
Tree Transducers and Tree Compressions

Sebastian Maneth1 and Giorgio Busatto2

1 EPF Lausanne, School of Computer and Communication Sciences
2 Universität Oldenburg, Department für Informatik

Abstract. A tree can be compressed into a DAG by sharing common
subtrees. The resulting DAG is at most exponentially smaller than the
original tree. Consider an attribute grammar that generates trees as out-
put. It is well known that, given an input tree s, a DAG representation
of the corresponding output tree can be computed in time linear in the
size of s. A more powerful way of tree compression is to allow the sharing
of tree patterns, i.e., internal parts of the tree. The resulting “sharing
graph” is at most double-exponentially smaller than the original tree.
Consider a macro tree transducer and an input tree s. The main result
is that a sharing graph representation of the corresponding output tree
can be computed in time linear in the size of s. A similar result holds for
macro forest transducers which translate unranked forests, i.e., natural
representations of XML documents.

1 Introduction

Consider a finite, labeled, ranked, and ordered tree. A tree of this type can for
example be represented by a bracketed expression of the form c(g(a, b, b), c(a, a)).
How can such a tree be compressed? Or, what is its smallest representation?
Certainly, the smallest Turing Machine (or C program) that generates the tree
is a good answer to the latter question. However, not only is such a representation
very difficult to obtain, but it is also hard to alter or merely query it (without
decompressing it first).

Instead of this general approach to compression we are interested in a repre-
sentation of trees in which the functionality of the basic tree operations (such as
the movement on nodes along the edges) are preserved. This type of compression
is called “data optimization” in [13].

In the context of XML there has been some recent work on tree compres-
sion. XML documents represent trees that are slightly different from the ones
discussed above. First, they are unranked, i.e., a node in an XML tree can have
arbitrarily many children, and second, labels are typed (in the sense that there
are tags for internal nodes, data values for leaves, and the latter can be of various
primitive types such as integers, strings, etc.). The XMill compression tool [16]
takes proper care of the type issue by grouping all values of the same type into
one container. The containers are then compressed using known methods (such
as gzip for string values). However, XMill is not a data optimization tool: the
resulting output cannot be queried or processed without prior decompression.

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 363–377, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

364 S. Maneth and G. Busatto

d

c

a

c

a

a

c

a

a

c

a c

aa

d

c

c

aa

d

d

c

c

c

a

c

d

c

a

Fig. 1. The tree t, its minimal DAG g, and a sharing graph h.

XML data optimization is considered in [2,10]. There it is shown that (by
sharing of common subtrees) a minimal DAG representation of a tree can be
obtained in time linear in the size of the tree. A tree t together with its DAG
representation g can be seen in Fig. 1. Moreover, they consider the problem of
evaluating tree queries on DAG representations. Note that in their approach
only internal nodes of an XML documents are collapsed in the DAG.

In this paper we consider a tree optimization method that is based on sharing
graphs (for short, sgraph). The latter were used by Lamping [14] to implement
optimal reductions of λ-calculus (see also [1,12]). Sgraphs can be seen as a gen-
eralization of DAGs in the following sense: consider a node of a DAG that is
shared, i.e., with k > 1 incoming edges. This node can be seen as a special
“begin sharing” marker because the tree rooted at that node is being shared by
several other nodes. The sgraph now generalizes this idea by adding a symmet-
ric “end sharing” marker. Consequently, such a marker has one incoming and k
outgoing edges. Begin and end markers are also called fan-ins and fan-outs (or
multiplexers and demultiplexers) and are depicted by a triangle pointing down
(with k incoming edges from above, ordered) and its vertical mirror image, re-
spectively. An sgraph representation of the tree t is shown in the right of Fig. 1.
An sgraph is unfolded by following its paths starting at the root node; if, on
such a path, the ith input of a fan-in is entered then the next fan-out must be
exited by the ith output.

Tree compression using DAGs has a maximal compression ratio of 1/ log n
(achieved, e.g., when representing a full binary tree of height n by a DAG with
n nodes). Tree compression using sgraphs has a maximal compression ration of
1/ log log n. It can be achieved by representing a full binary tree of height 2n by
n pairs of nested fan-in/fan-outs which share a binary node Such an sgraph is
shown in the right of Fig. 4 (for n = 3).

The minimal DAG that represents a tree t can be seen as the minimal finite
state tree automaton that accepts t, or as the minimal regular tree grammar that
generates t. In this sense the generalization of DAGs to sgraphs just corresponds
to moving from finite state automata/regular grammars to push-down down
automata/context-free grammars. In fact, it is not difficult to interpret an sgraph
as a particular push-down tree automaton, or as a particular context-free tree

Tree Transducers and Tree Compressions 365

S → c(A, B) S → B(B(A))
A → c(a, a) A → c(a, a)
B → d(A, C) B(y) → c(A, d(A, y))
C → c(A, D)
D → c(A, A)

Fig. 2. Regular and context-free tree grammars that generate {t}.

grammar (the latter is discussed in Sect. 4). In Fig. 2 we see grammars for g and
h of Fig. 1.

