types of adaptive attacks by active adversaries. Chosen permu-
tation attack (CPAS) is similar to chosen plaintext attacks and the adversary
can obtain transcripts of the shuffle executions corresponding to permutations
that the adversary adaptively chooses. Chosen transcript attack (CTAS) is sim-
ilar to chosen ciphertext attacks and the adversary obtains permutations that
correspond to valid shuffle transcripts that it adaptively chooses. The transcript
of a verifiable shuffle’s execution consists of the lists of input ciphertexts and
output ciphertexts and the transcript of the proof system. An adaptive attack
has 4 steps.

• Key generation: A trusted party generates the keys (pk, sk) R← G(1l). The
adversary is given (1l, pk). (sk is used for decryption and is also not given to the
shuffle.)

68 L. Nguyen, R. Safavi-Naini, and K. Kurosawa

• Oracle queries: The adversary (adaptively) uses the information obtained so
far to make queries to some oracles. The types of oracles determine the type
of the attack (CPAS and CTAS). After making a number of such queries, the
adversary moves to the next stage.

• Challenge generation: Using the information obtained so far, the adversary
specifies a challenge template, according to which an actual challenge will be
generated.

• Additional oracle queries: Based on the information obtained so far, the ad-
versary makes additional queries as in Step 2 and then, produces an output and
halts.

The adversary’s strategy consists of two stages, each represented by a PPT
oracle machine, and corresponding to its action before and after generation of the
actual challenge. The first part, denoted by A1, captures the adversary’s behavior
during Step 2 and 3. A1 is given the public key pk, and its output is a pair (τ, δ),
where τ is the challenge template generated at the beginning of Step 3 and δ
is the state information passed to the second part of the adversary. The second
part of the adversary, denoted by A2, captures the adversary’s behavior during
Step 4. A2 is given the state information δ and the actual challenge o generated
in Step 3, and produces the adversary’s output. We let each oracle machine to
have a (nonuniform) auxiliary input t. This is to capture the nonuniform power
of the adversary. It suffices to give t to only the first machine as A1 can pass
this input to the second machine as part of the state information δ. A similar
argument shows that it suffices to provide the public key only to A1. We write
(τ, δ) R← AOracles

1 (pk, t), and v
R← AOracles

2 (δ, o). where Oracles specifies oracles
that are available to the adversary.

Notions of Privacy: We consider two notions of privacy. Semantic privacy
formalizes the intuition that whatever is computable about the permutation from
a shuffle execution transcript must be also computable without the transcript.
In formalising this notion under CPAS and CTAS we consider the following
challenge templates. The challenge template includes a triplet of polynomial-size
circuits Πn, hn, fn and a list of n ciphertexts Lin. Πn specifies a distribution on
the set Tn (of all permutations on {1, ..., n}): it takes poly(l)-bit (l is the security
parameter) input and outputs a permutation π ∈ Tn. The information regarding
the permutation that the adversary tries to obtain is captured by fn, whereas
the a-priori partial information about the permutation is captured by hn. The
actual challenge includes the list of output ciphertexts Lout, the transcript of
the proof system, V iewP

V (pk, Lin, Lout), the partial information hn(π), the list
of n input ciphertexts Lin, the list of n corresponding plaintexts L

(p)
in and the

list of probabilistic inputs C
L

(p)
in ,Lin

Epk
. The inclusion of L

(p)
in and C

L
(p)
in ,Lin

Epk
models

the fact that the adversary can somehow know all the plaintexts of the input
ciphertexts to the shuffle. The adversary’s goal is to guess fn(π).

The second notion of privacy is indistinguishability and means that it is
infeasible to distinguish transcripts of two shuffle executions that correspond to
two permutations of the same size. In the definitions of IND-CPAS and IND-

Verifiable Shuffles: A Formal Model 69

CTAS , the challenge template consists of a pair of permutations π(1), π(2) ∈ Tn

and a list of n ciphertexts Lin. The actual challenge is the transcript of the shuffle
execution corresponding to one of the permutations and consists of the list of
output ciphertexts Lout, the transcript of the proof system V iewP

V (pk, Lin, Lout),
the lists of input ciphertexts Lin and the corresponding plaintexts L

(p)
in , and the

probabilistic inputs C
L

(p)
in ,Lin

Epk
of the input ciphertexts. The adversary’s goal is

to distinguish the two possible cases.

