
Revisiting Positive Equality�

Shuvendu K. Lahiri, Randal E. Bryant, Amit Goel, and Muralidhar Talupur

Carnegie Mellon University, Pittsburgh, PA
{shuvendu,agoel}@ece.cmu.edu, {randy.bryant,tmurali}@cs.cmu.edu

Abstract. This paper provides a stronger result for exploiting positive
equality in the logic of Equality with Uninterpreted Functions (EUF).
Positive equality analysis is used to reduce the number of interpreta-
tions required to check the validity of a formula. We remove the primary
restriction of the previous approach proposed by Bryant, German and
Velev [5], where positive equality could be exploited only when all the
function applications for a function symbol appear in positive context.
We show that the set of interpretations considered by our analysis of
positive equality is a subset of the set of interpretations considered by
the previous approach. The paper investigates the obstacles in exploiting
the stronger notion of positive equality (called robust positive equality) in
a decision procedure and provides a solution for it. We present empirical
results on some verification benchmarks.

1 Introduction

Decision procedures for quantifier-free First-Order Logic (FOL) with equality
have become an integral part of many formal verification tools. The importance
of decision procedures lies in automatically validating (or invalidating) formulas
in the logic. The ability to automatically decide formulas has been the corner-
stone of several scalable verification approaches. For hardware, Burch and Dill [8]
have used symbolic simulation with a decision procedure for the quantifier-free
fragment of FOL to automatically verify complex microprocessor control. Bryant
et al. [5] have extended their method to successfully verify superscalar proces-
sors. Recently, Lahiri, Seshia and Bryant [15] have demonstrated the use of
efficient decision procedures to improve the automation for out-of-order proces-
sor verification. For software, decision procedures have been used for translation
validation of compilers [19]. Decision procedures are used extensively for pred-
icate abstraction in several software verification efforts [2,13]. They have also
been used for the analysis of other concurrent infinite-state systems.

Most decision procedures for quantifier-free logic fall roughly into two categories:
decision procedures based on (i) a Combination of Theories [22,17,3,18] or (ii)
a validity preserving translation to a Boolean formula [5,19,21,7]. The former
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methods combine the decision procedures for individual theories using Nelson-
Oppen [17] style of combination. The latter methods translate the first-order
formula to a Boolean formula such that the Boolean formula is valid if and only
if the first-order formula is valid. There has also been work in solving first-order
formulas by using abstraction-refinement based on Boolean Satisfiability (SAT)
solvers [4,9].

Among the decision procedures based on a validity preserving translation to a
Boolean formula, Bryant et al. [5,5] proposed a technique to exploit the structure
of equations in a formula to efficiently translate it into a Boolean formula. Their
method identifies a subset of function symbols in the formula as “p-function”
symbols, the function symbols which only occur in monotonically positive con-
texts. The method then restricts the set of interpretations for the function appli-
cations of p-function symbols for checking the validity of the formula. They have
successfully used this decision procedure to automatically verify complex micro-
processors. The method was initially proposed for the Logic of Equality with
Uninterpreted Functions (EUF) and was later extended for the logic of Counter
Arithmetic with Lambda Expressions and Uninterpreted Functions (CLU) [7,
12]. Pnueli et al. [19] use Ackermann’s function elimination method [1] to re-
move function applications from a formula and allocate ranges for each of the
variables in the resulting formula, such that the ranges are sufficient for checking
validity. The technique also exploits the polarity of equations in the formula to
restrict the range allocation. Rodeh et al. [21] have used the function elimination
method of Bryant et al. [5] to further restrict the domain size of the variables
using the algorithm in [19]. The last two decision procedures have been success-
fully used for validating compiler code automatically. In all the above decision
procedures [5,19,21], the key idea has been to restrict the set of interpretations,
by exploiting the polarity of the terms in the formula.

One of the main limitations of the positive equality analysis of Bryant et al. is
that it is not robust. For a function symbol f to be a “p-function” symbol, all the
function applications of f have to appear in monotonically positive equations.
This makes it difficult to exploit positive equality, even when a small number
of applications of a function appears in a negative context. This places stronger
restrictions on the formulas to be decided efficiently and the method has not
proven effective for benchmarks which display these characteristics [20].

