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Abstract. In the context of Petri nets, we propose an automated con-
struction of a progress measure which is an important pre-requisite for a
state space reduction technique called the sweep-line method. Our con-
struction is based on linear-algebraic considerations concerning the tran-
sition vectors of the Petri net under consideration.

1 Introduction

The sweep-line method [Mai03] is a recently proposed reduction technique for
explicit state space verification. In its basic shape, it deletes previously con-
structed states that cannot serve as successors of states not yet explored. The
key concept for this method is a so-called progress measure that assigns values
to states which are non-decreasing w.r.t. the successor state relation. The sweep-
line method was later generalized such that progress measures can be used which
are non-monotonous w.r.t. the successor relation. In that case, states that have
a predecessor with larger progress value are stored permanently. Thus, a good
non-monotonous progress measure should be designed such that value decrease
by transition occurrence happens as seldom as possible. In the original papers
[CKMO01,KMO02], it is left to the user to provide a progress measure, assuming
that the user knows about some concept of progress in the modeled system.

We propose an automated generation of a progress measure for the gener-
alized sweep-line method. It works for place/transition Petri nets, where con-
venient concepts for describing progress measures cannot be found within the
formalism itself (in contrast to high level nets where the language of annotations
to the net can be used to formulate progress measures).

Our progress measure is not necessarily monotonous. We derive the measure
from an analysis of the system’s transition vectors, and their linear dependencies.
We arrive at an incremental progress measure. That is, we can assign to each
transition a fixed value such that the progress value of a successor state differs
from the original state exactly by the value assigned to the fired transition. One
advantage of this kind of progress measure is that, upon a transition occurrence,
the progress value of the successor state can be computed by addition of an offset
to the progress value of the predecessor, that is, in constant time. Moreover, so-
called regress transitions—transitions that decrease the progress value—can be
identified statically.
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We start with a brief description of the sweep-line method, and continue with
some basics about the linear algebra of Petri nets. Then, we present our proposal
to the definition of a progress measure. Finally, we propose solutions concerning
the combination of the sweep-line method with well-known state space reduction
techniques such as partial order reduction or symmetry reduction.

2 The Sweep-Line Method

First, we sketch the basic sweep-line method [CKMO01]. At any snapshot during
explicit state space exploration, we can distinguish three kinds of states. We
have states already seen, and states not yet seen. Among the states already seen
there are those where all enabled transitions have already been explored, and
those where some successors have not yet been explored. The last kind of states
is called the front.

Assume we assigned a progress value! p(s) to each state s such that for all

transitions ¢, s — s implies p(s) < p(s"). Obviously, all states still to be tested
for presence in the state space are (transitive) successors of states in the front
and have thus a progress value greater or equal to the minimum progress value
among the front states. Consequently, states with smaller progress values than
the minimum progress value appearing in the front can be safely removed from
the state space. This is exactly the reduction the sweep-line method aims at.
As the front evolves forward, more and more states can be removed, leading to
the intuition of a sweep-line following the front of state space exploration and
removing every state behind it (cf. Fig. 1). For being able to remove as many
states as possible, and as early as possible, a search strategy is recommendable
where front states are explored in ascending order of their progress values. In
contrast, depth first search is not recommendable as the initial state is the last
one to leave the front thus making it impossible for the sweep-line to proceed
forward.

For the generalized sweep line method [KMO02], the monotony condition for
the progress measure is dropped. Thus, the method works, at least in principle,
with any assignment p of progress values to states. Now, there can be situations
where a transition leads to a state with smaller progress value. Such a pair of
states is called a regress edge in the state space.