Attacks: We consider two attacks.
(Chosen permutation attack) The adversary has access to two oracles. The first
oracle takes a permutation and a list of input ciphertexts and produces a ci-
phertext list output by the algorithm S and corresponding to the input list,
and the transcript of the proof system (P,V) when the shuffle interacts with
an honest verifier. The second oracle takes a plaintext and returns the cipher-
text encrypted by algorithm Epk corresponding to plaintext. The adversary is
adaptive and queries are chosen by taking the results of all previous queries into
account. We note that in CPAS the adversary can compute all answers to the
queries using public information however using oracles provides consistency in
our presentation.

Definition 6. A verifiable shuffle (RP, S, (P,V)) is said to have semantic pri-
vacy under chosen permutation attack (SP-CPAS) if for every pair of PPT oracle
machines, A1 and A2, there exists a pair of PPT algorithms, A′

1 and A′
2, such

that the following two conditions hold:

1. For every positive polynomial p(), there exists an l0 such that for all l > l0
and t ∈ {0, 1}poly(l), it holds that

Pr




v = fn(π) where
(pk, sk) R← G(1l),
((Πn, hn, fn, Lin), δ) R← A

(S,(P,V)),Epk

1 (pk, t),
Lout

R← S(pk, Lin, π) where π ← Πn(Upoly(l)),

o← (Lout, V iewP
V (pk, Lin, Lout), hn(π), Lin, L

(p)
in , C

L
(p)
in ,Lin

Epk
),

v
R← A

(S,(P,V)),Epk

2 (δ, o)




< Pr




v = fn(π) where
((Πn, hn, fn), δ) R← A′

1(1
l, t),

π ← Πn(Upoly(l)),
v

R← A′
2(δ, 1

n, hn(π))


 +

1
p(l)

2. For every l and t above, the parts (Πn, hn, fn) in the random variables
A

(S,(P,V)),Epk

1 (pk, t) and A′
1(1

l, t) are identically distributed.

Definition 7. A verifiable shuffle (RP, S, (P,V)) is said to provide indistin-
guishability under chosen permutation attack (IND-CPAS) if for every pair of PPT

70 L. Nguyen, R. Safavi-Naini, and K. Kurosawa

oracle machines, A1 and A2, for every positive polynomial p(), there exists an
l0 such that for all l > l0 and t ∈ {0, 1}poly(l), it holds that

|p(1)
l,t − p

(2)
l,t | <

1
p(l)

where

p
(i)
l,t

�
= Pr




v = 1 where
(pk, sk) R← G(1l),
((π(1), π(2), Lin), δ) R← A

(S,(P,V)),Epk

1 (pk, t),
Lout

R← S(pk, Lin, π(i)),

o← (Lout, V iewP
V (pk, Lin, Lout), Lin, L

(p)
in , C

L
(p)
in ,Lin

Epk
),

v
R← A

(S,(P,V)),Epk

2 (δ, o)




where π(1), π(2) ∈ Tn.

The following theorem shows the equivalence of SP-CPAS and IND-CPAS .
The proof is similar to the proof of the equivalence of SS-CPA and IND-CPA
[11].

Theorem 2. A verifiable shuffle (RP, S, (P,V)) provides SP-CPAS if and only
if it provides IND-CPAS.

(Chosen transcript attack) In this attack, in addition to two oracles described
before, the adversary has access to another oracle T , that takes a transcript of a
shuffle execution and returns the corresponding permutation if the transcript is
valid, and an error symbol, otherwise. We assume that in step 4, the adversary
can not use the transcript in the actual challenge as the query to T .

We note that if the shuffle does not provide verifiability, then the adversary
can always learn the permutation. This is because the shuffle transcript consists
of an input and an output ciphertext list and the adversary can use re-encryption
to generate another input and output ciphertext list that he can present to T
and obtain the permutation. For verifiable shuffles, the attack can be prevented
by using proof systems. For example, informally, by adding proofs of knowledge
in the verifiability proof, construction of new valid transcripts from old ones can
be prevented.

