
M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 359–373, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

A Systematic Methodology  
for Developing Component Frameworks* 

Si Won Choi, Soo Ho Chang, and Soo Dong Kim 

Department of Computer Science, Soongsil University 
1-1 Sangdo-dong, Dongjak-Ku, Seoul, Korea 156-734 

{swchoi,shchang}@otlab.ssu.ac.kr, sdkim@ssu.ac.kr 

Abstract. Component-based software engineering (CBSE) is being accepted as 
an effective paradigm for building software systems with reusable components. 
Product line software engineering (PLSE) is an approach that utilizes CBSE 
principles to support the economic development of several applications in a 
domain. Hence, the components should conform to relevant domain standards 
and they must at least provide common functionality of the domain. Moreover, 
micro-level variability within commonality should also be modeled in compo-
nents so that a product member-specific business logic or requirement can be 
supported through component tailoring or customization. Therefore, the degree 
of commonality and customizability determines the range of component appli-
cability. In this paper, we propose a systematic approach to identify and model 
commonality and variability (C&V) and present a methodology to reason about 
the identified C&V model. With the proposed process and guidelines, compo-
nents in a product line can better support a larger set of family applications. 

1   Introduction 

Component-based software engineering (CBSE) has been widely accepted as a new 
effective paradigm for building software systems with reusable components, conse-
quently reducing efforts and shortening time-to-market. During the last decade, the 
industry practices of CBSE largely have been producing and utilizing in-house com-
ponents in order to increase modularity and maintainability beyond object-oriented 
paradigm. A few case studies of CBSE have been focusing on producing domain 
common components. 

Product line software engineering (PLSE) shares a great deal of CBSE conceptual 
elements and constructs, but its goal is to economically produce a family of applica-
tions by utilizing domain common components. Hence, it is an essential success fac-
tor in CBSE to model the common functionalities and features of a domain in order to 
produce such domain common components. Furthermore, the micro-level variability 
or alternatives within the commonality should also be modeled in such components so 
that a product member-specific business logic or requirement can be supported 
through component tailoring or customization [1]. Therefore, it is fair to state that the 
degree of commonality and customizability determines the applicability of compo-
nents in PLSE [2]. 

                                                           
* This work is supported by the research funding program of Soongsil University. 
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In this paper, we present a systematic methodology to identify and model the 
C&V. And, we show how the modeled C&V can be mapped to components and 
frameworks. In the appendix, we present a case study of building a banking system to 
show how the proposed methodology can be effectively and practically applied. 

2   Related Works 

The concept of Object-Oriented Application framework was introduced in order to 
increase reusability in [3]. Schmidt suggests “plug-in” which one of the different 
alternatives is plugged into a hot spot in a Framework [4]. Moreover, he proposes a 
hot spot subsystem as an implemented hot spot. In this study, abstract domain vari-
ability is embodied in a hook operation designed with polymorphism and inheritance. 
However, a larger reuse unit than objects such as component is not considered in this 
work. 

COMO method by Lee [5] suggests a technique to extract common functionality 
into components by using a clustering algorithm. This method suggests identifying 
variation points and variants from a family requirement specification. FAST is an 
early product-line methodology which produces a process pattern for software pro-
duction [6]. This pattern consists of three main processes; Qualify Domain, Engineer 
Domain, and Engineer Application. Especially the facility through domain engineer-
ing such as application engineering environment and application engineering process 
can be reused to produce family members rapidly. 

Griss [7] suggests using feature model to derive the commonality and variability, 
where features are clustered into components. This work proposes a four-step process 
to use features to develop product lines. In addition, the issue of resolving crosscut-
ting features is addressed. However, the process can be better augmented with spe-
cific work instructions, artifact templates and traceability framework. Kobra method 
by Atkinson [2] uses enterprise model, structural model, activity model, interaction 
model and decision model to model and to specify the variability for framework engi-
neering. A stereotype «variants» is used in these models to indicate the existence of a 
variation point. A decision model is used to express the variation points for business 
processes and various diagrams. However, in this work, it is largely unspecified what 
criteria can be used to determine the existence of variability and how to identify vari-
ants and their scopes. 