For strings the idea of using context-free grammars to compress is well known.
In fact, as shown in [15], the famous LZ78 compression is just a particular in-
stance of compression by context-free grammars. It is shown in [15] that even
though the problem of finding for a string the minimal context-free grammar is
NP-complete, there exist quite a number of good approximation algorithms for
this problem. Context-free grammars which generate exactly one string are also
known as “straight-line programs”, and in [21] it was proved that deciding their
equivalence can be done in polynomial time. Thus, the corresponding strings
need not be decompressed in order to test their equivalence.

For trees the idea of grammar-based compression seems to be new. Clearly,
the problem of finding a minimal context-free tree grammar is NP-complete
(because it can be reduced to the corresponding string problem). Can the ap-
proximation algorithms discussed in [15] be generalized to trees? Is the equiva-
lence problem for straight-line context-free tree grammars solvable in polynomial
time? Both questions are subject of further research and are not addressed in
this paper. Rather, we consider tree translation formalisms that can be altered
in order to generate sgraphs.

In particular we consider the macro tree transducer [8] which is a power-
ful model of syntax directed translation. It can be obtained by combining the
top-down tree transducer with the macro grammar. Recently it has been shown
that (compositions of) macro tree transducers can simulate pebble tree trans-
ducers [7]. The latter were introduced in [19] and model the “tree translation
core” of all known XML query and transformation languages (including, e.g.,
XQuery and XSLT).

Macro tree transducers (mtts) can be simulated by the top-down tree to
graph transducers of [9]. In fact, the output graphs are DAG representations
of the corresponding output trees. Now, what happens if we use top-down tree
to graph transducers in order to generate sgraphs? Our main result is that in
this way even linear top-down tree to graph transducers can simulate mtts.
Linearity means that every node of the input tree is processed at most once. As
consequence we obtain that an sgraph representation of the output tree of an
mtt can be computed in time linear in the size of the corresponding input tree.

Previous complexity results about mtts [17] are based on simulations by
attribute grammars. For the latter it is folklore that a DAG representation of
the output tree can be computed in time linear in the size of the corresponding

366 S. Maneth and G. Busatto

input tree. In fact, the involved attribute grammars generate trees by using tree
concatenation (= “first-order tree substitution”) as only operation. The same
operation is used in the derivation of a regular tree grammar. This explains
why DAGs are particularly well suited for representing outputs of such attribute
grammars (or, attributed tree transducers as they are called). Since macro tree
transducers can be seen as a generalization of context-free tree grammars, it is
not surprising that for them sgraphs are well suited to represent their outputs.
Hence, our result is the generalization of the linear time computibility from
attributed tree transducers on DAGs to macro tree transducers on sgraphs.

Our simulation of mtts by linear top-down tree to sgraph transducers implies
that every output language of an mtt can be represented as a context-free sgraph
language. This is in accordance with the fact that output tree languages of
attributed tree transducers can be represented as context-free DAG languages [4].

It should be noted that there is a price to be paid for the fact that sgraphs can
compress better than DAGs: their unfolding is more difficult. The same holds
for querying/processing an sgraph because, intuitively, a stack containing the
history of entered fan-ins has to be maintained at all times. In the last section
of this paper we address the problem of querying/processing an sgraph and give
some bounds on the amount of overhead needed.

2 Trees, DAGs, and Sharing Graphs

We assume the reader to be familiar with trees, tree automata, and tree trans-
lations (see, e.g., [11]). A set Σ together with a mapping rank:Σ → N is called
a ranked set. For k ≥ 0, Σ(k) is the set {σ ∈ Σ | rank(σ) = k}; we also
write σ(k) to denote that rank(σ) = k. The set inc(Σ) consists of all symbols
σ ∈ Σ, but now with rank 1 + rankΣ(σ). For a set A, 〈Σ, A〉 is the ranked set
{〈σ, a〉 | σ ∈ Σ, a ∈ A} with rank(〈σ, a〉) = rank(σ). The set of all (ordered,
ranked) trees over Σ is denoted TΣ . For a tree t, V (t) is the set of nodes of t.
The size of t is its number |V (t)| of nodes. For a set A, TΣ(A) is the set of all
trees over Σ ∪A, where all elements in A have rank zero. We fix the set of input
variables as X = {x1, x2, . . . } and the set of parameters as Y = {y1, y2, . . . }.
For k ≥ 0, Xk = {x1, . . . , xk} and Yk = {y1, . . . , yk}.

For the representation of DAGs and sharing graphs we use hypergraphs. The
reader is assumed to be familiar with hypergraphs and hyperedge replacement,
see, e.g., [3]. For a ranked alphabet Γ and m ≥ 0, a hypergraph g of rank m over
Γ consists of finite sets of nodes and hyperedges. Every hyperedge e of rank k is
incident with a sequence nod(e) of k nodes (“the nodes of e”) and is labeled by a
symbol of rank k, i.e., in Γ (k). Furthermore, there is a sequence ext of “external
nodes” which has length m.

To represent trees, DAGs, and sharing graphs by hypergraphs we use the
following order on an edge e of rank m ≥ 1: if nod(e) = v1 · · · vm then v1 · · · vm−1
is the sequence of argument nodes of e, denoted ar(d), and vm is the result node
of e, denoted res(d). Let g be a hypergraph. A path of g is a sequence u1 · · ·un

of nodes such that there are hyperedges e1, . . . , en with u1 = res(e1) and, for

Tree Transducers and Tree Compressions 367

every 2 ≤ i ≤ n, ui = res(ei) and ui appears in ar(ei−1). If all paths ρ of g are
acyclic, i.e., no node appears more than once in ρ, then g is a directed acyclic
(hyper)graph (DAG).