Definitions of SP-CTAS and IND-CTAS and the theorem stating their equiv-
alence are quite similar to Definition 6, 7 and Theorem 2 and can be found in
the full version of this paper [21].

3.4 Applications to Some Verifiable Shuffles

The following theorems shows security of the Furukawa-Sako [6], Neff [19] and
Groth [13] verifiable shuffles. The proof of Verifiability (Theorem 3) can be con-
structed from proofs of Completeness and Soundness in the corresponding pa-
pers. The proof of SP-CPAS (Theorem 4) is similar to the verifiable shuffle in
the next section.

Verifiable Shuffles: A Formal Model 71

Theorem 3. Furukawa-Sako shuffle provides Verifiability if Discrete Log As-
sumption holds. Neff shuffle achieves Verifiability with overwhelming probability.
Groth shuffle provides Verifiability if the encryption scheme provides SS-CPA
and the commitment scheme is secure.

Theorem 4. Furukawa-Sako and Neff shuffles provide SP-CPAS if Decisional
Diffie-Hellman Assumption holds. Groth shuffle provides SP-CPAS under con-
ditions specified in Theorem 3.

4 A Verifiable Shuffle Based on Paillier Public-Key
System

4.1 Description

In our verifiable shuffle, the public-key re-encryption scheme RP is the Paillier
scheme. The public key is pk = N and the secret key is sk = λ. The algorithm S
takes pk, a list of Paillier ciphertexts g1, ..., gn ∈ Z∗

N2 and a permutation π and
outputs another list of Paillier ciphertexts g′

1, ..., g
′
n ∈ Z∗

N2 . The proof system
(P,V) is described in the next subsection.

4.2 Proof System

The proof system (P,V) proves that the prover P knows permutation π and
r1, ..., rn ∈ Z∗

N so that g′
i = rN

i gπ−1(i). The input to the proof system is N ,
{gi}, {g′

i}, i = 1, ..., n. Suppose there is a publicly known set {g̃i}ni=1 of elements
in Z∗

N2 , which is generated randomly and independently from the ciphertexts.
Therefore if DCRA holds, then it is easy to show that without knowing the
secret key sk, it is infeasible to obtain non-trivial {ai} so that there exists z ∈ Z∗

N

satisfying
∏n

i=1 g̃i
ai = zN in polynomial time. Represent the permutation π by

a permutation matrix (Aij)n×n, the protocol is as follows:

1. P generates: αi ∈R ZN , α, r̃i, α̃, δi, ρ, ρi, τ, τi ∈R Z∗
N , i = 1, ..., n

2. P computes:

g̃i
′ = r̃i

N
n∏

j=1

g̃j
Aji ; ẇi = τN

i (1 + N

n∑
j=1

2αjAji), i = 1, ..., n; g′ = αN
n∏

j=1

g
αj

j

g̃′ = α̃N
n∏

j=1

g̃j
αj ; v̇ = ρN (1 + N

n∑
j=1

α3
j); ẇ = τN (1 + N

n∑
j=1

α2
j)

ṫi = δN
i (1 + N

n∑
j=1

3αjAji); v̇i = ρN
i (1 + N

n∑
j=1

3α2
jAji), i = 1, ..., n

3. P −→ V: {g̃i
′}, g̃′, g′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, i = 1, ..., n

4. P ←− V: challenge {ci}, ci ∈R ZN , i = 1, ..., n

72 L. Nguyen, R. Safavi-Naini, and K. Kurosawa

5. P −→ V: the following responses

si =
n∑

j=1

Aijcj + αi mod N, i = 1, ..., n; s̃ = α̃

n∏
i=1

r̃i
ci g̃i

di mod N

s = α

n∏
i=1

rci
i gdi

i mod N ; u = ρ

n∏
i=1

ρci
i δ

c2
i

i mod N ; v = τ

n∏
i=1

τ ci
i mod N

where di = (
∑n

j=1 Aijcj + αi − si)/N, i = 1, ..., n (so di can only be 0 or 1)
6. V verifies:

s̃N
n∏

j=1

g̃j
sj = g̃′

n∏
j=1

g̃j
′cj ; uN (1 + N

n∑
j=1

(s3
j − c3

j)) = v̇

n∏
j=1

v̇j
cj ṫj

c2
j

sN
n∏

j=1

g
sj

j = g′
n∏

j=1

g
′cj

j ; vN (1 + N

n∑
j=1

(s2
j − c2

j)) = ẇ

n∏
j=1

ẇj
cj

4.3 Security

The proposed shuffle provides Verifiability and SP-CPAS under DCRA, as stated
in Theorem 5 and Theorem 8.

