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Abstract. We describe a software model checking tool founded on game
semantics, highlight the underpinning theoretical results and discuss se-
veral case studies. The tool is based on an interpretation algorithm defi-
ned compositionally on syntax and thus can also handle open programs.
Moreover, the models it produces are equationally fully abstract. These
features are essential in the modeling and verification of software com-
ponents such as modules and turn out to lead to very compact models
of programs.

1 Introduction and Background

Game Semantics has emerged as a powerful paradigm for giving semantics to
a variety of programming languages and logical systems. It has been used to
construct the first syntax-independent fully abstract models for a spectrum of
programming languages ranging from purely functional languages to languages
with non-functional features such as control operators and locally-scoped refe-
rences [1,2,3,4,5,6].

We are currently developing Game Semantics in a new, algorithmic direction,
with a view to applications in computer-assisted verification and program analy-
sis. Some promising steps have already been taken in this direction. Hankin and
Malacaria have applied Game Semantics to program analysis, e.g. to certifying
secure information flows in programs [7,8]. A particularly striking development
was the work by Ghica and McCusker [9] which captures the game semantics of
a procedural language in a remarkably simple form, as regular expressions. This
leads to a decision procedure for observational equivalence on this fragment.
Ghica has subsequently extended the approach to a call-by-value language with
arrays [10], to model checking Hoare-style program correctness assertions [11]
and to a more general model-checking friendly specification framework [12].

Game Semantics has several features which make it very promising from
this point of view. It provides a very concrete way of building fully abstract
models. It has a clear operational content, while admitting compositional me-
thods in the style of denotational semantics. The basic objects studied in Game
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Semantics are games, and strategies on games. Strategies can be seen as cer-
tain kinds of highly-constrained processes, hence they admit the same kind of
automata-theoretic representations central to model checking and allied methods
in computer-assisted verification. Moreover, games and strategies naturally form
themselves into rich mathematical structures which yield very accurate models
of advanced high-level programming languages, as the various full abstraction
results show. Thus the promise of this approach is to carry over the methods of
model checking (see e.g. [13]), which has been so effective in the analysis of circuit
designs and communications protocols, to much more structured programming
situations, in which data-types as well as control flow are important.

A further benefit of the algorithmic approach is that by embodying game
semantics in tools, and making it concrete and algorithmic, it should become
more accessible and meaningful to practitioners. We see Game Semantics as
having the potential to fill the role of a “Popular Formal Semantics,” called for
in an eloquent paper by Schmidt [14], which can help to bridge the gap between
the semantics and programming language communities. Game Semantics has
been successful in its own terms as a semantic theory; we aim to make it useful
to and usable by a wider community.

Model checking for state machines is a well-studied problem (e.g. Murφ [15],
Spin [16] and Mocha [17] to name a few systems). Software model checking is
a relatively new direction (see e.g. [18]); the leading projects (e.g. SLAM [19],
and Bandera [20]) excel in tool constructions. The closest to ours in terms of
target applications is the SLAM project, which is able to check safety properties
of C programs. This task is reduced in stages to the problem of checking if
a given statement in an instrumented version of the program in question is
reachable, using ideas from data-flow and inter-procedural analysis and abstract
interpretation.

In relation to the extensive current activity in model checking and computer
assisted verification, our approach is distinctive, being founded on a highly-
structured compositional semantic model. This means that we can directly apply
our methods to open program phrases (i.e. terms-in-context with free variables)
in a high-level language with procedures, local variables and data types. This
ability is essential in analyzing properties of software components. The soundness
of our methods is guaranteed by the properties of the semantic models on which
they are based. By contrast, most current model checking applies to relatively
“flat” unstructured situations.

Our semantics-driven approach has some other additional benefits: it is ge-
neric and fully automated. The prototype tool we have implemented has the
level of automation of a compiler. The input is a program fragment, with very
little instrumentation required, and the output is a finite-state (FS) model. The
resulting model itself can be analyzed using third-party model-checking tools,
or our tool can automatically extract traces with certain properties, e.g. error
traces.

Software model checking is a fast-developing area of study, driven by needs of
the industry as much as, if not more than, theoretical results. Often, tool deve-
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lopment runs well ahead of rigorous considerations of soundness of the methods
being developed. Our aim is to build on the tools and methods which have been
developed in the verification community, while exploring the advantages offered
by our semantics-directed approach.