3   The Overall Process 

The whole process to model C&V and design component framework consists of five 
phases and each phase has 2-3 activities as in figure 1. The process has a sequential 
task flow, but it can be applied iteratively. The details of each phase are specified in 
sections 3 through 7. 

The first phase, Requirement Normalization, is to acquire a set of requirements 
from product members, to identify common vocabulary, and to re-write the require-
ments using the common vocabulary. This phase is essential to pursue subsequent 
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phases since heterogeneity of different requirements is normalized so that require-
ments can be compared and C&V can be effectively applied. 

The second phase, Commonality Identification, is to compare the set of normalized 
requirements and to identify the common features, i.e. functionality or quality attrib-
utes. Once a commonality set is identified, then a Family Requirement Specification is 
constructed from which components are modeled. Variability is a minor difference 
among family members in their logic or workflow, and it is realized into components 
so that component consumers can tailor acquired components for their own applica-
tions. The third phase, Variability Identification, is to identify variability and to design 
variation points. 

Phase 1. Requirement NormalizationPhase 1. Requirement Normalization

Gathering
Requirement Specification

Activity 1A

Creating 
a Glossary of standard Terms

Activity 1B

Rewriting
Requirement Specification

Activity 1C

Phase 3. Variability ModelingPhase 3. Variability Modeling

Identifying 
Variation Point and Variants

Activity 3A

Designing
Variants

Activity 3B

Phase 5. Framework ModelingPhase 5. Framework Modeling

Scoping 
Framework

Activity 5A

Realizing 
Variability

Activity 5B

Phase 4. Component ModelingPhase 4. Component Modeling

Clustering
Features into Components

Activity 4A

Activity 4BPhase 2. Commonality IdentificationPhase 2. Commonality Identification

Creating 
Feature Comparison Table

Activity 2A

Writing a Family
Requirement Specification

Refining
Component Model

Activity 2B

 

Fig. 1. The Overall Process. 

The fourth phase, Component Modeling, is to cluster features into components and 
to design preliminary components. Also, variation points are injected into these com-
ponents and required interfaces are defined. A framework is a large-grained reuse unit 
which embodies a skeleton architecture, a set of related components and their rela-
tionships. An application is created by instantiating this framework. The last phase, 
Framework Modeling, is to identify related components and their relationships, which 
constitute a framework. 

4   Requirement Normalization 

This phase consists of three activities; Gathering Requirement, Creating a Glossary of 
Terms, and Rewriting Requirements. 
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Fig. 2. Requirement Normalization Process and Artifacts. 

4.1   Gathering Requirement Specifications 

The main goal of product line engineering is to develop reusable assets from which 
family members’ applications can be instantiated in a cost-effective way. Hence, the 
domain analysis should be applied to a large set of product members, so that the de-
veloped components or framework can be widely reused. Activity 1A is to collect a 
set of requirements from product members, and these are represented as SRSi in figure 
2. Each requirement may come from a project member, or it can be constructed with a 
consideration of standard domain logic and knowledge. 

4.2   Creating a Glossary of Standard Terms 

One of the first obstacles in PLE is the heterogeneity of the requirement specifications 
gathered from several product members. The heterogeneity is largely appeared as 
inconsistency and ambiguity on terminology and concepts used in the requirements. A 
single term may have different meanings among product members, and several differ-
ent terms among product members may have a single meaning. 

Since the components used in PLSE should provide the standard or common fea-
tures among product members, component producers must compare the set of re-
quirements and identify a commonality set. But, this heterogeneity makes the com-
parison of various requirements impractical and inefficient. Hence, the set of require-
ments must be normalized using standard terms and concepts. 

