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Abstract. Gillespie’s Direct Method Algorithm (1977), is a well-known
exact stochastic algorithm for simulating coupled reactions that requires
the use of random numbers to calculate which reaction occurs next and
when it occurs. However this algorithm is serial in design. For complex
chemical systems, this will involve computationally intensive require-
ments with long simulation runs. This paper looks at decreasing execu-
tion times by attempting to parallelize this algorithm through splitting
the computational domain into smaller units which will result in smaller
computations and thus faster executions.

1 Introduction

Stochastic simulation has become an important tool for scientists in modeling
complex chemical systems. Traditional methods of solving these systems usually
involve expressing them mathematically through the use of ordinary differential
equations which are notoriously difficult to solve. Gillespie’s Direct Method
was a breakthrough in the sense that it could accurately and feasibly simulate
these systems stochastically on what were then state-of-the-art computer sys-
tems. Since then, there have been improvements to the algorithm. One prominent
recent modification is by Gibson[2].

The main disadvantage of Gillespie’s algorithm is that it is essentially serial
in nature. For complex chemical systems, this would result in computationally
intensive executions and long simulation runs. The purpose of this paper is to
study the feasibility of improving execution times through parallelization. The
availability of compute clusters and parallel programming libraries (such as MPI,
OpenMP and PVM) makes this possibility most attractive.

There are essentially two methodologies for achieving faster results. The first
is known as MRIP (Multiple Replication in Parallel)[3]. The other method
decomposes the problem domain into smaller sub-domains having fewer molec-
ular species and having an instance of the Gillespie algorithm running. However
there is a need to maintain the fundamental assumptions of the Gillespie algo-
rithm while parallelizing in this manner. In this paper, we describe the procedure
for using Domain Decomposition in order to parallelize Gillespie’s Direct Method
Algorithm. We will also show the application of the methods for a few chemical
systems and the speedups obtained.
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2 Methodology

2.1 Gillespie’s Direct Method Algorithm

This section will briefly highlight the important aspects of Gillespie’s algorithm.
The reader is encouraged to read [1] for a more detailed description and proofs.
The Gillespie algorithm is impressive in its simplicity. The algorithm begins by
initializing the stochastic rate constants for the reactions and the initial popu-
lations of the various species. A loop is then started with the following steps.
First, the probability of each reaction occuring at the current time is calculated.
Then, random numbers are used to determine which reaction should occur as
well as to calculate the next time step. The time is then incremented and the
species’ population are adjusted according to the reaction selected. Finally, the
loop repeats itself until stopping criterions are met.

2.2 Data Collection

One of the primary concerns in writing a parallel version of the Gillespie algo-
rithm is the collation of the data. This occurs as a result of the use of random
numbers in the algorithm. The implementation of random numbers in computer
programs is almost always pseudo-random which requires an initial seed. Thus
for proper solutions, each instance of the program must use a unique initial seed.
However this will mean that each instance will have a unique time evolution. This
then implies that in all probability, there will be no corresponding data points
for any of the instances for a specific time. One simple solution, termed here as
‘nearest point’, would be to use the various species population at the point of
the latest reaction before that collection point.

2.3 Domain Decomposition (DD) Method

The Domain Decomposition method involves dividing the entire species into
smaller independent populations. The fundamental assumption for Gillespie’s
algorithm is that for a fixed container of volume V, the system should be in
thermal equilibrium thus implying that the molecules will at all times be dis-
tributed randomly and uniformly. It remains to be seen whether the Domain
Decomposition method would lead to incorrect results due to a violation of this
fundamental assumption.

To develop the Domain Decomposition method, the Gillespie algorithm needs
to be examined. Although for the most part the algorithm remains unchanged,
there is a need to reexamine the rate constants. While the deterministic rate
constants k; are assumed to be constant, the stochastic rate constants are not
necessarily so. To illustrate this, we list general relationships between the deter-
ministic (k;) and stochastic (¢;) rate constants. The relationships are obviously
dependent on the type of reaction involved. When the molecular species are di-
vided by the number of sub-domains, the respective stochastic rate constants
must be adjusted accordingly to maintain constant deterministic rate constants.
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2.4 Domain Decomposition Method with Synchronization (DDWS)

As stated previously, the fundamental assumption of the Gillespie algorithm is
the fact that the system in the volume is supposed to be well-mixed. However the
DD method could violate this if the sub-simulations produce large differences
in the population of a species. Hence in order to improve the accuracy of the
parallel Gillespie algorithm, there is a need to introduce some form of interaction
between the sub-domains. Schwehm [4] implements this by randomly exchanging
molecules between neighboring sub-domains. This form of diffusion is motivated
by the way partial differential equations are solved numerically. This implemen-
tation however is very costly as large numbers of point-to-point messages must
be used.

