
M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 359–373, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Systematic Methodology
for Developing Component Frameworks*

Si Won Choi, Soo Ho Chang, and Soo Dong Kim

Department of Computer Science, Soongsil University
1-1 Sangdo-dong, Dongjak-Ku, Seoul, Korea 156-734

{swchoi,shchang}@otlab.ssu.ac.kr, sdkim@ssu.ac.kr

Abstract. Component-based software engineering (CBSE) is being accepted as
an effective paradigm for building software systems with reusable components.
Product line software engineering (PLSE) is an approach that utilizes CBSE
principles to support the economic development of several applications in a
domain. Hence, the components should conform to relevant domain standards
and they must at least provide common functionality of the domain. Moreover,
micro-level variability within commonality should also be modeled in compo-
nents so that a product member-specific business logic or requirement can be
supported through component tailoring or customization. Therefore, the degree
of commonality and customizability determines the range of component appli-
cability. In this paper, we propose a systematic approach to identify and model
commonality and variability (C&V) and present a methodology to reason about
the identified C&V model. With the proposed process and guidelines, compo-
nents in a product line can better support a larger set of family applications.

1 Introduction

Component-based software engineering (CBSE) has been widely accepted as a new
effective paradigm for building software systems with reusable components, conse-
quently reducing efforts and shortening time-to-market. During the last decade, the
industry practices of CBSE largely have been producing and utilizing in-house com-
ponents in order to increase modularity and maintainability beyond object-oriented
paradigm. A few case studies of CBSE have been focusing on producing domain
common components.

Product line software engineering (PLSE) shares a great deal of CBSE conceptual
elements and constructs, but its goal is to economically produce a family of applica-
tions by utilizing domain common components. Hence, it is an essential success fac-
tor in CBSE to model the common functionalities and features of a domain in order to
produce such domain common components. Furthermore, the micro-level variability
or alternatives within the commonality should also be modeled in such components so
that a product member-specific business logic or requirement can be supported
through component tailoring or customization [1]. Therefore, it is fair to state that the
degree of commonality and customizability determines the applicability of compo-
nents in PLSE [2].

* This work is supported by the research funding program of Soongsil University.

360 Si Won Choi, Soo Ho Chang, and Soo Dong Kim

In this paper, we present a systematic methodology to identify and model the
C&V. And, we show how the modeled C&V can be mapped to components and
frameworks. In the appendix, we present a case study of building a banking system to
show how the proposed methodology can be effectively and practically applied.

2 Related Works

The concept of Object-Oriented Application framework was introduced in order to
increase reusability in [3]. Schmidt suggests “plug-in” which one of the different
alternatives is plugged into a hot spot in a Framework [4]. Moreover, he proposes a
hot spot subsystem as an implemented hot spot. In this study, abstract domain vari-
ability is embodied in a hook operation designed with polymorphism and inheritance.
However, a larger reuse unit than objects such as component is not considered in this
work.

COMO method by Lee [5] suggests a technique to extract common functionality
into components by using a clustering algorithm. This method suggests identifying
variation points and variants from a family requirement specification. FAST is an
early product-line methodology which produces a process pattern for software pro-
duction [6]. This pattern consists of three main processes; Qualify Domain, Engineer
Domain, and Engineer Application. Especially the facility through domain engineer-
ing such as application engineering environment and application engineering process
can be reused to produce family members rapidly.

Griss [7] suggests using feature model to derive the commonality and variability,
where features are clustered into components. This work proposes a four-step process
to use features to develop product lines. In addition, the issue of resolving crosscut-
ting features is addressed. However, the process can be better augmented with spe-
cific work instructions, artifact templates and traceability framework. Kobra method
by Atkinson [2] uses enterprise model, structural model, activity model, interaction
model and decision model to model and to specify the variability for framework engi-
neering. A stereotype «variants» is used in these models to indicate the existence of a
variation point. A decision model is used to express the variation points for business
processes and various diagrams. However, in this work, it is largely unspecified what
criteria can be used to determine the existence of variability and how to identify vari-
ants and their scopes.

3 The Overall Process

The whole process to model C&V and design component framework consists of five
phases and each phase has 2-3 activities as in figure 1. The process has a sequential
task flow, but it can be applied iteratively. The details of each phase are specified in
sections 3 through 7.

