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Abstract. State-of-the-art algorithms for on-the-fly automata-theoretic
LTL model checking make use of nested depth-first search to look for ac-
cepting cycles in the product of the system and the Biichi automaton.
Here we present a new algorithm based on Tarjan’s algorithm for detect-
ing strongly connected components. We show its correctness, describe
how it can be efficiently implemented, and discuss its interaction with
other model checking techniques, such as bitstate hashing. The algorithm
is compared to the old algorithms through experiments on both random
and actual state spaces, using random and real formulas. Our measure-
ments indicate that our algorithm investigates at most as many states
as the old ones. In the case of a violation of the correctness property, the
algorithm often explores significantly fewer states.

1 Introduction

Explicit-state on-the-fly automata-theoretic LTL model checking relies on two
algorithms: the first for constructing an automaton that represents the negation
of the correctness property, and the second for checking that the language recog-
nized by the product of the system and the automaton is empty. This amounts
to verifying that the system has no executions that violate the correctness prop-
erty. An algorithm for converting LTL formulas to Biichi automata was first
described in [26], and many subsequent improvements have been proposed [4l[7]
TOITTT921].

Checking the emptiness of the product automaton requires checking that
none of its cycles contain any accepting states. One approach to this problem is
to detect the strongly connected components (SCC) of the product. An SCC is a
maximal set C' of states such that for all s1, so € C there is a path from s; to so.
An SCC is said to be nontrivial if it contains at least one such nonempty path,
and, conversely, an SCC is trivial when it consists of a single state without a self-
loop. The two standard methods of detecting SCCs are Tarjan’s algorithm
22], and the double search algorithm attributed to Kosaraju and first published
in [20]. Both approaches often appear in textbooks.

Unfortunately, both algorithms have aspects that complicate their use in on-
the-fly model checking. Tarjan’s algorithm makes copious use of stack space,
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DFS(s) NDFS(s)
1 MARK((s,0)) 10 MARK((s, 1))
2 for each successor t of s do 11 for each successor t of s do
3 if “MARKED((¢,0)) then 12 if “MARKED((¢,1)) then
4 DFS(t) 13 NDFS(t)
5 endif 14 else if ¢t = seed then
6 endfor 15 report violation
7 if ACCEPTING(s) then 16 endif
8 seed := s ; NDFS(s) 17 endfor
9 endif

Fig. 1. The nested depth-first search algorithm of [2]

while Kosaraju’s algorithm needs to explore transitions backwards. Instead,
state-of-the-art algorithms perform nested depth-first searches [2T5].

In this paper, we introduce a new algorithm for detecting accepting cycles.
Although it is based on Tarjan’s algorithm, its time and memory requirements
are often smaller than those of its competitors, because it relies on a single
depth-first search, and it tends to detect violations earlier.

The rest of this paper is organized as follows: In Section ] we describe the
standard nested depth-first search algorithm, and discuss its strengths and weak-
nesses. Section 3 contains our proposed new algorithm and details about its im-
plementation, correctness, and measurements with random graphs and random
and actual LTL formulas. Section [ deals with heuristics for speeding up the
detection of violations. Experimental results on a real system are described in
Section Bl and, finally, Section [6] presents the conclusions.

2 The CVWY Algorithm

Courcoubetis, Vardi, Wolper, and Yannakakis [2] presented the nested depth-
first search algorithm for detecting accepting cycles, shown in Figure [l (In the
rest of this paper we shall refer to this algorithm by the moniker “CVWY”.) The
algorithm is based on a standard depth-first search. When a state has been fully
explored and if the state is accepting, a second search is initiated to determine
whether it is reachable from itself and in this way forms an accepting cycle.

The algorithm is clearly suited to on-the-fly verification. For each state, only
two bits of information is required to record whether it has been found during
the first and during the second search. Even when Holzmann’s bitstate hashing
technique [14] is used, hash collisions will not cause the algorithm to incorrectly
report a violation.

A disadvantage of CVWY is that it does not find violations before starting
to backtrack. Because depth-first search paths can grow rather long, this implies
that many states may be on the stack at the time the first violation is detected,
thus increasing time and memory consumption, and producing long counterex-
amples. It is not easy to change this behaviour, because it is important for the
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correctness of CVWY that, when checking an accepting state for a cycle, ac-
cepting states that are “deeper” in the depth-first search tree have already been
investigated.