2 A Procedural Programming Language

Our prototypical procedural language is a simply-typed call-by-name lambda
calculus with basic types of booleans (bool), integers (exp), assignable varia-
bles (var) and commands (comm). We denote the basic types by σ and the
function types by θ. Assignable variables, storing integers, form the state while
commands change the state. In addition to abstraction (λx : σ.M) and appli-
cation (FA), other terms of the language are conditionals, uniformly applied
to any type, (ifB thenM elseN), recursion (fixx : σ.M), constants (integers,
booleans) and arithmetic-logic operators (M ∗ N); we also have command-type
terms which are the standard imperative operators: dereferencing (explicit in
the syntax, !V ), assignment (V :=N), sequencing (C; M , note that we allow, by
sequencing, expressions with side-effects), no-op (skip) and local variable block
(newx inM). We write M : σ to indicate that term M has type σ.

This language, which elegantly combines state-based procedural and higher-
order functional programming, is due to Reynolds [21] and its semantic pro-
perties have been the object of extensive research [22].

If the programming language is restricted to first-order procedures, (more
precisely, we restrict types to θ ::= σ | σ → θ) tail recursion (iteration) and
finite data-types then the Abramsky-McCusker fully abstract game model for
this language [3] has a very simple regular-language representation [9]. The for-
mulation of the regular-language model in loc. cit. is very well suited for proving
equivalences “by hand,” but we will prefer a slightly different but equivalent
presentation [23] because it is more uniform and more compact. The referenced
work gives motivation and numerous examples for the model presented below.

2.1 Extended Regular Expressions

This section describes the representation of the game model using a language of
extended regular expressions. Due to space constraints, a basic understanding
of game semantics must be assumed as background. Otherwise, the reader is
encouraged to refer to the literature mentioned in the Introduction.

Terms are interpreted by languages over alphabets of moves A. The langua-
ges, denoted by L(R), are specified using extended regular expressions R. They
include the standard regular expressions consisting of the empty language ∅,
the empty sequence ε, concatenation R · S, union R + S, Kleene star R∗, and
the elements of the alphabet taken as sequences of unit length. We also use the
additional constructs of intersection R ∩ S, direct image under homomorphism
φR and inverse image φ−1R. The languages defined by these extensions are the
obvious ones.
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It is a standard result that any extended regular expression constructed from
the operations described above denotes a regular language, which can be recogni-
zed by a finite automaton which can be effectively constructed from the regular
expression [24].

We will often use the disjoint union of two alphabets to create a larger al-
phabet: A1+A2 = {a〈1〉 | a∈A1} ∪ {b〈2〉 | b∈A2} = A〈1〉

1 ∪ A〈2〉
2 . The tags

−〈i〉 are used on a lexical level, resulting in new and distinct symbols belon-
ging to the larger alphabet. The disjoint union gives rise to the canonical maps:

A1
inl �� A1 + A2

outr
��

outl
�� A2

inr�� . The definition of the maps is:

inl a = a〈1〉 outl a〈1〉 = a outr a〈1〉 = ε

inr b = b〈2〉 outl b〈2〉 = ε outr b〈2〉 = b

If φ : A → B∗ and φ′ : C → D∗ are homomorphisms then we define their sum
φ+φ′ : A+C → (B+D)∗ as (φ+φ′)(a〈1〉) = (φa)〈1〉, respectively (φ+φ′)(c〈2〉) =
(φ′c)〈2〉.

Definition 1 (Composition). If R is a regular expression over alphabet A+B
and S a regular expression over alphabet B + C we define the composition R ◦ S
as the regular expression R◦S = out

(
out−1

1 (R)∩out−1
2 (S)

)
, over alphabet A+C,

with maps A + B
in1 �� A + B + C

out2
��

out1
�� B + C

in2�� and A + C in �� A + B + C
out

�� .

Regular expression composition is very similar to composition of finite state
transducers [25]. Sets A and B represent, respectively, the input and the output of
the first transducer; sets B and C represent, respectively, the input and the output
of the second transducer. The result is a transducer of inputs A and output C.
For example, let A = {a}, B = {b}, C = {c}; then (ab)∗ ◦ (bcc)∗ = (acc)∗.