Let ∆ be a ranked alphabet and m ≥ 2. Define Γm = {2(3), 2(3), . . . , m(m+1),
m(m+1)}. A hypergraph g over ∆ ∪ Γm is a sharing graph (sgraph) if applying
the following rewrite rules results in a tree t (recall from the Introduction our
conventions on how to draw sgraphs). The left rule generates i copies of a symbol
f which is shared by a fan-in. In this way the fan-in is moved down (and split
into n copies, where n is the number of arguments of f). If a fan-in meets a
corresponding fan-out (right rule), then both are deleted and their inputs and
outputs are melted together appropriately. The tree t is the unfolding of g, de-
noted tree(g). Notice that the rewriting system is confluent but not terminating.

. . .

f f

f
i

1, i + 1→

i

. . .

i

1 n

→

i

i

n1 1 i

i + 1 2in + 1 n + 1 n + i + 1
, , ,n + i + 1

. . .

, , ,

. . .

. . .

, , , , , ,

. . .

. . .

i, 2i

Fig. 3. The rules of the rewriting system that unfolds a sharing graph.

3 Sharing Graph Implementation of Tree Transducers

In this section our two main results are proved. First, for every macro tree trans-
ducer and given an input tree of size n, an sgraph representation of the corre-
sponding output tree can be computed in time linear in n. The second result is
about macro forest transducers. There we can only show that an sgraph repre-
sentation of an output forest can be computed in time exponential in n. However,
if the macro forest transducer does not copy by means of its input variables xi,
then the output sgraph can be computed in time linear in n. Sgraphs generated
by the above two implementations can contain garbage. Last we discuss how to
avoid the generation of garbage.

Macro Tree Transducers are finite state devices that take trees over a ranked
alphabet as input and produce trees over another ranked alphabet. Here we only
deal with total deterministic macro tree transducers which realize total functions
on trees.

Definition 1. A (total, deterministic) macro tree transducer (mtt) is a tuple
M = (Q, Σ, ∆, q0, R), where Q is a ranked alphabet of states, Σ and ∆ are
ranked alphabets of input and output symbols, respectively, q0 ∈ Q(0) is the

368 S. Maneth and G. Busatto

initial state, and R is a finite set of rules. For every q ∈ Q(m) and σ ∈ Σ(k) with
m, k ≥ 0 there is exactly one rule of the form 〈q, σ(x1, . . . , xk)〉(y1, . . . , ym) → ζ
in R, where ζ ∈ T〈Q,Xk〉∪∆(Ym); the tree ζ is denoted by rhsM (q, σ). �	

The rules of M are used as term rewriting rules in the usual way. The deriva-
tion relation of M (on T〈Q,TΣ〉∪∆) is denoted by ⇒M and the translation realized
by M, denoted τM , is the total function {(s, t) ∈ TΣ × T∆ | 〈q0, s〉 ⇒∗

M t}.

Example 2. We define the mtt Mdexp which translates a monadic tree of height
n into a full binary tree of height 2n. Let Mdexp = (Q, Σ, ∆, q0, R) with Q =
{q

(0)
0 , q(1)}, Σ = {a(1), e(0)}, and ∆ = {σ(2), e(0)}. The set R consists of the

following rules.

〈q0, a(x1)〉 → 〈q, x1〉(〈q, x1〉(e))
〈q0, e〉 → σ(e, e)
〈q, a(x1)〉(y1) → 〈q, x1〉(〈q, x1〉(y1))
〈q, e〉(y1) → σ(y1, y1)

Let us take a look at a computation of Mdexp for the input tree s = aaae
(for better readability we sometimes omit brackets in monadic trees):

〈q0, aaae〉 ⇒Mdexp 〈q, aae〉(〈q, aae〉(e))
⇒2

Mdexp
〈q, ae〉(〈q, ae〉(〈q, ae〉(〈q, ae〉(e))))

⇒4
Mdexp

〈q, e〉8(e)
⇒Mdexp σ(〈q, e〉7(e), 〈q, e〉7(e))
⇒Mdexp σ(σ(〈q, e〉6(e), 〈q, e〉6(e)), σ(〈q, e〉6(e), 〈q, e〉6(e)))
⇒24

Mdexp
fbt∆(8)

where fbt∆(8) denotes a full binary tree over ∆ of height 8. �	
Instead of computing output trees (which can be double exponentially bigger

than the input tree, as seen in the example) we now want to generate sgraph
representations of linear size with respect to the input tree. As computation
model for sgraphs we use the top-down tree to graph transducer of [9].