Tarjan’s algorithm also detects completed SCCs starting with the “deepest”,
but it performs only a single depth-first search and can already detect states that
belong to the same SCC “on its way down”, which is why it needs to “remember”
the states by placing them on a second stack. Such early detection of partial
SCCs, and by implication, of accepting cycles, is desirable, because intuitively it
seems that, not only could it reduce memory and time consumption, but could
also produce smaller counterexamples.

3 Cycle Detection with Tarjan’s Algorithm

Tarjan’s algorithm is often mentioned but dismissed as too memory consuming
to be considered useful, as, for example, in [3]. In the presentation of Tarjan’s
algorithm in [I] states are placed on an explicit stack in addition to being placed
on the implicit procedural stack—that is, the runtime stack that implements
procedure calls. Moreover, a state remains on the explicit stack until its entire
SCC has been explored. Only when the depth-first search is about to leave a state
(in other words, the state has been fully explored) and the algorithm detects that
it is the root of an SCC, the state and all its SCC members are removed from
the explicit stack. In consequence, the explicit stack may contain several partial
SCCs—many more states than the implicit depth-first stack. In addition, each
state has two associated attributes: its depth-first number and its lowlink value;
naturally this requires extra memory.

However, we believe it is wrong to dismiss Tarjan’s algorithm so quickly.
Firstly, it is true that the state space of the system under investigation often
forms a single, large SCC. However, the product automaton in which the ac-
cepting SCC must be detected is often broken into many smaller SCCs by the
interaction of the system with the Biichi automaton. Even when the system and
the Biichi automaton each consist of a single SCC it is still possible that the
product will have more than one component as the Biichi transitions are en-
abled and disabled by the values of the atomic propositions. Secondly, and most
importantly, for the automata-theoretic approach to work it is unnecessary to
compute the entire SCC of a violating accepting cycle—it suffices to detect a
nontrivial SCC that contains an accepting state. And lastly, as we show below,
much of the memory requirements which at first sight may seem daunting, can
be avoided by a careful implementation of the algorithm.

While these arguments do not constitute a claim that Tarjan’s algorithm is
necessarily viable, they do open the door to investigating its potential.

3.1 The New Algorithm

An automata-theoretic verification algorithm based on Tarjan is shown in Fig-
ure 2I We have shown a lot of detail to be able to describe how memory is used
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Stack = record PUSH(S)
state # state stored in stack entry | 28 MARK(s)
lasttr # last explored transition 29 INCR(top)
lowlink  # lowlink value of this entry 30 stack[top].state := s
pre # DF'S predecessor 31 stack[top].lasttr := “none”
acc # accepting state link | 32 stack[top].lowlink := top
endrecord 33 stack[top].pre := dftop
34 if ACCEPTING(s) then
Stack stack[0...] 35 stack[top].acc := top
int top := —1 # top of SCC stack 36 else if dftop > 0 then
int dftop := — # top of DFS stack | 37 stack[top].acc := stack[dftop].acc
bool violation := false 38 else
39 stack[top].acc := —1
MAIN() 40 endif
PUSH(initial state) 41 dftop := top
while —wviolation A dftop > 0 do
s := stack[dftop].state PoP()
t := next enabled transition of s 42 p := stack[dftop].pre
stack[dftop].lasttr :=t 43 if p > 0 then
s’ := successor of s by t, if any 44 LOWLINKUPDATE(p, dftop)
if t = “none” then 45 endif
POP() 46 if stack[dftop].lowlink = dftop then
else if ~MARKED(s’) then 47 top := dftop — 1
PUSH(s") 48 endif
else if s’ is on stack then 49 dftop :=p
k := position of s’ on stack
LOWLINKUPDATE(dftop, k) LOWLINKUPDATE( f, t)
endif 50 if stack[t].lowlink < stack[f].lowlink then
endwhile 51 if stack[t].lowlink < stack[f].acc then
if violation then 52 violation := true
report violation 53 endif
endif 54 stack[f].lowlink := stack[t].lowlink
55 endif

Fig. 2. New algorithm for detecting accepting cycles

efficiently. Our presentation differs from the original presentation and from

the

presentation of nested search algorithms in that it is iterative and not recur-

sive. This is only a minor difference, but it avoids a small overhead associated
with non-tail recursion, makes it is easier to abort in the case of a violation, and
does not impede the clarity of the presentation.

