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Abstract. We study decidability of a logic for describing processes with
restricted names. We choose a minimal fragment of the Ambient Logic,
but the techniques we present should apply to every logic which uses
Cardelli and Gordon revelation and hiding operators, and Gabbay and
Pitts freshness quantifier. We start from the static fragment of ambi-
ent logic that Calcagno, Cardelli and Gordon proved to be decidable.
We prove that the addition of a hiding quantifier makes the logic unde-
cidable. Hiding can be decomposed as freshness plus revelation. Quite
surprisingly, freshness alone is decidable, but revelation alone is not.

1 Introduction

The term Spatial Logics (SL) has been recently used to refer to logics equipped
with the composition-separation operator A |B. Spatial logics are emerging as
an interesting tool to describe properties of several structures. Models for spatial
logics include computational structures such as heaps [21,19], trees [7], trees with
hidden names [9], graphs [8], concurrent objects [5], as well as process calculi
such as the π-calculus [3,4] and the Ambient Calculus [11,13].

In all these structures, a notion of name restriction arises. The restriction
(νn)P (in π-calculus notation) of a name n in a structure P is a powerful
abstraction mechanism that can be used to model information that is protected
by the computational model, such as hidden encryption keys [1], the actual
variable names in λ-calculus, object identifiers in object calculi, and locations
in a heap. Here “protected” means that no public name can ever clash with one
that is protected, and that any observable behavior may depend on the equality
between two names, but not on the actual value of a protected name.

Reasoning about protected names is difficult because they are “anonymous”.
Cardelli and Gordon suggest an elegant solution to this problem [12]. They
adopt Gabbay and Pitts fresh name quantification, originally used for binder
manipulation and Nominal Logics [20,16], and combine it with a new operator,
revelation, which allows a public name to be used to denote a protected one.
The combination of freshness quantification and revelation gives rise to a new
quantifier, hidden name quantification, which can be used to describe properties
of restricted names in a natural way.
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In [6] decidability of validity and model-checking of a spatial logic describ-
ing trees without restricted names is studied. This logic is the quantifier-free
static fragment of the Ambient Logic. Extensions of this logic can be used to
describe [7], query [10], and reason about [15] tree-shaped semistructured data.

In this paper we study decidability of validity, satisfiability, and model-
checking for spatial logics describing trees (or static ambients) with restricted
names (throughout the paper, “decidability of a logic” is used for “decidability
of validity and satisfiability for closed formulas of that logic”).

In particular we study how the introduction of freshness, revelation, and
hiding influences decidability. While we started this work with the aim of proving
decidability of hiding, we found out quite a different situation:

– freshness without revelation gives a rich decidable logic (Corollary 4.7)
– even a minimal logic (conjunction, negation, and binary relations) becomes

undecidable if it is enriched with revelation (Corollary 5.13) or with hiding
(Corollary 5.14).

Another contribution is the study of quantifier extrusion in SL. We introduce
an extrusion algorithm for freshness (Lemma 4.4), and we prove that no extrusion
algorithm exists for first order quantifiers, revelation, and hiding (Corollary 4.8).

2 The Tree Model

We study logics that describe trees labeled with public and restricted names.

Definition 2.1 The set TN of the abstract trees generated by an infinite name
set N is defined by the following grammar, with n∈N .

T,U ::= 0 empty tree | n[T ] tree branch |
T |U composition of trees | (νn)T restricted name

Free names fn(T ) and bound names are defined as usual. On these trees we define
the usual congruence rules, with extrusion of restricted names. (Renaming) is
the crucial rule, expressing the computational irrelevance of restricted names.

Table 2.1. Congruence rules

T ≡ T (Refl) T ≡ U ⇒ n[T ] ≡ n[U ] (Amb)
T ≡ U, U ≡ V ⇒ T ≡ V (Trans) T ≡ U ⇒ T |V ≡ U |V (Par)
T ≡ U ⇒ U ≡ T (Symm) T ≡ U ⇒ (νn)T ≡ (νn)U (Res)

T |0 ≡ T (Par Zero) T |U ≡ U |T (Par Comm)
(T |U) |V ≡ T | (U |V ) (Par Assoc)

m /∈ fn(T )⇒ (νn)T ≡ (νm)T{n←m} (Renaming)
(νn)0 ≡ 0 (Extr Zero)
n /∈ fn(T )⇒ T | (νn)U ≡ (νn) (T |U) (Extr Par)
n1 �= n2 ⇒ n1[(νn2)T ] ≡ (νn2)n1[T ] (Extr Amb)
(νn1) (νn2)T ≡ (νn2) (νn1)T (Extr Res)
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Definition 2.2 The set of trees in extruded normal form (ENF) is the least set
such that: (i) a tree with no restriction is in ENF, and (ii) if T is in ENF and
n ∈ fn(T ) then (νn)T is in ENF.

Hence, a tree is in ENF iff it is composed by a prefix of restrictions followed by
a restriction-free matrix, all the restricted names actually appear in the tree, and
all the restricted names are mutually different. We will use ENF to denote the
set of all terms in ENF, and ENF (T ) to denote the set {U : U ∈ENF , U ≡ T}.
In the full paper [17] we show that every term admits an equivalent one in ENF .