A macro tree transducer generates an output tree by successively applying its
term rewrite rules to a sentential form (starting with 〈q0, s〉). Due to the presence
of parameters the application of such a rewrite rule carries out a second-order
tree substitution. The top-down tree to graph transducer (ttgt) generalizes the
mtt from tree substitution to hypergraph substitution. It is defined just as an
mtt, i.e., it consists of ranked alphabets of states, input symbols, and output
symbols, an initial state q0, and a finite set of rewrite rules. For a state q of rank
m ≥ 0 and an input symbol σ of rank k the ttgt has exactly one rule

〈q, σ(x1, . . . , xk)〉 → g

where g is a hypergraph of rank m over 〈Q, Xk〉 ∪ ∆.
Given an input tree s, the ttgt G generates an output hypergraph by applying

its rewrite rules, starting with the initial graph g0 consisting of a single hyperedge

Tree Transducers and Tree Compressions 369

e labeled 〈q0, s〉 and m distinct nodes incident with e, where m is the rank of
q0. A rule 〈q, σ(x1, . . . , xk)〉 → g can be applied to a hypergraph h that contains
a hyperedge e labeled 〈q, σ(s1, . . . , sk)〉, where s1, . . . , sk are input trees. The
new hypergraph h′ with h ⇒G h′ is obtained from h by removing the edge e
and gluing in its place the right-hand side g, in which xi is replaced by si. The
gluing is done in such a way that the ith node of e (i.e., the ith node in the
sequence nod(e)) is identified with the ith external node of g. Since our ttgts are
total deterministic, there is for every input tree s a unique hypergraph τG(s) = g
over ∆ derived from the initial hypergraph g0 by ⇒G. We need two restrictions
on ttgts: If the right-hand side of every rule is linear in the input variables Xk.
then G is linear . Obviously, a linear ttgt translates each node of the input tree
at most once, i.e., for an input tree s of size n the output tree is obtained from
g0 by at most n rule applications. If all hypergraphs generated by G are sgraphs
then G is a top-down tree to sharing graph transducer (ttst). Note that, for a
ttst G, the function τG ◦ tree is a tree translation (we use nonstandard order for
composition ◦).

Note that since hypergraph replacement is a generalization of second-order
tree substitution, it is not difficult to simulate any mtt by a ttgt such that every
output graph is a DAG representation of the corresponding output tree. Param-
eters are represented by external nodes and parameter copying becomes DAG
sharing of a node. This was proved in [9]. We now take that construction and
remove all state copying from the mtt by introducing appropriate fan-in/outs.
Thus, parameter copying of the mtt becomes DAG sharing of the ttst and state
copying of the mtt become fan sharing of the ttst.

Lemma 3. For every mtt M there exists effectively a linear tree to sharing
graph transducer G such that τG ◦ tree = τM .

Proof. Let M = (Q, Σ, ∆, q0, R) and let <Q be a total order on Q. We first fix
some auxiliary notions. For every σ ∈ Σ(k), k ≥ 1, i ∈ [k], and Q′ ⊆ Q let

Qσ,i(Q′) := {q ∈ Q′ | 〈q, xi〉 occurs in rhsM (Q, σ)}.

For m ≥ 0, a tree ζ ∈ T∆(Ym), and a natural number i define graph(ζ, i) as
the hypergraph representation g of ζ, where the jth parameter yj , j ∈ [m] is
represented by the (i + j − 1)th external node of g, and the root node of ζ is
represented by the (i + m)th external node of g. Note that a symbol δ of rank
k is represented by a hyperedge of rank k + 1 (with argument and result nodes,
see the definition of DAGs in Section 2; for details see, e.g., [6] or [9]).

The idea of the construction of G is as follows. Consider a q0-rule of M
with right-hand side ζ and let g be the graph representation graph(ζ, 1). The
corresponding rule of G is obtained by merging in g all state calls that are on
the same variable xi. There might be several different states q1, . . . , ql on xi, and
there might be several occurrences of 〈qj , xi〉 in g. We remove from g all edges
labeled xi and add a new handle labeled Q̃ = {q1, . . . , ql} in G which denotes the
merging of those states. The rank of Q̃ is the sum of the ranks of q1, . . . , ql (for
the parameters) plus l (for the root nodes). If there were ν > 1 distinct edges

370 S. Maneth and G. Busatto

labeled 〈qj , xi〉, then we use a fan-in and ν fan-outs each of rank ν. The input to
the fan-in are the result nodes of these edges and the output of the fan-in is the
node incident with the Q̃-edge that corresponds to the root of qj . The inputs of
the fan-outs are the qj-parameter nodes of the Q̃-edge and their outputs are the
argument nodes of the 〈qj , xi〉 labeled nodes.

Let G = (P, Σ, inc(∆), {q0}, U). The states and rules of G are defined by
applying the recursive procedure make rules to the initial state {q0}.
make rules(Q̃){
Let Q̃ = {q1, . . . , q�} with q1 <Q q2 <Q · · · <Q q� and rj = rankQ(qj) for j ∈ [�].
Let Q̃ be a state in P of rank m = � + r1 + r2 + · · · + r�.
For every σ ∈ Σ(k), k ≥ 0 do{

Let g be the disjoint union of the graphs
graph(rhsM (q1, σ), 1), graph(rhsM (q2, σ), 2 + r1), graph(rhsM (q3, σ), 3 + r1+
r2), . . . , graph(rhsM (q�, σ), � + r1 + r2 + · · · + r�−1).
For every i ∈ [k] do{

Add to g new nodes v1, . . . , vm and a new edge e (of rank m)
labeled 〈Qσ,i(Q̃), xi〉 with nod(e) = v1 · · · vm.
Let Qσ,i(Q̃) = {q′

1, . . . , q
′
n} with q′

1 <Q · · · <Q q′
n and let r′

j = rankQ(q′
j).