In this paper, we present a generalization of positive equality analysis of Bryant,
German and Velev [5] which allows the decision procedure to exploit positive
equality in situations where the previous approach could not exploit it. This
stronger version of positive equality analysis, called robust positive equality, re-
stricts the interpretations to consider in deciding formulas in EUF to a subset of
interpretations considered by the previous approach. We show the complexity of
exploiting robust positive equality in a decision procedure which uses the func-
tion elimination method proposed by Bryant et al. [5]. We describe a decision
procedure to exploit this stronger form of positive equality. We present verifica-
tion benchmarks where this approach reduces the number of interpretations to
consider by orders of magnitude compared to the previous approach.
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The rest of the paper is organized as follows: In Section 2, we present Bryant
et al.’s positive equality analysis. We illustrate the strengths and limitations of
their approach. In Section 3, we present a generalization of the positive equality
analysis called robust positive equality analysis. We present the robust maximal
diversity theorem that allows us to restrict the interpretations to consider to be
a subset of the interpretations considered by the previous approach. Section 4
discusses a decision procedure based on robust positive equality. We discuss the
main complications in exploiting robust positive equality in a decision procedure
and provide a heuristic which lets us exploit the robust positive equality. In
Section 5, we compare the effectiveness of the new approach compared to the
previous work on a set of verification benchmarks.

2 Background: Positive Equality and Its Limitation

In earlier work, Bryant et al. [5,5] exploited positive equality in the logic of EUF
to give a very efficient decision procedure for this fragment. The logic of EUF
is built from terms and formulas. Terms are formed by function applications
(e.g. f(x)) or by if-then-else (ITE) constructs. The expression ITE(G, T1, T2)
selects T1 when G is true, and T2 otherwise. Formulas are built from predicate
applications, equations between terms or using the other Boolean connectives (∧,
∨, ¬). Every function and predicate symbol has an associated arity to denote
the number of arguments for the function. Function symbols of arity zero are
called symbolic constants. Similarly, predicate symbols of arity zero are called
propositional symbolic constants.

In positive equality analysis, the decision procedure partitions the function sym-
bols in an EUF formula as p-function symbols and g-function symbols. A function
symbol f is called a p-function symbol in an EUF formula F1, if none of the func-
tion applications of f appear in (i) a negative equation (e.g. f(x1, . . . , xk) �= T1)
or (ii) in the controlling formula of an if-then-else (ITE) term ( the controlling
formula of an ITE is implicitly negated when choosing the else branch). All
function symbols which are not p-function symbols are g-function symbols.

The semantics of an expression in EUF is defined relative to a non-empty domain
D of values and an interpretation I, which assigns values to the function and
predicate symbols in the formula. An interpretation I assigns a function from
Dk to D for each function of arity k and a function from Dk to {true,false}
for each predicate symbol of arity k. Given an interpretation I, the meaning of
an expression E is defined as I[E] inductively on the syntactic structure of E.
A formula F is valid (also called universally valid), if for every interpretation I,
I[E] = true.

An interpretation I is called a maximally-diverse interpretation, if for any p-
function symbol f , I[f(U1, . . . , Uk)] = I[g(S1, . . . , Sm)] if and only if the fol-
lowing conditions hold: (i) f and g are the same function symbol and (ii) forall
1 For simplicity, assume F is in negation normal form where all the negations are

pushed down towards the leaves of the formula and ¬¬G is collapsed to G.
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i ∈ [1, . . . , k], I[Ui] = I[Si]. The main theorem is called the maximal diversity
theorem2, which is given below.

Theorem 1. Maximal Diversity Theorem. An EUF formula F is valid iff
F is true in all maximally-diverse interpretations.

Restricting the set of interpretations to only maximally-diverse interpretations
for checking validity is very efficient for EUF formulas with large number of
p-function symbols. For instance, consider the formula:

¬(x = y) ∨ f(g(x)) = f(g(y))

The set of terms in the formula is {x, y, g(x), g(y), f(g(x)), f(g(y))}. Since there
are 6 terms in the formula, it is sufficient to restrict the domain of each of the
terms to contain at most 6 values, for checking the validity [1]. Hence, one can
decide the formula by considering 66 interpretations. However, positive equality
analysis allows us to restrict the number of combinations to search, to only 22

values, since only two functions x and y (of arity 0) appear in a negative equation.