Activity 1B is to derive a glossary of standard terms from the set of requirements 
gathered during activity 1A. In order to facilitate the process of identifying standard 
terms, we use a term comparison table as in table 1. We first grouping similar terms, 
T(1,1), T(2,1), … T(n,2) from the requirements and identify the most commonly used 
or standard term. 

Table 1.  Term Comparison Table. 

Member 
Category 

M1 M2 ��� Mn 
Common  

Term 

 T(1,1) T(2,1) ��� T(n,2)  

 T(1,2) T(2,3) ��� T(n,4)  
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Once a term comparison table is constructed, we create a glossary of standard 
terms which is referred by all further activities and it provides a common definition of 
terms used. 

4.3   Rewriting Requirement Specifications 

By using the glossary of standard terms, we re-write the requirement specifications of 
product members. This will make it easier to compare the features among product 
members and to identify the commonality and variability since the revised require-
ment specifications will be expressed in all standard terms. However, if the require-
ment specifications from the product members are relatively homogeneous and there 
exists only minor difference in the terms used, then this activity can be omitted. In 
figure 2, a Norm SRSi is a re-written requirement specification, called normalized 
requirement specification. 

5   Commonality Identification 

During the first phase, requirement normalization, we normalized a set of heterogene-
ous requirements and domain knowledge. The second phase, commonality identifica-
tion, will compare several requirements of product members to derive a set of com-
mon features among them. This common set will be used as the basis to determine the 
scope of candidate components and frameworks. 

5.1   Creating a Feature Comparison Table 

In order to effectively compare the set of requirements, we use a Feature Comparison 
Table as in table 2. For the ‘n’ members of the PL, their features are compared for 
potential commonness in this table. 

Table 2. Feature Comparison Table. 

Product Members 
Degree of Com-

monality 
Rules 

Applied 
Decision 

(Y/N) Feat- 
ures 

M1 M2 … Mn    

F1 � �  �    

F2  �  �    

… � � �     

Fm �  � �    

A feature, as in PLE [7], is characterized by functionality and quality attributes. In 
many cases a feature maps to functionality. A PL has a set of features; F1, F2, .., Fn 
where Fi is a specific feature in PL. The first column lists all the features, F1, F2, ..., 
Fm, found in a product line. Earlier this set was defined as a union of the requirements. 
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A difficulty in creating this set in practice is to apply a consistent degree of granular-
ity to all the features. This is because the granularity of features in a member’s re-
quirement may be different from that of other member’s requirement. Hence, one 
should come up with an appropriate granularity level when there is a dispute on dif-
ferent granularity levels on a single feature. This granularity normalization can often 
be done with the intensive participation of domain experts. 

Some of the features will be common among members while others are non-
common, i.e. specific only to one or a few members. In the columns for product 
members, we express how each feature, Fi, is applied to each member, Mj. If Fi is 
applied to Mj, i.e. the member Mj requires Fi, a check mark is given. In deciding the 
applicability of features, we only consider the overall functionality and quality attrib-
utes at macro level. 

In the column of ‘Degree of Commonality’, we specify a metric for each feature as 
(Number of check marks) / (Total Number of Members). This metric gives only an 
approximate degree of commonness for the given feature since one member’s re-
quirement may be more valuable or dominant than other members due to the different 
representation of the member in the domain. 

In the column of ‘Rules Applied’, we specify the rules that have been applied in 
making decisions on whether or not each feature is included in the commonality set. 
In making decisions, we consider several factors; the degree of commonality, business 
influence of each member, sponsorship such as funding, and the degree of standardi-
zation. Although defining a set of precise rules for this decision making is not feasi-
ble, we propose the following candidate rules as a starting point; 
i) If the degree of commonality is 100%, it is included in the set. 
ii) If the degree of commonality is near 100% and there are some influential member

s who require the feature, then it is included in the set. 
iii) If the degree of commonality for a feature is relatively lower than those of other fe

atures and there is no influential member who requires the feature, then it is not in
cluded in the set. If a member is a key player in the domain in terms of business sc
ale and market share or a client who pays the cost of developing reusable assets, th
en it is included in the set. 

iv) Other case which lies between the cases ii) and iii) should be judged with the dom
ain knowledge, members’ influence and business issues such as marketability. 

v) If the feature is an essential intrinsic or standard functionality in a domain, then it 
can be included in the set with careful judgment. 