However, there are other, more significant differences—so many that we chose

to prove the correctness of our algorithm from scratch in Section B2k

1.

Tarjan’s algorithm uses an implicit procedural stack to manage the depth-
first search, and an explicit SCC stack to store partial SCCs. That the former
is a subset of the latter is easy to see: A new state is inserted into both stacks
when it is first encountered. Once it is fully explored it is removed from the
depth-first stack, but remains on the SCC stack until its entire SCC can be
removed. This makes it possible to use only a single stack and thread the
depth-first stack through it by means of the pre field of the Stack structure
(line[), and a second pointer dftop (line §)) to the top element of the depth-
first stack. It is an invariant property of the algorithm that top > dftop, and
that stacklk].pre < k for any 0 < k < top. (Other, equivalent variations are
presented in [§] and [0 Appendix D].)

The MARKED and MARK functions in lines [[8 and ERlrefer to the presence of
a state in the state store. Similar routines occur in Tarjan’s algorithm (states
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are marked as “old” or “new”) and in state space construction algorithms.
It is important to note that once a state has been removed from the SCC
stack, its stack attributes (such as lowlink and pre) are no longer required,
and the information can be discarded.

. Line omits a test made by Tarjan’s algorithm to avoid the update for

descendants of s that have already been investigated (“forward edges” in
depth-first search terminology).

. Tarjan’s algorithm numbers states consecutively as they are found, whereas

the algorithm in Figure 2 reuses the numbers of states that belong to com-
pleted SCCs.

. When a transition from state f to state ¢ is encountered, Tarjan’s algorithm

sometimes updates the lowlink of f with the depth-first number of ¢, and
sometimes with the lowlink value of t. However, in our algorithm it is always
the lowlink of ¢ that is used for the update (lines GOHBH). A similar change
has been described in [17].

. The most important addition to Tarjan’s original algorithm is the acc field,

defined in line Al initialized in lines B4HAQl and used in line[21l A stack entry’s
acc field keeps track of the shallowest (that is, closest to the top of the stack)
accepting state on the depth-first path that leads to that stack entry.

Changes 1-4 improve the efficiency of Tarjan’s algorithm. With the addition

of changes 5 and 6 the new algorithm is able to tell early whether an SCC
contains an accepting state.

3.2 Correctness

To

show the correctness of the algorithm in Figure [2, we make use of colours.

The colours are not in any way essential to the operation of the algorithm; they
are simply mental tools that help us to understand that the algorithm is correct.
A state can have one of the following colours:

White: the state has not been found yet;

Grey: the state is on the depth-first stack, in other words, it is dftop or
stack|[dftop].pre, or stack[stack[dftop].pre].pre, or ...;

Brown: the state is still on the stack, but not on the depth-first stack; and
Black: the state has been removed from the stack, in other words, its SCC
has been completely explored.

The colour of a state can change from white to grey when it is first en-

countered by the depth-first search, from grey to brown when it has been fully
explored but its SCC has not, and from grey or brown to black when it and its
SCC have been completely explored.

The following invariants are maintained by the algorithm:

11: If a state is grey, then all stack states above it are reachable from it.
I12: 1If a state is brown, then the topmost grey state below it on the stack
exists, and is reachable from it.
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13: If a state sg is on the stack and can reach a state below it on the stack,
then there are k > 0 states sy to si such that sgs;... sy is a path, s; to si
are grey or white and the lowlink value of sy is smaller than the position of
sg on the stack.

To show that the algorithm maintains these invariants, we need the following;:

Lemma 1. Any state on the stack can reach stacklk].lowlink, where k is the
position of the state on the stack.

