FASTer Acceleration of Counter Automata in
Practice

Sébastien Bardin, Alain Finkel, and Jéréme Leroux

LSV, CNRS UMR 8643
ENS de Cachan
61 avenue du président Wilson
F-94235 CACHAN Cedex
FRANCE
{bardin,finkel,leroux}@lsv.ens-cachan.fr

Abstract. We compute reachability sets of counter automata. Even
if the reachability set is not necessarily recursive, we use symbolic
representation and acceleration to increase convergence. For functions
defined by translations over a polyhedral domain, we give a new
acceleration algorithm which is polynomial in the size of the function
and exponential in its dimension, while the more generic algorithm is
exponential in both the size of the function and its dimension. This
algorithm has been implemented in the tool FAST. We apply it to a
complex industrial protocol, the TTP membership algorithm. This
protocol has been widely studied. For the first time, the protocol is
automatically proved to be correct for 1 fault and N stations, and using
abstraction we prove the correctness for 2 faults and N stations also.

Keywords: acceleration, counter automata, reachability set, convex
translation, TTP protocol.

1 Introduction

Context. Many real systems are infinite, because of parameters or unbounded
data structures, such as counters, queues or stacks. We focus here on systems
modelled by counter systems, i.e. automata extended with unbounded integer
variables. Counter systems are a valuable abstraction since they allow to model a
large range of complex systems, from communication protocols to multithreaded
JAVA programs [Del|l. Moreover many well-known models, reset/transfert Petri
nets [DFS98], Broadcast protocols [EFM99] are subcases of counter systems. In
general, reachability properties are undecidable for counter systems.

Counter systems. Let us recall that Presburger arithmetics is the first order
additive theory < N™, < + >. This theory is decidable, and Presburger sets
(i.e. sets defined by a Presburger formula) can be represented symbolically by

means of automata [BCIGIWBO0ILer03b]. This representation is closed under
common operations and both emptiness and inclusion are decidable. Moreover,

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 576-[590] 2004.
© Springer-Verlag Berlin Heidelberg 2004

FASTer Acceleration of Counter Automata in Practice 577

the successor and predecessor of a Presburger set by an affine function are still
Presburger sets. Thus the automata representation provides an efficient way
to perform model-checking (or at least to check safety properties) on counter
systems, building the reachability set of the system and testing for the inclusion
with Presburger sets representing the property to verify. Several symbolic model-

checkers use this framework [ALVILAS|FAS].

State of the art. However, for a general counter system, the reachability set is
not necessarily a Presburger set nor a recursive set. The classical fixpoint com-
putation algorithm, consisting in firing one by one the transitions of the system
until all the reachable states have been computed, may not terminate. A solution
to help convergence is to use acceleration. Acceleration allows to compute in one
step the exact effect of iterating an arbitrary number of times a control loop of
the counter system. Acceleration is also called meta-transition [BW94] or exact
widening in abstract interpretation. In [BW94Boi98], it is proved that, given a
convex polyhedral set S, under some algebraic conditions on the affine function
o, post’(S) and prel(S) are also computable Presburger sets. Actually, we can
even compute the transition relation as a Presburger formula. In [FL02], this
result is extended to all Presburger sets.

The problem comes down to finding the good cycles whose accelerations will
lead to the reachability set computation. An important step is the reduction
result given in [FLO02], which allows to replace a set C' of cycles of length k (|C|
is exponential in k) by another equivalent set of cycles C’, such that |C’| is
polynomial in k.

Tools for acceleration. To the best of our knowledge, three symbolic model-
checkers (LAsH,FAST, TREX) with acceleration are available for counter systems.
LAsH and FAST use the automata representation for Presburger sets. LASH is lim-
ited to convex guards and the user has to provide cycles to accelerate. FAST has
full Presburger guards and can find automatically cycles to acccelerate. TREX
[TRE] is designed to verify timed counter systems. TREX uses Constrained Para-
metric DBMs [AABO0)] instead of automata to represent symbolic sets. Untimed
models of TREX are restrictive counter systems, because guards and actions are
strictly included in those of FAST and LASH. In the other hand, dense clocks are
allowed and in particular cases, non linear sets may be computed.

Our results. In this paper, we focus on applying effectively acceleration tech-
niques on counter systems. We investigate the specific case of counter automata,
where functions are translations over convex polyhedral domains.

1. We give a 3-EXPTIME bound in the size of the domain for the generic Pres-
burger acceleration. For counter automata, we give a simpler acceleration
formula (polyhedral acceleration), which is proved to be at most quadratic in
the size of the domain. [BW94Boi98| also investigate functions with convex
domains, but they are not restricted to translations. Thus their acceleration

578 S. Bardin, A. Finkel, and J. Leroux

cannot be expressed so easily than ours, and even if the resulting automata
are the same, the intermediate computations are likely to be smaller with
our formula. No complexity result is given in [BW94]Boi9§].