Theorem 5. The shuffle achieves Verifiability if DCRA holds.

To prove Theorem 5, we need Theorem 6 and Theorem 7. The rest of the proof
of Theorem 5 is quite similar to the Completeness and Soundness proofs of
Furukawa-Sako scheme [6] and can be found in the full version of this paper [21].

Theorem 6. A matrix (Aij)n×n is a permutation matrix modulo N or there
exists i′, j′ such that gcd(Ai′j′ , N) = p, if for all i, j, k, both

n∑
l=1

AliAlj =
{

1 mod N if i = j
0 mod N otherwise (1)

n∑
l=1

AliAljAlk =
{

1 mod N if i = j = k
0 mod N otherwise (2)

hold.

Proof. Suppose a matrix (Aij) satisfying (1) and (2), then (Aij) is a permutation
matrix mod p and also a permutation matrix mod q, based on Theorem 1.
Therefore, if (Aij) is not a permutation matrix mod N , then there exists i′, j′

such that Ai′j′ = 0 mod p and Ai′j′ = 1 mod q. It leads to gcd(Ai′j′ , N) = p.

Theorem 7. Denote 〈S〉k the vector space spanned by a set of vectors S in
modular k and |S| the number of elements in S. Suppose a set of vectors Sn =
{(1, c1, ..., cn)|(c1, ..., cn ∈ ZN) ∧ (�Qn ⊆ Sn : |Qn| = n + 1 ∧ 〈Qn〉p = Zn+1

p ∧
〈Qn〉q = Zn+1

q)}. Then |Sn| ≤ (p + q)Nn−1.

Verifiable Shuffles: A Formal Model 73

Proof. It is proved by induction as follows

– n = 1: Suppose a set of vectors S1 ⊆ {(1, c)|c ∈ ZN} satisfying |S1| > (p+q);
and a vector (1, c1) ∈ S1. Consider a set R1 = {(1, c1 + kp mod N)|k ∈
Zq}∪{(1, c1 +kq mod N)|k ∈ Zp}. As |R1| = p+ q−1, there exists c′

1 ∈ ZN

so that (1, c′
1) ∈ S1 but (1, c′

1) /∈ R1. Then Q1 = {(1, c1), (1, c′
1)} satisfying

|Q1| = 2 ∧ 〈Q1〉p = Z2
p ∧ 〈Q1〉q = Z2

q)}.
– Assume it is right for n. We prove it is also right for n + 1. Let a set Sn+1 =
{(1, c1, ..., cn+1)|(c1, ..., cn+1 ∈ ZN) ∧ (�Qn+1 ⊆ Sn+1 : |Qn+1| = n + 2 ∧
〈Qn+1〉p = Zn+2

p ∧〈Qn+1〉q = Zn+2
q)}. Consider S′

n = {(1, c1, ..., cn)|∃cn+1 ∈
ZN : (1, c1, ..., cn, cn+1) ∈ Sn+1}, there are two possibilities:
1. If �Q′

n ⊆ S′
n : |Q′

n| = n + 1 ∧ 〈Q′
n〉p = Zn+1

p ∧ 〈Q′
n〉q = Zn+1

q , then
|S′

n| ≤ (p + q)Nn−1, as the theorem is right for n. So |Sn+1| ≤ |S′
n|N ≤

(p + q)Nn.
2. If ∃Q′

n ⊆ S′
n : |Q′

n| = n + 1 ∧ 〈Q′
n〉p = Zn+1

p ∧ 〈Q′
n〉q = Zn+1

q , select a
set T of n + 1 vectors (1, ci1, ..., ci(n+1)) ∈ Sn+1, i = 1, ..., n + 1 so that
Q′

n = {(1, ci1, ..., cin)}

Let d = det


 1 c11 ... c1n

..
1 c(n+1)1 ... c(n+1)n


 mod N , then gcd(d, N) = 1, so d−1

mod N exists.
For each vector x = (1, x1, ..., xn+1) ∈ Sn+1 (including those in T), let