The last column of ‘decision’ is about whether the feature should be included in the 
commonality set or not. The decision on whether or not a feature is common is mostly 
made based the above rules, but other business factors or domain constraints can also 
be considered. 

5.2   Writing a Family Requirement Specification 

Based on the comparison, we can now summarize the common features in 
Commonality Specification Table as in table 3. The first column is the identification 
number of each feature, and any reasonable number scheme can be used. The second 
column is for the names of features, and the third column is the description of 
features. 
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Table 3. Commonality Specification Table. 

Feature ID Feature Name Description 

CF1   

CF2   

. . .   

By using the common features in this table, we create a Family Requirement Speci-
fication which will be used in later phases as the reference for building components 
and frameworks. Also, the information in this table can be provided to component 
consumers so that they understand what services the components provide and what to 
expect from the reusable assets. 

6   Variability Modeling 

Through Commonality Identification activity, we have identified a common set of 
features that should be realized in components. However, a careful examination on a 
common feature often reveals a minor variation on logic or workflow. This is called 
variability within a commonality. By realizing this variability in developing compo-
nents, the range of applicability and so reusability of components can be greatly in-
creased [8]. 

6.1   Identifying Variation Point and Variants 

A variation point of a feature in PLE is an identifier of a hot spot where the variability 
among different product members occurs [2]. In order to effectively model the vari-
ability, we use the Variability Identification Table as in table 4. 

Table 4. Variability Identification Table. 

Product Members Common 
Features 

Variation 
type 

M1 M2 M3 … Mn 
Range 

CF1 Logic V1.1 V1.2 V1.1  V1.1 2 

CF2        

CF3 
Work-
flow 

V3.1 Open V3.2  V3.2 2+Open 

. . .        

CFm Logic Open Open   Open Open 

 
In the second column, the type of a variation point is specified. In both CBD and 

PLE, a variation point can be in a form of logic and workflow in practice. The logic in 



366      Si Won Choi, Soo Ho Chang, and Soo Dong Kim 

this context consists of several steps which correspond to program statements once 
implemented. Hence, a variation point of logic describes a set of different algorithms 
for a system or business operation. 

A variation point of workflow describes a set of different message flows for a sys-
tem or business operation since a workflow is typically realized by a sequence of 
message invocations possibly over multiple objects or components. An example can 
be in a banking system product line that there can be different workflows, i.e. proce-
dures, to evaluate and approve a loan application. 

In the next set of columns, M1, M2, … , Mn, all possible instances of a logic or 
workflow variation point for CFi, i.e. variants, are identified and specified. A variant, 
Vi,j is jth variant of ith common feature, CFi. In the first row for CF1, the variant of M1 is 
specified as V1,1. If the variant for M2 is not same as V1,1, then M2 is given a new vari-
ant ID. In the row, the M3 is shown to have the same variant as M1’s. By repeating this 
procedure, all the possible variants for each variation points are identified. 

A key problem in completing this table is to decide whether variability exists be-
tween any pair of product members. That is, what exactly is the difference between 
Vi,p and Vi,q? We propose the following decision rules based on the elements of post 
condition, input domain, output range, and realization algorithms; 

i) If the post conditions of CFi for two members are different, then there exists a vari
ation. A post condition is specified on the result of CFi, and if the post conditions f
or two members are different, it implies that the logics or workflows for two mem
bers are different in some degree. 