2. The polyhedral acceleration is implemented in the tool FAST and applied
to a non-trivial case study, the membership algorithm of the TTP protocol.
This protocol was proved manually to be correct for k faults and N stations
in [BM02] and a non-automatic verification with LASH and ALV is performed
for 1 fault and N stations. In this paper, the protocol is verified fully auto-
matically for 1 fault and N stations, and using abstraction it is verified for
2 faults and N stations.

Outline. Section 2 gives basic definitions and an overview of the main results
on acceleration for counter systems. Section Bl investigates the specific case of
counter automata, and gives the polyhedral acceleration algorithm. Finally in
section Ml FAST is used to verify the complex industrial TTP protocol.

2 Acceleration of Counter Systems

2.1 Counter Systems

We are interested in accelerating transitions for counter systems whose transi-
tions are guarded affine functions. Firstly we introduce Presburger arithmetics,
which is the first order theory < N <, 4 >. Then we describe counter systems.

Definition 1 (Presburger logic). Consider a finite set X of free variables x.
The set of Presburger formulas ¢ over X is defined by the grammar:
to=0l1|x|t —t|t+t
o =1t < t|-d|o V o|Ty; dltrue

Definition 2 (Presburger-linear function [FLO02]). A Presburger-linear
function f over m counters is a tuple f = (M,v, D) such that Vax € D, f(x) =
M.x + v, with M a square matriz, v a vector and D C N™ a Presburger set
called the guard of f.

Definition 3 (Counter systems). A counter system over m counters L is a
tuple L = (X, fx) where X is a finite alphabet of actions and fx, = {f,;a € X'}
18 a set of Presburger-linear functions over m counters.

Remark 1. We can add a control structure to a counter system without changing
the expressibility of the models, encoding control states as a variable.

Definition 4 (The monoid of a counter system). We call the monoid of
a counter system L the multiplicative monoid generated by the set of square
matrices {M,; a € X} of L. When L is composed of a unique function f(s) =
M.s + v, then this monoid is simply written < M >.

Counter systems with a finite monoid have nice acceleration properties and
appear to be well-spread in practice. For example all transfer/reset/inhibitors
Petri Nets and all Broadcast protocols are counter systems with a finite monoid.

FASTer Acceleration of Counter Automata in Practice 579

2.2 Unambiguous Binary Automata

The automata approach is very fruitful to represent Presburger sets. An integer
is represented by its encoding into a basis 7. Then a set of integers is represented
by an automaton whose associated language is exactly this set [BC96]. Num-
ber Decision Diagrams (NDDs) [Boi98/WB0(] are usually used to represent any
Presburger set of N. Unambiguous Binary Automata (UBA)
is a similar approach, but they are proved to be smaller than NDDs [Ler(03a].
Let |A| be the number of states of the automaton A. Recall these results
useful to bound the size of the UBA A(X) when X is defined by a first order
formula (these results are deduced from results on NDDs summarized in [BB02]):
— the UBA A(X) where X = {z € N™; Y} .z #c} with a;, ¢ € Z and # €
{<,>,=} can be computed in time and space bounded by m.(}_ ;" |a;| +
c|)+ 1.
- ‘lch|<)e UBA A(X) where X = {z € N™; 3" «a,.2; = c[k]} with a;,c,k € Z
and c[k] denotes ¢ modulo k, can be computed in time and space bounded
by 2.m.|k| + 1.
— the UBA A(X NY) can be computed in time and space bounded by
JAX)[-|A(Y)]-
— the UBA A(I1(X)) where IT is a projection function (removing some com-
ponents) can be computed in time and space bounded by m. 2!
— the UBA A(N™\X) can be computed in time and space bounded by | A(X)].

2.3 Main Results on Acceleration

Let f be a function, and S a set, we define the acceleration of f, denoted f*,
by f*(S) = Usen f/(S). R} is the relation associated with f*. The results on
acceleration are summarised in this section. We denote by ||v[|,, the infinite
norm of the vector v, and by F' the function f with no guard.

Acceleration of a cycle. In [FL0O2] it is proved that for a Presburger-linear
function f = (M,v, D) with a finite monoid, the transition relation R’ can be
computed as a Presburger formula, of the form

R} ={(x,2')|lx € DA (Fk > 0;2" = F*(x) A (Vi;0 < i < k, F'(z) € D))} (1)

This result extends the one of [Baid8] which is restricted to affine functions
over convex guards. No complexity result is given in the literature for this con-
struction. We propose an upper-bound of the complexity.

Proposition 1. Let f = (M,v,D) be a Presburger linear function with o fi-
nite monoid. An UBA that represents the relation R} can be computed in 3-
EXPTIME in |A(D)|, |[v||,, and ||M||, and 5-EXPTIME in m.

Remark 2. Getting an exponential lower-bound is an open problem. However it
seems that this bound can be reached in the worst case.