The first phase, Requirement Normalization, is to acquire a set of requirements
from product members, to identify common vocabulary, and to re-write the require-
ments using the common vocabulary. This phase is essential to pursue subsequent

A Systematic Methodology for Developing Component Frameworks 361

phases since heterogeneity of different requirements is normalized so that require-
ments can be compared and C&V can be effectively applied.

The second phase, Commonality Identification, is to compare the set of normalized
requirements and to identify the common features, i.e. functionality or quality attrib-
utes. Once a commonality set is identified, then a Family Requirement Specification is
constructed from which components are modeled. Variability is a minor difference
among family members in their logic or workflow, and it is realized into components
so that component consumers can tailor acquired components for their own applica-
tions. The third phase, Variability Identification, is to identify variability and to design
variation points.

Phase 1. Requirement NormalizationPhase 1. Requirement Normalization

Gathering
Requirement Specification

Activity 1A

Creating
a Glossary of standard Terms

Activity 1B

Rewriting
Requirement Specification

Activity 1C

Phase 3. Variability ModelingPhase 3. Variability Modeling

Identifying
Variation Point and Variants

Activity 3A

Designing
Variants

Activity 3B

Phase 5. Framework ModelingPhase 5. Framework Modeling

Scoping
Framework

Activity 5A

Realizing
Variability

Activity 5B

Phase 4. Component ModelingPhase 4. Component Modeling

Clustering
Features into Components

Activity 4A

Activity 4BPhase 2. Commonality IdentificationPhase 2. Commonality Identification

Creating
Feature Comparison Table

Activity 2A

Writing a Family
Requirement Specification

Refining
Component Model

Activity 2B

Fig. 1. The Overall Process.

The fourth phase, Component Modeling, is to cluster features into components and
to design preliminary components. Also, variation points are injected into these com-
ponents and required interfaces are defined. A framework is a large-grained reuse unit
which embodies a skeleton architecture, a set of related components and their rela-
tionships. An application is created by instantiating this framework. The last phase,
Framework Modeling, is to identify related components and their relationships, which
constitute a framework.

4 Requirement Normalization

This phase consists of three activities; Gathering Requirement, Creating a Glossary of
Terms, and Rewriting Requirements.

362 Si Won Choi, Soo Ho Chang, and Soo Dong Kim

Fig. 2. Requirement Normalization Process and Artifacts.

4.1 Gathering Requirement Specifications

The main goal of product line engineering is to develop reusable assets from which
family members’ applications can be instantiated in a cost-effective way. Hence, the
domain analysis should be applied to a large set of product members, so that the de-
veloped components or framework can be widely reused. Activity 1A is to collect a
set of requirements from product members, and these are represented as SRSi in figure
2. Each requirement may come from a project member, or it can be constructed with a
consideration of standard domain logic and knowledge.

4.2 Creating a Glossary of Standard Terms

One of the first obstacles in PLE is the heterogeneity of the requirement specifications
gathered from several product members. The heterogeneity is largely appeared as
inconsistency and ambiguity on terminology and concepts used in the requirements. A
single term may have different meanings among product members, and several differ-
ent terms among product members may have a single meaning.

Since the components used in PLSE should provide the standard or common fea-
tures among product members, component producers must compare the set of re-
quirements and identify a commonality set. But, this heterogeneity makes the com-
parison of various requirements impractical and inefficient. Hence, the set of require-
ments must be normalized using standard terms and concepts.

Activity 1B is to derive a glossary of standard terms from the set of requirements
gathered during activity 1A. In order to facilitate the process of identifying standard
terms, we use a term comparison table as in table 1. We first grouping similar terms,
T(1,1), T(2,1), … T(n,2) from the requirements and identify the most commonly used
or standard term.

Table 1. Term Comparison Table.

Member
Category

M1 M2 ��� Mn
Common

Term

 T(1,1) T(2,1) ��� T(n,2)

 T(1,2) T(2,3) ��� T(n,4)

A Systematic Methodology for Developing Component Frameworks 363

Once a term comparison table is constructed, we create a glossary of standard
terms which is referred by all further activities and it provides a common definition of
terms used.