However, the main bottleneck of the approach is that it is not robust. Positive
equality can not be exploited for a function symbol f even if only one application
of f appears in a negative context. For example, consider the following EUF
formula:

F
.= ¬(f(x) = x) ∨ (f(f(f(f(x)))) = f(f(f(x)))) (1)

After exploiting positive equality, the set of p-function symbols would be {}
and the set of g-function symbols would be {x,f}. This is because both x and
f appear in a negative equation, namely ¬(f(x) = x) in the formula. Thus the
number of interpretations to search would be 55 = 3125.

However, one can see that only one application of f , namely f(x), appears
in a negative equation while the other applications, f(f(x)), f(f(f(x))) and
f(f(f(f(x)))), appear in positive equations only. In this paper, we present a
generalization of the positive equality analysis which allows us to exploit the
positive structure of such applications. Based on the new analysis, it is sufficient
to consider only 4 interpretations to decide the validity of the formula F, instead
of the 55 interpretations. Even for this small formula, this reduces the number
of interpretations to consider 3125/4 = 781 fold !

3 Logic of Robust Positive Equality with Uninterpreted
Functions (RPEUF)

3.1 Syntax

Figure 1 gives the syntax of RPEUF3. The logic is essentially same as EUF or
PEUF [5], but partitions the formulas (respectively, terms) into “p-formulas” and
2 The definition of maximally-diverse interpretation is slightly different from the orig-

inal work [5] for simplicity of presentation.
3 We try to follow the terminology of the original paper by Bryant et al. for the rest

of the paper, whenever applicable
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“g-formulas” (respectively, “p-terms” and “g-terms”). Intuitively, a p-formula
appears in only monotonically positive expressions, i.e. does not appear under
the scope of negations (¬), or in the controlling formulas of ITE expressions. All
other formulas are g-formulas. The top-level formula can always be classified as a
p-formula. The p-terms are those terms which never appear in a g-formula. More
details can be found in [6]. The only difference between PEUF and RPEUF is
that function symbols are not partitioned as p-function symbols and g-function
symbols. Instead, each application of functions can either be a p-function appli-
cation (p-func-appl) or a g-function application (g-func-appl). Let Tp(F) be the
set of p-term function application terms in a formula F. Similarly, let Tg(F) be
the set of g-term function application terms in a formula F.

g-term ::= ITE(g-formula, g-term, g-term)

| g-func-appl(p-term, . . . , p-term)

p-term ::= g-term | ITE(g-formula, p-term, p-term)

| p-func-appl(p-term, . . . , p-term)

g-formula ::= true | false | ¬g-formula | (g-term = g-term)

| (g-formula ∨ g-formula) | (g-formula ∧ g-formula)

| predicate-symbol(p-term, . . . , p-term)

p-formula ::= g-formula | (p-term = p-term)

| (p-formula ∨ p-formula) | (p-formula ∧ p-formula)

Fig. 1. Syntax for RPEUF

For any RPEUF formula F, we define Σ(F) to be the set of function symbols
in F. For a function application term T , top-symbol(T ) returns the top-level
function symbol for the term T .

3.2 Diverse Interpretations

The semantics of an expression in RPEUF is defined in a similar manner as
defined in Section 2. The domain D is kept implicit for most of our purposes
and we assume it to be the underlying domain. An interpretation defines a
partitioning of the terms in the formula, where two terms belong to the same
equivalence class if and only if they are assigned the same value. Interpretation
I refines (properly refines) interpretation I ′, if I refines (properly refines) the
equivalence classes induced by I ′.

Given an interpretation I, function application terms T1
.= f(U1, . . . , .Uk) and

T2
.= f(S1, . . . , Sk) are said to argumentMatch under I, if for all j ∈ [1, . . . , k],

I[Uj ] = I[Sj ]. It is not defined when T1 and T2 have different top-level function
symbols.
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Robust Maximally Diverse Interpretation. An interpretation I is said to
be robust maximally diverse if I satisfies the following property:

– For every term T1
.= f(U1, . . . , Uk) ∈ Tp(F ), which does not argumentMatch

under I with any term f(S1 . . . Sk) ∈ Tg(F ), and for any other function
application term T2, I[T1] = I[T2], iff (i) T2

.= f(V1, . . . , Vk), and (ii) I[Um] =
I[Vm], for all m ∈ [1 . . . k].