3 The Logic

We will study sublogics of the Ambient Logic without recursion and where no
temporal operator appears. The logic is very rich, but we give here only a brief
description for lack of space. For more details see [3,12,13].

Definition 3.1 The set A of the formulas of the full logic is defined by the
grammar shown in Table 3.1 (we will consider some sub-logics later on). η stands
for either a name n∈N or a name variable x∈X . In Table 3.1 we also define
the satisfaction of a closed formula A by a model T (T |= A). We use nm(A)
to denote the set of all names n that appear in a formula.

Table 3.1. Spatial Logic formulas and satisfaction

We will also use T, ρ |= A, where ρ is a ground substitution mapping fv(A)
into N , as an alternative notation for T |= Aρ, where Aρ is the closed formula
obtained by applying ρ to all of its free variables.
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Notation 3.2 SL{} will denote the logic fragment without quantifiers, revela-
tion and revelation adjunct. SLX will denote the extension of SL{} with the
logical operators in X. Hence the full logic of Definition 3.1 is SL{ N, R�, ∃, }.

We assume that ∃x, Nx and η R© bind as far to the right as possible, so that,
for example, ∃x.A ∧ ∃y.B is the same as ∃x. (A ∧ ∃y.B). We assume the usual
definitions for: (i) the derived operators A ∨ B, T, F, ∀x.A, η �= η′, A ⇒ B,
A⇔ B; (ii) free variables fv(A). It is worth emphasizing that revelation is not a
binder, i.e. fv(η R©A) = fv(η)∪ fv(A). fv(η) is defined as {η} when η is a variable
x, and as ∅ when η is a name n.

We will also study the properties of the following derived operators:

operator definition fundamental property (may be used as a definition)
Hx.A �= Nx. xR©A T |= Hx.A ⇔ ∃n /∈nm(A). ∃U ∈TN . T ≡(νn)U, T |=A{x←n}
c©n �= ¬nR©T T |= c©n ⇔ n ∈ fn(T )
n=m �= (n[T])@m T |= n=m ⇔ n=m

In a nutshell, the structural operators 0, η[A], A |B, allow one to explore the
structure of the model, so that T |= n[(m[T] ∨ p[0])] specifies that T matches
either n[m[U ]] or n[p[0]]. The adjunct operators @, �, , describe how the model
behaves when it is inserted into a context n[ ],U | , or(νn) . � is very expressive,
since it can be used to reduce validity to model-checking (Table 3.2, line 3). Con-
sider now a tree T ≡ (νp)m[p[0]] with a restricted name. This can be described
by the formula n R©m[n[T]], which uses n to talk about the “anonymous” p:

(νp)m[p[0]] |= n R©m[n[T]] ⇔ (νp)m[p[0]] ≡ (νn)m[n[0]], m[n[0]] |= m[n[T]]

However, the satisfaction of this formula depends upon the specific name n:
T |= n R©n[T], literally means that T ≡ (νn)n[U ] for some U , which is sat-
isfied by any (νp) p[U ], unless n happens to be free in (νp) p[U ] (in this case,
(νp) p[U ] �≡ (νn)n[U ]). In many situations, we really want to say things like ‘T
has a shape (νx)x[U ]’ where no name should be prevented from matching x by
the irrelevant fact that it appears free in T . To this aim, we must use a name
that is guaranteed to be fresh, which can be obtained through Gabbay-Pitts
fresh name quantification: Nx. x R©x[T]. The N- R© jargon is encoded by hiding
quantification: Nx. x R©x[T] �= Hx. x[T].

H may be taken as primitive instead of Nand R©, but one would lose (in a
logic without adjuncts) the ability to express the property c©η. Hence, one would
consider the pair H- c© as an alternative to N- R©. This motivated us to study the
decidability properties of all these operators. The result is symmetric: each pair
contains one operator (H/ R©) which is undecidable even when confined to a tiny
sublogic, and an operator which we prove to be decidable ( c©/ N); c© and Nare
even decidable together. (We prefer the canonical choice of N- R© because we find
their definitions more elegant, and since the encoding of the other two operators
is very direct; the reverse encoding is much harder.)

Hx.A is quite similar to an existential quantification over the names that are
restricted in the model, but there are some subtleties. For example, two different
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hiding-quantified variables cannot be bound to the same restricted name, i.e.,
while n[n[0]] |= ∃x. ∃y. x[y[0]], (νn)n[n[0]] �|= Hx.Hy. x[y[0]]: after x is bound
to n, n is not restricted any more, hence y cannot be bound to n.

Hiding, freshness, appearance ( c©), and revelation can be used to express
essential properties in any specialization of this logic to specific computational
structures. We present here some examples in a very informal way, just to give
the flavour of the applications of the hiding operator.

When restricted names are used to represent pointers, the presence of a
dangling pointer can be formalized as follows [9]; here .n[A] abbreviates n[A] |T,
hence means: there is a branch n[U ] that satisfies n[A].