4.3 Rewriting Requirement Specifications

By using the glossary of standard terms, we re-write the requirement specifications of
product members. This will make it easier to compare the features among product
members and to identify the commonality and variability since the revised require-
ment specifications will be expressed in all standard terms. However, if the require-
ment specifications from the product members are relatively homogeneous and there
exists only minor difference in the terms used, then this activity can be omitted. In
figure 2, a Norm SRSi is a re-written requirement specification, called normalized
requirement specification.

5 Commonality Identification

During the first phase, requirement normalization, we normalized a set of heterogene-
ous requirements and domain knowledge. The second phase, commonality identifica-
tion, will compare several requirements of product members to derive a set of com-
mon features among them. This common set will be used as the basis to determine the
scope of candidate components and frameworks.

5.1 Creating a Feature Comparison Table

In order to effectively compare the set of requirements, we use a Feature Comparison
Table as in table 2. For the ‘n’ members of the PL, their features are compared for
potential commonness in this table.

Table 2. Feature Comparison Table.

Product Members
Degree of Com-

monality
Rules

Applied
Decision

(Y/N) Feat-
ures

M1 M2 … Mn

F1 � � �

F2 � �

… � � �

Fm � � �

A feature, as in PLE [7], is characterized by functionality and quality attributes. In
many cases a feature maps to functionality. A PL has a set of features; F1, F2, .., Fn
where Fi is a specific feature in PL. The first column lists all the features, F1, F2, ...,
Fm, found in a product line. Earlier this set was defined as a union of the requirements.

364 Si Won Choi, Soo Ho Chang, and Soo Dong Kim

A difficulty in creating this set in practice is to apply a consistent degree of granular-
ity to all the features. This is because the granularity of features in a member’s re-
quirement may be different from that of other member’s requirement. Hence, one
should come up with an appropriate granularity level when there is a dispute on dif-
ferent granularity levels on a single feature. This granularity normalization can often
be done with the intensive participation of domain experts.

Some of the features will be common among members while others are non-
common, i.e. specific only to one or a few members. In the columns for product
members, we express how each feature, Fi, is applied to each member, Mj. If Fi is
applied to Mj, i.e. the member Mj requires Fi, a check mark is given. In deciding the
applicability of features, we only consider the overall functionality and quality attrib-
utes at macro level.

In the column of ‘Degree of Commonality’, we specify a metric for each feature as
(Number of check marks) / (Total Number of Members). This metric gives only an
approximate degree of commonness for the given feature since one member’s re-
quirement may be more valuable or dominant than other members due to the different
representation of the member in the domain.

In the column of ‘Rules Applied’, we specify the rules that have been applied in
making decisions on whether or not each feature is included in the commonality set.
In making decisions, we consider several factors; the degree of commonality, business
influence of each member, sponsorship such as funding, and the degree of standardi-
zation. Although defining a set of precise rules for this decision making is not feasi-
ble, we propose the following candidate rules as a starting point;
i) If the degree of commonality is 100%, it is included in the set.
ii) If the degree of commonality is near 100% and there are some influential member

s who require the feature, then it is included in the set.
iii) If the degree of commonality for a feature is relatively lower than those of other fe

atures and there is no influential member who requires the feature, then it is not in
cluded in the set. If a member is a key player in the domain in terms of business sc
ale and market share or a client who pays the cost of developing reusable assets, th
en it is included in the set.

iv) Other case which lies between the cases ii) and iii) should be judged with the dom
ain knowledge, members’ influence and business issues such as marketability.

v) If the feature is an essential intrinsic or standard functionality in a domain, then it
can be included in the set with careful judgment.

The last column of ‘decision’ is about whether the feature should be included in the
commonality set or not. The decision on whether or not a feature is common is mostly
made based the above rules, but other business factors or domain constraints can also
be considered.

5.2 Writing a Family Requirement Specification

Based on the comparison, we can now summarize the common features in
Commonality Specification Table as in table 3. The first column is the identification
number of each feature, and any reasonable number scheme can be used. The second
column is for the names of features, and the third column is the description of
features.

A Systematic Methodology for Developing Component Frameworks 365

Table 3. Commonality Specification Table.