Proof. Via the path by which the lowlink value was propagated back to k. O

We now consider the three actions the algorithm may take:

Forwarding (PUsH). When the algorithm explores a transition to a new state,
a white state is painted grey. Invariant /7 is maintained because the new
dftop becomes top, so no states exist above it. Other grey states can reach
the old dftop and thus also the new state through the transition just explored.
As far as I3 is concerned: If sq is painted grey, the path to the state below
S0, truncated at the first non-white state after sy, meets the requirements.
If any of the s; on so’s path is painted grey, I3 remains valid. Invariant 72
is not affected.

Backtracking, top state becomes brown (POP, without line @1). The state
in question is in position dftop. To cope with 2, we have to show that
the topmost grey state below dftop exists and is reachable from dftop.
Because dftop is going to be painted brown instead of black, we have
stack[dftop].lowlink < dftop. By Lemma 1, there is a path from dftop to
some lower state s; on the stack. If s; is brown, let sy be the nearest grey
state below it. From I2 we know that it is reachable from s;. If s; is not
brown, then it is grey, in which case let s3 = s1. The topmost grey state
other than dftop is either so, or, by I1, reachable from s,. Therefore, I2 also
holds for the new brown state. As for I3: If sy becomes brown, the claim
is not affected. If some s; on sg’s path becomes brown, then s;;; must be
grey since a state is not backtracked from as long as it has white children.
If s;41 is below so in the stack, then s; has at most s;11’s position as its
lowlink value, and thus qualifies as the new s, for sg. Otherwise, s;41 is a
grey state above (or at) sg in the stack, so following the depth-first stack
from sg to s;41 and then continuing along the earlier path constitutes a path
as specified by 3. Invariant 11 is not affected.

Backtracking, top states become black (POP, with linelT). If any of the states
that are to be painted black can reach a state below dftop, then, by I1, so can
dftop. (Note that as most one grey state is painted black in this operation.)
13 stays valid by the same reasoning as when the top state is painted brown.
Invariants I7 and I2 are not affected.

Lemma 2. Any state on the stack can reach all states above it on the stack.
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Proof. A state on the stack is either grey or brown. If the state is grey, then the
lemma holds by I1. If it is brown, then we first invoke 72 and then I1. a

Lemma 3. If a state is black, then all of its descendants are black.

Proof. Since black states do not ever again change colour, it suffices to consider
the case when new states are being painted black. If any of the newly painted
states can reach a state below the then dftop, then, by 11, so can dftop. It then
has a path as described by I3. Because all the states above dftop are brown,
already dftop’s s; must be below it on the stack. Therefore, the condition on
line [46 cannot hold, yielding a contradiction. Thus the newly painted states can
reach only each other, or other black states which were painted earlier on. O

Finally we are in a position to prove that the algorithm operates correctly:

Theorem 1. If the algorithm announces a violation, then there is an accepting
cycle.

Proof. By Lemma 1 t can reach stack[t].lowlink. When a violation is reported,
by Lemma 2, stack[t].lowlink can reach stack[f].acc which can reach f. The
transition that caused the announcement is from f to t, closing the cycle. a

Not only does the algorithm not raise false alarms, but it also has the property
that it reports a violation as early as possible.

Theorem 2. The algorithm reports a violation as soon as possible.

Proof. Consider a nontrivial cycle with an accepting state A. If the algorithm
does not terminate earlier, the following will happen. Eventually every transition
of the cycle will be constructed by line[[H. When the last transition of the cycle
is constructed, then dftop is grey, and all other states in the cycle are on the
stack. (They can be neither black by Lemma 3, nor white, because all transitions
in the cycle are found.) Because no violation has been announced, the algorithm
has never assigned to any stack[k].lowlink a value smaller that stack[k].acc (so
no accepting state is brown). The cycle contains a transition B — C' such that
B is A or above A on the stack, and C is A or below A. When the first such
transition is found, the algorithm executes line and announces a violation,
because B’s lowlink > B’s acc > A’s position > C’s position > C’s lowlink. O

We have now demonstrated how an on-the-fly verification algorithm based
on Tarjan can be efficiently implemented, and correctly detects accepting cycles.
The question that remains is, does the extra cost of keeping backtracked states
on the stack outweigh the benefit of finding errors early on?
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Table 1. Comparison of the new algorithm and CVWY for random graphs and random
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and real LTL formulas