Hx. (.paper [.citing [x]] ∧ ¬.paper [.paperId [x]])

If restricted names represent passwords in a concurrent system (e.g. in [3]),
we can specify properties like ‘inside k we find a password which will not be
communicated’, with the following sentence, where ‘♦A’ means ‘in some process
deriving from the current process A holds’, and ‘send(m,n)’ means ‘m is ready
for transmission on a channel n’.

Hx. .k[x] ∧ ¬∃n.♦send(x, n)

If restricted names represent α-renamable variable names, the following sen-
tence describes any tree that represents a lambda term; µX.A is a recursive
definition, where each occurrence of X can be expanded with the body A. It
says: a lambda term is either a free variable, or an application, or a lambda
binder that pairs an α-renamable name with a body, where that name may ap-
pear free. The interplay between µ and H ensures that no variable appears twice
in the same scope.

µLT . (∃x. var [x]) ∨ (function[LT ] | argument [LT ]) ∨ (Hx. lambda[x] | body [LT ])

We now define the standard notions of formula validity, satisfiability, of for-
mula implication, and of formula equivalence for spatial logics.

vld(A) �= ∀T ∈TN . ∀ρ : fv(A)→ N . T, ρ |= A (validity)
sat(A) �= ∃T ∈TN . ∃ρ : fv(A)→ N . T, ρ |= A (satisfiability)
A � B �= ∀T ∈TN . ∀ρ : (fv(A) ∪ fv(B))→ N .

T, ρ |= A ⇒ T, ρ |= B (implication)
A 
� B �= A � B and B � A (equivalence)

Let ∀A denote ∀x1 . . .∀xn. A, where {x1 . . . xn} = fv(A), and similarly for ∃A.
The following properties come from [12,6], or are easily derivable from there.

Table 3.2. Properties of SL

(Implication) A � B ⇔ vld(A⇒ B) A 
� B ⇔ vld(A⇔ B)
(Closure) vld(A) ⇔ vld(∀A) sat(A) ⇔ sat(∃A)
(vld by |=) vld(A) ⇔ 0 |= T � ∀A ⇔ 0 |= ∀(T � A)

The last property shows how validity can be reduced to model-checking using �
and quantification, or just � alone, when the formula is closed [6].
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4 Decidable Sublogics

In this section we prove decidability of SL{ , c�} and we extend the result to
SL{ , c�, N} using an extrusion algorithm for freshness quantification.

An extrusion algorithm for a set of logical operators O is an algorithm that
transforms a formula into an equivalent formula in O-prenex form, i.e. into a
formula formed by a prefix of operators from O followed by a matrix where they
do not appear. In the following we will show that: (i) in a spatial logic with
the � operator, extrusion implies decidability (Corollary 4.6); (ii) the freshness
quantifier admits extrusion (Lemma 4.4), hence is decidable; (iii) undecidability
of the revelation operator, existential quantifier, and hiding quantifier, implies
that no extrusion algorithm can exist for them (Corollary 4.8).

4.1 Quantifier-Free Decidable Sublogics

We start from the following result presented in [6].

Theorem 4.1 (Calcagno-Cardelli-Gordon). The model-checking, validity,
and satisfiability problems for closed formulas in SL{} are decidable over trees
with no restricted names.

We now extend this result by adding restricted names to the models and the
revelation adjunct (A n) to the logic.

Theorem 4.2 (Model-checking with Restricted Names in the Model
and Revelation Adjunct in the Logic). The model-checking problem re-
stricted to closed formulas in SL{ } is decidable over all trees (i.e., including
trees with restricted names).

Proof. (Sketch, see [17]) We follow the schema of [6], and define an equivalence
relation ∼h,w,N (N is a set of names), an algorithm to enumerate a witness
U

(h,w,N)
i for each equivalence class of ∼h,w,N , and a size |A| for each formula A.

If |B| = (h,w,N), we show that model-checking T |= A � B can be reduced to
checking that, for each U ∈U (h,w,N)

i , U |= A⇒ U |T |= B.

In the full paper [17] we show that c©η can be encoded in SL{ } making use
of c©mη

�= (η[0] � ((¬(¬0 | ¬0)) η))@m. Hence we have the following corollary.

Corollary 4.3 (Adding c©). The model-checking problem for closed formulas
in SL{ , c�} is decidable over all trees (i.e., including trees with restricted names).
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4.2 Quantifier Extrusion

We start our discussion of extrusion on a familiar ground, by listing, in Table 4.1,
some logical equivalences that can be used to extrude universal and existential
quantifiers from some of the other operators. The first four are the usual First
Order Logic (FOL) rules.