Remark 3. In practice m, ||v|| and ||[M]|_, are small (< 100), while |A(D)]| can
be very large (from 100 up to several millions, see section Bl).

580 S. Bardin, A. Finkel, and J. Leroux

Finding the good cycles. Acceleration allows to help the convergence of the
reachability set computation. Now the problem is to find the sequence of good
cycles to accelerate, i.e. cycles whose acceleration will lead to the reachability
set computation. But for a finite counter system L = (X, fx), the number of
Presburger-linear functions in the set Cy, = {f,; ¢ € =¥} may be exponential
in k. However, this exponential number of functions can be reduced to a set of
Presburger-linear functions [C] with a polynomial size in &k [FL02].

2.4 The Tool FasT and Its Heuristic

Fast [BFLP03] is a tool dedicated to the analysis of counter systems, using
symbolic representation with automata and acceleration. To find the cycles to
accelerate, FAST provides an automatic search, which is often sufficient (all the
examples on the FAST Web page [FAS] have been verified fully automatically).

We present the heuristic used in FAST to compute the reachability set of an
initial set Sy, given a finite counter system L. The semi-algorithm we propose
can be seen as an extension of the semi-algorithm presented in [Boi98]. The basic
idea is to add cycles to the initial set of linear transitions, and to accelerate them.
These cycles are called meta-transitions. In cycles to be accelerated are
provided by the user. Here we want these cycles to be found automatically.

Our problem is divided into two separate steps: the computation of the in-
teresting cycles from a set of transitions, and the search heuristic given a set
of cycles. For the cycles computation, the main problem is the potentially expo-
nential number of cycles. For the search heuristic, the problem is the automata
explosion problem. Because there is no relationship between the size of the set
which is represented and the size of the automaton which represents it, choosing
a bad function can lead to a set whose representation by automata is very large,
and thus, the subsequent operations will take too much time.

The cycle computation. We make the assumption that, in pratical cases,
good cycles have a small length. So we do not try to consider all the cycles at
once, but only all the cycles of length less or equal to a constant k. We compute
the cycles in a static and incremental way. Static because the set of cycles we
use is fixed during the search. Incremental because if the search fails (according
to a stop criterion), the length of cycles is increased and a new search is done.
To efficiently compute the cycles, we use the reduction result from section 2

(0) k1

(1) Compute Cy, the reduced set of cycles of length < k
(2) Use the search algorithm with Sy and LU Cj,

(3) if a fixpoint S is found then return S

else (the stop criterion is met) do k < k + 1, goto (1)

FASTer Acceleration of Counter Automata in Practice 581

The search heuristic. The main point is to overcome the automata explosion
problem. For this purpose, we introduce in the classic fixpoint algorithm a min-
1mization step where we only try to reduce the size of the automaton computed
so far. Thus our heuristic can be seen as two nested greedy algorithms. The
first one tries to build new states (new states first). Once it is done we enter
the minimization step (smaller automaton first), where transitions are chosen if
they lead to smaller automaton. When it is not possible anymore, we come back
to the first part. The search finishes when a fixpoint is found or when the stop
criterion is met. Moreover, we choose the transitions to be fired with fairness
assumptions, in order to avoid choosing always the same.

S So

while there exists f such that f*(S) reaches new states do
S f4(9)
while there exists f such that |A(f*(S))| < |.A(S)| do

S f(5)

end while

end while

return S

The stop criterion. Building a good stop criterion is not easy. After lots of
experiments, we distinguish two simple and relevant factors to know when to
increase cycle length. The first factor is the size of the automaton built. When it
becomes too large, computation cannot be managed anymore and so the semi-
algorithm will certainly not terminate within reasonable time. The second factor
is the depth of the search. After lots of experiments, it seems that when the
heuristic finishes, it ends rather quickly. So if the search is going too deep, the
cycle length is probably too small.

In FAST, the user can define the maximal depth and the maximal size of the
automaton. In practice, it is not very difficult to use, because the default setup
(no limit on the size, 100 for the maximal depth) is often sufficient.

3 Acceleration of Counter Automata

3.1 The Generic Acceleration May Be too Complex

The generic acceleration technique we use may be very expensive and lead to
very large automata. In practice it works well, but there are few examples where
FAST cannot compute an accelerated transition relation because the automata
manipulated are too large.

For example, considering the transition in figure [l when FAST tries to com-
pute the acceleration of the transition relation, the size of the internal automata
explodes and the tool stops. This is due to the fact that we use MONA

582 S. Bardin, A. Finkel, and J. Leroux

as an automata library. In this library, the number of states of the automata is
limited (to 224), and during the computation this limit is exceeded. This example
is taken from the TTP protocol (see sectionH). It is the only practical example
we found which brings MONA, and thus FAST, out of its limits.