Edge Random Formulas from
probability formulas literature Combined

0.001 7133 2949 10082
NEW 8.71 6.74 6.83| 9.68 7.30 7.86|| 8.99 6.91 7.13
cvwy  |41.69 30.14 37.83|36.62 26.21 31.82{|40.21 28.99 36.07
0.01 7267 3039 10306
NEW 6.15 4.08 4.67| 6.40 3.85 5.50|| 6.22 4.01 4.91
CVWY  |25.59 15.31 21.62|24.52 13.93 20.45||25.28 14.90 21.27
0.1 7832 8131 10963
NEW 6.38 2.90 4.10| 5.69 1.62 4.74|| 6.19 2.53 4.28
CVWY |78.82 32.70 72.58(65.33 24.66 58.40(|74.96 30.40 68.53
0.5 8150 3168 11318
NEW 6.02 2.16 3.20| 5.11 1.08 3.89|| 5.76 1.86 3.40
CVWY  [92.54 47.56 84.66|80.52 35.18 70.68||89.18 44.09 80.75
0.9 8222 3177 11399
NEW 6.04 2.06 3.00| 5.57 1.11 4.30|| 5.91 1.80 3.36
CVWY  [88.90 47.22 80.51|81.78 35.89 71.26(|86.91 44.07 77.93
Combined 38604 15464 54068
NEW 6.62 3.50 4.29| 6.45 293 5.22|| 6.57 3.33 4.55
CVWY [66.98 35.18 60.80(58.32 27.31 51.03]|64.51 32.93 58.01

3.3 Comparison with CVWY by Measurements

To investigate the impact of retaining partial SCCs on the stack, the new al-
gorithm was compared to CVWY using random graphs and both random and
actual LTL formulas. The procedure described in [23] was used to generate 360
random formulas, another 94 formulas were selected from the literature (the 12
in [7], the 27 in [21], the 55 in [5]), and a further 36 formulas were taken from a
personal collection of troublesome formulas. Also the negations of these formulas
were added to the list, bringing the total to 980. No attempt was made to remove
duplicate LTL formulas. Each formula was converted to a Biichi automaton us-
ing the LTL2BA program [10], and the number of states in the resulting Biichi
automata ranged from 1 to 177. Using another procedure from [23], 75 random
100-state graphs were generated. The graph generation algorithm selects one
state as the root and ensures that every other state is reachable from it.

Every graph was checked against every LTL formula; Table M shows the out-
come of the comparison. The three major columns contain the results for the
random formulas, the human-generated formulas and the combined set, respec-
tively. The major rows divide the results according to the connectedness of the
graphs; each row describes 15 graphs that were generated with the same tran-
sition probability, while the last row contains the combined results for all 75
graphs. Within each cell, the small number in italics indicates in how many
cases violations were found. For both the new and the CVWY algorithm three
numbers indicate the number of unique states reached, the number of transi-
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tions explored, and the maximum size of the stack, averaged over the instances
of violations, and expressed as a percentage of the total number of states or
transitions in the product of the graph and the Biichi automaton. This means
that every number in the last column is the sum of its counterparts in the first
two columns, weighted with the number of violations.

For example, the 720 random formulas (360 randomly generated and negated)
were checked against the 15 random graphs with a transition probability of 0.001.
Of the 10800 products, 7133 contained violations. The new algorithm reported a
violation (there may be several in each product) after exploring on average 8.71%
of the states and 6.74% of the transitions of the product. During the search, the
stack contained a maximum of 6.83% of the states on average. (This refers to
the total number of states on the combined stack described in Section Bl not
just the depth-first stack.) In contrast, the CVWY algorithm reports a violation
after exploring on average 41.69% of the states and 30.14% of the transitions, and
during the search the stack contained at most 37.83% of the states on average.
(This includes the usual depth-first and the nested depth-first search stacks.)

The product automaton explored by the CVWY algorithm may, in some
sense, have up to twice as many states and transitions as that explored by the
new algorithm. Each state s has a depth-first version (s,0) and, if the state is
reachable from an accepting state, a nested depth-first version (s, 1), and the
same holds for the transitions. However, in our opinion the figures as reported
in the table give an accurate idea of the memory consumption of the algorithms
(indicated by the percentage of states and maximum stack size) and the time
consumption (indicated by the percentage of transitions). When states are stored
explicitly, it is possible to represent the nested version of each state by storing
only one additional bit per state. In this case, the CVWY figures for states may
be divided by two before reading the table, to get a lower estimate.