The generalized sweep-line method complements the basic method with the
following twist. Whenever a regress edge occurs during a run (as in the basic
method), the target state of that edge (the state with smaller progress value) is
stored and marked persistent. That is, it will never be removed subsequently. It
is, however, not explored immediately. Due to the removal of states behind the
sweep line, we cannot be sure whether or not we have already seen that state.
Thus, after having finished one state space exploration, we start another state

!in general, progress values can be members of any partially ordered set. For this
paper, however, it is sufficient to view progress values as integer numbers. p is not
necessarily injective.
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Fig. 1. A snapshot during sweep-line state space generation. States fully explored (pro-
cessed) have smaller progress values than states not yet completely explored (unpro-
cessed) and states not yet seen. States behind the sweep-line (following the unprocessed
states) can be deleted.

space exploration with all states recently marked persistent as initial front. This
exploration possibly re-explores parts of the state space, and can lead to further
persistent states that need to be explored subsequently. It can, however, be shown
that, for a finite-state system, every reachable state is visited at least once, so
simple reachability queries can be verified using the method. Furthermore, the
number of iterations until no additional persistent states are discovered, tends
to be small.

3 Definitions

We use the notation [P, T, F, W, my) for Petri nets, with the two finite and disjoint
sets P (places) and T (transitions), the relation F' C (P x T) U (T x P) (arcs),
the assignment W : F — N\ {0} (arc weights) and the initial marking my,
where a marking is a mapping m : P — N U {0}.

We extend W to (P x T) U (T x P) by setting W (z,y) =0 for [z,y] ¢ F.

For a transition ¢, place vector At is defined by At(p) = W (t,p) — W(p,t).
Transition ¢ is enabled at a marking m iff, for all p € P, m(p) > W(p,t). If t
is enabled at m, t can fire at m leading to the successor state m’ = m + At
(notation: m Lom! ). The reachability relation L is extended to transition
sequences in the canonic way, m — m’ denotes reachability of m’ from m by
any finite transition sequence.

The incidence matrix C' is a matrix with P as row index set and T as column
index set, where for all transitions ¢, the corresponding column in C' is equal to
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At. A transition invariant is an integer solution to the system C'-x = 0 where z
is a transition indexed vector of unknowns, and 0 is the place indexed vector of
Zeros.

Let m 1uin o/ By definition, we have m’ = m + Aty + --- + At,,. This
equation can be rewritten to m’ = m + C - ¥(t;...t,) with ¥ being a vector
with index set T where the entry for ¢ is equal to the number of occurrences
of t in t1...t, (in the sequel called the count vector of the sequence). Equation
m' =m+C-U(ty...1,) is called the state equation for Petri nets.

A vector v is linear dependent on a set {vy,...,v,} of vectors if there are
(rational) numbers Ay, ..., A, such that v = Ay -v1+- - -4+ A, -v,. A set of vectors
is linear independent iff none of its members is linear dependent on the set of
remaining members. For a matrix C, its rank r(C') is defined as the size of the
largest set of linear independent columns of C'.

4 Progress Measures

A progress measure is a mapping p : N — A, where A is an arbitrary set

with a partial order <. If, for markings m, m/, and a transition ¢, m X m’ and
p(m) £ p(m'), [m.m/] is called a regress edge. A progress measure is monotonous
if there are no regress edges between any two reachable markings.

Our progress measures map into the set Q of rational numbers, with the
usual < as its partial order. In addition, they are incremental.

A progress measure p is incremental if, for each ¢t € T, there is a rational
number o(t) (t’s offset) such that for all m,m’, m — m/ implies p(m’) = p(m) +
o(t). An incremental measure is uniquely defined by its transition offsets and the
progress value of the initial marking. The progress value of the initial marking,
however, does not influence the nature of the measure, so we assume p(mg) = 0.
Incremental progress measures have the advantage that calculation of progress
values during depth first state space exploration can be done in constant time
(just add the offset of the fired transition). Non-incremental measures may or
may not require constant time calculations, depending on how many components
of a state are considered for establishing progress.

Consider a marking m that is reached from the initial marking with two

th..t

10

different transition sequences: mg Betne o and mo —— m. A consistent
incremental progress measure must assign a unique progress value to m. That
is, the transition offsets need to satisfy: > | o(t;) = Z?zl o(t}).