Cpl > N/\sz < NAdi1 <Ci1 A
dy + di1 —dA1 — dF11 — dAo + dFio — do — dio — doo + dAoo + dFoo <0
— dF' :=dF +1,Cp} := Cp1+1,Cp5 := Cpa+1,dF{, :== dF11 +1,C1; == C11+1

Fig. 1. A transition which brings FAST out of its limits

3.2 A Simpler Acceleration for Counter Automata

We can notice that the example above belongs to a particular case: functions
are translations over a (convex) polyhedral domain.

Definition 5 (convex translation). A convex translation f is a Presburger-
linear function f = (I,v, D) where I is the identity matriz and D is a polyhedron.

Definition 6 (counter automaton). A counter automaton L is a counter
system whose functions are all convex translations.

In such a case we can use a simpler acceleration formula, because we do not
need to test if all the successors are in the guard. As long as the first element
and the last element are in the guard, the intermediate elements are in the guard
as well. The transition relation can be computed as

Ry ={(x,2")|lx € DA Bk > 0;¢' = F*(x) ANk > 0= F* () € D)} (2)

study functions over convex domains, but because these func-
tions are not restricted to translations they cannot use the above argument. We
will present in the following an acceleration formula based on ideas from (2)
which is proved to be quadratic in the domain of the function.

Proposition 2. Let f = (I,v, D) be a convex translation. The accelerated tran-
sition relation of f is equal to:

R} =TU{(z,2") € Dx (D +v); 2’ —z € N} (3)

Proof. Let R = {(z,2') € D x (D +v); — 2’ € Nw}. Consider (z,2') € R}
and let us prove that (z,2’) € I UR. There exists n > 0 such that 2’ = f"(z) =
z+nw. If n =0 then (z,2') = (z,2) € I UR. Otherwise, we have n > 1. From
frY(x) € D, we deduce f"(z) € f(D) = D+wv. Therefore (x,2') € TUR. Let us
prove the converse by considering (x,2’) € TUR. Remark that if (x,2’) € I, then
(z,2') € R}. So we can assume that (z,2) ¢ I. In this case, (z,2") € D x (D +v)

FASTer Acceleration of Counter Automata in Practice 583

and there exists n > 1 such that 2/ = z + n.v. As x +n.v € D + v, we have
x4+ (n—1).v € D. As D is a convex set and = and = + (n — 1).v € D, for any
ke {0,...,n—1}, we have F*(z) = x + k.v € D. Therefore 2’ = f"(z) and we
have proved (z,z') € R}. O

Theorem 1. Let f = (I,v,D) be a convex translation. An UBA A(R}) repre-
senting the relation R} can be computed in time and space bounded by

AR} < [AD)? A.(4.m.[[v]| o +1)>™

Proof. Let us consider the relation R = {(z,2') € NxN; 2/ — 2 € N.w} and let
In={ie{l,...,m}; v; #0}tand I = {i € {1,... ,m}; v; = 0}. Remark that if
Io =0 then R} = I and in this case [A(R})| = 4. So, we can assume that there
exists an index ig € Iy. We denote by ¢ the Presburger fomula ¢ := (:réo —z;, > 0)
if v;, >0 and ¢ := (z], — x4, < 0) otherwise.

Let a[b] denote the value a modulo b. We now prove that R is defined by the
following Presburger formula:

o\ @i=z) N\ (@ —wi)vig = (@, —mig) i) \ (2] — 2 = O[vy))

iel i€Io\{io} iely

Let (z,2') € R. There exists n > 0 such that 2’ — x = n.v. For every i € I,
we have z; = z;. Moreover, for every i € Iy, we have z} — z; = n.w; and
Ti — T, = n.v,. Hence (v] — x;)w;, = (@] — 4,).v; and x; — x; = Ov;].
From xgo — xi, = N,.Vi,, we deduce that ¢ is true. Let us prove the converse by
considering a tuple (z,2") such that ¢ is true and for every ¢ € I, we have 2, = x;
and for every i € Iy we have (z} — z;).v;, = (2], —x4,).v; and x; —x; = O[v;]. As
x}, — x; = O[v;], there exists n; € Z such that =} — z; = n;.v;. From the equality
(2 — xi).viy = (2], — Tiy)-vi, we deduce n;.v;.v;, = N4,V As V.05, # 0, we
have n; = n;, for every i € Iy. In particular, we have 2’ = x + n;,.v. As ¢ is
true, we deduce n;, > 0 from @} — z;, = n4,.v;,. So (z,2") € R.

An UBA that represents ¢ or (z; = x;) can be computed in time and space
bounded by 2.m+1. We can also compute an UBA that represents (z} —x;).v;, =
(], —xi,)-v; in time and space bounded by m.(2.|vi, [+2.]v;])+1 < 4.m. ||v]]| +1.
Moreover, we can compute an UBA that represents z} — 2; = 0[v;] in time and
space bounded by 2.m.|v;| +1 < 2.m. ||v|| + 1. Therefore, we can compute an
UBA that represents R in time and space bounded by (4.m. |[v|| + 1)*™.

