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Abstract. We present a novel algorithm for extracting shapes of con-
tours of (possibly partially occluded) objects from noisy or low-contrast
images. The approach taken is Bayesian: we adopt a region-based model
that incorporates prior knowledge of specific shapes of interest. To quan-
tify this prior knowledge, we address the problem of learning probability
models for collections of observed shapes. Our method is based on the
geometric representation and algorithmic analysis of planar shapes in-
troduced and developed in [I5]. In contrast with the commonly used
approach to active contours using partial differential equation methods
[I212011], we model the dynamics of contours on vector fields on shape
manifolds.

1 Introduction

The recognition and classification of objects present in images is an important
and difficult problem in image analysis. Applications of shape extraction for ob-
ject recognition include video surveillance, biometrics, military target recogni-
tion, and medical imaging. The problem is particularly challenging when objects
of interest are partially obscured in low-contrast or noisy images. Imaged ob-
jects can be analyzed in many ways: according to their colors, textures, shapes,
and other characteristics. The past decade has seen many advances in the in-
vestigation of models of pixel values, however, these methods have only found
limited success in the recognition of imaged objects. Variational and level-set
methods have been successfully applied to a variety of segmentation, denoising,
and inpainting problems (see e.g. [1]), but significant advances are still needed
to satisfactorily address recognition and classification problems, especially in
applications that require real-time processing.

An emerging viewpoint among vision researchers is that global features such
as shapes should be taken into account. The idea is that by incorporating some
prior knowledge of shapes of objects of interest to image models, one should be
able to devise more robust and efficient image analysis algorithms. Combined
with clustering techniques for the hierarchical organization of large databases
of shapes [22], this should lead to recognition and classification algorithms with
enhanced speed and performance. In this paper, we construct probability models
on shape spaces to model a given collection of observed shapes, and integrate
these to a region-based image model for Bayesian extractions of shapes from
images. Our primary goal is to capture just enough information about shapes
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present in images to be able to identify them as belonging to certain categories
of objects known a priori, not to extract fine details of the contours of imaged
objects.

Shape analysis has been an important theme of investigation for many years.
Following the seminal work of Kendall [I3], large part of the research in quan-
titative shape analysis has been devoted to “landmark-based” studies, where
shapes are represented by finite samplings of contours. One establishes equiva-
lences of representations with respect to shape preserving transformations, and
then compares shapes in the resulting quotient space [B2T]. Statistical shape
models based on this representation have been developed and applied to image
segmentation and shape learning in [7f6]; the literature on applications of this
methodology to a variety of problems is quite extensive. A drawback of this ap-
proach is that the automatic selection of landmarks is not straightforward and
the ensuing shape analysis is heavily dependent on the choices made. Grenan-
der’s deformable templates [8] avoids landmarks by treating shapes as points in
an infinite-dimensional differentiable manifold, and modeling variations of pla-
nar shapes on an action of the diffeomorphism group of R? [24J9/T8]. However,
computational costs associated with this approach are typically very high. A
very active line of research in image analysis is based on active contours [1220]
governed by partial differential equations; we refer the reader to [I] for a recent
survey on applications of level-set methods to image analysis. Efforts in the di-
rection of studying shape statistics using partial differential equation methods
have been undertaken in [T7I3/2].

In [15], Klassen et al. introduced a new framework for the representation and
algorithmic analysis of continuous planar shapes, without resorting to defining
landmarks or diffeomorphisms of R?. To quantify shape dissimilarities and simu-
late optimal deformations of shapes, an algorithm was developed for computing
geodesic paths in shape spaces. The registration of curves to be compared is au-
tomatic, and the treatment suggests a new technique for driving active contours
[23]. In this paper, we investigate variants of this model for shape extraction from
images. In our formulation, the dynamics of active contours is governed by vector
fields on shape manifolds, which can be integrated with classical techniques and
reduced computational costs. The basic idea is to create a manifold of shapes,
define an appropriate Riemannian structure on it, and exploit its geometry to
solve optimization and inference problems.