Example. Consider the formula in Equation 1. The interpretation Consider
the formula in Equation 1. Let us assume (shown a little later in Section 4.1),
the set Tp(F) .= {f(f(x)), f(f(f(x))), f(f(f(f(x))))}, the set of positive ap-
plications. The set Tg(F) becomes {x, f(x)}. The interpretation I

.= {x �→
1, f(1) �→ 2, f(2) �→ 3, f(3) �→ 4} is an example of a robust maximally di-
verse interpretation. In this interpretation, I[f(x)] = 2, I[f(f(x))] = 3 and
I[f(f(f(x)))] = 4. Similarly, the interpretation I

.= {x �→ 1, f(1) �→ 2, f(2) �→ 2}
is a robust maximally diverse interpretations. However, the interpretation I

.=
{x �→ 1, f(1) �→ 2, f(2) �→ 1} is not a robust maximally diverse interpretation
since I[x] = I[f(f(x))] = 1. But f(f(x)) is a p-term, whose argument I[f(x)] = 2
does not match the argument of the g-term f(x), since I[x] = 1.

Theorem 2. Robust Maximal Diversity Theorem. A p-formula F is uni-
versally valid iff F is true in all robust maximally diverse interpretations.

The theorem allows us to restrict ourselves to only those interpretations which
are robust maximally diverse. We will show later that in many cases, this prunes
away a very large portion of the search space. The proof is very similar to the
one presented for the maximal diversity theorem [6] and can be found in the
extended version [14].

The following lemma establishes the correspondence between the maximally di-
verse interpretations and the robust maximally diverse interpretations.

Proposition 1. If an interpretation I is a robust maximally diverse interpre-
tation, then I is a maximally diverse interpretation.

This follows from the fact, that for a “p-function” symbol f , a p-term T1
.=

f(U1, . . . , Uk) never argumentMatch with a g-term T2
.= f(V1, . . . , Vk), since

there are no g-terms for a “p-function” symbol f . Thus the set of robust max-
imally diverse interpretations is a subset of the set of maximally diverse inter-
pretation set.

4 Decision Procedure for Robust Positive Equality

In this section, we present a decision procedure for exploiting robust positive
equality. The essence of the decision procedure is similar to the decision proce-
dure proposed by Bryant, German and Velev. But there are important differences
which makes the procedure more complicated.
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4.1 Extracting a RPEUF from EUF

Given a EUF formula F, one might try to label the terms and formulas as g-
terms, p-terms, p-formulas, g-formulas by the syntax in Figure 1. But the choice
of “promoting” g-terms and g-formulas to p-terms and p-formulas makes the
grammar ambiguous. Thus the first step is to use a labeling scheme to mark the
different expressions in the formula F.

For a given EUF formula F, let LF be a labeling function. If T (F ) and G(F ) be
the set of terms and formulas in F, then LF satisfies the following conditions:

– If T ∈ T (F ), then LF (T ) ∈ {g-term, p-term}
– If G ∈ G(F ), then LF (G) ∈ {g-formula, p-formula}
– This labeling is permitted by the syntax

A natural labeling function L∗
F [6] is to label the formulas which never appear

under an odd number of negations and does not appear as a control for any
ITE node, as p-formula. All other formulas are labeled as g-formula. Once the
formulas are labeled, label a term as p-term if it never appears in an equation
labeled as g-formula. All other terms are marked g-term.

4.2 Topological Ordering of Terms

Once we have labeled all the terms in a formula F as either a p-term or a g-
term, we will define a topological order �, for visiting the terms. A topological
order preserves the property that if T1 is a subterm of T2 in the formula F , then
T1 � T2. There can be many topological orders for the same formula.

Given a topological order �, consider the terms that have been “labeled” by
L(F ). We will partition the terms into T +

� (F ), T −
� (F ) and T ∗

�(F ) as follows:
For any term T ∈ T (F ):

– T ∈ T −
� (F ) iff L(T ) = g-term

– T ∈ T ∗
�(F ) iff L(T ) = p-term and there exists T1 ∈ T −

� (F ) such that T � T1

and top-symbol(T ) = top-symbol(T1).
– T ∈ T +

� (F ) iff T /∈ T −
� (F ) and T /∈ T ∗

�(F ).