ii) If input domains or output ranges of CFi for two members are different, then there 
exists a variation. An input domain for a feature is a set of all possible input value
s and/or types, and an output range is the set of all possible values and/or types ge
nerated by the feature. If input domains are different, then the logics or workflows 
to manipulate the input values will be different. Similarly, if output domains are di
fferent, then there must be different algorithms or workflows to produce different s
ets of output values. 

iii) If the realization algorithms for CFi can be determined at this stage, and the algor
ithms for two members are different, then there exists a variation. In some cases, t
he realization algorithms are not available until a later phase. But in some other ca
ses, such algorithms can be available as a pre-fixed requirement. In this case, two 
algorithms can be compared to determine the existence of variability. 

iv) If none of the above rules can be applicable to CFi, then other factors such as pre-
condition, invariants, and semantic description should be considered for a compari
son. 

The last column of Range of Variation specifies the total number of variants identi-
fied by decision rules. If this number is equal to 1, then there is no variability for the 
common feature. If this number is greater than 1, then CFi has a variation point and a 
set of variants. If a variant for a variation point is unknown, i.e. open, then, it is 
marked with ‘open’. If some variants are known and also some variants are open, then 
we put the total number of variants followed by the ‘open’. 
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6.2  Designing Variants 

From Variability Identification Table, we decide and specify how to realize the vari-
ants for each variation point. We use Variability Range Table as in table 5. 

Table 5. Variability Range Table. 

Variable 
Features 

Type of Variation Set of Variants Open/ Closed Default Description 

CF1 Logic {V1.1, V1.2} Closed V1.1  

CF3 Workflow {V3.1, V3.2} Open V3.2  

. . .      

CFm Logic { } Open None  

The first column lists only the common features that contain variation points, and 
so this information can be copied from the Variability Identification Table. The sec-
ond column specifies the type of variation type which is also available in the Variabil-
ity Identification Table. The third column, List of Variants lists all the variants identi-
fied. The next column, Open or Closed, specifies a binary value to indicate whether 
the list of variants identified is complete, i.e. closed, or expandable in the future, i.e. 
open. Depending on this openness, different implementation techniques can be 
adopted. The next column, Default, specifies a default variant among the list of vari-
ants, so that the components can be consumed without tailoring process if the default 
variant is needed during application engineering. 

7   Component Modeling 

7.1   Clustering Features into Components 

During the previous activities, a set of common features and its variability scope have 
been identified. Based on this C&V model, conceptual components are designed. 
There is no mechanical procedure to identify components, but we apply the following 
guidelines to help clustering related features into components as in figure 3. Two 
features CFi and CFj are related if following conditions hold; 
i) Features CFi and CFj are related if they belong to a same functional category as de

fined by clients. This functional category may be based on system, module, functi
onal classification and deployment classification. Typically, clients have in-depth 
domain knowledge and possess a functional classification scheme of features acco
rding to their domain knowledge. And, so if two features belong to a same functio
nal category defined by clients, then these are said to be related. 

ii) Features CFi and CFj are related if they use common data or information. A featur
e is a small-grained functionality required by clients, and each feature uses a set of
 data elements or information. If two features use exactly or mostly same set of dat
a or information, they are grouped into a component. 
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iii) Features CFi and CFj are related if there is some strong degree of dependency bet
ween the features. A dependency in OOP and CBD is a method invocation relation
ship. Two features with dependencies should be clustered into a single component 
in order to minimize the coupling. 

iv) Features CFi and CFj are related if they belong to the system layer and they proces
s related system operations or transactions. Typically a feature that processes syste
m operations belongs to a system layer, and the set of such features should be grou
ped into a single component. Hence, these features can be distinguished from the f
eatures that manipulate persistent data or objects. 

v) Features CFi and CFj are related if they belong to the business layer and they mani
pulate persistent data or objects. In contrast to iv), these features belong to busines
s layer, and so they can be distinguished from the features that process system ope
rations or transactions. 

 
Fig. 3. Grouping Features into Components. 