For j ∈ [n] let Ei,j be the edges in g that are labeled 〈pj , xi〉.
For every j ∈ [n] do{

Remove all edges in Ei,j from g.
Let Ei,j = {e1, . . . , eν}.
Add to g a fan-in of rank ν with output node v1+r1 and
input nodes res(nod(e1)), res(nod(e2)), . . . , res(nod(eν)).
For every µ ∈ [r′

j] do{
Add to g a fan-out of rank ν with input node vκ

for κ = j + (r′
1 + · · · + r′

j−1) + (µ − 1) and with output
nodes ar(nod(e1))[µ], ar(nod(e2))[µ], . . . , ar(nod(eν))[µ].

}
}

}
Let the rule 〈Q̃, σ(x1, . . . , xk)〉 → g be in U .

}}
Correctness of G can be proved as follows. For an sgraph g of rank m and

k ∈ [m] let tree(g, k) denote the tree obtained by starting the unfolding at
the k-th external node of g. For q ∈ Q(m) let Mq(s) be the normal form of
〈q, s〉(y1, . . . , ym) w.r.t ⇒M (and similarly for Gp, p ∈ P). Correctness, namely
tree(τG(s)) = τM (s) follows from the claim for q = q0 and Q̃ = {q0}.

Claim: Let s ∈ TΣ , Q̃ = {q1, . . . , qn} ∈ P (m) with q1 < Q · · · <Q qn, and
j ∈ [n]. Then tree(GQ̃(s), m) = Mq(s).

Note that in tree(GQ̃, m) the (m − rankQ(q) + j)th external node of GQ̃(s)
is interpreted as yj . This claim can be proved by induction on the structure of
s. The main point is to show how the application of ‘tree’ distributes through
a graph that is obtained by hyperedge replacement (hr). Roughly speaking,

Tree Transducers and Tree Compressions 371

hr become second-order tree substitution. The proof is similar to the one of
Lemma 5.3 of [9]. �	

Example 4. Consider the mtt Mdexp of Example 2. We now apply to it the
construction presented in the proof of Lemma 3 to obtain a linear ttst G that
computes for every input tree s an sgraph g such that tree(g) = τM (s). Define
G = (P, Σ, inc(∆), {q0}, U). The only possible state sets are {q0} of rank 1 and
Qa,1({q0}) = {q} of rank 2. Hence P = {{q0}(1), {q}(2)}. It remains to define
the rules in U .

Let us start with the a-rules, and in particular with the ({q0}, a)-rule. Let
g be the graph representation graph(rhsM (q0, a), 1) of the tree rhsM (q0, a) =
〈q, x1〉(〈q, x1〉(e)). We now enter the part of the construction that is presented
in pseudo code. Since a is of rank k = 1 there is only the choice i = 1 in the first
loop. We now add to g a new edge e labeled 〈Qa,1({q0}), x1〉. The corresponding
graph is shown on the left of Figure 4. Now Qa,1({q0}) = {q′

1}, q′
1 = q, and

e

e

〈{q}, x1〉
v2

v1

u1

u2

u3

1

〈q, x1〉

e

u1

u2

u3

e1

e2

〈q, x1〉

1

σ

1

Fig. 4. The graphs graph(rhsM (q0, a), 1), rhsG({q0}, a), and the sgraph τG(aaae).

r′
1 = 1. Thus there is only the choice j = 1 in the second loop. Let E = {e1, e2}

be the edges as in the left of Figure 4. We now add a fan-in of rank 2 with output
node v1+r′

1
= v2 and input nodes res(nod(e1)) = u1 and res(nod(e2)) = u2 (see

the figure). For the final loop the only choice is µ = 1. Then κ = 1. Hence, we
add a fan-out of rank 2 with input node v1 and output nodes ar(nod(e1)) = u2
and ar(nod(e2)) = u3. The final right-hand side g of the ({q0}, a)-rule of G is
shown in the middle of Figure 4.

372 S. Maneth and G. Busatto

It should be clear how to construct the ({q}, a)-rule of G. Let us consider the
computation of G for the input tree s = aaae. The resulting sgraph is shown in
the right of Fig. 4. �	

It should be intuitively clear how to realize a linear ttst G on a RAM A.
The input to A is a tree s represented as pointer structure. Then A computes
the output graph τG(s) (as a pointer structure) by applying the rules of G
successively. Clearly, the application of a rule l → r can be done in time O(|r|).
Since a linear ttst computes the output sgraph for an input tree of size n by
application of at most n rules, we obtain our first main result.

Theorem 5. For every mtt M there is effectively a RAM that computes, given
an input tree s, an output sgraph g with tree(g) = τM (s) in time O(|s|).

XML Translations. In an XML document a node (denoted by <tag> and
</tag>) has arbitrarily many subtrees (viz., the sequence of trees between <tag>
and </tag>). Hence, an XML document naturally represents an unranked tree
(seen as a graph with two sorts of edges: child edges and sibling edges). In con-
trast to that, classical tree language theory is mainly concerned with ranked
trees. Of course every unranked tree can be represented by a binary tree (ob-
tained from the unranked tree by simply deleting all child edges to non-first
children).