2.2 Alphabets

We interpret each type θ by a language over an alphabet A�θ�, containing the
moves from the game model. For basic types σ it is helpful to define alphabets
of questions Q �σ�and answers Aq �σ� for each q ∈ Q �σ�. The alphabet of type σ
is then defined as A�σ�= Q �σ�∪ ⋃

q∈Q�σ�
Aq �σ�. The basic type alphabets are:

Q �exp�= {q}, Aq �exp�= N Q �bool�= {q}, Aq �bool�= {t, f}
Q �var�= {q} ∪ {w(n) | n ∈ N}, Aq �var�= N, Aw(n) = {�}
Q �comm�= {q}, Aq �comm�= {�}.

where N = {−n, · · · , −1, 0, 1, · · · , n}.
Alphabets of function types are defined by A�σ → θ�= A�σ�+ A�θ�.
A typing judgement Γ � M : θ is interpreted by a regular expression R =

�Γ � M : θ� over alphabet
∑

xi : θi∈Γ A�θi�+ A�θ�.
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For any type θ = σ1 → · · · → σk → σ, it is convenient to define the regular
language Kθ over alphabet A�θ�+ A�θ�, called the copy-cat language:

Kθ =
∑

q∈Q�σ�

q〈2〉 · q〈1〉 ·
( ∑

i=1,k

Ri

)∗
·

∑

a∈Aq�σ�

a〈1〉 · a〈2〉,

where Ri =
∑

q∈Q�σi�q
〈2〉 · q〈1〉 · ∑

a∈Aq�σi�a
〈1〉 · a〈2〉. This regular expression

represents the so-called copy-cat strategy of game semantics, and it describes the
generic behaviour of a sequential procedure. At second-order [26] and above [2]
this behaviour is far more complicated.

2.3 Regular-Language Semantics

We interpret terms using an evaluation function �−� mapping a term Γ � M : θ
and an environment u into a regular language R. The environment is a function,
with the same domain as Γ , mapping identifiers of type θ to regular languages
over A�Γ �+A�θ�. The evaluation function is defined by recursion on the syntax.

Identifiers. Identifiers are read from the environment: �Γ, x : θ � x : θ�u = u(x).

Let. �Γ � letxbeM inN�u = �Γ, x : θ � N�(u | x 	→ �Γ � M�u).

Abstraction. �Γ � λx : σ.M : σ → θ�u = φ
(
�Γ, x : σ � M : θ�(u | x 	→ Kσ)

)
,

where φ is the (trivial) associativity isomorphism.

Linear application and contraction. �Γ, ∆ � MN�u = �Γ � M�u◦(
�∆ � N�u

)∗
, with composition − ◦ − defined as before. Contraction is

�Γ, z : θ � M [z/x, z/x′] : θ�u = (id1 + δ + id2)
(
�Γ, x : θ, x′ : θ � M : θ�u

)
,

where id1 and id2 are identities on A�Γ �and, respectively, A�θ�. It is well known
that application can be harmlessly decomposed in linear application and contrac-
tion. The homomorphism δ : A�θ�+ A�θ�→ A�θ� only removes tags from moves.
Note that this interpretation is specific to first-order types. In higher-order types
this interpretation of contraction by un-tagging can result in ambiguities.

Block Variables. Consider the following regular expression over alphabet

A�var�: cell =
(∑

n∈N w(n) · � · (q · n)∗
)∗

. Intuitively, this regular expression
describes the sequential behaviour of a memory cell: if a value n is written, then
the same value is read back until the next write, and so on. We define block
variables as �Γ � newx inM : σ�u = �Γ, x :var � M : σ�u ◦ cell,

Constants. Finally, the interpretation of constants is:

�n : exp�= q · n, �true :bool�= q · t, �false :bool�= q · f

�−op− : σ → σ → σ′
�=

∑

p∈N

∑

m,n∈N
p=m op n

q〈3〉 · q〈1〉 · m〈1〉 · q〈2〉 · n〈2〉 · p〈3〉

�− := − :var → exp → comm�=
∑

n∈N

q〈3〉 · q〈2〉 · n〈2〉 · w(n)〈1〉 · �〈1〉 · �〈3〉
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run
2