dx = det




1 c11 ... c1(n+1)
..
1 c(n+1)1 ... c(n+1)(n+1)
1 x1 ... xn+1


 = dxn+1 − F (x1, ..., xn) mod N

for some function F. The conditions of Sn+1 leads to either dx = 0 mod
p or dx = 0 mod q.
Suppose dx = 0 mod p, then xn+1 = d−1F (x1, ..., xn) mod p, so the
number of possible vectors x = (1, x1, ..., xn+1) is no more than qNn.
Similar for the case dx = 0 mod q, the number of possible vectors x =
(1, x1, ..., xn+1) is no more than pNn. So |Sn+1| ≤ (p + q)Nn.

Theorem 8. The shuffle achieves SP-CPAS if and only if DCRA holds.

Based on Theorem 2, proving Theorem 8 is equivalent to proving Theorem 9
below. We need Definition 8 and Lemma 1 to prove Theorem 9. Proof of Lemma
1 can be found in the full version of this paper [21].

Definition 8. Define Rm to be the set of tuples of m elements in Z∗
N2 and

subset Dm of Rm to be the set of tuples of m N -th residues modulo N2. We
then define the problem of distinguishing instances uniformly chosen from Rm

and those from Dm by DCRAm.

Lemma 1. For any m ≥ 1, DCRAm is easy if and only if DCRA is easy.

74 L. Nguyen, R. Safavi-Naini, and K. Kurosawa

Theorem 9. The shuffle achieves IND-CPAS if and only if DCRA holds.

Proof. Suppose the challenge template includes two permutations π(1), π(2) ∈ Tn

and a list of ciphertexts Lin = (g1, ..., gn). The actual challenge o to the adversary

includes Lin, the list of corresponding plaintexts L
(p)
in , C

L
(p)
in ,Lin

Epk
, a list of re-

encryption ciphertexts Lout = (g′
1, ..., g

′
n) and

V iewP
V (pk, Lin, Lout) = ({g̃i}, {g̃i

′}, g̃′, g′, {ṫi}, {v̇i}, {ẇi}, v̇, ẇ, {ci}, {si}, s̃, s, u, v)

satisfying: g′ = sN
∏n

j=1 g
sj

j g
′−cj

j , v̇ = uN (1+N
∑n

j=1(s
3
j−c3

j))
∏n

j=1 v̇j
−cj ṫj

−c2
j ,

g̃′ = s̃N
∏n

j=1 g̃j
sj g̃j

′−cj , ẇ = vN (1 + N
∑n

j=1(s
2
j − c2

j))
∏n

j=1 ẇj
−cj .

Compute Iπ(1) = (h1, .., hn, h̃1, .., h̃n, t1, .., tn, v1, .., vn, w1, .., wn), where

αi = si − cπ(1)(i) mod N ; hi = g′
i/gπ−1

(1)(i)
, i = 1, ..., n

h̃i = g̃i
′/g̃π−1

(1)(i)
; ti = ṫi/(1 + N3απ−1

(1)(i)
), i = 1, ..., n

vi = v̇i/(1 + N3α2
π−1
(1)(i)

); wi = ẇi/(1 + N2απ−1
(1)(i)

), i = 1, ..., n

Then π(1) is the permutation used for the actual challenge o if and only if Iπ(1) ∈
D5n. Therefore, based on Lemma 1, if the actual challenge o is computationally
distinguishable under chosen shuffle attacks, then DCRA is easy, and vice-versa.

4.4 Efficiency

The proposed shuffle has the round efficiency (3 rounds) and the number of
exponentiations (about 18n) of Furukawa-Sako protocol, compared to Groth’s
protocol with a 7 round proof. The shuffle has less rounds and requires smaller
number of exponentiations compared to Neff’s protocol with 7 rounds and 23n
exponentiations. (Note that exponentiations in our case is modulo N2 which is
more expensive than modulo p and so the number of bit operations in Furukawa-
Sako’s shuffle is smaller.) Compared with Furukawa-Sako and Groth’s proof sys-
tem, our proposed proof system has a more efficient initialization phase. In both
those systems for El Gamal ciphertexts, a set of subgroup elements is used.
Construction of these elements in general is computationally expensive [19]. Our
proof system also relies on a set ({g̃1, ..., g̃n}) of elements of Z∗

N2 that are just
randomly generated.