Several tree transducer models that work directly on unranked trees are more
powerful than their ranked counterparts. E.g., for the top-down tree transducer
this was proved in [18]. For the macro tree transducer this was recently proved
in [20]: their unranked version of mtt, the macro forest transducer (mft), is
strictly more powerful than mtts on binary encodings. Even though every mft
can be simulated on binary trees by the composition of two mtts, the complexity
of type checking is the same for an mft as for just one mtt. Therefore the mft de-
serves attention. In this section we show how to generate sgraph representations
of output forests of mfts.

Let us consider an example of an mft. In fact, it is the transducer Fdexp used
in [20] to prove that mfts are more powerful than mtts on encodings. For an
alphabet Σ the set FΣ of (unranked) forests over Σ is defined by the context-
free grammar with productions

F → T | FF
T → ⊥ | a(F) a ∈ Σ

The mft is the natural generalization of the mtt to the forest defined above: a
rule is of the form 〈q, σ(x1)x2〉(y1, . . . , ym) → f where f is a forest over Σ ∪ Ym

plus elements of 〈Q, X2〉 which occur ranked. The mft Fdexp has Σ = {a} and
∆ = {b} as input and output alphabets, respectively, and the following two rules.

〈q, a(x1)x2〉(y1) → 〈q, x2〉(〈q, x2〉(y1))
〈q, ⊥〉(y1) → y1y1

Tree Transducers and Tree Compressions 373

It starts computing with 〈q, s〉(b) and translates the input forest s of width n
(i.e, consisting of n concatenated trees) into the forest fn consisting of the con-
catenation of 22n

trees b. Using the usual encoding of forests by binary trees, the
corresponding ranked translation has double exponential height increase (take
the forest sn = an as input) and therefore cannot be realized by any mtt.

If we try to construct a linear top-down tree to sgraph transducer for Fdexp
following the construction of Lemma 3 then we get a wrong ttst which generates
the concatenation of only 2n+1 trees b. The reason is that the copying by con-
catenation present in the second rule (with rhs yy) cannot be realized by DAG
sharing. In fact, it is easy to see that no linear ttst can generate sgraph repre-
sentations of fn, taking sn as input. This is because sgraphs for linear structures
(like strings or monadic trees) have a compression rate of at most 1/ log n.

Now let us try to simulate an mft by a non linear ttst. Instead of sharing
states on the same input variable xi (as in the construction of Lemma 3) we
now simply take the state copying of the mft over into the rules of the ttst. In
order to realize the copying of parameters we use fan-in/outs. A state now has
two tentacles for each parameter (thus it has 2m argument nodes if there are
m parameters). In a computation they will be incident with the begin and end
nodes of the string of trees of the actual parameter forest. Similarly, every state
has two result nodes which correspond to the begin and end nodes of the forest it
will compute. If we apply this construction to the mft Fdexp then we obtain the
ttst Gdexp which has the two rules depicted in Fig. 5. Obviously, if the original

〈q(4), a(x1)x2〉 → 〈q(4), ⊥〉 →

〈q, x1〉

〈q, x1〉

4

1

1

4

2

3

2

3

Fig. 5. The rules of the ttst Gdexp.

mft F is linear in the input variables, then so is the resulting ttst G. We obtain
the following lemma.

Lemma 6. For every mft F there exists effectively a top-down tree to sgraph
transducer G such that τG ◦ tree = τF . If F is X-linear then G is linear.

Consider an mft F that is linear in the parameters. Maybe a construction
similar to the one of Lemma 3 can be used to show that there is linear ttst that
computes corresponding sgraphs. But this remains to be proved.

Instead, let us try to find a more liberal condition on the input variables. It
turns out that the linearity condition can be weakened into the “finite copying”
restriction, without changing the corresponding class of translations. An mft is
finite copying in the input if there is a c > 0 such that the number of states that
translate a certain node of the input tree is bounded by c.

374 S. Maneth and G. Busatto

Theorem 7. For every macro forest transducer M there is effectively a RAM
that computes, given an input tree s, an output sgraph g with tree(g) = τM (s)
in time O(2|s|). If M is finite copying in the input, then g is computed in time
O(|s|).
Proof. (sketch) For the general case the result follows from Lemma 6. Assume
now that M is finite copying in the input. We can decompose M into a finite
copying top-down forest transducer T followed by an mft M ′ that is linear in
the input variables. The idea is the one of Theorem 4.8 of [8]: every mtt can be
decomposed into a top-down tree transducer followed by a so called “YIELD”
mapping (it interprets its input symbols as substitution operations and in this
way realizes the second-order tree substitution inherent in an mtt). In fact, for
mtts that are linear in the parameters this was shown in Lemma 2 of [6]. Its
generalization to nonlinear parameters and to forests should be straightforward.
Finite copying top-down forest transducers are obviously of linear size increase.
Since every mft can be simulated by the composition of two mtts by Theorem 9
of [20] τT (s) can be computed in time linear in � = |s| + |τT (s)| by Theorem 15
of [17]. By Lemma 6 and the fact that M ′ is linear, τM ′(τT (s)) = τM (s) can be
computed in time linear in �. �	

Removal of Garbage. Consider a ttst G. For an input tree s the output τG(s)
is an sgraph with one external node v. The tree represented by τG(s) is obtained
by unfolding the sgraph rooted at the node v. However, τG(s) might contain
subgraphs that are not at all connected to the sgraph rooted at v. Such parts of
τG(s) are called garbage. But in an sgraph there can be even more garbage: nested
pairs of fan-ins/outs (as in the right of Fig. 4) might share nothing whatsoever,
i.e., the innermost fan-in is directly connected to the innermost fan-out.