The results clearly demonstrate that the new algorithm is faster (i.e., explores
fewer transitions) and more memory efficient (i.e., stores fewer visited states and
uses less stack space) than the CVWY algorithm, for the formulas and random
graphs investigated. From experience we know that results on random graphs can
be misleading; results for actual models and formulas are discussed in Section [l

3.4 State Storage and Partial Orders

The new algorithm is fully compatible with bitstate hashing [T4]; in fact, while
the CVWY algorithm stores two bits per state, the new algorithm needs only
a single bit. As we explain in the next subsection, the stack bit can be avoided
if states can be searched for in the stack. The algorithm also works with state
space caching [I3]. Only the states on the depth-first stack need to be preserved;
the other stack states are replaceable.

Partial order (or stubborn set) reduction techniques have become well-known
and widely used [I2II8)25]. Unfortunately, the CVWY algorithm has a drawback
in this regard: Because states are visited more than once during the nested depth-
first search, the reduction may cause the algorithm to ignore transitions that
lead to an acceptance state. This was pointed out in [I5]; the authors proposed
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a modification that not only corrects the problem, but also improves the per-
formance of the algorithm slightly. (We shall refer to the modified algorithm as
“HPY”.) However, the modification requires extra information about transition
reductions to be stored along with each state. This information can be reduced
to a single bit, but at the expense of a loss in reduction. The new algorithm
avoids these problems by never investigating a state more than once.

3.5 Stack Issues

While each stack element of the new algorithm carries three extra fields of in-
formation (pre, lowlink, and acc), the space required to store this information
is small compared to the size of the states in a large system. Furthermore, since
every state encountered by the algorithm is inserted in the state store (by the
MARK function), the stack only needs to record a reference to the state’s position
in the store; it is not necessary to duplicate the state on the stack. When many
partial-SCC states are retained on the stack, memory requirements can be made
less severe if such lightweight stack elements are used. Note that the lastir field
does not count as extra information. In a recursive implementation like that in
Figure[ll it is stored in a local variable on the procedural stack.

Another important implementation issue is finding states on the stack. If
states are stored explicitly, there is the option of storing its stack position along
with each state. As with the extra fields of the stack, the extra space required
for this is usually relatively small compared to the size of states. Alternatively,
a supplementary data structure such as a hash table or binary tree could help
to locate states in the stack. This is necessary when bitstate hashing is used.

A significant difference between the new and the older algorithms is that
CVWY/HPY can store stack information in sequential memory, which can be
swapped to disk. The new algorithm, on the other hand, needs to store the
lowlink fields of stack states in random access memory. Unfortunately, the impact
of this difference depends on the structure of the model, and is difficult to judge

4 Heuristics

It is not difficult to construct a scenario where the new algorithm fares worse
than the CVWY algorithm. Consider the Biichi automaton B and the system S
in Figure Bl The product has exactly the same shape as S except that the state
marked 3 is accepting, and forms the single accepting cycle.

Assuming that transitions are explored left-to-right, the CVWY algorithm
detects the accepting cycle after exploring the four states of the subgraph rooted
at state a. Its stack reaches a maximum depth of four and at the time of the
detection, its stack contains three states (two regular states and one nested-
search state). The new algorithm, on the other hand, also explores the four
states of the subgraph rooted at «, but, because they form an SCC rooted at
the initial state, these states remain on the stack. At the time of detecting the
accepting cycle, the new algorithm’s stack contains all six states of the product.
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S/

Fig. 3. A difficult case for the new algorithm

The situation is even worse if the system contains two such subgraphs, as does
S’ in Figure[3. In this case, CVWY explores the subgraphs at o and o/, but its
stack reaches a maximum size of only four. The new algorithm retains all states
on the stack, so that it contains ten states when the accepting cycle is found.