Table 4.1. Extrusion of existential quantifier

x /∈ fv(B) (∀x.A) ∧B 
� ∀x. (A ∧B) (∀-∧) (∃x.A) ∧B 
� ∃x. (A ∧B) (∃-∧)
¬(∀x.A) 
� ∃x. (¬A) (∀-¬) ¬(∃x.A) 
� ∀x. (¬A) (∃-¬)

y �= η η[∀y.A] 
� ∀y. (η[A]) (∀-[]) η[∃y.A] 
� ∃y. (η[A]) (∃-[])
x /∈ fv(B) (∀x.A) |B � ∀x. (A |B) (∀- | �) (∃x.A) |B 
� ∃x. (A |B) (∃- | )
y �= x Nx.∀y.A � ∀y. ( Nx.A) (∀- N�) Nx.∃y.A 
 ∃y. ( Nx.A) (∃- N
)

mR©∀y.A � ∀y. (mR©A) (∀- R© �) mR©∃y.A 
� ∃y. (mR©A) (∃- R©)
x /∈ fv(B) (∀x.A) � B 
 ∃x. (A � B) (∀-�l
) (∃x.A) � B 
� ∀x. (A � B) (∃-� l)
x /∈ fv(A) A � (∀x.B) 
� ∀x. (A � B) (∀-� r) A � (∃x.B) 
 ∃x. (A � B) (∃-�r
)
y �= η (∀y.A)@η 
� ∀y. (A@η) (∀-@) (∃y.A)@η 
� ∃y. (A@η) (∃-@)
y �= η (∀y.A) η 
� ∀y. (A η) (∀- ) (∃y.A) η 
� ∃y. (A η) (∃- )

If all the rules were double implications (��), we could use them to extrude
the existential quantifier in any formula. However, the presence of some single
implications prevents their direct use for this aim. Each simple implication we
write is actually strict, i.e. whenever we write A � B in the table above we also
mean that B � A has a counterexample (see the full paper [17]).

The table above shows that ∀-∃ extrusion is not trivial, but it does not prove
it to be impossible (for example, simple double-implication rules for ∃- Nand ∀- N
do exist); the actual impossibility proof will come later. Similar rules, riddled
with single implications, govern the extrusion of hiding quantifiers and of R©. In
this case as well, we will show later that they cannot be adjusted.

The situation looks very similar for the freshness quantifier (Table 4.2), apart
from the fact that, thanks to its self-duality, we only need half of the rules.

Table 4.2. Extrusion of freshness quantifier

x /∈ fv(B) ( Nx.A) ∧B 
� Nx. (A ∧B) ( N-∧)
¬( Nx.A) 
� Nx. (¬A) ( N-¬)

y �= η η[ Ny.A] 
� Ny. (η[A]) ( N-[])
x /∈ fv(B) ( Nx.A) |B 
� Nx. (A |B) ( N-|)
y �= x ∃x. Ny.A � Ny. (∃x.A) ( N-∃ �)
y �= η η R© Ny.A 
� Ny. (η R©A) ( N- R©)
x /∈ fv(B) ( Nx.A) � B 
 Nx. (A � B) ( N- � l 
)
x /∈ fv(A) A � ( Nx.B) 
 Nx. (A � B) ( N- � r 
)
y �= η ( Ny.A)@η 
� Ny. (A@η) ( N-@)
y �= η ( Ny.A) η 
� Ny. (A η) ( N- )

Once more, all the single implications are strict (see the full paper [17]).
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However, the three single-implication rules admit a double-implication ver-
sion, as shown in the Table 4.3.

Table 4.3. Extrusion of freshness quantifier - part two

x �= y ∃x. Ny.A 
� Ny. (∃x.A ∧ x �= y) ( N-∃)
y /∈ fv(B) ( Ny.A) � B 
� Ny. ((¬ c©y ∧A) � B) ( N- � l)
y /∈ fv(A) A � ( Ny.B) 
� Ny. ((¬ c©y ∧A) � B) ( N- � r)

The last two rules are bizarre: regardless of which side (of �) Nis extruded
from, y must always be excluded from the left hand side. In the full paper we
prove the correctness of all the extrusion rules.

Lemma 4.4 (Extrusion of freshness). There is an algorithm to transform
any formula in the full logic into an equivalent formula in N-prenex form.

Proof. The algorithm exhaustively applies the double-implication rules of Ta-
bles 4.2 and 4.3, left to right, until possible. Termination is easy.

We now use this result to prove decidability of the freshness quantifier.

4.3 Decidable Sublogics with Quantifiers and Impossibility of
Extrusion

We first observe that model-checking is decidable for prenex logics; of course, this
is not true, in general, for validity, or for model-checking non-prenex formulas.

Theorem 4.5 (Decidability of Prenex Model-Checking). Model-checking
over all trees is decidable for the closed formulas F generated by the following
grammar (∃, H, R©, N: outermost only; c©, : unlimited):

F ::= ∃x. F | x R©F | Hx. F | Nx. F | ¬F | A
A ::= 0 | η[A] | A |A | A ∧A | ¬A | c©η | A � A | A@η | A η

Proof. (Sketch, see [17]) By induction on the size of F and by cases. Case ¬F is
trivial. Case A is Corollary 4.3. To model-check T |= ∃x. F , check T |= F{x←n}
for n ∈ (fn(T ) ∪ nm(F ) ∪ {m}), where m is fresh. To model-check T |= n R©F ,
transform T in ENF (νn1) . . . (νnk)U and check that n /∈ fn(T ) and that either
T |= F or ∃i. (νn1) . . . (νni−1) (νni+1) . . . (νnk)U{ni←n} |= F . T |= Hx. F is
similar. To model-check T |= Nx. F , choose a name n /∈ fn(T ) ∪ nm(F ) and
model-check T |= F{x←n}.