Feature ID Feature Name Description

CF1

CF2

. . .

By using the common features in this table, we create a Family Requirement Speci-
fication which will be used in later phases as the reference for building components
and frameworks. Also, the information in this table can be provided to component
consumers so that they understand what services the components provide and what to
expect from the reusable assets.

6 Variability Modeling

Through Commonality Identification activity, we have identified a common set of
features that should be realized in components. However, a careful examination on a
common feature often reveals a minor variation on logic or workflow. This is called
variability within a commonality. By realizing this variability in developing compo-
nents, the range of applicability and so reusability of components can be greatly in-
creased [8].

6.1 Identifying Variation Point and Variants

A variation point of a feature in PLE is an identifier of a hot spot where the variability
among different product members occurs [2]. In order to effectively model the vari-
ability, we use the Variability Identification Table as in table 4.

Table 4. Variability Identification Table.

Product Members Common
Features

Variation
type

M1 M2 M3 … Mn
Range

CF1 Logic V1.1 V1.2 V1.1 V1.1 2

CF2

CF3
Work-
flow

V3.1 Open V3.2 V3.2 2+Open

. . .

CFm Logic Open Open Open Open

In the second column, the type of a variation point is specified. In both CBD and

PLE, a variation point can be in a form of logic and workflow in practice. The logic in

366 Si Won Choi, Soo Ho Chang, and Soo Dong Kim

this context consists of several steps which correspond to program statements once
implemented. Hence, a variation point of logic describes a set of different algorithms
for a system or business operation.

A variation point of workflow describes a set of different message flows for a sys-
tem or business operation since a workflow is typically realized by a sequence of
message invocations possibly over multiple objects or components. An example can
be in a banking system product line that there can be different workflows, i.e. proce-
dures, to evaluate and approve a loan application.

In the next set of columns, M1, M2, … , Mn, all possible instances of a logic or
workflow variation point for CFi, i.e. variants, are identified and specified. A variant,
Vi,j is jth variant of ith common feature, CFi. In the first row for CF1, the variant of M1 is
specified as V1,1. If the variant for M2 is not same as V1,1, then M2 is given a new vari-
ant ID. In the row, the M3 is shown to have the same variant as M1’s. By repeating this
procedure, all the possible variants for each variation points are identified.

A key problem in completing this table is to decide whether variability exists be-
tween any pair of product members. That is, what exactly is the difference between
Vi,p and Vi,q? We propose the following decision rules based on the elements of post
condition, input domain, output range, and realization algorithms;

i) If the post conditions of CFi for two members are different, then there exists a vari
ation. A post condition is specified on the result of CFi, and if the post conditions f
or two members are different, it implies that the logics or workflows for two mem
bers are different in some degree.

ii) If input domains or output ranges of CFi for two members are different, then there
exists a variation. An input domain for a feature is a set of all possible input value
s and/or types, and an output range is the set of all possible values and/or types ge
nerated by the feature. If input domains are different, then the logics or workflows
to manipulate the input values will be different. Similarly, if output domains are di
fferent, then there must be different algorithms or workflows to produce different s
ets of output values.

iii) If the realization algorithms for CFi can be determined at this stage, and the algor
ithms for two members are different, then there exists a variation. In some cases, t
he realization algorithms are not available until a later phase. But in some other ca
ses, such algorithms can be available as a pre-fixed requirement. In this case, two
algorithms can be compared to determine the existence of variability.

iv) If none of the above rules can be applicable to CFi, then other factors such as pre-
condition, invariants, and semantic description should be considered for a compari
son.

The last column of Range of Variation specifies the total number of variants identi-
fied by decision rules. If this number is equal to 1, then there is no variability for the
common feature. If this number is greater than 1, then CFi has a variation point and a
set of variants. If a variant for a variation point is unknown, i.e. open, then, it is
marked with ‘open’. If some variants are known and also some variants are open, then
we put the total number of variants followed by the ‘open’.

A Systematic Methodology for Developing Component Frameworks 367

6.2 Designing Variants

From Variability Identification Table, we decide and specify how to realize the vari-
ants for each variation point. We use Variability Range Table as in table 5.

Table 5. Variability Range Table.