From the equality R} = I U ((D x (D +v)) N R), we deduce that R} is
computable in time and space bounded by |A(I)|.]A(D)|.]A(D+v)|.]A(R)|. From
[BB03], we deduce that an UBA that represents D + v can be computed in time
and space bounded by |A(D)|.(m. ||v||,, +1)™. Moreover, recall that |A(I)| = 4.

We have proved that R can be computed in time and space bounded by:

|A(D) > 4.(4.m. ||v|| + 1)*™.(m. ||v]| o, +1)™
< JA(D)24.(4.m.||v]| +1)>™

584 S. Bardin, A. Finkel, and J. Leroux

Remark 4. For the polyhedral acceleration, the complexity is quadratic in the
size of the automaton representing the guard D, polynomial in |[v|| and ex-
ponential in the number of counters m. This is a major improvement compared
to the generic case (section B)), where the complexity is 3-EXPTIME in the
size of the automaton representing the guard D, 3-EXPTIME in |[[v|| and
5-EXPTIME in m. Note that the resulting automaton is the same (the repre-
sentation is canonical), the difference is on the intermediate automata.

Results. With this simpler acceleration formula, the acceleration relation of the
transition of figure[ll can be computed, avoiding the automata explosion problem.
The computation takes 18 seconds, 260 Mbytes (!). The resulting automaton has
413,447 states. For comparison, automata representing accelerations of transi-
tions in [FAS] have roughly 300 states.

4 FAsT in Practice: The TTP/C

This section describes the verification of the TTP/C protocol with FAST. In
previous work, the protocol has been semi-automatically verified by the tools
ALv and LasH for N stations (microprocessors) and 1 fault, but the tools fail
for 2 faults. Here FAST verifies the protocol fully automatically for N stations
and 1 fault, and using abstraction the protocol is verified for N stations and 2
faults.

4.1 Presentation of the TTP Protocol

The TTP is used in car industry to manage embedded microprocessors.
We focus here on the group membership algorithm of the TTP. It is a fault-
tolerant algorithm. It ensures that if a fault occurs, after a certain amount of
time the embedded microprocessors which are still valid keep on communicating
with each other, without any partition among the microprocessors. We were
interested in verifying such a protocol since it is a complex industrial case study
which needs a very expressive model, with two causes of infinity: the number of
stations and the number of faults.

The time is divided into rounds. Each round is divided into as many slots of
communication as the number of stations (microprocessors). Each station s; has
a membership list stating which stations s; are considered as invalid. During a
slot, only one station sends a message, the others are listening. A sender sends
its membership list to all listeners. A listener which receives a list different
from its own list considers the message as invalid (and updates its own list).
When a station receives in a round more invalid messages than valid ones, the
station considers itself as invalid. It becomes inactive (it listens but does not
send anymore). The goal of the membership algorithm is to ensure that after
a certain amount of time following a fault, the system reaches a configuration
where the active stations are all corresponding with each other, i.e. they have
all the same membership list. For a more complete description, one can refer to

[KGOHBMO]

FASTer Acceleration of Counter Automata in Practice 585

4.2 Previous Non-automatic Verification of the TTP

There have been lots of studies on the TTP protocol in general, and on its
membership algorithm in particular. We start from the work of Merceron and
Bouajjani. In [BM02] they propose a family of counter systems abstractions,
depending on the number of faults considered. They prove manually that the
algorithm is valid for any number of stations N and any number of faults k.
Actually they prove more: the algorithm stabilizes within two rounds after the
k-ieth fault occurs.

They also try to prove automatically with different tools (LASH and ALV) the
correctness of the protocol. For 1 fault and N stations, they verify it in a “user-
guided way”: they divide the protocol in two submodules. They compute the
reachability set of the first submodule and prove automatically a nice property on
it (true only for 1 fault). Then they use this property to simplify the computation
of the second submodule. For N stations and more than 1 fault, the computation
does not terminate.

4.3 Automatic Verification for 1 Fault and N Stations

The model. The abstraction we use was proposed by Merceron and Bouaj-
jani in [BM02]. The corresponding counter system is given in figure[2l N is the
number of stations. Cy (resp. C'r) is the number of working (resp. faulty) sta-
tions. A fault splits stations into two cliques C; and C of stations which only
communicate within the same clique. C), is the number of elapsed slots in the
round. It is reseted to 0 when C), = N (and a new round begins). Variable d
(resp. dp,d1,dp) is the number of working stations (resp. in clique 0, in clique
1, faulty) which have emitted a message during the round. The control node
normal represents the normal behaviour of the system. When a failure occurs,
the system moves into the control node Round1, and then this round is finished,
the system moves into the control node later. The property to check is that,
two rounds after the failure occurs, valid stations are all communicating with
each other, which is expressed by:

(P1) state = later NCp =N = (C1 =0V Cy =0)

The translation of this abstraction in counter systems is not direct, because
of the nondeterministic affectations from control node normal to control node
roundl. The transition from later to normal indicates that the protocol comes
back to the normal behaviour, and that another failure can occur. Fortunately,
it is not relevant for our property because we are interested in what happens
in control node later. Thus we can remove this transition. Then the nondeter-
ministic affectation will happen only once, hence it will be encoded in the initial
configuration.