Since the calculation of a progress measure needs to be performed prior to the
state space generation, we do not have sufficient information about executable
transition sequences. By the state equations m = mg+ C - W¥(ty...t,) and m =
mo + C - W(t)...t,) we know, however, that at least one of the transitions
ti, ..., tn,t, ..., 1, is linear dependent on the remaining transitions in this list.
For a consistent measure, it is thus important to assign compatible values as
soon as a transition is linear dependent on other ones.

Our approach works as follows. First, we determine a maximum size set U
of linear independent transitions (the size of U is thus r(C')). This can be done
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in polynomial time. For each t € U we set o(t) = 1. Since U is of maximum size,
all remaining transitions can be expressed (uniquely!) as linear combinations of
transitions in U. These linear combinations determine the remaining offsets as
follows. Let U = {t1,...,t,} and ¢t ¢ U. Then there exist Aq,...,\, such that
At = M A + -+ M\ AL, We set o(t) = Ao(t1) + ... \o(tn) (= A1+ ... \).
This value can be greater than, equal to, or less than 0 (Fig. 2). Thus, among
the transitions outside U, there may be regress transitions. It is obvious that
our setting leads to a consistent progress measure.

Fig. 2. The numbers in this figure are offsets. The transitions with offset 1 are members
of U. The offset of the remaining transitions is determined by their linear combination
from U.

Figure 3 contains a geometric interpretation of the just defined progress mea-
sure. Consider the euclidian space Q!”’! of points with rational coordinates. Every
marking defines a point in this space (with integer, even natural numbers as co-

ordinates). The transition vectors At can be viewed as vectors. If m L5 m/ then
point m/ is the translation of point m by vector At.

Linear independent vectors define a hyperplane F (the minimum size plane
that contains the points defined by the translation of the point 0 by the respective
vectors). E does not contain 0, so there is a unique point d in E that has minimal
distance to Q0 w.r.t. the usual euclidian metric. 0 and d define a line g containing
both points. The progress value of a marking (a point) m is the distance of
the unique intersection point ¢ between line g and the parallel of E containing
m, measured in a scale where the distance between 0 and d defines the unit
(value 1).
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Fig. 3. Geometric interpretation of our progress measure

5 Possible Optimizations

The choice to assign offset 1 to the transitions in U is somewhat arbitrary. In
fact, any assignment of offsets to transitions in U can be extended to a consis-
tent progress measure for the whole system, following the linear combinations
approach.

By changing offsets of transitions in U, the position of the plane E (and
thus the direction of the progress line g) in Fig. 3 can be controlled. An optimal
position would be such that as many as possible transitions point to the same
side of the parallel of E through point 0. We tried to formulate this as an
optimization problem, but did not succeed to arrive at a linear one. However,
standard optimization heuristics such as simulated annealing or hill climbing
may help to find close to optimal solutions. We cannot quantify the effect of
such techniques at this time.

Approximating the target function (trying, for instance, to maximize the sum
of offsets of all transitions rather than the number of transitions with positive
offsets), leads to unsatisfactory results. For the sweep-line method, it is better to
have many transitions with small positive offset, and few transitions with large
negative offset than to have any kind of more balanced assignment.

Another source of possible optimization is the actual choice of U. While the
size of U is determined by the rank of the incidence matrix C, there is some
freedom left to choose its actual constituents. It might be possible to control
the calculation of U such that, for instance, regress transitions do not form
long chains (which would possibly lead to a large number of iterations of the
sweep-line method). Results in this regard must as well be left to future work.
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6 Combination with Other State Space Reduction
Techniques

We counsider first partial order reduction [Pel93,GW91,Val88]. Since the sweep-
line method is able to investigate the set of reachable states, but not the mutual
connections between states, only simple safety properties can be verified. Among
them are presence of deadlocks [Val88], existence of dead transitions [Val9l,
Sch99b], reachability [Val91,Val93,Sch99b,KV00], and similar simple safety prop-
erties [Val93]. See [Val96,Val98] for surveys on partial order reduction methods.
Partial order reduction consists of computing, in every state, a subset of the en-
abled transitions such that the considered property is preserved when only the
transitions in the computed subset are fired. In most of the cited techniques, the
subset can be determined by examining the structure of the system (here: the
Petri net) and the current state. This is particularly the case for the deadlock
preserving method [Val91], the methods proposed in [Sch99b] for dead transi-
tions and reachability, and the approach in [Val93].