Variable
Features

Type of Variation Set of Variants Open/ Closed Default Description

CF1 Logic {V1.1, V1.2} Closed V1.1

CF3 Workflow {V3.1, V3.2} Open V3.2

. . .

CFm Logic { } Open None

The first column lists only the common features that contain variation points, and
so this information can be copied from the Variability Identification Table. The sec-
ond column specifies the type of variation type which is also available in the Variabil-
ity Identification Table. The third column, List of Variants lists all the variants identi-
fied. The next column, Open or Closed, specifies a binary value to indicate whether
the list of variants identified is complete, i.e. closed, or expandable in the future, i.e.
open. Depending on this openness, different implementation techniques can be
adopted. The next column, Default, specifies a default variant among the list of vari-
ants, so that the components can be consumed without tailoring process if the default
variant is needed during application engineering.

7 Component Modeling

7.1 Clustering Features into Components

During the previous activities, a set of common features and its variability scope have
been identified. Based on this C&V model, conceptual components are designed.
There is no mechanical procedure to identify components, but we apply the following
guidelines to help clustering related features into components as in figure 3. Two
features CFi and CFj are related if following conditions hold;
i) Features CFi and CFj are related if they belong to a same functional category as de

fined by clients. This functional category may be based on system, module, functi
onal classification and deployment classification. Typically, clients have in-depth
domain knowledge and possess a functional classification scheme of features acco
rding to their domain knowledge. And, so if two features belong to a same functio
nal category defined by clients, then these are said to be related.

ii) Features CFi and CFj are related if they use common data or information. A featur
e is a small-grained functionality required by clients, and each feature uses a set of
 data elements or information. If two features use exactly or mostly same set of dat
a or information, they are grouped into a component.

368 Si Won Choi, Soo Ho Chang, and Soo Dong Kim

iii) Features CFi and CFj are related if there is some strong degree of dependency bet
ween the features. A dependency in OOP and CBD is a method invocation relation
ship. Two features with dependencies should be clustered into a single component
in order to minimize the coupling.

iv) Features CFi and CFj are related if they belong to the system layer and they proces
s related system operations or transactions. Typically a feature that processes syste
m operations belongs to a system layer, and the set of such features should be grou
ped into a single component. Hence, these features can be distinguished from the f
eatures that manipulate persistent data or objects.

v) Features CFi and CFj are related if they belong to the business layer and they mani
pulate persistent data or objects. In contrast to iv), these features belong to busines
s layer, and so they can be distinguished from the features that process system ope
rations or transactions.

Fig. 3. Grouping Features into Components.

A feature is a system behavior exposed to clients, and so it tends map to a system
component. However, a feature can map to a business component if the nature of the
feature is mostly CRUD data manipulation. Hence, it is common in practice that a
feature maps to a system component, which in turn invokes operations of a business
component yielding an inter-component dependency.

7.2 Refining Component Model

The above set of decision rules is neither definitive nor complete since this grouping
process largely depends on the domain knowledge and there can be exceptions to the
rules. Two problematic cases that could be generated by applying the decision rules
are unassigned features such as CF3 and features appearing in multiple components
such as CF2 as shown in figure 3.

An unassigned feature can be grouped into a component that is the closest to the
feature. If there are a large number of unassigned features, then they are grouped into
a utility component. If a feature appears in multiple components, then we use the
following decision rules;
i) If the functional nature of the feature is mostly information retrieval rather than inf

ormation update, then the feature is duplicated into multiple components for conve
nience and efficiency.

A Systematic Methodology for Developing Component Frameworks 369

ii) If the functional nature of the feature is mostly information update rather than retri
eval, then assign the feature to one component which uses the feature most intensi
vely. And, let other components access this component with the feature through int
erface. In this way, we reduce data/state inconsistency problem with duplicated fea
tures while providing ways to access the feature.

iii) If the feature has the characteristics of the case ii), but it is not feasible to find a co
mponent which will contain the feature, then, group such features into a common
component. And, let other components access this feature through the interface of
this common component.

Figure 4 shows that the unassigned feature and figure appearing in two components
are re-configured according to the decision rules.