Results. FAST checks fully automatically that property P; is verified. Tests
have been performed on an Intel Pentium 4 at 2.4 GHz with 1 Gbyte of RAM.

586 S. Bardin, A. Finkel, and J. Leroux

d1<C1 & C1+C0-2d0>0/
dl++, Cp++

d<CW / d++,Cp++ Cp=N/
Cp=0,d=0,dF=0

dF<CF/
dF++, Cp++
init @m/al

/ C1>=0, CO>=0, \
C1+C0=CW, d1=1,d0=0,

d1<C1 & C1+C0-2d0<=0/
Cl——,dF++,CF++,Cp++

d0<CO0 & C1+C0-2d1>0/

NOH, Cp++

dF=0,Cp=1 dF<CF / dF++,Cp++ d0<C0 & C1+C0-2d1<=0/
CF=0,CW=N,Cp=0 CO-—,dF++,CF++,Cp++
d=0,dF=0

dF<CF/

dF++.Cpt Cp=N/ d1=0,d0=0,dF=0,Cp=0

d1<Cl & C1>C0/

Cp=N & !(C1=0) & 1(C0=0) / dl++Cpt+

d1=0,d0=0.dF=0,Cp=0 C

d0<C0 & C0<=C1/
CO0——, CF++, dF++,Cp++

d1<C1 & Cl1<=C0/
Cl——,CF++,dF++,Cp++

d0<C0 & CO>C1/
dO++,Cp++

Fig. 2. Counter system for the TTP/C protocol, 1 fault and N stations

Computing the reachability set only requires cycles of length 1. It takes 940
seconds and 73 Mbytes. The reachability set has 27,932 states.

4.4 Abstraction and Automatic Verification for 2 Faults and N
Stations

The model. The abstraction proposed in [BM02] for 2 faults is converted into a
counter system as in the 1-fault case. The counter system is presented in figure [3
Differences with the 1-fault case are mainly because there are now three different
cliques. Moreover the behaviour during the end of Roundy, the round where the
first failure occurs (this round starts with the first failure) has to be separated
from the round Round; starting with the second failure. The first failure splits
stations in cliques C7 and Cjy, then the second failure occurs in C7 which is split
into Cq1 and Cig. Coy becomes Cyy and Cp; does not exists. Variables dy and
dy are the number of stations of Cy and C; which have emitted after the first
failure and before the second. Cp1 (resp. Cp2) is the number of elapsed slots since
the first failure (resp. second failure) occured. Variable dgg (resp. dio, d11,dp) is
the number of stations in clique Cyo (resp. in clique Cig, in clique ¢11, faulty
stations) which have emitted a message during the round following the second
failure. Variable dAgg (resp. dA11,dA10) is the number of stations in clique Cpyg
(resp. C11, C1p) which have emitted after the end of Roundy and before the end

FASTer Acceleration of Counter Automata in Practice

587

of Round;. Variable dFyo (resp. dFi1,dFip) is the number of faulty stations in
clique Cyg (resp. Ci1,Cho) whose time slot is elapsed after the end of Round
and before the end of Round;. The property to check is still the absence of
clique, which is expressed by P» as follows:

(PQ) state:later/\C’pg =N = ((011 750/\010 =0ACyo :O)\/
(011:0/\010#0/\000:0)\/(011ZO/\Ol():O/\OO()?éO))

d00=0 & d11=0 & d10=0 &
dA00=0 & dA11=0 & dA10=0 &
dF00=0 & dF11=0 & dF10=0 &
dF=0 & Cp2=1 & Cpl=d0+d1+] &

round]

N>=0 & CW=N & Cl1>=1 &
C00>=1 & C10>=1 & d1<=C10 &
d0<=C00 & C11+C00+C10=CW

2

@

t19

2
30

>

t18:
Q21 :
022
23
©25:
26

27

32

33

34

: Cpl<N & d11<C11 & CW-2d0-2d00-2d10>0/
d11++,Cpl++,Cp2++

: Cpl<N & d10<C10-d1 & CW —2d0 -2d00 —2d11>0/

d10++,Cpl++,Cp2++

: Cpl<N & d00<C00-d0 & CW-2d1-2d10-2d11>0/
d00++,Cpl++,Cp2++

: Cpl<N & d11<C11-d1 & CW-2d0-2d00-2d10<=0/
dF++,Cpl++,Cp2++,C11—

: Cpl<N & d10<C10 & CW-2d0-2d00-2d11<=0/
dF++,Cpl++,Cp2++,C10—

: Cpl<N &d00<C00-d0 & CW-2d1-2d10-2d11<=0/

dF++,Cpl++,Cp2++,C00——

Cpl>=N & Cp2<N & Pred1/ d11++,Cpl++,Cp2++,dA11++

: Cpl>=N & Cp2<N & Pred2/ d10++,Cpl++,Cp2++,dA10++
Cpl>=N & Cp2<N & Pred3/d00++,Cpl++,Cp2++,dA00++
Cpl>=N & Cp2<N & !Pred1/dF++,dF11++,Cpl++,Cp2++,C11—
Cpl>=N & Cp2<N & !'Pred2/dF++,dF10++,Cpl++,Cp2++,C10—
Cpl>=N & Cp2<N & !Pred3/dF++, dFO0++,Cp1++,Cp2++,C00—