If only the transition leading to 8 were explored first, both algorithms would
detect the offending cycle after exploring just two states (plus an extra nested-
search state for CVWY). This suggests the use of heuristics to guide the algo-
rithms to detect accepting cycles more quickly. Ten heuristics were investigated,
and the results are shown in Table 2] The meaning of the three columns is the
same as in Table[Il, as is the meaning of the three numbers (states, transitions,
maximum stack size) given per experiment. Only the performance for the new
algorithm is described in the table, and the first line—which agrees with the last
NEW line of Table [l—shows the case where no heuristics are used.

The following heuristics were investigated: +DEPTH (—DEPTH) selects those
transitions that lead to the deepest (shallowest) Biichi SCC first, +ACCEPT
(—ACCEPT) selects those transitions that move closest to (furthest away from)

Table 2. Effect of heuristics on the new algorithm

Random Formulas from
Heuristic formulas literature Combined

NONE 6.62 3.50 4.29| 6.45 2.93 5.22|| 6.57 3.33 4.55
+DEPTH | 6.72 3.34 4.28| 7.88 3.46 6.29|| 7.05 3.37 4.85
—DEPTH |11.40 5.95 8.98|14.86 7.47 13.33(/12.39 6.38 10.23
+ACCEPT|13.04 6.82 10.15/16.47 8.16 14.71([14.02 7.20 11.46
—ACCEPT| 7.62 3.62 5.80(10.25 4.97 8.97|| 8.37 4.01 6.71
+STAY 12.03 6.15 9.76{16.27 8.04 14.65||13.24 6.69 11.16
—STAY 8.30 3.99 6.10{12.06 5.63 10.55|| 9.37 4.46 7.37
+TRUE 9.03 4.39 6.58(12.91 5.9511.03||10.14 4.83 7.85
—TRUE [13.16 6.50 10.84|17.17 8.27 15.27|{14.31 7.00 12.11
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an accepting state first, +STAY (—STAY) selects those transitions that stay within
the same Biichi SCC first (last), and +TRUE (—TRUE) selects those transitions
that are labelled with the formula “true” first (last). If there are any ties between
transitions, the order in which the transitions appear in the input is followed.
As the table shows, none of the heuristics performed better than using no
heuristic at all. This is disappointing, but it does not mean that heuristics do
not work. Rather, the problem might be that some heuristics work well for some
Biichi automata, and poorly for others. Suggestions for heuristics search based on
system transitions have been made in [I3/16], and, more recently, in [627]. The
new algorithm presented in this paper can accommodate all these suggestions.

5 Experiments with Actual Models

We have implemented a model of the echo algorithm with extinction for electing
leaders in an arbitrary network, as described in [24] Chapter 7]. Three variations
of the model behave in different ways:

— Variation 1: After a leader has been elected and acknowledged by the other
nodes, the leader abdicates and a new election is held. The same node wins
every election.

— Variation 2: A leader is elected and abdicates, as in Variation 1. However,
a counter keeps track of the previous leader and gives each node a turn to
win the election.

— Variation 3: As in Variation 2, each node gets a turn to become leader.
However, one node contains an error that disrupts the cycle of elections.

Each of the variations was modelled with the SPIN system and its state space,
reduced with partial orders, was converted to a graph for input by our imple-
mentation of the cycle detection algorithms. This is not the way the algorithms
would be used in practice—cycle detection normally runs concurrently with the
generation of the state space—but it facilitates making the experiments without
having to implement the new algorithm in SPIN.

The results of our comparison are shown in Table Bl The first column con-
tains the names of the formulas which are given explicitly below the table; a
cross to the left of the formula name indicates that a violation of the prop-
erty was detected. The column marked “Product” gives the number of states
and transitions in the product automaton, and the columns marked “NEW”,
“HPY”, and “CVWY” give the number of states, transitions and the maximum
stack size for the new algorithm, the algorithm in [T5] (HPY), and the algorithm
in [2] (CVWY), respectively. As mentioned in Section B4l the HPY algorithm
improves on the performance of the CVWY algorithm in some of the cases.