Theorem 4.5 has the following Corollary.

Corollary 4.6 (Extrusion implies Decidability). The existence of an ex-
trusion algorithm, i.e. an algorithm that transforms every formula into an equiv-
alent formula generated by the grammar of Theorem 4.5, for any sublogic L of
SL{∃, N, , H, R�} containing � implies the decidability of L.
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Proof. To decide vld(A) for a closed formula A, reduce it to 0 |= T � A, apply
the extrusion algorithm, and use the algorithm of Theorem 4.5.

As a consequence, the addition of freshness preserves the decidability of the
logic of Corollary 4.3.

Corollary 4.7 (Decidability of Fresh Quantifiers). Model-checking and va-
lidity for the closed formulas in SL{ N, , c�} are decidable over all trees.

To sum up, fresh quantification alone is not enough to lose decidability, even
if combined with a limited form of revelation ( c©η).

The proof is based on the possibility of extruding freshness quantifiers
through all operators, including negation and the parallel adjunct operator that
internalizes validity in the logic. This reveals a deep algebraic difference between
freshness and existential quantification, where such extrusion is not possible. We
now formalize this fact.

By undecidability of SL{∃} (follows from [14]), of SL{R�} (follows from Corol-
lary 5.13), and of SL{H} (follows from Corollary 5.14), the three logics of Corol-
lary 4.6 are all undecidable. Hence, we have the following Corollary.

Corollary 4.8 (No Extrusion). No extrusion algorithm (as defined in Corol-
lary 4.6) exists for SLX if X includes {∃},{ R©}, or {H}.

5 Undecidability Results

5.1 Standard Model

In this section we focus on a tiny sublogic of SL that contains the revelation
operator and show that for each formula A of that sublogic, when a tree T
satisfies A, there exists a cut-down version of T that satisfies the same formula.
This is a key technical tool in order to prove (later) that the decidability of this
tiny logic is already as hard as decidability of first order logic.

Notation 5.1 (Path-Formulas) A path-formula p is a formula denoting the
existence of a path of edges, starting from the root and leading to a leaf, as follows
(we only define path formulas of length one and two, since we need no more).

.η
�= η[0] |T .η′.η �= η′[η[0] |T] |T

When a tree satisfies .m.n we say that it “contains a path m.n”; the path
ends with a leaf. The minimal tree containing such path, m[n[0]] (which we also
write m[n]), is called a “line for the path m.n”, and similarly m[0] (abbreviated
as m) is a line for m.

We now introduce a notion of path cutting. Intuitively, the tree CutN (T )
contains one line for each of those paths m.n of T such that m and n are either
bound or in N (longer paths, and paths with free names not in N , are cut
away). By this construction, for any formula A with shape .n1.n2, n1 R©.n2.n3,
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n1 R©n2 R©.n3.n4 (where ni may be equal to nj), Cutnm(A)(T ) is A-equivalent
to T , i.e. Cutnm(A)(T ) |= A iff T |= A. Moreover, CutN (T ) contains a list
n1[0] | . . . |nj [0], where {ni}i∈{1..j} = fn(T )∩N , so that the validity of formulas
n R©T, for n ∈N , is preserved as well. In other words, we cut away long paths
and paths with free names not in N , and we rewrite trees like “n[m | p]” as lines
“n[m] |n[p] | n |m | p”.

We will prove that this cut-down structure is logically equivalent to the origi-
nal tree, with respect to those formulas that only contain path-formulas of length
2 and names that are in N (Theorem 5.4).

Before giving the formal definition, we give some examples. Cutting is only
defined up-to-congruence.

flattening Cut{n,m}(n[m |n]) ≡ n[m]|n[n] | n|m
cutting long paths Cut{n,m}(n[m[n]]) ≡ n|m
cutting w.r.t. more names Cut{n,m,p}(n[m |n]) ≡ n[m]|n[n] | n|m
deleting free names Cut{n}(n[m |n]) ≡ n[n] | n
preserving bound names Cut{n}((νm)n[m |n]) ≡ (νm)n[m]|n[n] | n|m
name clashes don’t matter Cut{n,m}((νm)n[m |n])≡ (νm)n[m]|n[n] | n|m
preserving the name m Cut{n,m}(n[n] |m[p]) ≡ n[n] | n|m

We first define an auxiliary partial function enfCutN (T ), that is only defined
on trees in ENF. enfCutN (T ) behaves as CutN (T ) in all the examples above.
Then we define CutN (T ) by closing enfCutN (T ) with respect to tree equivalence.