Intuitively, the terms in T ∗
�(F ) are those terms which precede a negative applica-

tion with the same top-level function symbol. We label some terms as members
of T ∗

�(F ) because the function elimination scheme (based on Bryant et al.’s
method) eliminates function applications in a topological order. Hence we need
to process all the subterms before processing a term.

For example, consider the formula in Equation 1. There are 5 terms in the for-
mula: x, f(x), f(f(x)), f(f(f(x))), f(f(f(f(x)))). The labeling scheme labels
the terms x, f(x) as g-term and the terms f(f(x)), f(f(f(x))), f(f(f(f(x))))
as p-term. The only topological ordering on this set of terms is x � f(x) �
f(f(x)) � f(f(f(x))) � f(f(f(f(x)))). Given this topological order, the parti-
tioning results in the following sets
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– T −
� (F ) = {x, f(x)}, T ∗

�(F ) = {} and
T +

� (F ) = {f(f(x)), f(f(f(x))), f(f(f(f(x))))}.

However, consider the following formula:

F
.= ¬(f(g(x)) = g(f(x))) (2)

There are 5 terms in the formula: x, f(x), g(x), f(g(x)) and g(f(x)). The label-
ing labels f(g(x)), g(f(x)) as g-term and x, f(x), g(x) as p-term. Three possible
topological orderings on this set of terms are:

1. x � f(x) � g(x) � f(g(x)) � g(f(x)), or
2. x � f(x) � g(f(x)) � g(x) � f(g(x)), or
3. x � g(x) � f(g(x)) � f(x) � g(f(x))

Given these topological order, the partitioning results in the following sets for
the three orders, respectively:

1. T −
� (F ) = {f(g(x)), g(f(x))}, T ∗

�(F ) = {f(x), g(x)} and T +
� (F ) = {x}.

2. T −
� (F ) = {f(g(x)), g(f(x))}, T ∗

�(F ) = {f(x)} and T +
� (F ) = {x, g(x)}.

3. T −
� (F ) = {f(g(x)), g(f(x))}, T ∗

�(F ) = {g(x)} and T +
� (F ) = {x, f(x)}.

The example in Equation 2 illustrates several interesting points. First, even
though f(x) and g(x) are both labeled as p-term, there is no ordering of terms
such all the g-term with the top-level symbol f and g precede these two terms.
Note that this limits us from exploiting the full power of Theorem 2. Second, the
topological ordering can affect the size of the set T +

� (F ). The bigger the size of
this set, the better the encoding is. Hence, we would like to find the topological
ordering which maximizes the size of T +

� (F ).

4.3 Maximizing T +
� (F )

The problem of obtaining the optimal �, which maximizes the size of T +
� (F ),

turns out to be NP-complete. In this section, we reduce the problem of maximum
independent set for an undirected graph to our problem.

Let us first pose the problem as a decision problem — is there an ordering � for
which the number of terms in T +

� (F ) is at least k ? Given an ordering �, it is
easy to find out the number of terms in T +

� (F ) in polynomial time, hence the
problem is in NP.

To show that the problem is NP-complete, consider a undirected graph G
.=

〈V, E〉, with V as the set of vertices and E as the set of edges. Construct a
labeled and polar directed acyclic graph (DAG) D

.= 〈V ′, E′〉, where each vertex
v ∈ V ′ is a tuple (nv, lv, pv), where nv is the vertex identifier, lv is a label
of the vertex, and pv is the polarity of the vertex. The label of a vertex is a
function symbol, and the polarity of a vertex can either be (-) negative or (+)
non-negative. It is easy to see that the vertices of D represent the terms in a
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formula, the label denotes the top-level function symbol associated with the term
and a vertex with a negative polarity denotes a g-term.

The DAG D is constructed from G as follows:

– For each vertex v in V , create two vertices v+ and v− in V ′, such that v+ .=
(v1, v,+) and v− .= (v2, v,−).

– For each edge (v1, v2) ∈ E, add the following pair of directed edges in E′ —
(v+

1 , v−
2 ) and (v+

2 , v−
1 ).