client.run

3
client.done

41.client.run

5

2.client.q

6
done

7

1.client.done

2.client.0

client.done

1.client.run

8

2.client.q

2.client.1

Fig. 1. A simple switch

�if − then − else − :bool → σ → σ → σ�

=
∑

q∈Q�σ�

q〈4〉 · q〈1〉 · t〈1〉 · q〈2〉 ·
∑

a∈Aq�σ�

a〈2〉 · a〈4〉

+
∑

q∈Q�σ�

q〈4〉 · q〈1〉 · f〈1〉 · q〈3〉 ·
∑

a∈Aq�σ�

a〈3〉 · a〈4〉

�−; − : comm → σ → σ�=
∑

q∈Q�σ�

q〈3〉 · q〈1〉 · �〈1〉 · q〈2〉 ·
∑

a∈Aq�σ�

a〈2〉 · a〈3〉

�while − do − :bool → comm → comm�

= q〈3〉 ·
(
q〈1〉 · t〈1〉 · q〈2〉 · �〈2〉

)∗
· q〈1〉 · f〈1〉 · �〈3〉

�div : comm�= ∅, � skip : comm�= q · �.

The operator op ranges over the usual arithmetic-logic operators, and op is its
obvious interpretation.

2.4 A Warm-up Example

This simple example illustrates quite well the way the game-based model works.
It is a toy abstract data type (ADT): a switch that can be flicked on, with
implementation:

client : com -> exp -> com |-
new var v:= 0 in
let set be v := 1 in
let get be !v in
client (set, get) : com.

The code consists of local integer variable v, storing the state of the switch,
together with functions set, to flick the switch on, and get, to get the state
of the switch. The initial state of the switch is off. The non-local, undefined,
identifier client is declared at the left of the turnstile |-. It takes a command
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and an expression-returning functions as arguments. It represents, intuitively,
“the most general context” in which this ADT can be used.

A key observation about the model is that the internal state of the program is
abstracted away, and only the observable actions, of the nonlocal entity client,
are represented, insofar as they contribute to terminating computations. The
output of the modeling tool is given in Fig. 1.

Notice that no references to v, set, or get appear in the model! The model
is only that of the possible behaviours of the client: whenever the client is
executed, if it evaluates its second argument (get the state of the switch) it will
receive the value 0 as a result; if it evaluates the first argument (set the switch
on), one or more times, then the second argument (get the state of the switch)
will always evaluate to 1. The model does not, however, assume that client
uses its arguments, or how many times or in what order.

2.5 Full Abstraction

Full abstraction results are crucial in semantics, as they are a strong qualita-
tive measure of the semantic model. Full abstraction is defined with respect
to observational equivalence: two terms are equivalent if and only if they can
be substituted in all program contexts without any observable difference in the
outcome of computation. This choice of observables is therefore canonical, and
arises naturally from the programming language itself. In practice, fully abstract
models are important because they identify all and only those programs which
are observationally equivalent.

Formally, terms M and N are defined to be observationally equivalent, writ-
ten M ≡ N , if and only if for any context C[−] such that both C[M ] and C[N ]
are closed terms of type comm, C[M ] converges if and only if C[N ] converges.
The theory of observational equivalence, which is very rich (see e.g. [9] for a
discussion), has been the subject of much research [22].

Theorem 1 (Full abstraction [3,9]). Γ � M ≡ N iff L(
�Γ � M : θ�u0

)
=

L(
�Γ � N : θ�u0

)
, where u0(x) = Kθ for all x : θ in Γ .

As an immediate consequence, observational equivalence for the finitary frag-
ment discussed here is decidable. It can be shown that the full abstraction result
holds relative to contexts drawn from either the restricted fragment or the full
programming language [27].

3 Applications to Analysis and Verification

The game model is algorithmic, fully abstract and compositional, therefore it
provides excellent support for compositional program analysis and verification.

The initial decidability result of the previous section was extended to higher-
order (recursion and iteration-free) call-by-name procedural programming by
Ong [26] and, for call-by-value, by Murawski [28]. This required the use of de-
terministic pushdown automata [29,30], since the associated sets of complete
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x.-1write
22

x.ok
23

done

Fig. 2. A model of sorting

plays in the game semantics are no longer regular. Various other extensions of
the programming fragment, e.g. by introducing unrestricted recursion [26] or
further increasing the order of the fragment [31], lead to undecidability. The
game-theoretic approach seems to offer a useful and powerful tool for investi-
gating the algorithmic properties of programming language fragments, e.g. the
complexity of program equivalence [32].