A feature is a system behavior exposed to clients, and so it tends map to a system 
component. However, a feature can map to a business component if the nature of the 
feature is mostly CRUD data manipulation. Hence, it is common in practice that a 
feature maps to a system component, which in turn invokes operations of a business 
component yielding an inter-component dependency. 

7.2   Refining Component Model 

The above set of decision rules is neither definitive nor complete since this grouping 
process largely depends on the domain knowledge and there can be exceptions to the 
rules. Two problematic cases that could be generated by applying the decision rules 
are unassigned features such as CF3 and features appearing in multiple components 
such as CF2 as shown in figure 3. 

An unassigned feature can be grouped into a component that is the closest to the 
feature. If there are a large number of unassigned features, then they are grouped into 
a utility component. If a feature appears in multiple components, then we use the 
following decision rules; 
i) If the functional nature of the feature is mostly information retrieval rather than inf

ormation update, then the feature is duplicated into multiple components for conve
nience and efficiency. 



A Systematic Methodology for Developing Component Frameworks      369 

ii) If the functional nature of the feature is mostly information update rather than retri
eval, then assign the feature to one component which uses the feature most intensi
vely. And, let other components access this component with the feature through int
erface. In this way, we reduce data/state inconsistency problem with duplicated fea
tures while providing ways to access the feature. 

iii) If the feature has the characteristics of the case ii), but it is not feasible to find a co
mponent which will contain the feature, then, group such features into a common 
component. And, let other components access this feature through the interface of 
this common component. 

Figure 4 shows that the unassigned feature and figure appearing in two components 
are re-configured according to the decision rules. 

8   Framework Modeling 

8.1   Scoping Framework 

Once the components are identified, then frameworks are designed by grouping re-
lated components. A framework is semi-completed application and hence its granular-
ity is larger than components. Therefore, in most cases, we have a single framework 
for a product line but there can be multiple frameworks in some cases. We use the 
following guidelines in determine whether two components are related; 
i) Two components are related if both components are required to constitute a sub-sy

stem. This is because a framework embodies a skeleton architecture of sub-system
 or a whole system. 

ii) Two components are related if both components map to structural elements of a st
able and skeleton application architecture of the product line. 

iii) Two components are related if there is a dependency or association relationship. In
ter-component relationships should be captured within a framework since a frame
work is highly cohesive large-grained reuse unit. 

 

Fig. 4. Grouping Components into Framework. 
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Figure 4 shows that the three components are grouped into a single framework. 
The system component interacts with clients whereas business components act upon 
the invocation by system components through mediate pattern. 

8.2   Realizing Variability 

Once components are clustered into a framework, then we project the variability in-
formation specified in table 5 into frameworks. Typically variations points are real-
ized inside components, and methods to set variants for variation points are defined in 
a required interface as shown in figure 5. 

Tailoring components is different from invoking component methods in several 
ways. Tailoring components is typically done once per deployment or installation 
whereas invoking component methods are frequently made at run-time. The variant 
set during tailoring process will remain persistently within the component whereas 
actual parameters passed through method invocation are transient, i.e. short lived. 
Hence, a framework or components must maintain the variant set during tailoring 
process as persistent information. This is shown as ‘CurrentVariant’ persistent attrib-
ute in figure 5. 

If a variation point has a Closed scope, then it is tailored by using Select( ) method. 
This method will take variants required by each application and store them persis-
tently. If a variation point has a completely Open scope, then it is tailored by using 
PlugIn( ) method. This method will take a reference to an external function, object or 
component, and invoke the method provided by the plugged in entity. If a variation 
point has a partially Open scope and some variants are known, then we use both Se-
lect( ) method and PlugIn( ) method. 

 

Fig. 5. Variation points projected into Framework. 
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As shown in figure 5, the CF1 has a logic variation point of Closed scope and its 
tailoring method in the required interface is defined as SelectV1();. In the case of CF3, 
the workflow variation point has an Open Scope with two known variants; V3.1 and 
V3.2. Therefore, two tailoring methods are used; SelectV3() and PlugInV3(). If one of 
the two known variants is required for a product member, then the SelectV3( ) method 
is invoked. If the built-in variants, i.e. workflows, cannot be applied to the product 
member, then a plug-in object will be passed through PlugIn( ) method. 