Finally, given an ordering �, T +
� (D) contains a subset of those v+ vertices which

do not precede the v− vertex with the same label v in �. Now, we can show the
following proposition (proof in [14]):
Proposition 2. The graph G has a maximum independent set of size k if and
only if the DAG D has an ordering � which maximizes the number of vertices
in T +

� (D) to k.

4.4 Heuristic to Maximize T +
� (F )

Since the complexity of finding the optimum � is NP-complete, we outline a
greedy strategy to maximize the number of p-terms in T +

� (F ). We exploit the
following proposition (proof sketch in [14]):

Proposition 3. Given an ordering �g over all the g-term of the formula, one
can obtain an ordering � over all the terms in the formula in time linear to the
size of the formula, such that the number of terms in T +

� (F ) is maximum over
all possible orderings consistent with the order �g.

Hence, our problem has been reduced to finding the optimum ordering �g among
the g-terms of the formula. The algorithm has the following main steps:

1. A term T1
.= f(S1, . . . , Sk) is potentially positive iff T1 is a p-term and T1 is

not a subterm of any other g-term T2, which has the same top-level function
symbol f . For each function symbol f , we compute the number of potentially
positive function applications of f in the formula.

2. Order the list of function symbols depending on the number of potentially
positive terms for each function symbol. The essential idea is that if a func-
tion f has nf potentially positive applications, and if we order all the terms
of f independent of the applications of other function symbols, then the
number of terms in T +

� (F ) is at least nf .
3. For each function symbol f , we order all the g-terms of f by simply traversing

the formula in a depth-first manner. This ordering of g-terms is consistent
with the topological order imposed by the subterm structure.

4. Finally, we obtain �g, by repeatedly placing all the gterms for each of the
functions in the sorted function order. While placing a g-term T1 for function
f , we place all the g-terms for the other function symbols which are subterms
of the g-term before T1 in the order.
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4.5 Function and Predicate Elimination

To exploit the robust positive equality, we eliminate the function and predicate
applications from the RPEUF formula using Bryant et al.’s method. For a func-
tion symbol f which appears in F, we introduce symbolic constants vfi, . . . , vfk,
where k is the number of distinct application of f in the formula. Then the ith

application of f (in the topological ordering �) is replaced by the nested ITE
formula, ITE(ai = a1, vf1, ITE(ai = a2, vf2, . . . ITE(ai = ai−1, vfi−1, vfi))).
Here ai is the argument list to the ith function application. We say that the
symbolic constant vfi is introduced while eliminating the ith application of f .
The following lemma [6] describes the relationship between the original and the
function-free formula. Predicate applications are eliminated similarly.

Lemma 1. For a RPEUF formula F, the function and predicate elimination
process produces a formula F̂ which contains only symbolic constants and propo-
sitional symbolic constants, such that F is valid iff the function-free formula F̂
is valid.

Let D be the domain of interpretations for F. Let V� be the set of symbolic
constants introduced while eliminating the function applications and V +

� ⊆ V�
be the set of symbolic constants introduced for the terms in T +

� (F ). Let F̂p be
the formula obtained by assigning each variable vi ∈ V +

� a value zi, from the
domain D′ .= D∪ {z1, . . . , zm}, where m = |V +

� | and all zi are distinct from
values in D. Then we can prove the following theorem:

Theorem 3. The formula F is valid iff F̂p is true for all interpretations over
D.

Proof. We give a very informal proof sketch in this paper. A detailed proof can
be obtained very similar to the proof shown in the original paper [6].

Let us consider a robust maximally diverse interpretation I for F. Consider a
symbolic constant vf i ∈ V +

� , which results while eliminating the ith application
of f (say Ti) in the order �. Note that Ti is a p-term application. First, consider
the case when Ti argumentMatch with some other term Tj , such that Tj � Ti. In
this case, the value given to vf i does not matter, as it is never used in evaluating
F̂p. On the other hand, consider the case when Ti does not argumentMatch with
any term Tj , such that Tj � Ti. Since all the g-term for f precede Ti in � (by
the definition of T +

� (F )), it means that I[Ti] is distinct from the values of other
terms, unless restricted by functional consistency, i.e. x = y =⇒ f(x) = f(y)
(by Theorem 2). But the value of vf i represents the value of I[Ti], under this
interpretation. Hence, we can assign vfi a distinct value, not present in D .