A different direction of research is the development of game-based, model-
checking friendly specification languages. Such specification languages are neces-
sary in order to fully exploit the compositionality of the game-based approach. It
is of little use to reason about program fragments if properties of the whole pro-
gram cannot be then compositionally inferred, without requiring further model-
checking. The first steps in this direction are taken in [12].

3.1 Tool Support and Case Studies

The theoretical applications of game semantics have been very successful. Ho-
wever, since the complexity of the regular-language algorithms involved in the
generation of the finite-state machines representing the game models is expo-
nential (both in time and in space), it was unclear whether the technique was
practicable. This is in fact a common situation in software model checking: the
asymptotic complexity of the algorithms involved is high, but it turns out that
the worst-case scenario only happens in pathological cases. Many programs can
be in fact verified. But the only way to make such pragmatic assessments is
to implement and experiment. We have implemented a prototype tool, and the
results are very positive.

Our tool converts an open procedural program into the finite-state machine
representation of the regular-language game model. Very little user instrumenta-
tion of the source code is required. The data-abstraction schemes (i.e. what finite
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sets of integers will be used to model integer variables) for integer-typed varia-
bles need to be supplied, using simple code annotations. The tool is implemented
in CAML; most of the back-end heavy duty finite-state machine processing is
done using the AT&T FSM library [33]. A more complete description of the tool
is available in [34].

In the following we will present two case studies which best illustrate the
distinctive features of our model: a sorting program and an abstract data type
implementation.

3.2 Sorting

In this section we will discuss the modeling of a sorting program, a pathological
problem for model checking because of the connection between data and control
flow. We will focus on bubble-sort, not for its algorithmic virtues but because it
is one of the most straightforward non-recursive sorting algorithms. The imple-
mentation we will analyze is the one in Fig. 3. Meta-variable n, representing the
size of the array, will be instantiated to several different values. Observe that the
program communicates with its environment using non-local var-typed identi-
fier x:var only. Therefore, the model will only represent the actions of x. Since
we are in a call-by-name setting, x can represent any var-typed procedure, for
example interfacing with an input/output channel. Notice that the array being
effectively sorted, a[], is not visible from the outside of the program because it
is locally defined.

We first generate the model for n = 2, i.e. an array of only 2 elements, in
order to obtain a model which is small enough to display and discuss. The type of
stored data is integers in the interval [−1, 1], i.e. 3 distinct values. The resulting
model is as in Fig. 2. It reflects the dynamic behaviour of the program in the
following way: every trace in the model is formed from the actions of reading all
3 × 3 = 9 possible combinations of values from x, followed by writing out the
same values, but in sorted order. Fig. 4 gives a snapshot of the model for n = 20.

The output is a FS machine, which can be analyzed using standard FS-based
model checking tools. Moreover, this model is an extensional model of sorting: all
sorting programs on an array of size n will have isomorphic models. Therefore,
a straightforward method of verification is to compare the model of a sorting
program with the model of another implementation which is known to be correct.
In the case of our finite-state models, this is a decidable operation.

Increases in the array lead to (asymptotically exponential) increases in the
time and space of the verification algorithm. In the table below we give several
benchmark results for running the tool on our development machine (SunBlade
100, 2GB RAM). We give the execution time, the size of the largest automaton
generated in the process, and the size of the final automaton. For reference, we
also include the size of the state space of the program, i.e. the number of states
representable by the array and the other variables in the program.
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Fig. 3. An implementation of sorting

n Time (mins.) State space (Max.) State space (Model) State space (Program)
5 5 3,376 163 60,750

10 10 64,776 948 3,542,940
15 120 352,448 2,858 96,855,122,250
20 240 1,153,240 6,393 55,788,550,416,000

For arrays larger than 30 the memory requirements could not be handled.
We can see that models have very compact sizes. Moreover, the maximum

size of the work space is significantly less than that used by a (naive) state
exploration algorithm. The key observation is the following: the fact that the
state of the array is internalized and only a purely behavioural, observationally
fully abstract model is presented leads to significant savings in required memory
space. Moreover, the compositional nature of our construction ensures that all
intermediate models are observationally fully abstract, and allows us to perform
local minimizations at every step.

This kind of “observational” abstraction, which comes for free with our fully
abstract model, is fundamentally different than other, syntactic and “stateful,”
abstraction techniques such as slicing [35].