8 Framework Modeling

8.1 Scoping Framework

Once the components are identified, then frameworks are designed by grouping re-
lated components. A framework is semi-completed application and hence its granular-
ity is larger than components. Therefore, in most cases, we have a single framework
for a product line but there can be multiple frameworks in some cases. We use the
following guidelines in determine whether two components are related;
i) Two components are related if both components are required to constitute a sub-sy

stem. This is because a framework embodies a skeleton architecture of sub-system
 or a whole system.

ii) Two components are related if both components map to structural elements of a st
able and skeleton application architecture of the product line.

iii) Two components are related if there is a dependency or association relationship. In
ter-component relationships should be captured within a framework since a frame
work is highly cohesive large-grained reuse unit.

Fig. 4. Grouping Components into Framework.

370 Si Won Choi, Soo Ho Chang, and Soo Dong Kim

Figure 4 shows that the three components are grouped into a single framework.
The system component interacts with clients whereas business components act upon
the invocation by system components through mediate pattern.

8.2 Realizing Variability

Once components are clustered into a framework, then we project the variability in-
formation specified in table 5 into frameworks. Typically variations points are real-
ized inside components, and methods to set variants for variation points are defined in
a required interface as shown in figure 5.

Tailoring components is different from invoking component methods in several
ways. Tailoring components is typically done once per deployment or installation
whereas invoking component methods are frequently made at run-time. The variant
set during tailoring process will remain persistently within the component whereas
actual parameters passed through method invocation are transient, i.e. short lived.
Hence, a framework or components must maintain the variant set during tailoring
process as persistent information. This is shown as ‘CurrentVariant’ persistent attrib-
ute in figure 5.

If a variation point has a Closed scope, then it is tailored by using Select() method.
This method will take variants required by each application and store them persis-
tently. If a variation point has a completely Open scope, then it is tailored by using
PlugIn() method. This method will take a reference to an external function, object or
component, and invoke the method provided by the plugged in entity. If a variation
point has a partially Open scope and some variants are known, then we use both Se-
lect() method and PlugIn() method.

Fig. 5. Variation points projected into Framework.

A Systematic Methodology for Developing Component Frameworks 371

As shown in figure 5, the CF1 has a logic variation point of Closed scope and its
tailoring method in the required interface is defined as SelectV1();. In the case of CF3,
the workflow variation point has an Open Scope with two known variants; V3.1 and
V3.2. Therefore, two tailoring methods are used; SelectV3() and PlugInV3(). If one of
the two known variants is required for a product member, then the SelectV3() method
is invoked. If the built-in variants, i.e. workflows, cannot be applied to the product
member, then a plug-in object will be passed through PlugIn() method.

9 Traceability

The process proposed in this paper includes 11 activities, and each activity produces
one or two artifacts as summarized in figure 6. We now show the traceable items
between pairs of artifacts in figure 8. The arrow between a pair of artifacts indicates
the transformation direction, and the expression Item1� Item2 on arrows indicates
the Item1 is a source artifact from which a target item2 is derived. And, so the target
artifact can be traced to the source artifact through the transformation items. For vari-
ants in the artifact Variability Range Table are source items from which variation
design and required interface in a framework are derived as in the figure.

Artifact Artifact
Item in prior Artifact�Item in Next Artifact

(Number)

1A.
Requirement
Specifications

1B.
Term Comparison

Table

1B.
Glossary of

Standard Terms

1C.
Re-written

Requirement
Specification

2A.
Feature

Comparison Table

2B.
Family

Requirement
Specification

3A.
Variability

Identification
Table

3B.
Variability Range

Table

4A.
Candidate

Components

4B.
Components

5A.
Framework with

Commonality

5B.
Framework with

C&V

Terms�Terms Related Terms�Common Term

Terms�
ommon
Term

Term�Feature Features�Common Feature

Common Term�Common Term

Common Feature whit Variability�Common Feature

(7)

(3)

(4)

(5) (6)

Variants�Set of Variants
range of variation�Open/Closed

(9)

Common Feature�
Clustered Common Feature

(8)

Components�Candidate Components

(11)

(12) (13)

Individual Component�
Component Relationship

Open/Closed�Select/Plug-in Operation
Variants�Variants

(10)

(1)

Component�
Component with variability

(2)

Fig. 6. Traceable Items among Artifacts.