If we consider the translation of Lemma 3 then these forms of garbage will
be generated when if the underlying mtt (1) deletes a parameter, i.e., if yj does
not occur in the right-hand side of a state (of rank ≥ j) or when it (2) erases
a state, i.e., if a state of rank one has a rule with right-hand side y1. Thus, if
an mtt is nondeleting in the parameters and nonerasing in the states, then the
corresponding ttst will not generate garbage. It was proved in Lemma 7.11 of [5]
that for every mtt there is an equivalent mtt (with regular look-ahead) that is
nondeleting and nonerasing. Thus we obtain the following lemma.

Lemma 8. For every mtt M there is a linear garbage-free ttst G such that
τG ◦ tree = τM .

It is probable (but remains to be proved) that a similar result holds for mfts
(with “linear garbage-free” replaced by “garbage-free”).

4 Exploring Sharing Graphs

Sgraphs can be used as compressed representations of trees. In the previous
section it was shown how to generate sgraphs by means of tree to graph trans-
ducers. But once we have computed an sgraph, what can we do with it (other

Tree Transducers and Tree Compressions 375

than decompressing)? In the Introduction we have claimed that the basic tree
operations are preserved when moving from a tree to a compressed sgraph. In
this section we want to make this claim more precise by showing that any algo-
rithm that reads the tree (by moving along its edges) can also be realized on the
sgraph with a slow down that is (per move) linear in the size of the sgraph. In
order to do this we first show that any sgraph can be represented by a particular
context-free tree grammar (in the sense that they represent the same tree).

In a context-free tree grammar the set N of nonterminals is ranked and a
production is of the form A(y1, . . . , ym) → t where A ∈ N (m), m ≥ 0, and t is
a tree over N and the terminal ranked alphabet ∆. The grammar is simple it is
linear, nondeleting, and nonerasing, i.e., if each parameter yj occurs exactly in
t and t �= y1. In a straight-line grammar the set of productions can be written
as A1 → r1, . . . , An → rn such that all Ai are pairwise different and nontermi-
nals Aj occurring in ri have j > i. We now illustrate how an sgraph g can be
transformed into a straight-line simple context-free tree grammar G.

The scope of a fan-in f in g is the sharing subgraph of g rooted at the output
of f and ending at leaves or fan-outs matching f . For an sgraph g we introduce
a non-terminal A and the production A → t where the tree t is obtained as
follows. Starting at the root of g we copy the tree top-down until a fan-in edge
e is encountered (the same for DAG copying). We introduce a new nonterminal
e of rank m, where m is the number of matching fan-outs for e. At the i-th
input to e we stop copying and add the subtree e(t1, . . . , tm) to t, where tj is
generated by applying the copy procedure to the i-th output node of the j-th
fan-out of e. If e is encountered again no new non-terminal is introduced. After
t has been generated we apply the same procedure to the new non-terminals
e1, . . . , ek (one for each fan-in) and their respective scopes; then, when the j-th
matching fan-out (thus, they should be ordered) is encountered, the parameter
yj is generated. As the reader may verify, application of this procedure to the
sgraph of Fig. 1 (where we assume that the lower shared c-node has implicitly
a fan-in with no fan-outs) produces (up to renaming) precisely the context-free
tree grammar shown in Fig. 2.

Given a straight-line simple cf tree grammar G (that generates {t}) we now
show how to simulate the movement through the nodes of t. This is done without
unfolding the tree, but by using a stack the size of which is bounded by the size
of G. Let A1, . . . , An be the nonterminals of G, t1, . . . , tn their respective right-
hand sides and A1 the initial nonterminal. We will consider nested derivations of
G in order to simulate the navigation through the nodes of t. This means that
every nonterminal to which a production is applied (except A1) was introduced
by the previous production. By definition the length of such a derivation is at
most n. If i1, . . . , im are the indices of the productions in such a derivation then
i1 < · · · < im and m ≤ im − i1 + 1 ≤ n.

Nested derivations have the useful property that they can be represented
in a compact way by storing the indices of the applied productions and, for
each right-hand side, a pointer to the non-terminal that will be replaced in the
following step. To this purpose we use pointed productions, i.e. productions where

376 S. Maneth and G. Busatto

we have selected one node in the right-hand side. We denote pointed productions
as pairs p = (j, u), where j is the index of the production and u is the path to
a node in its right-hand side. A stack σ = [(j1, u1) . . . (jm, um)] is a sequence of
pointed productions where j1 = 1, each pointer ul (1 ≤ l < m) refers to a node
in the right-hand side of the Ajl

-production labeled Ajl+1 , and the last (top)
pointer um refers to a terminal node. It is clear that such a stack corresponds
to a sentential form with one selected terminal node, and therefore it identifies
a unique node of the tree t. The empty stack [] has no node corresponding to it
and will be interpreted as “find the root node”. We implement the operations
downi and up as operations on stacks.