Definition 5.2 (Path cutting for ENF). For each tree in ENF, for each
set of names N, we define the operation enfCutN () as follows. Par{T : cond}
combines (using |) all instances (T )σ of T such that (cond)σ is satisfied.

enfCutN ((νm)T )
�= (νm) enfCutN∪{m}(U)

enfCutN (U) (where U contains no (νn)A′ subterm)
�= Par{n1[n2[0]] : U |= .n1.n2, {n1, n2} ⊆ N} | Par{n[0] : n ∈ (fn(U) ∩N)}

Definition 5.3. CutN (T ) �= {enfCutN (U) : U ∈ENF (T )}

In the full paper [17] we prove that CutN () preserves congruence, i.e. that T ≡
T ′ ∧ U ∈ CutN (T ) ∧ U ′ ∈ CutN (T ′) ⇒ U ≡ U ′. Hence, CutN (T ) only contains
one tree modulo equivalence, and we will abuse notation by using CutN (T ) to
denote that tree.

Theorem 5.4 (Standard Model). Let A be a closed formula generated by the
following grammar:

A ::= .η1.η2 | A ∧A | η R©A | Nx.A | ¬A

then: T |= A ⇔ Cutnm(A)(T ) |= A.
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Proof. For the (⇒) direction we prove, by induction on the size of A, the fol-
lowing stronger property: ∀N finite. T |= A ⇒ Cutnm(A)∪N(T ) |= A, for an
equivalent logic without negation, but with De Morgan duals for each operator
(see [17]). The other direction is easily derived by contradiction and definition
of negation.

5.2 Undecidability of Revelation

Since we are studying undecidability, we focus here on weak versions of the logic.
We will prove undecidability for a logic with just ∧, ¬, R©, and path formulas.
The undecidability of any richer logic follows immediately.

We are going to define a translation of FOL formulas into SL formulas, and
FOL structures into SL trees, in order to reduce SL satisfiability to FOL satis-
fiability over a finite domain, which is known to be undecidable.

We first define our specific flavour of FOL. We consider formulas over a
vocabulary which only consists of a binary relation R, i.e. formulas generated
by the following grammar (this logic is already undecidable [2]):

φ ::= ∃x. φ | φ ∧ ψ | ¬φ | R(x, x′)

We define satisfaction of a closed formula, over an interpretation consisting of
a domain D and a binary relationR over D, with respect to a variable assignment
σ with σ↓⊇ fv(φ) (where f↓ is the domain of a function f) as follows.

D,R, σ |= ∃x. φ ⇔def exists c∈D. D,R, σ{x←c} |= φ

D,R, σ |= φ ∧ ψ ⇔def D,R, σ |= φ and D,R, σ |= ψ

D,R, σ |= ¬φ ⇔def not (D,R, σ |= φ)
D,R, σ |= R(x, x′) ⇔def (σ(x), σ(x′)) ∈ R

Essentially, we will translate a model D,R into an ENF term (νni) [[D]] | [[R]],
with one name ni for each element of D, with R encoded as set of lines of length
two, and D encoded as a set of lines of length one, obtaining structures that
have the same shape as the cut-down trees introduced in Section 5.1.

In the formula, we will translate ∃ into R© and R(x, y) into .m.n. To translate
∃ into R©, we have to overcome some differences between the two operators. The
most important difference is the fact that ∃ is a binder while R© is not. In FOL
semantics, we associate each variable x that is bound in a formula ∃x.φ with
a value c that is “free” in the domain. In the SL translation this becomes an
association between a name m that is free in a formula m R©A and a name ni

that is bound in the model (νni)T . So, while in FOL we match variables in the
formula with values in the domain, in the SL translation we will match bound
names in the model with the free names used to reveal them in the formula.

Technically, we translate a FOL closed formula φ into a formula [[φ]], where
all the closed variables of φ are left open, and a ground substitution (|φ|)P such
that (|φ|)P↓⊇ fv(φ), so that [[φ]](|φ|)P is closed. We then reduce satisfiability of φ
to satisfiability of (a variant of) [[φ]](|φ|)P.



116 G. Conforti and G. Ghelli

A second difference is the fact that the same value can be bound to two
different FOL variables, while the same restricted name cannot be revealed twice,
hence, {(c, c)} |= ∃x1. ∃x2. R(x1, x2) but (νn)n[n[0]] �|= n1 R©n2 R©.n1.n2.

We solve this problem by translating ∃x1. ∃x2. φ as if it were

∃x1. ((∃x2 �= x1. φ) ∨ φ{x2←x1}), i.e. as: x1 R©((x2 R©[[φ]]) ∨ [[φ{x2←x1}]]),

To this aim, in the translation algorithm a parameter Y keeps track of the
quantified variables met during the translation. The first line of Table 5.1 defines
how Y is grown with each quantification, and how it is used to generate a
disjunction of [[φ{x2←x1}]]Y clauses.

Finally, while x in ∃x. φ can only be associated to an element that is in the
domain, n in n R©A can also be associated to a name that does not appear in
the model at all (since, for each n /∈ fv(T ), T ≡ (νn)T ). We solve this problem
by translating ∃x. φ as x R©([[φ]] ∧ .x) and by restricting our attention to models
where, for every name n in a term, a line n[0] is present. We use our results on
tree-cutting to show that this restriction is without loss of generality.