In [Val91], a core concept is a solution to the so-called ignorance problem. It
requires detection of cycles or strongly connected components in order to avoid
infinite ignorance of certain transitions. The approach of [KV00] to reachability
has a similar condition. Traditionally, graph structures such as cycles or strongly
connected components are detected through extensions to the depth-first search
algorithm [Tar72]. Since depth first search is not available with the sweep-line
method (as the initial state would be kept in the unprocessed set until the very
end of state space exploration), we need a different implementation. Fortunately,
a progress measure gives sufficient information, at least about cycles: every cy-
cle contains a regress transitions (one with negative offset), or all transitions in
the cycle have offset 0. While regress transitions can be immediately discovered
during state space exploration, cycles containing only 0 offset transitions can as
well be discovered since the involved states share the same progress value and
are only deleted after having explored all of them. This means: if a property is
preserved by the sweep-line method, then all existing partial order reduction ap-
proaches for that property can be combined with the sweep-line method, though
not necessarily in their most efficient fashion.

Next, we consider the symmetry method [HJJJ84,CEFJ96,ES96,ID96,
Sch00a,Sch00b]. Its principal compatibility to the sweep-line method was already
mentioned in [Mai03]. However, there is a serious problem with the particular
approach proposed in this paper. The symmetry method works by defining a
suitable equivalence on the set of states, and exploring only one representative
of every equivalence class. The usual implementation requires transforming every
freshly computed state into a canonical representative of its class. The problem
with our approach to the sweep-line method is that , ad 1, the canonical repre-
sentative does not necessarily have the same progress value as the original state,
and ad 2, the (incrementally determined) progress value of the canonical repre-
sentative cannot be determined without having an actual transition sequence to
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this state. The only suitable solution to the problem is to arrange the progress
measure such that equivalent states receive equal progress values.

In [Sch00a], we detect symmetries as graph automorphisms of the underly-
ing Petri net. An automorphism is a bijection on the set of nodes (places and
transitions) that respects node type, neighborhood w.r.t. the arc relation, mul-
tiplicities, and initial marking. The group of graph automorphisms defines an
equivalence relation on the nodes as well as on the states of the Petri net. Two
nodes are equivalent if there is a graph automorphism that maps one of them onto
the other. Two states are equivalent if there is a graph automorphism that maps
one of them onto the other. Thereby, for a state m and a graph automorphism
o, o(m) is defined by the equations o(m)(c(p)) = m(p), for all places p. In this
approach it can be proven that, if a state is reached by a sequence of transitions,

equivalent states can also be reached by a sequence of equivalent transitions. For-

mally, m; N implies o(my) ott)olta).oltn-1) a(my), for all graph

automorphisms o. Since every automorphism is expected to respect the initial
state mg, we have o(mg) = myg, for all automorphisms o.