For a stack σ we implement the operation downi(σ), i ∈ N as follows. If σ
is the empty stack then we look for the shortest left-most derivation that starts
from the initial symbol A1 and produces a sentential form with the root labeled
by a non-terminal. Notice that the number of steps required and the size of the
stack are bounded by n. If σ = [(j1, u1) . . . (jm, um)] is not empty we move the
pointer um to the i-th son of the selected node. Now, we have three possibilities:

(1) If the new pointed node has a terminal label we are finished.
(2) If the new pointed node has a non-terminal label Ajm+1 we extend the stack

by performing a left-most derivation starting from Ajm+1 and ending with
a sentential form that has a terminal node at the root. The resulting stack
represents also a nested derivation, therefore the size of the stack and the
cost of the downi operation are bounded by n.

(3) If the new pointed node is a parameter, then we must backtrack (pop) in
order to find an earlier right-hand side in which the parameter is instantiated.
We may need several backtracking steps, since a variable can always be
replaced by another variable. The backtracking stops eventually because the
initial symbol contains no variables. Now we proceed as in (2).

Given a stack σ, we implement up in the following way. If σ = ε, then there
is nothing to be done. Otherwise, we need to find a position in a right-hand
side where the parent node of the current node is a terminal symbol. We first
backtrack, trying to find a (j, u) with u �= ε. If we end up with the empty stack
then we are finished (because the current node was the root). Otherwise let
u = u′i with i ∈ N and change u into u′. If u′ is terminal then we are finished.
Otherwise we rewrite the nonterminal at u′, extend the stack appropriately,
and position the pointer in the right-hand side on the father u′′ of the unique
occurrence of yi. Note that u′′ exists because G is simple. We repeat this rewrite
procedure until we obtain a terminal node u′′.

The above construction has shown how to simulate on a simple context-free
tree grammar G the tree operations downi and up in time bounded by the size
of G.

Acknowledgments. The first author is grateful to Markus Lohrey for providing
many useful references, and in particular for the introduction to the concept of
sharing graphs.

Tree Transducers and Tree Compressions 377

References

1. A. Asperti and S. Guerrini. The Optimal Implementation of Functional Program-
ming Languages. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1998.

2. P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In
J. C. Freytag et al., editor, Proc. VLDB’2003. Morgan Kaufmann, 2003.

3. J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages. Springer-Verlag, 1997.

4. J. Engelfriet and L. Heyker. Context-free hypergraph grammars have the same
term-generating power as attribute grammars. Acta Informatica, 29:161–210, 1992.

5. J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and
MSO definable tree translations. Inform. and Comput., 154:34–91, 1999.

6. J. Engelfriet and S. Maneth. Tree languages generated by context-free graph gram-
mars. In H. Ehrig et. al., editor, Proc. TAGT’98, volume 1764 of LNCS, pages
15–29. Springer-Verlag, 2000.

7. J. Engelfriet and S. Maneth. A comparison of pebble tree transducers with macro
tree transducers. Acta Informatica, 39:613–698, 2003.

8. J. Engelfriet and H. Vogler. Macro tree transducers. J. of Comp. Syst. Sci.,
31:71–146, 1985.

9. J. Engelfriet and H. Vogler. The translation power of top-down tree-to-graph
transducers. J. of Comp. Syst. Sci., 49:258–305, 1994.

10. M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees (ex-
tended abstract). In Proceedings of the 18th Annual IEEE Symposium on Logic in
Computer Science – LICS’2003, pages 188–197. IEEE, 2003.

11. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages. Springer-Verlag, 1997.

12. S. Guerrini. A general theory of sharing graphs. TCS, 227:99–151, 1999.
13. J. Katajainen and E. Mäkinen. Tree compression and optimization with applica-

tions. Intern. J. of Foundations of Comput. Sci., 1:425–447, 1990.
14. J. Lamping. An algorithm for optimal lambda calculus reductions. In Proc.

POPL’1990, pages 16–30. ACM Press, 1990.
15. E. Lehman and A. Shelat. Approximation algorithms for grammar-based com-

pression. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’2002), pages 205–212. SIAM Press, 2002.

16. H. Liefke and D. Suciu. XMill: An efficient compressor for xml data. In W. Chen
et. al., editor, Proc. ACM Conference on Management of Data, pages 153–164.
ACM, 2000.

17. S. Maneth. The complexity of compositions of deterministic tree transducers. In
M. Agrawal and A. Seth, editors, Proc. FSTTCS 2002, volume 2556 of LNCS,
pages 265–276. Springer-Verlag, 2002.

18. S. Maneth and F. Neven. Recursive structured document transformations. In
R. Connor and A. Mendelzon, editors, Revised Papers DBPL’99, volume 1949 of
LNCS, pages 80–98. Springer-Verlag, 2000.

19. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. of Comp.
Syst. Sci., 66:66–97, 2003.

20. T. Perst and H. Seidl. Macro forest transducers. To appear in IPL.
21. W. Plandowski. Testing equivalence of morphisms on context-free languages. In

Jan van Leeuwen, editor, Proc. Second European Symposium on Algorithms –
ESA’94, volume 855 of LNCS, pages 460–470. Springer-Verlag, 1994.

	Introduction
	Trees, DAGs, and Sharing Graphs
	Sharing Graph Implementation of Tree Transducers
	Exploring Sharing Graphs