A simpler method of averaging out the species’ populations at the appropriate
step is used here. This would be more in line with the spirit of Gillespie’s original
algorithm. In the implementation of this algorithm, synchronizations are done
at regular time intervals (in fact, in the same step when the population data are
collected). This is easy to implement as the number of synchronizations done
would be constant regardless of the total number of iterations for the Gillespie
loop.

3 Chemical Reactions

To illustrate the parallel algorithms, we have chosen two types of chemical reac-
tions: One whose simulations produces asymptotic results at steady states and
the other that produces periodic results.

3.1 Michaelis-Menten Reactions

The Michaelis-Menten system is a set of well-known, enzyme catalyzed reactions
that involves the binding of a substrate to an enzyme. These reactions are given
below. The Michaelis-Menten system is an example of a ‘deterministic’ system.

E+S Es (1a)
ES 2 B+ 8 (1b)
ES - B+ P (1c)

For the implementation of the DD method, the rate constants must be mod-
ified as stated in Sect. E3] Looking at the MM equations (IH) and (Id), the
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deterministic and stochastic reaction rate constants are directly related. Thus if
the volume is divided into its sub-domains, the rate constants for these equations
will remain unchanged. For (Tal) the deterministic and stochastic rate constants
are related by a volume factor. Therefore if the volume is divided into N sub-
domains, then the stochastic rate constants must be increased by the same factor.
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(b) Comparison of a DD solution

(a) Comparison of solutions from
3 DD plots with 4, 8 and 16 sub- and a DDWS solution.

domains for species ES and P.

Fig. 1.

Figure[Th compares the results for a multiple replication (50 runs) simulation
of the Serial algorithm (denoted by the verical error bars) and the DD method
(with 4,8 and 16 sub-domains) for two of the molecular species. It can be seen
that the DD method holds up well for these sets of reaction even for 16 sub-
domains (with initial enzyme and substrate populations of 75 molecules each.) It
would be difficult to distinguish the DD method results from those of the serial
runs. Figure [Ib shows a comparison between the serial solution , the DD method
and the DDWS method (both of which uses the same initial random seeds). As
can be seen, the addition of the synchronization does not lead to a qualitative

difference in the results of the simulation.

3.2 Lotka Reactions

The Lotka Reactions[I], are an example of oscillatory reactions. It is a well-
known system that has been adopted in many branches of science, most notably
in ecology where it represents a crude predator-prey model.

X + Yl ﬁ) 2Y1 (2&)
Vi + Vs 22 2V, (2b)

Y, £ 7 (2¢)
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Note that in the first reaction, the bar over the X indicates that X is open
i.e. the molecular population level of this species is assumed to be constant.
Different instances of the Direct Method will yield similar frequencies but they
will be out of phase with each other. Also the amplitude variations may differ
significantly.
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Fig. 2. Plot of species Y1 for reaction @) using the Serial implementation of the Direct
method with X = 100,Y; = Y2 = 1000, Z = 0,1 X = 10,¢2 = 0.01, ¢z = 10.

Figure B shows a plot of species Y; for a serial run . The Lotka reactions
have steady-state solutions for Y1,Ys at Y14 = c3/ce Yos = ¢1.X/co. Figure @
demonstrates this with Y7 oscillating around Yi5 = ¢3/co = 1000.

Figure Bh shows a plot of species Y7 for the DD method applied to the Lotka
reactions for 4 sub-domains. The solutions obtained are clearly incorrect as Y3
does not oscillate around the steady-state solutions. To understand the reason
for this, we must take note of what occurs in each sub-domain. As stated in
Sect. [Z3] when the DD method is used, the stochastic rate constants must be
modified appropriately. This results in a smaller steady-state solution for Y7, Y5
in each sub-domain. The oscillations will then occur around these values. If the
value of Y] were to reach 0, only reaction (Zd) is viable. Thus in the sub-domain
method, imbalances may occur where some sub-domains may be void of any Y;
and Y5 species.