Assume an incremental progress measure p defined by offsets o(ty), ..., o(t,)
to transitions 1, ..., t,, Let m be a state reachable from the initial state through
a sequence ty ...t,. Then, p(m) = p(mg) + o(t1) + - - - + o(t,). For any state m/
equivalent to m, we have an automorphism o such that m’ = o(m). Conse-
quently, we have p(m’) = p(mg) +o(o(t1))+-- -+ o(c(ty,)). For achieving a sym-
metry respecting progress measure, it is thus sufficient to assign offsets to transi-
tions such that equivalent transitions receive equal offsets. Then, o(¢;) = o(o(t;))
for all ¢ and all i. Unfortunately, this idea cannot be easily integrated into
the approach presented so far, since the set U is not necessarily closed under
the equivalence relation induced by symmetry. Furthermore, it can happen that
transitions outside U, though equivalent, receive different values even if equiv-
alent transitions inside U have equal values. It is thus necessary to compute
a symmetry respecting progress measure with a more complicated approach.
In the first step, we compute a generating set of all transition invariants of
the Petri net, i.e. a set of invariants such that every transition invariant is a
linear combination of these ones. Since we consider rational solutions, the com-
putation can be done in polynomial time. In a second step, we calculate the
offsets (o(t1), ..., o(t,)) of transitions t1, ...., t, (where n = card(T')) as solutions
of a homogeneous system of equations, including the following equations. First,
for every generator (ay, ....,a,) of the set of transition invariants, add equation
ajo(ty) + -+ + ano(t,) = 0. These equations guarantee consistency of the com-
puted measure. Second, we add, for every pair [t;,t;] of equivalent transitions,
the equation o(t;) = o(t;). Thus, solutions become symmetry respecting. Us-
ing a simple solution method such as Gaussian elimination, we may eventually
choose some of the offset values arbitrarily. We use this opportunity to assign a
positive value at least to those transitions. Every such assignment induces a pos-
itive value to a whole equivalence class (through the second kind of equations).
This approach is more complicated since it requires the subsequent solution of
two systems of equations. In terms of the computed progress measure, it tends,
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however, to yield acceptable measures, even though there exist cases where a non-
trivial progress measure exists, but no non-trivial symmetry respecting progress
measure (see Fig. 4).

Fig. 4. This net has a progress measure where two of the transitions have offset 1 while
the remaining transition has offset -2. All transitions are equivalent w.r.t. symmetry.
The only symmetry respecting progress measure is thus the one assigning 0 to all
transitions, and no reduction can be achieved.

Consistency of the proposed symmetry respecting progress measure can be
verified as follows. Assume, one and the same state m is reached from the initial
state through different transition sequences t; ...t and t} ...t/ . The Petri net
state equation yields m = mg+C - ¥ (t1...t;) and m = mo+¥(t] ...t),). Thus,
C-(P(ty...tx) —¥(ty...1,)) = 0 which means that ¥(ty...tx) — P(t]...1,,)
is a transition invariant. Since, through the first kind of equations introduced
above, every generator (ai,...,a,) of the set of transition invariants satisfies

o(t1) + ...an - o(ty,) = 0. Since every transition invariant can be expressed
as a linear combination of the generators, we have that actually all transition
invariants (by, ..., by,) satisfy by -o(t1) +...b, - o(t,)) = 0. In particular, we may
conclude for the above mentioned difference of count vectors, o(t1) + ... o(tx) —
(o(ty) + ...0(t,)) = 0, or, equivalently, o(t1) + ...0(tx) = o(t}) + ...0(t],).
m thus receives the same progress value, no matter which sequence is used to
compute it. This means that the measure is consistent.

7 Examples

We consider first the system of dining philosophers, Fig. 5. This is a system
consisting of a large number of agents where each agent performs a repeated
sequence of only few actions. Thus, the state space of this system has a huge
number of cycles where many of them can be performed independently. Con-
sequently, most of the states of the system are reached by at least one regress
transition (there is exactly one regress transition per philosopher). This nature
of the dining philosophers system is actually an indication for not applying the
sweep-line method which is confirmed by the results below (see the number of
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Fig. 5. The five dining philosophers system. A philosopher acts in the cycle take left
fork - take right fork - release left fork - release right fork.