4.6 Extending Robust Positive Equality to CLU

We can extend our method to the Counter Arithmetic with Lambda Expressions
and Uninterpreted Functions (CLU), in the same way proposed in UCLID [12,
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7]. The only addition in the logic is the presence of inequalities (<) and addition
by constant offsets (+c). In the presence of <, we adopt a conservative approach
and say that terms T1, T2 appear in negative context (g-term) if they appear in
an inequality (T1 < T2). Similarly, a function application term T1 is classified
as g-term if any term T1 + c (for any c) appears in negative context. Even
these conservative extensions have proved beneficial for verification problems in
UCLID.

5 Results

5.1 Simple Example

Let us first illustrate the working of the decision procedure on a simple formula.
Consider the following formula:

Ψ1
.= (f(f(f(y))) = f(f(y))) ∨ (f(f(y)) = f(x)) ∨ ¬(x = f(y)) (3)

The function symbols in the formula are Σ(Ψ1) = {f ,x,y}. Our heuristic finds
the following order �, which also happens to be the optimal order:

x � y � f(y) � f(x) � f(f(y)) � f(f(f(y)))

The sets T −
� (Ψ1), T ∗

�(Ψ1) and T +
� (Ψ1) are:

T −
� (Ψ1) = {x, f(y)}, T ∗

�(Ψ1) = {}, T +
� (Ψ1) = {y, f(x), f(f(y)), f(f(f(y)))}

The resultant formula after eliminating the function symbols using the above
procedure would be

Ψ̂1
.= (f4 = f3) ∨ (f3 = f2) ∨ ¬(x = f1) (4)

where

f1 .= vf1

f2 .= ITE(x = y, vf1, vf2)
f3 .= ITE(f1 = y, vf1, ITE(f1 = x, vf2, vf3))
f4 .= ITE(f3 = y, vf1, ITE(f3 = x, vf2, ITE(f3 = f1, vf3, vf4)))

Thus Ψ̂1 has 6 symbolic constants {x, y, vf1, vf2, vf3, vf4}. Based on robust max-
imal diversity theorem, we can assign distinct values to y, vf2, vf3, vf4, since they
are introduced while eliminating a function application in T +

� (Ψ1). The rest of
the symbolic constants x, vf1 have to take on 2 values each. Thus, it is sufficient
to consider 22 = 4 interpretations to decide the validity of the formula. In fact,
it is sufficient to consider 1 value for x and 2 values for vf1 to decide the validity,
since they can either be equal or unequal. Therefore, the number of interpreta-
tions to consider is 2 for this case. Alternately, one could use a single Boolean
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variable to encode the equality x = vf1 [10]. The final propositional formula in
this case contains a single Boolean variable4, and thus requires 2 interpretations.

The above formula was also used as a running example in previous work [19,21].
The method proposed by Pnueli [19] considers 16 interpretations to decide this
formula and the method by Rodeh et al. [21] consider either 4 or 2 interpretations
depending on the heuristic. In contrast, the previous positive equality work of
Bryant et al. considers 55 = 3125 interpretations.

5.2 Verification Benchmarks

In this section, we compare our algorithm with the original positive equality algo-
rithm, based on a set of software verification benchmarks generated from Trans-
lation Validation of Compilers [19] and device-driver verification in BLAST [11].
Discussion on other hardware verification benchmarks can be found in an ex-
tended version of this paper [14]. All the formulas discussed in this section are
valid formulas.

We have integrated the new method in the tool UCLID [7]. All the experiments
are run on a 1.7GHz machine with 256MB of memory. For all these experiments,
the integer variables in the formula (after function elimination) are encoded using
a small-domain encoding method [7]. This method assigns each integer variable
a finite but sufficiently large domain which preserves validity of the formula.
The final propositional formula is checked using a Boolean Satisfiability (SAT)
solver. For our case, we use mChaff [16].