Cp2=N/ dF=0,d11=0,d10=0,d00=0,Cp2=0

Cp2<N & d11<C11 & C11-C10-C00>0 / d11++,Cp2++
: Cp2<N & d10<C10 & C10-C11-C00>0 / d10++,Cp2++

: Cp2<N & d00<C00 & C00-C10-C11>0 / d00++, Cp2++
31

Cp2<N & d11<Cl11 & C11-C10-C00<=0/
C11——,Cp2++,dF++,CF++

Cp2<N & d10<C10 & C10-C11-C00<=0 /

C10——,Cp2++,CF++,dF++

Cp2<N & d00<C00 & C00-C10-Cl11<=0/

CO00——,Cp2++,CF++,dF++

Cp2<N & dF<CF / Cp2++,dF++

33

32
30
31

Predl :
1+d11-dA11-dF11-dA10-dF10-d0-d10-d00+dA00+dF00>0
Pred2 :
1+d10-dA10-dF10-dA11-dF11-d0-d11-d00+dA00+dF00>0
Pred3 :
d0+d00-dA00-dF00-d1-d11-d10+dA11+dA10+dF11+dF10>0

Fig. 3. Counter system for the TTP/C protocol, 2 faults and N stations

Presburger acceleration fails. When accelerating the transitions, the size of
the internal automata manipulated by FAST explodes and the tool stops (see
section [3). It highlights the complexity of this protocol.

588 S. Bardin, A. Finkel, and J. Leroux

Using polyhedral acceleration for a small number of stations. All the
transitions except tog are convex translations. Moreover tog does not need to
be accelerated because it is not a loop. Hence polyhedral acceleration can be
used instead of the Presburger acceleration technique. FAST manages to com-
pute accelerations of the transitions. Unfortunately, with an arbitrary number of
stations, the MONA size limit is exceeded during the reachability set computa-
tion and FAST stops. However, when fixing the value of N to 5, the reachability
set is computed fully automatically and the property P; is verified. For N=5, it
takes 446 seconds and 588 Mbytes. The reachability set has 5,684 states.

Using abstraction for an arbitrary number of stations. We were un-
able to compute the whole reachability set, but we can still compute an over-
approrimation of the reachability set and check that P, is valid.

Firstly we try to simplify some guards on the finite case. When the over-
approximation is sufficient to prove Ps, we use it for the infinite case. Thus guards
of to,t3,t4,t6,1t7,1s8,t18, 19, t21, tog, tag, tos are simplified. Then we try to reduce
the number of variables. We use simple invariants such as Cy = C11 + Ch9+ Coo
and Cp1 = Cpa+dp+d; to remove variables Cyy and Cpy. Moreover, dp is useless
in the first part of the algorithm, we need it only in later, and its value is then
N — Cq1 — Cyp — Chp- So dp is removed. Finally after simplifications in guards,
some variables are not used anymore. Hence, dy and d; are removed, and dA11,
dA1p and dAyy are removed from the first part. This way, FAST computation
terminates. The clique avoidance algorithm is valid for 2 faults and N stations.

Results. Presburger acceleration does not terminate. With polyhedral acceler-
ation, FAST checks fully automatically that property P is verified for a small
number of stations. For N=5 it takes 446 seconds and 588 Mbytes. The reachabil-
ity set has 5,684 states. For an arbitrary value of N, the internal representation
explodes when computing the reachability set. We have to use an abstraction.
FAST checks that property P» is verified for an arbitrary number N of stations.
It takes 175 seconds and 210 Mbytes with the polyhedral acceleration. These
results are summarized in table [l The symbol 1 indicates that FAST limits are
exceeded, hence intermediate automata have more than 224 states. We can no-
tice that polyhedral acceleration works better than Presburger acceleration, in
both space and time, except for the last case (the abstraction). Here, functions
are simple so the maximal amount of memory used represents the size of in-
termediate automata representing the reachability set, and not the size of the
acceleration relations like in the other examples.