persistent states). We have included this system in order to show that, even for
systems with no immediate concept of global progress, the sweep-line method is
able to reduce peak memory usage. It is only necessary to combine it with partial
order reduction. Partial order reduction has the effect of reducing the number
of interleavings. Thus, local cycles of independent (not neighbored) philosophers
are decoupled and the ratio between persistent and non-persistent states is much
smaller. For realistic reactive systems, we expect an even better reduction since
local cycles tend to be larger than in academic examples thus decreasing the
number of regress transitions. The progress measure computed by our approach
has three transitions per philosopher with offset 1, and the remaining transition
with offset -3. Declaring every but one local step of a philosopher a ”progress”,
and the remaining one as regress, appears natural even for a human generated
progress measure. A person would, however, choose the same local transition to
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be the regress one (thus making the measure symmetry respecting) while our
implementation does not compute a symmetry respecting solution.

idle send Fu\% receive re
X X X X
initiator @ U
N(x) x {x}

{x} xN(x)

messages

idle
. y
other processes U\(i}

Fig. 6. The ECHO broadcasting protocol depicted as a high level net. The initiator
(on top) sends messages to all its neighbors, and waits for corresponding acknowledg-
ments. Other agents (on bottom) send (on receipt of one message), messages to all
remaining neighbors, and send, after having collected corresponding acknowledgments,
and acknowledgment to the originator of the message.

ready

The second example, Fig. 6, shows a distributed algorithm for propagating
information with feedback. The algorithm terminates. All transitions are linear
independent. We are therefore able to compute a monotonous progress measure
assigning 1 as offset to all transitions. This coincides with the human intuition
that in a terminating algorithm, every executed step is ”progress”. We can see
that in acyclic systems, the sweep-line method performs well, even if applied in
isolation.

The data reported in Table 1 have been collected using the tool LoLA
[Sch99a]. The implementation of the sweep-line method in LoLA is complete,
including the fully automated determination of a progress measure according to
the reported approach. It will be publicly available (open source) with the next
release of the tool.

The numbers concerning partial order reduction concern deadlock preserv-
ing stubborn sets, but without considering the impact of on-the-fly verification.
That is, state space exploration continues even after deadlocks have been found.
Otherwise, numbers would be such small that no real comparison could be done.

The examples, as a few other experiments, suggest that the automatically
computed progress measures are competitive to user-defined measure.

8 Conclusion

We have shown that an automated construction of a progress measure, by consid-
ering linear dependencies between transitions, leads to well-performing progress
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Table 1. Experimental results: PHi = ¢ dining philosophers, ECHO7 = broadcasting
algorithm for ¢ agents in a grid-like network. Empty field = experiment not conducted;
? = out of memory. Platform: LINUX on 650 MHz Intel processor, 378 MB RAM

PH5 PH10 PH12 PH100 PH400 ECHO3 ECHO9 ECHO25

full state space

states 242 59048 531440 3™ —13™ -1 11 2628
trans. fired 805 393650 4251516 ? ? 14 9994 ?
time (sec) 0.1 5.8 71.0 ? ? 0.0 0.5 ?
sweep-line method
nr. of iterations 3 3 3 ? ? 1 1 1
peak nr. of states 183 54122 502378 ? ? 4 634 260564
nr. persistent states 169 53299 497969 ? ? 0 0 0
trans. fired 1544 720428 7710664 ? ? 14 6805 1311085
time (sec) 0.1 243 277.8 ? ? 0.1 0.1 284.7
partial order reduced state space
states 272 29702 478802 7 1433 ?
trans. fired 370 39700 638800 6 2463 ?
time (sec) 0.5 2.3 115.3 0.0 0.2 ?
sweep-line method plus partial order reduction
nr. of iterations 3 11 41 1 1 1
peak nr. of states 97 9141 144936 2 340 236941
nr. persistent states 75 8929 144117 0 0 0
trans. fired 700 75800 1215204 6 2267 870495
time (sec) 0.1 172 17120 0.1 0.3 193.7

measures. For the examples discussed in the previous section, it is hard to imag-
ine any user-defined measures that would perform significantly better. It has also
become evident that a combination between the sweep-line method and partial
order reduction is highly recommendable in the case of reactive systems. In the
proposed fashion, the sweep-line method is well suited for the verification of low
level Petri net models.