Figure Bb is an implementation of the Lotka reaction using the DDWS. The
figure suggests that the correct solution has been derived as it resembles a serial
solution (i.e. the solution oscillates around the steady-state value). This solution
works because, synchronizations prevent the Y7 species from being extinct in
any one sub-domain (provided there is a nonzero population of Y7 in any of the
sub-domains).
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(a) Plot of species Yifor reac- (b) Plot of species Y7 for reac-
tion (@) using the DD method. tion (2) using the DDWS

Fig. 3.

3.3 Brusselator Reactions

The Brusselator[T] is another set of well known reactions that represents oscilla-
tory systems. Unlike the Lotka reactions previously, it is ‘positively stable’ and
the amplitude of oscillations are more consistent with each other. The reactions
can be expressed as:

X, (3a)
X0+ Y Y+ 24 (3b)
2Y) + Vs % 3Y; (3¢)

v 4 7, (3d)

The serial plots (Fig. Bh) of the Brusselator reactions show that while the
periods and amplitudes of the oscillations for the three plots are similar, the
phases are not. As such when the DD method is used, the population of the
species Y7, Ys) between the sub-domains are out of phase with each other, re-
sulting in clearly inaccurate results (Fig. @b - long dashed line). However once
synchronizations are used, the solution obtained appears to be consistent with
a serial solution of the reactions(Fig. @b - short dashed line).

4 Performance Results

Figure [§ shows speedup graphs for the Michaelis-Menten reactions with two
different sets of intial values together with the Brusselator reaction simulation
using the values in Fig. [l For the MM simulations, ‘small’ corresponds to: E =
12000, S = 12000, ES = 0,P = 0,¢; = 0.01,¢c5 = 1,c3 = 100 while ‘large’
corresponds to: £ = 36000,S5 = 36000, ES = 0,P = 0,¢; = 0.01,¢2 = 250,
C3 — 1.
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Fig. 5. Speedup for Michaelis Menten and Brusselator reactions.

It is quite apparent from the comparison of smaller and larger initial values
for the MM reactions that, while the reactions remain the same, the speedup
graphs differ significantly. The speedup for the MM reactions thus depend on the
total number of iterations of Gillespie loop which in turn depends on the initial
population values and rate constants used. The speedup for the DD method is
much better than the DDWS method. However as the number of sub-domains are
increased, the speedup will plateau and eventually decrease as the computation
done in each sub-domain decreases.

This plateauing in the speedup is more apparent when synchronizations are

introduced. This results in a constant number of synchronizations regardless of
the initial population of the species and rate constants. As the number of sub-
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domains increases, the number of iterations between synchronization decreases.
Also the collective operation used (M PI_Allreduce), has to handle an increasing
number of processes thus increasing the cost of using it.

As a comparison, the speedup for the Brusselator equations using the values
used previously are also shown. As stated before, a correct solution is only derived
when synchronizations are used. The speedup shows the inevitable plateauing
as the number of sub-domains is increased.

5 Summary

In this paper we have presented an approach to parallelizing Gillespie’s Direct
Method algorithm keeping in mind the need to remain consistent with the funda-
mental assumptions of the algorithm.The basic premise of the DD method is to
divide the molecular population into smaller sub-domains where computations
can be completed faster.

For oscillatory chemical systems, such as the Lotka reactions and the Brus-
selator, periodic synchronizations are needed. This introduces diffusion which
prevents buildup of any particular species in a sub-domain thus ensuring the
well-mixed nature of the whole domain.

The speedups obtained by the parallel Gillespie Algorithm show a “plateau-
ing” effect in the presence of synchronizations (DDWS method). The DD
method, without synchronizations shows very good speedup; however, its use
is restricted to non-oscillatory systems.

Despite the fact that the methodology works for the systems under study
here, it is not possible to state categorically as to whether it would work for any
arbitrary system. Work remains to be done to study the efficacy of this method
on larger, more highly coupled systems.
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