References

1. M. Abe and H. Imai. Flaws in Some Robust Optimistic Mix-nets. ACISP 2003,
LNCS 2727, pp. 39-50.

2. S. Brands. An efficient off-line electronic cash system based on the representation
problem. CWI Technical Report CS-R9323, 1993.

3. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84-88, 1981.

Verifiable Shuffles: A Formal Model 75

4. S. Choi and K. Kim. Authentication and Payment Protocol Preserving Location
Privacy in Mobile IP. GLOBECOM 2003.

5. P. Fouque and D. Pointcheval. Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks. Asiacrypt 2001, LNCS 2248, pp. 351-369.

6. J. Furukawa and K. Sako. An Efficient Scheme for Proving a Shuffle. Crypto 2001,
LNCS 2139, pp. 368-387.

7. J. Furukawa, H. Miyauchi, K. Mori, S. Obana and K. Sako. An Implementation
of a Universally Verifiable Electronic Voting Scheme based on Shuffling. Financial
Cryptography 2002, LNCS 2357.

8. J. Furukawa. Efficient, Verifiable Shuffle Decryption and Its Requirement of Un-
linkability. PKC 2004, LNCS 2947, pp. 319-332.

9. E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. How to make personalized Web
browsing simple, secure, and anonymous. Financial Cryptography 1997, LNCS
1318, pp. 17-31.

10. O. Goldreich. Foundations of Cryptography, Basic Tools. Cambridge University
Press 2001.

11. O. Goldreich. Foundations of Cryptography, Basic Applications. Cambridge Uni-
versity Press 2004.

12. P. Golle, S. Zhong, D. Boneh, M. Jakobsson and A. Juels. Optimistic Mixing for
Exit-Polls. Asiacrypt 2002, LNCS 2501, pp. 451-465.

13. J. Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions. PKC 2003,
LNCS 2567, pp. 145-160.

14. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via cipher-
texts. Asiacrypt 2000, LNCS 1976, pp. 162-177.

15. A. Juels. Targeted advertising and privacy too. RSA Conference Cryptographers’
Track 2001, LNCS 2020, pp. 408-425.

16. J. Kong and X. Hong. ANODR: ANonymous On Demand Routing with Untrace-
able Routes for Mobile Ad-hoc Networks. Fourth ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc) 2003, pp. 291-302.

17. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen
Ciphertexts Attacks. ACM STOC 1990, pp. 427-437.

18. A. Neff. A verifiable secret shuffle and its application to e-voting. ACM CCS 2001,
pp. 116-125.

19. A. Neff. Verifiable Mixing (Shuffling) of ElGamal Pairs.
http://www.votehere.org/vhti/documentation/egshuf.pdf.

20. L. Nguyen and R. Safavi-Naini. Breaking and Mending Resilient Mix-nets. Privacy
Enhancing Technologies workshop (PET) 2003, LNCS 2760, pp. 66-80.

21. L. Nguyen, R. Safavi-Naini and K. Kurosawa. Verifiable Shuffles: A Formal Model
and a Paillier-based Efficient Construction with Provable Security. Full version.
Email: ldn01@uow.edu.au.

22. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. Eurocrypt 1999, LNCS 1592, pp. 223-239.

23. A. Shamir. How to Share a Secret. Communications of the ACM, 22:612-613, 1979.
24. D. Wikstrom. The security of a mix-center based on a semantically secure cryp-

tosystem. Indocrypt 2002, LNCS 2551, pp. 368-381.
25. D. Wikstrom. Five Practical Attacks for ”Optimistic Mixing for Exit-Polls”. SAC

2003, LNCS 3006.

	Introduction
	Background
	Public-Key Encryption Schemes
	Paillier Public-Key System
	Furukawa-Sako Shuffle

	Security of Verifiable Shuffles
	Notation and Terminology
	Syntax of Shuffles
	Security Definitions
	Applications to Some Verifiable Shuffles

	A Verifiable Shuffle Based on Paillier Public-Key System
	Description
	Proof System
	Security
	Efficiency