For high level models, our method can be applied in two ways. We can either
unfold the high level net to a low level net and apply our method as such, or
we can perform dependency analysis on the skeleton of the colored net instead.
If the inscriptions of the high level net produce and consume a number of to-
kens that does not depend on particular transition bindings, this would lead to
a sound progress measure. In the ECHO example, applied to a homogeneous
network (one where all agents have the same number of neighbors), this method
could be applied and would also result in a monotonous progress measure. It
should be mentioned, though, that progress in high level nets does sometimes
occur as a monotonous evolution of data values on certain tokens. In such cases,
user defined progress measures are, without doubt, superior to automatically
computed progress measures.



204 K. Schmidt

References

[CEF.J96]

[CKMO1]
[ES96]

[GW91]

[HJJJ84]

[ID96]
[KMO2]

[KV00]

[Mai03]

[Pel93]

[Sch99a]
[Sch99b]
[Sch00a]

[SchO0b]

[Tar72]

[Valgg]

[Val91]

[Val93]

[Valo6]

[Val9s]

E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in
temporal logic model checking. Formal Methods in System Design 9, pages
77-104, 1996.

S. Christensen, L.M. Kristensen, and T. Mailund. A sweep-line method for
state space exploration. Proc. TACAS 01, LNCS, 2031:450-464, 2001.
E.A. Emerson and A.P. Sistla. Symmetry and model checking. Formal
Methods in System Design 9, pages 105-131, 1996.

P. Godefroid and P. Wolper. A partial approach to model checking. 6th
IEEE Symp. on Logic in Computer Science, Amsterdam, pages 406—415,
1991.

Huber, A. Jensen, Jepsen, and K. Jensen. Towards reachability trees for
high—level petri nets. In Advances in Petri Nets 1984, Lecture Notes on
Computer Science 188, pages 215-233, 1984.

C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Meth-
ods in System Design 9, pages 41-75, 1996.

L.M. Kristensen and T. Mailund. A generalized sweep-line method for
safety properties. Proc. FMFE 02, LNCS, 2391:549-567, 2002.

L.M. Krisensen and A. Valmari. Improved question-guided stubborn set
methods for state properties. Proc. 21th Int. Conf. Application and Theory
of Petri nets, pages 282-302, 2000.

T. Mailund. Sweeping the state space. PhD thesis, Univerity of Aarhus,
2003.

D. Peled. All from one, one for all: on model-checking using representitives.
5th Int. Conf. Computer Aided Verification, Elounda, Greece, LNCS 697,
pages 409-423, 1993.

K. Schmidt. Lola: A low level analyser. Proc. Int. Conf. Application and
Theory of Petri net, LNCS, 1825:465-474, 1999.

K. Schmidt. Stubborn set for standard properties. Proc. 20th Int. Conf.
Application and Theory of Petri nets, LNCS 1639, pages 46—65, 1999.

K. Schmidt. How to calculate symmetries of petri nets. Acta Informatica
30,, pages 545590, 2000.

K. Schmidt. Integrating low level symmetries into reachability analysis.
Proc. 6th Int. Conf. Tools and Algorithms for the Construction and Analysis
of Systems, LNCS 1785, pages 315-331, 2000.

R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J.
Comput., 1:146-160, 1972.

A. Valmari. Error detection by reduced reachability graph generation. Proc.
of the 9th European Workshop on Application and Theory of Petri Nets,
Venice, 1988.

A. Valmari. Stubborn sets for reduced state space generation. Advances of
Petri Nets 1990, LNCS 483, pages 491-511, 1991.

A. Valmari. On-the-fly verification with stubborn sets. 5th Int. Conf.
Computer Aided Verification, Elounda, Greece, LNCS 697, pages 397-408,
1993.

A. Valmari. Stubborn set methods for process algebras. Workshop on
Partial Order Methods in Verification, Princeton, pages 192-210, 1996.

A. Valmari. The state explosion problem. Lectures on Petri nets I: Basic
models, LNCS 1491, pages 429-528, 1998.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