The arbitrary network specified in the model variations comprised three
nodes numbered 0, 1, and 2. This explains why property B (“if ever, in the
distant enough future, there is no leader, node 3 will be elected”) and E (“node
3 is eventually elected once”) are not satisfied by any of the models. Properties
A, C, D, F, and G deal with the election of node 0, and properties H and I say
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Table 3. Results of checking property ¢ for leader election in an arbitrary network

Variation 1: 25714 states, 32528 transitions

Product

NEW

HPY

CVWY

~TQEMEHTAQm S

51053 96406
51849 100521
12081 15198
51053 96406
25714 32529
51053 96406
25714 32529
53988 88553
53988 88553

51053 96406 14097
422 436 422
12081 15198 199
51053 96406 14097
389 390 389
51053 96406 14097
25714 32529 14097
610 624 610
610 624 610

51053 128342 14097

1159 1227 1151
12081 30395 199
51053 128342 14097

642 657 639
51053 128342 14097
25714 32529 14097
19649 24417 1511
19649 24417 1511

51053 128342 14097
1159 1227 1151
12081 30395 199
51053 128342 14097
692 730 639
51053 128342 14097
25714 32529 14097
19649 24417 1511
19649 24417 1511

Variation 2: 51964 s

tates, 65701 transitions

Product

NEW

HPY

CVWY

~TQOTMEU QDS

104779 204228
105599 208455
12081 15198
103541 195893
51964 65702
103541 194225
92140 118238
293914 552899
132763 222806

26742 49909 13841
886 900 886
12081 15198 199
103541 195893 40347
853 854 853
103541 194225 40347
1122 1123 1122
1567 1581 1567
132763 222806 40347

35786 87539 1472
3016 3168 3008
12081 30395 199
103541 260986 40347
1570 1585 1567
103541 259318 40347
1803 1805 1803
56254 69736 4269
211890 377639 40347

35786 87539 1472
3016 3168 3008
12081 30395 199
103541 260986 40347
1620 1658 1567
103541 259318 40347
1803 1805 1803
56281 69777 4295
211890 377639 40347

Variation 3: 40158 s

tates, 51115 transitions

Product

NEW

HPY

CVWY

~TQEEHT QTS

81167 160470
81987 164697
12081 15198
79929 152135
40158 51116
79929 150467
66450 86258
229269 435261
169793 312465

904
904
12081
12777
697
12777
903
30917
37798

906
906
15198
16125
698
16125
904 903
57851 2009
63689 14688

904
904
199
697
697
697

2133
2133
12081
13239
1159
13239 31784
1365 1367
142993 271769
150362 281812

2222
2222
30395
31784
1161

2132
2132

199
1159
1159
1159
1365
2516
2292

2133
2133
12081
13239
1159
13239 31784
1365 1367
169718 315617
193866 340240

2222
2222
30395
31784
1161

2132
2132

199
1159
1159
1159
1365
2896
2993

A=20(nU )
B = <>E|(nU€3)

C= <>£()

D= D<>£0

FE = 0(3

F =0(n = Ody)
G= D(TL\/&))

H=20((nV Ve Vie)NLO,1) AL,

n = there is no leader
£, = process x is the leader
L(z,y) =4z = (lz U (nU Ly))

2) A L(2,0))

I=00((nV LoV 0V ) ALO0,2) A L0 AL21))
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that, from some point onward, the elected leader follows the cycles 0-1-2 and
0-2-1, respectively.

In all cases the number of states and transitions explored by the new algo-
rithm were the same as or less than those explored by the others. In three cases,
variation 1 H and I and 2 H, the new algorithm explored more than 30 times
fewer states and transitions. In two cases, 2 A and 3 I, the new algorithm re-
quired more stack entries than the other algorithms. As discussed in Section [3.5]
which algorithm wins in these two cases depends on implementation details, but
the new algorithm is clearly the overall winner.

6 Conclusions

We have presented an alternative to the CVWY [2] and HPY algorithms for
cycle detection in on-the-fly verification with Biichi automata. Our algorithm
produces a counterexample as soon as an ordinary depth-first search has found
every transition of the cycle. Thus it is able to find counterexamples quicker
than CVWY and HPY, which need to start backtracking first. Also, it never
investigates a state more than once, making it compatible with other verification
techniques that rely on depth-first search. It sometimes requires a lot of stack
space, but our measurements indicate that this drawback is usually outweighed
by its ability to detect errors quickly.

Acknowledgments. The work of J. Geldenhuys was funded by the TISE grad-
uate school and by the Academy of Finland.
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