372 Si Won Choi, Soo Ho Chang, and Soo Dong Kim

Each mapping in figure 6 specifies a transformation of a source item onto a target
item, and a set of rules, called traceability rules, can be defined to show the validity
of transformation. Due to the paper length, we only show rules for the mapping (10)
Variability Range Table to Framework with C&V as an example.
− Rule 1. Each variant with Closed feature is mapped to a customization method

Select<VP name> (VariantType v) in Required interface. The VariantType must be
a datatype that specifies a set of all possible variants, so that an argument of Vari-
antType can be passed by component clients.

− Rule 2. Each variant with Open feature is mapped to a customization method
PlugIn<VP name> (PlugInObject p) in Required interface. The PlugInObject must
be a class type that models a set of all variant objects that can be passed.

− Rule 3. A feature with both known variants and Open range must be mapped to
two customization methods; a Select<VP name>() for known variants and a
PlugIn<VP name>() for Open variants.
Similarly, set of traceability rules can be defined for other mappings.

10 Conclusion

Product line software engineering is a practical framework that utilizes CBSE princi-
ples in order to support the economic development of a set of applications in a do-
main. Hence, the components used in PLSE should conform to relevant domain stan-
dards or they must at least provide common functionality of a domain. Also, the vari-
ability should be modeled in components so that a product member-specific business
logic or requirement can be supported through component tailoring or customization.

In this paper, we proposed a 5-phase process to identify and model the commonal-
ity and variability (C&V) and present a framework to reason about the identified
C&V model in order to enable effective implementations of PLSE components. Ac-
tivities within a phase are given a set of instructions and artifact templates. The whole
process has been applied to a case study of banking domain. In addition, the traceabil-
ity among artifacts and guidelines to enforce the traceability were given. With the
proposed process and guidelines, the C&V can be systematically modeled into com-
ponent framework, and the quality of delivered frameworks can be increased by ap-
plying traces using the proposed traceability foundation.

References

1. D’souza, D., Objects, Components, and Frameworks with UML, Addison Wesley, 1999.
2. Atkinson, C., et al., “Product Line Concepts”, Chapter 14 of Component-based Product Line

Engineering with UML, Addison Wesley, 2001.
3. Fayad, M. and Schmidt, D., “Introduction,” Communications of the ACM, Oct. 1997.
4. Schmidt, H., “Systematic Framework Design by generalization,” Communications of the

ACM, Oct. 1997.
5. Lee, S., Yang, Y., Cho, E., and Kim, S., “COMO: A UML-Based Component Development

Methodology”, Proceedings of Asia-Pacific Software Engineering Conference (APSEC99),
Takamachu, Japan, pp. 54-61, Dec. 7-10, 1999.

A Systematic Methodology for Developing Component Frameworks 373

6. Weiss, D. and Chi, T., Software Product-Line Engineering: a Family-Base Software Devel-
opment Process, Addison Wesley, 1999.

7. Griss, M., “Product-Line Architectures,” Chapter 22 of Component-Based Software Engi-
neering, Addison Wesley, 2001.

8. Kim, S., and Park, J., “C-QM: A Practical Quality Model for Evaluating COTS Compo-
nents,” Proceedings of International Association of Science and Technology for Develop-
ment (IASTED) International Conference on Software Engineering, Innsbruck, Austria,
pp.991-996, Feb. 10-13, 2003.

9. Kim, S., “Lessons Learned from a Nationwide CBD Promotion Project,” Communications
of the ACM, Oct. 2002.

	1 Introduction
	2 Related Works
	3 The Overall Process
	4 Requirement Normalization
	4.1 Gathering Requirement Specifications
	4.2 Creating a Glossary of Standard Terms
	4.3 Rewriting Requirement Specifications

	5 Commonality Identification
	5.1 Creating a Feature Comparison Table
	5.2 Writing a Family Requirement Specification

	6 Variability Modeling
	6.1 Identifying Variation Point and Variants
	6.2 Designing Variants

	7 Component Modeling
	7.1 Clustering Features into Components
	7.2 Refining Component Model

	8 Framework Modeling
	8.1 Scoping Framework
	8.2 Realizing Variability

	9 Traceability
	10 Conclusion
	References