5 Conclusion and Future Work

The polyhedral acceleration appears to be very interesting since it allows to
compute acceleration relations for which the Presburger acceleration takes too

FASTer Acceleration of Counter Automata in Practice 589

Table 1. Benchmark for the verification of the TTP/C with FAsT

Presburger acceleration|polyhedral acceleration
timel memory1l time2 memory2 |[number of]
seconds Mbytes seconds Mbytes states
1 fault, N stations 940 73 600 63 27,932
2 faults, 5 stations T T 446 588 5,684
2 faults, 10 stations T T 12,365 588 273,427
2 faults, 15 stations| 1 T T T T
2 faults, N stations T T T T T
2 faults, N stations | 210 200 175 200 11,036
(abstraction)

much memory. We can probably define other acceleration algorithms, more re-

strictive
to find a

than Presburger acceleration but more efficient. Another direction is
generic acceleration more efficient than the one described here, using

smart intermediate computations. Finally, the TTP protocol is a really chal-
lenging case-study. Even when the reachability set is computed by FAST, we
are never far from the limits of the tool. More efficient Presburger automata li-
braries, using for example cache systems or modular computation, are necessary
to scale up acceleration to wider systems.

References

[AABOO] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for para-
metric reasoning about counter and clock systems. volume 1855, pages
419-434, 2000.

[ALV] ALV homepage. http://www.cs.ucsb.edu/ bultan/composite/.

[BB02] C. Bartzis and T. Bultan. Efficient symbolic representations for arithmetic
constraints in verification. Technical Report ucsb cs: TR-2002-16, University
of California, Santa Barbara, Computer Science, 2002.

[BB03] C. Bartzis and T. Bultan. Efficient image computation in infinite state
model checking. volume 2725, pages 249-261, 2003.

[BCY6] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic
and finite automata. In H. Kirchner, editor, Proc. Coll. on Trees in Algebra
and Programming (CAAP’96), volume 1059, pages 3043, 1996.

[BFLPO03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. volume 2725, pages 118-121, 2003.

[BMO02] A. Bouajjani and A. Merceron. Parametric verification of a group mem-
bership algorithm. volume 2469, pages 311-330, 2002.

[Boi9g] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD

thesis, Université de Liege, 1998.

http://www.cs.ucsb.edu/~bultan/composite/

590 S. Bardin, A. Finkel, and J. Leroux

[BW94]
[Del]

[DFS98]

[EFM99]
[FAS]
[FLO2]
[KG94]
[LAS]

[Ler03a]

[Ler03b]

[MON]
[TRE]
[WB00]

B. Boigelot and P. Wolper. Symbolic verification with periodic sets. volume
2725, pages 5567, 1994.

G. Delzanno. Home Page — Giorgio Delzanno.
http://www.disi.unige.it/person/DelzannoG/|

C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability
and undecidability. In Proc. 25th Int. Coll. Automata, Languages, and Pro-
gramming (ICALP’98), Aalborg, Denmark, July 1998, volume 1443, pages
103-115, 1998.

J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast pro-
tocols. In Proc. 14th IEEE Symp. Logic in Computer Science (LICS’99),
Trento, Italy, July 1999, pages 352-359. IEEE Comp. Soc. Press, 1999.
FAST homepage. http://www.lsv.ens-cachan.fr/fast/.

A. Finkel and J. Leroux. How to compose Presburger-accelerations: Appli-
cations to broadcast protocols. volume 2556, pages 145-156, 2002.

H. Kopetz and G. Griinsteidl. A time trigerred protocol for fault-tolerant
real-time systems. In IEFEE computer, volume January, pages 14-23, 1994.
LASH homepage.

http://www.montefiore.ulg.ac.be/ "boigelot/research/lash/.

J. Leroux. Algorithmique de la vérification des systémes a compteurs. Ap-
prozimation et accélération. Implémentation de 'outil FAST. PhD thesis,
Ecole Normale Supérieure de Cachan, 12" december 2003.

J. Leroux. The affine hull of a binary automaton is computable in polyno-
mial time. 2003.

The MONA project. http://www.brics.dk/mona/|

TREX homepage. http://wuw.liafa.jussieu.fr/"sighirea/trex/.

P. Wolper and B. Boigelot. On the construction of automata from linear
arithmetic constraints. volume 1785, pages 1-19, 2000.

http://www.disi.unige.it/person/DelzannoG/
http://www.lsv.ens-cachan.fr/fast/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.brics.dk/mona/
http://www.liafa.jussieu.fr/~sighirea/trex/

	Introduction
	Acceleration of Counter Systems
	Counter Systems
	Unambiguous Binary Automata
	Main Results on Acceleration
	The Tool {sc textsc {Fast}} and Its Heuristic

	Acceleration of Counter Automata
	The Generic Acceleration May Be too Complex
	A Simpler Acceleration for Counter Automata

	{sc textsc {Fast}} in Practice: The TTP/C
	Presentation of the TTP Protocol
	Previous Non-automatic Verification of the TTP
	Automatic Verification for 1 Fault and N Stations
	Abstraction and Automatic Verification for 2 Faults and N Stations

	Conclusion and Future Work