3.3 ADT Invariants

We define an assertion as a function which takes as argument a boolean, the
condition to be asserted. It does nothing if the condition is true and calls an
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Fig. 4. A model of sorting: 20 element-array

(nonlocal) error procedure if the condition is false. In the resulting model, any
trace containing the actions error.run, error.done will represent a usage of
the ADT which violates the invariant, i.e. an error trace.

The encoding of safety properties using code-level assertions is quite standard
in SMC, e.g. [19], and it is also known that every safety property can be encoded
in a regular language [36]. Using the assertion mechanism in conjunction with
modeling open programs, such as modules, offers an elegant solution to the
problem of checking equational properties or invariants of ADTs.

For example, consider an implementation of a finite-size stack, using a fixed-
size array. The interface of the stack is through functions push(n) and pop.
Their implementation is the obvious one (see Fig. 5). In addition, the stack
component assumes the existence of functions overflow and empty to call if a
push is attempted on a full stack, respectively a pop is attempted on an empty
stack. These functions need not be implemented.

Suppose that we want to check, for a size 2 stack, whether it is the case that
the last value pushed onto the stack is the value at the top of the stack. We
do this by using the assertion invariant on lines 21–24 of Fig. 5. Notice the
undefined component VERIFY of this program: it stands for all possible uses of
the stack module and the assertion to be checked. The idea of providing such
a generic closure of an open program can be traced back to [37], and several
game-like solutions have been already proposed [38,39]. The game model which
we use provides this closure, correct and complete, directly at the level of the
concrete programming language.

The tool automatically builds the model for the above and extracts its shor-
test failure trace (see Fig. 6).

Action 1.VERIFY represents a push action. So the simplest possible error is
caused by pushing 3 times the value 1 onto the 2-element stack. Indeed, if the
stack is already full, pushing a new element will cause an overflow error. The
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Fig. 5. A stack module

failure of the assertion in this case should have been expected since the stack is
finite size.

4 Limitations and Further Research

The initial results of our effort to model and verify programs using Game Se-
mantics are very encouraging: this approach proves to give compact, practicable
representations of many common programs, while the ability to model open pro-
grams allows us to verify software components, such as ADT implementations.

We are considering several further directions:

Language extensions: the procedural language fragment we are currently
handling only includes basic imperative and functional features. We are con-
sidering several ways to extend it, and the principal emphasis is on adding
concurrency features. A game semantic model for shared-variable paralle-
lism has been recently developed by our group [40]. We are also considering
a version of this tool which would handle call-by-value languages.
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0 1 run
1 2 VERIFY.run
2 3 1.VERIFY.run
3 4 m.q
4 5 m.1
5 6 1.VERIFY.done
6 7 1.VERIFY.run
7 8 m.q
8 9 m.1
9 10 1.VERIFY.done
10 11 3.VERIFY.run
11 12 m.q
12 13 m.0
13 14 overflow.run
14 15 overflow.done
15 16 error.run
16 17 error.done
17 18 3.VERIFY.done
18 19 VERIFY.done
19 20 done
20

Fig. 6. Shortest failure trace of stack component

Specifications: in order to truly support compositional verification we intend
to expand the tool to model specifications of open programs, rather than
just open programs. A theoretical basis for that is already provided in [12],
which is in turn inspired by the game-like ideas of interface automata [38].

Tools and methodology: enriching the features of the tool and making it
more robust and user friendly. For example, the definability result in [3]
guarantees that any trace in the model can be mapped back into a program.
Using this, we can give the user code rather than trace counterexamples to
failed assertions. We would also like to investigate applying the tool to the
modeling and verification of a larger, more realistic case study.

Scalable model checking: our methods so far apply only to finite data and
store. Verifying a program operating on finite data and store is an excellent
method for bug detection and provides a fairly high measure of confidence
in the correctness of the code, but it does not represent a proof. There is, in
general, no guarantee that the properties of a program of given size genera-
lize. But we hope that recent results in data independence [41,42] can help
overcome such limitations.

We are actively engaged in investigating the above topics, and we are grateful to
the Engineering and Physical Sciences Research Council of the United Kingdom
for financial support in the form of the research grant Algorithmic Game Se-
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mantics and its Applications; there is also a related project on Scalable Software
Model Checking based on Game Semantics by Ranko Lazic of the University of
Warwick.
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