Figure 2 compares the number of terms which can be assigned distinct values (i.e.
the number of terms whose range contains a single value) for positive equality (p-
vars) and the robust positive equality (robust-p-vars) algorithms. The column
with potential # of p-vars denotes an upper bound on the total number of
positive terms. This is obtained by simply adding the number of potentially
positive terms for each function symbol without considering the ordering of terms
across different function symbol. This is a very optimistic measure and there
may not be any order � for which this can be achieved. The time taken by each
approach is also indicated in the table.

For most of the code validation benchmarks, the number of p-terms is larger
compared with the earlier work. Similar trend is also observed for the BLAST
set of benchmarks. For many of the code validation benchmarks, the increase in
the number of positive variables translates into an improvement of the total time
taken to check the validity of the formula. This is expected as the new method
reduces the number of interpretations to search. However, for a few cases, the new
method is almost 10% slower than the original method, even when the number
of positive variables are 10% larger. This happens because of the overhead of the
robust positive equality analysis. Our current implementation requires multiple
passes over the formula, which can often increase the time required to translate a
4 Usually, more variables are added to express transitivity constraints, but this exam-

ple does not require any, since there is a single Boolean variable
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CLU formula into a Boolean formula. However, the time taken by the SAT solver
(mChaff) is almost always smaller with the new method. This is particularly
effective, when solving formulas for which the SAT solver time dominates the
time to translate to a Boolean formula (e.g. cv46).

It is interesting to notice that for most benchmarks (except cv22) the total
number of robust-p-vars is the same as the maximum possible number of p-vars
possible. On one hand this suggests that the heuristic we chose is optimal for
all these benchmarks. On the other hand, it shows that there are no occurrence
of mutually nested function applications with alternate polarity evident in the
example ¬f(g(x)) = g(f(y)). For this example, the maximum number of po-
tentially positive terms is 4 ({x, y, f(y), g(x)}), but one can obtain at most 3 in
any ordering ({x, y, f(y)} or {x, y, g(x)}). This is because a potentially positive
application for g appears as a subterm of a g-term for f and vice versa.

Finally, its worth pointing out some differences with the method of Rodeh et
al. [21]. The paper claims that their method subsumes Bryant et al.’s positive
equality. But our current method is not subsumed by the approach since the
method in [21] does not exploit the topological ordering of function applications
across different function symbols. However, the two approaches are complemen-
tary. Robust positive equality analysis can be used as a preprocessing step before
exploiting the range-allocation scheme by Pnueli et al. and Rodeh et al.’s meth-
ods. Further, robust positive equality analysis can work with the more general
logic of CLU [7], but the methods in [19,21] are restricted to EUF. It is not
clear how to extend the range allocation easily in the presence of < and constant
offsets.

Benchmark example # vars Positive Equality Robust Positive Equality
#p-vars Time taken # p-vars potential Time taken

(sec) # p-vars (sec)
Code Validation cv1 17 3 1.58 7 7 1.60

cv2 4 1 0.34 1 1 0.48
cv20 21 6 0.40 6 6 0.47
cv22 101 1 70.84 16 18 45.65
cv23 101 8 23.06 22 22 15.96
cv25 101 8 45.93 22 22 21.80
cv37 13 4 6.40 4 4 6.32
cv44 38 8 19.75 17 17 7.13
cv46 70 10 > 1800 28 28 100.50

BLAST bl7 262 109 241.27 125 125 265.38
bl8 315 125 454.40 142 142 456.80
blt3 268 72 11.16 94 94 11.90

Fig. 2. Comparison on Software Verification Benchmarks.

6 Conclusion and Future Work

In this work, we have presented a generalization of the positive equality analysis.
The extension allows us to handle benchmarks for which the positive structure



14 S.K. Lahiri et al.

could not be exploited using the previous method. The added overhead for this
generalization is negligible as demonstrated on some reasonably large bench-
marks. An interesting point to observe in this paper is that most of the proofs
and mathematical machineries from the previous work have been successfully
reused for our extension.

There are other optimizations that can be exploited beyond the current work. We
want to exploit the positive equality for the terms in T ∗

� , which are subterms of
g-terms with the same top-level function symbol. Instead of using distinct values
for the symbolic constants which arise from the elimination of these terms, we
are investigating the addition of extra clauses in the final formula, to prevent
the SAT-solver from considering these interpretations. We would also like to
use other range allocation methods, after exploiting robust positive equality, to
further improve the decision procedure.
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