Notation 5.5 We write M : M in
⇀ N to specify that M is partial and injective

from M to N, and M : M in→ N to specify that M is total and injective from M
to N. For any partial function N : M ⇀ N, we will use N↓ to denote its actual
domain and N↑ to denote its actual range, i.e.:

N↓= {m : ∃n∈N. N(m) = n} N↑= {n : ∃m∈M. N(m) = n}

When M,N : M ⇀ N, we use M ⊕N to denote function extension, as follows:
(M ⊕N)(x) �= if x∈N↓ then N(x) else M(x)
Hence, M ⊕ {c←n} yields n on c and coincides with M elsewhere.

Notation 5.6 (νi∈Ini)T
�=(νni1) . . .(νnij )T with I={i1, . . . , ij}, n :I in→N .

We can finally define our translation. We map an FOL formula to an SL
formula, an interpretationD,R to a tree [[D,R]]M,N , and a variable assignment to
a ground substitution. The translation is parametrized on a couple of functions,
M and N , with disjoint domains and ranges, such that M⊕N (see Notation 5.5)
injectively maps the whole D into N . In a nutshell, elements in M↓ are mapped
into names that are free in [[D,R]]M,N , while N↓ is mapped over bound names.

Definition 5.7 (Formula translation). We define here a translation of FOL
formulas, interpretations, and variable assignments, into SL formulas, interpre-
tations, and variable assignments. Moreover, each FOL formula φ is also mapped
to a ground substitution, defined on all and only the bound variables in φ, which
we assume to be mutually distinct. The translation is parametric with respect to
a subset P of N , and to a couple of functions M , N such that M ⊕N : D in→ N .
P is used to express freshness as “not belonging to P”. In the first clause of the
“formulas into substitutions” we do not specify how m′ is chosen, but we will
assume that the choice is deterministic, i.e. that (|φ|)P is uniquely determined.
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Table 5.1. Formula translation

formulas into formulas
[[∃x. φ]]Y �= xR©([[φ]]Y∪{x} ∧ .x) ∨

∨
y∈Y [[φ{x←y}]]Y

[[φ ∧ ψ]]Y �= [[φ]]Y ∧ [[ψ]]Y

[[¬φ]]Y �= ¬[[φ]]Y

[[R(x, x′)]]Y �= .x.x′

formulas into substitutions
(|∃x. φ|)P �= (|φ|)P ⊕ {x←m′} choose m′ ∈ N \ (P ∪ (|φ|)P↑)
(|φ ∧ ψ|)P �= (|φ|)P ⊕ (|ψ|)P∪(|φ|)P↑

(|¬φ|)P �= (|φ|)P

(|R(x, x′)|)P �= ∅
interpretations, domains, and relations into trees

[[D,R]]M,N �= (νc∈N↓N(c)) ([[D]]M⊕N | [[R]]M⊕N )
[[∅]]M �= 0
[[{c} ∪ D]]M �= M(c)[0] | [[D]]M

[[{(c, c′)} ∪ R]]M �= M(c)[M(c′)[0]] | [[R]]M

assignments into assignments
[[σ ⊕ {x←c}]]M �= [[σ]]M ⊕ {x←M(c)}
[[∅]]M �= ∅

Theorem 5.8. For any closed FOL formula φ where all the free and bound
variables are disjoint, for any N : D in→ N :

D,R |= φ ⇔ [[D,R]]∅,N |= [[φ]]∅(|φ|)∅

Proof. In [17] we prove by induction and by cases the more general property
(D,R), σ |= φ ⇔ [[D,R]]M,N |= [[φ]]Y[[σ]]M (|φ|)P under some hypotheses that
essentially constrain σ to be a substitution mapping free variables of φ (and
those in Y) into M-elements (i.e. elements in M ↓) without name-clashes with
N ↓ and N \ P. By choosing the empty function for M , the empty set for Y,
P = N ↑, and the empty assignment for σ, we have that:

D,R |= φ ⇔ [[D,R]]∅,N |= [[φ]]∅[[∅]]∅(|φ|)N↑ ⇔ [[D,R]]∅,N |= [[φ]]∅(|φ|)N↑

This is equivalent to the thesis as a consequence of the Gabbay-Pitts property.

Corollary 5.9. For any closed FOL formula φ where all the free and bound
variables are disjoint SATFOL(φ)⇒ SATSL([[φ]]∅(|φ|)∅)

Unfortunately, the inverse implication does not hold, because [[φ]]∅(|φ|)∅ may
be satisfied by SL models which are not the translation of any FOL model.
Consider (∃x. T) ∧ ¬(∃y. T). It is clearly unsatisfiable, but it is translated (un-
der Y = ∅, M = ∅) as m R©(T ∧ .m) ∧ ¬n R©(T ∧ .n), which is satisfied by the
model (νm′)m′[0] |n[0], since the free occourrence of n prevents the model from
satisfying n R©(T ∧ .n), while it satisfies m R©(T ∧ .m).
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This fact does not contradict Theorem 5.8, since (νm′)m′[0] |n[0] is not the
translation of any FOL model under M = ∅, because [[D,R]]∅,N has no free
names. The fact that the model is not closed is actually the core of the problem.
We solve this problem by enriching the mapping with a conjunct that rules some
of the non-closed models out.