9   Traceability 

The process proposed in this paper includes 11 activities, and each activity produces 
one or two artifacts as summarized in figure 6. We now show the traceable items 
between pairs of artifacts in figure 8. The arrow between a pair of artifacts indicates 
the transformation direction, and the expression Item1� Item2 on arrows indicates 
the Item1 is a source artifact from which a target item2 is derived. And, so the target 
artifact can be traced to the source artifact through the transformation items. For vari-
ants in the artifact Variability Range Table are source items from which variation 
design and required interface in a framework are derived as in the figure. 

Artifact  Artifact  
Item in prior Artifact�Item in Next Artifact

(Number)

1A. 
Requirement 
Specifications

1B.
Term Comparison 

Table 

1B. 
Glossary of 

Standard Terms

1C. 
Re-written 

Requirement 
Specification 

2A. 
Feature 

Comparison Table 

2B.
Family 

Requirement 
Specification 

3A. 
Variability 

Identification 
Table 

3B. 
Variability Range 

Table 

4A. 
Candidate 

Components

4B.
Components

5A. 
Framework with  

Commonality  

5B.
Framework with 

C&V 

Terms�Terms Related Terms�Common Term

Terms�
ommon
Term

Term�Feature Features�Common Feature

Common Term�Common Term

Common Feature whit Variability�Common Feature

(7)

(3)

(4)

(5) (6)

Variants�Set of Variants
range of variation�Open/Closed

(9)

Common Feature�
Clustered Common Feature

(8)

Components�Candidate Components

(11)

(12) (13)

Individual Component�
Component Relationship

Open/Closed�Select/Plug-in Operation
Variants�Variants

(10)

(1)

Component�
Component with variability

(2)

 
Fig. 6. Traceable Items among Artifacts. 
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Each mapping in figure 6 specifies a transformation of a source item onto a target 
item, and a set of rules, called traceability rules, can be defined to show the validity 
of transformation. Due to the paper length, we only show rules for the mapping (10) 
Variability Range Table to Framework with C&V as an example. 
− Rule 1. Each variant with Closed feature is mapped to a customization method 

Select<VP name> (VariantType v) in Required interface. The VariantType must be 
a datatype that specifies a set of all possible variants, so that an argument of Vari-
antType can be passed by component clients. 

− Rule 2. Each variant with Open feature is mapped to a customization method 
PlugIn<VP name> (PlugInObject p) in Required interface. The PlugInObject must 
be a class type that models a set of all variant objects that can be passed. 

− Rule 3. A feature with both known variants and Open range must be mapped to 
two customization methods; a Select<VP name>( ) for known variants and a 
PlugIn<VP name>( ) for Open variants. 
Similarly, set of traceability rules can be defined for other mappings. 

10   Conclusion 

Product line software engineering is a practical framework that utilizes CBSE princi-
ples in order to support the economic development of a set of applications in a do-
main. Hence, the components used in PLSE should conform to relevant domain stan-
dards or they must at least provide common functionality of a domain. Also, the vari-
ability should be modeled in components so that a product member-specific business 
logic or requirement can be supported through component tailoring or customization. 

In this paper, we proposed a 5-phase process to identify and model the commonal-
ity and variability (C&V) and present a framework to reason about the identified 
C&V model in order to enable effective implementations of PLSE components. Ac-
tivities within a phase are given a set of instructions and artifact templates. The whole 
process has been applied to a case study of banking domain. In addition, the traceabil-
ity among artifacts and guidelines to enforce the traceability were given. With the 
proposed process and guidelines, the C&V can be systematically modeled into com-
ponent framework, and the quality of delivered frameworks can be increased by ap-
plying traces using the proposed traceability foundation. 
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