Definition 5.10. [[φ]]+ �= [[φ]]∅(|φ|)∅ ∧
∧

m∈nm([[φ]]∅(|φ|)∅) ¬ c©m

This new translation will ensure that any SL model of the translated formula
is “closed enough”, i.e. all its free names are disjoint from the names in the
formula. Now we use the cut operation and Theorem 5.4 to show that these
“residual” free names are irrelevant, hence that every model of the enriched
translation actually corresponds to a FOL model, finally reducing SATSL to
SATFOL.

Lemma 5.11. Let T = CutN ′(U) for some N ′, U ; then:

fn(T ) = ∅ ⇒ ∃D,R, N. T = [[D,R]]∅,N

Theorem 5.12 (Reduction of FOL Satisfiability). For any closed FOL for-
mula φ, SATFOL(φ)⇔ SATSL([[φ]]+)

Proof. (⇒) Let D,R be such that (D,R), ∅ |= φ. By Theorem 5.8, [[D,R]]∅,N

satisfies [[φ]]∅(|φ|)∅. Since [[D,R]]∅,N is closed, it also satisfies ¬ c©m for any m.
(⇐) Assume SATSL([[φ]]+) and let N = nm([[φ]]∅(|φ|)∅). Then, there exists T

such that T |= [[φ]]∅(|φ|)∅ and T |=
∧

m∈N ¬ c©m, i.e. , fn(T )∩N = ∅. Consider now
U = CutN (T ). By Theorem 5.4: U |= [[φ]]∅(|φ|)∅, by fn(T ) ∩ N = ∅: fn(U) = ∅,
and by Lemma 5.11, U is the translation of a FOL interpretation D,R. By
Theorem 5.8, D,R |= φ; hence SATFOL(φ).

Corollary 5.13 (Undecidability of revelation). Satisfiability (hence valid-
ity) of closed formulas built from n R©A, A∧A, ¬A, .n, .n1.n2, is not decidable.

5.3 Undecidability of Hiding Quantification

In the full paper [17] we prove undecidability of hiding quantification in a similar
way. The translation is simpler since we do not need the (|φ|)P substitution any
more. The key difference is the fact that an existential quantification is directly
translated as a closed formula:

[[∃x. φ]]Y �= Hx. ([[φ]]Y∪{x} ∧ .x) ∨
∨

y∈Y [[φ{x←y}]]Y

By reasoning as in Section 5.2, we prove the following Corollary.

Corollary 5.14 (Undecidability of Hiding). Satisfiability (hence validity)
of closed formulas built from Hx.A, A∧A, ¬A, .x1, and .x1.x2, is not decidable.
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6 Conclusions and Related Work

In SL hiding can be expressed as freshness plus revelation. The main result of this
paper is: freshness without revelation gives a rich decidable logic (Corollary 4.7)
while revelation makes a minimal logic undecidable (Corollary 5.13). We also
proved that hiding is undecidable, and some results about extrusion that we
summarize below.

The decidability result is based on the extrusion of freshness into a prenex
form. The proof of decidability by extrusion is very attractive because it does not
need combinatorial explorations of the model, but is based on the “algebraic”
properties of the logic, and is robust with respect to variations on the logic itself.

The undecidable logic is obtained by adding revelation to a minimal logic of
propositional connectives and simple path formulas, hence we show that unde-
cidability comes from revelation and not from the spatial nature of SL. Unde-
cidability of any richer logic follows immediately.

We summarize decidability and extrusion results for spatial logics in the
following table. Detailed proofs of our results are shown in [17].

Table 6.1. A summary of decidability/extrusion results

Logic Decidable?
SL{} Yes, proved in [6]

SL{ N, , c�} Yes, proved in Corollary 4.7
SL{∃} No, follows from [14]
SL{R�} No, follows from Corollary 5.13
SL{H} No, follows from Corollary 5.14

Operator Extrusion algorithm
N Yes, see Table 4.2 and [18]

R© No, by Corollary 4.8
H No, by Corollary 4.8
∃ No, by Corollary 4.8

An extrusion algorithm for the freshness quantifier in SL{R�, } is used in [18]
by Lozes to prove a surprising adjunct elimination theorem for SL{ N,R�, }.

The result is surprising in view of the fact that the parallel-adjunct seems
to be extremely expressive, being able to quantify over infinite sets of trees, and
of internalizing validity into model-checking. Lozes leaves the open problem of
the existence of an effective adjunct-elimination procedure. As a corollary of our
undecidability results, we can close that problem.
Corollary 6.1. No effective adjunct-elimination procedure exists for SL{ N,R�, }.

Proof. An effective adjunct-elimination procedure would reduce model-checking
of SL{ N,R�, }, which we proved to be undecidable, to model-checking the same
logic without adjuncts, which is decidable.

A calculus to manipulate trees with hidden names has been presented in [9],
whose type system includes the full SL. Hence, type inclusion in that calculus
and validity in SL are mutually reducible. Decidability of subtype-checking was
left as an open problem in [9]. Our results imply that it is undecidable.
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