An important element in this stochastic geometry approach to shape extrac-
tion is a model for shape learning. Assuming that a given collection of observed
shapes consists of random samples from a common probability model, we wish to
learn the model. Examples illustrating the use of landmark-based shape analysis
in problems of this nature are presented in [7J6]T4/T0]. The problem of model
construction using the shape analysis methods of [I5] presents two main diffi-
culties: the shape manifold is nonlinear and infinite-dimensional. A most basic
notion needed in the study of sample statistics is that of mean shape; Karcher
means introduced in are used. As in [5], other issues involving nonlinearity
are handled by considering probability densities on the (linear) tangent space
at the mean shape. To tackle the infinite dimensionality, we use approximate
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finite-dimensional representations of tangent vectors to shape manifolds. We
consider multivariate normal models, so that learning reduces to estimations of
the relevant parameters. (Other parametric models can be treated with simi-
lar techniques.) Implicit in this approach is that large collection of shapes have
been pre-clustered and we are modeling clusters of fairly small diameters. Clus-
tering algorithms and hierarchical organizations of large databases of shapes are
discussed in [22].

This paper is organized as follows: in Section[, we briefly review the material
of [15], as it provides the foundations of our stochastic geometry approach to
shape extraction. Section Bis devoted to a discussion of shape learning. In Section
[l we present the image model used in the shape extraction algorithm, and
applications of the algorithm to imagery involving partial occlusions of objects,
low contrast, or noise.

2 Shape Spaces and Geodesic Metrics

In this section, we review the geometric representation of continuous planar
shapes, the geodesic metric on shape space, and the algorithmic shape analysis
methods introduced and developed in [15].

2.1 Geometric Representation of Shapes

Shapes of outer contours of imaged objects are viewed as closed, planar curves
a: I — R?, where I = [0,27]. To make shape representations invariant to uni-
form scaling, the length is fixed to be 27 by requiring that curves be param-
eterized by arc length, i.e., |[|[&/(s)|| = 1, for every s € I. Then, the tangent
vector can be written as o/(s) = ¢/*) where j = \/—1. We refer to 6: I — R
as an angle function for «. Angle functions are invariant under translations of
R?, and the effect of a rotation is to add a constant to 6. Thus, to make the
representation invariant to rotations of R?, it suffices to fix the average of 6 to
be, say, 7. In addition, to ensure that # represents a closed curve, the condition
f% o/(s)ds = fozﬂ /%) ds = 0 is imposed. Thus, angle functions are restricted

0
to the pre-shape manifold

27

2m
C= {96L2|21ﬂ_ 0(s)ds = m and / ew(s)dSZO} . (1)

0 0

Here, I? denotes the vector space of all square integrable functions on [0, 27],
equipped with the standard inner product (f, g) fo s)ds. For contin-
uous direction functions, the only remaining variability in the representatlon is
due to the action of the reparametrization group S' arising from different possi-
ble placements of the initial point s = 0 on the curve. Hence, the quotient space
8§ = €/S! is defined as the space of continuous, planar shapes.



Learning and Bayesian Shape Extraction for Object Recognition 65

2.2 Geodesic Paths between Shapes

At each point # € C, the tangent space Ty C to the pre-shape manifold € C L2
naturally inherits an inner product from LZ2. Thus, € is a Riemannian mani-
fold and the distance between points in € can be defined using minimal length
geodesics. The distance between two points (i.e., shapes) 61 and 65 in 8 is defined
as the infimum of all pairwise distances between pre-shapes representing ¢, and
02, respectively. Thus, the distance d(61,62) in 8 is realized by a shortest geodesic
in € between pre-shapes associated with #; and 6. We abuse terminology and
use the same symbol € to denote both a pre-shape and its associated shape in
8. We also refer to minimal geodesics in € realizing distances in § as geodesics
in 8§, and to tangent vectors to these geodesics as tangent vectors to 8.

One of the main results of [15] is the derivation of an algorithm to compute
geodesics in € (and 8) connecting two given points. An easier problem is the
calculation of geodesics satisfying prescribed initial conditions. Given 6§ € C
and f € Ty C, let ¥(0, f,t) denote the geodesic starting at 6 with velocity f,
where ¢ denotes the time parameter. The geodesic ¥ (6, f,t) is constructed with
a numerical integration of the differential equation satisfied by geodesics. The
correspondence [ — ¥(6, f,1) defines a map expy: Ty ©¢ — € known as the
exponential map at 6. The exponential map simply evaluates the position of
the geodesic ¥ at time ¢t = 1. Consider the exponential map at 6;. Finding
the geodesic from 6 to 65 is equivalent to finding the direction f such that
expy, (f) = 2. For each f € Ty, €, let E(f) = | expy, (f) — 02]|* be the square
of the L? norm of the residual vector. The goal is to find the vector f that
minimizes (i.e., annihilates) E. A gradient search is used in [I5] to solve this
energy minimization problem. This procedure can be refined to yield geodesics
in 8§ by incorporating the action of the re-parametrization group S! into the
search.

Figure [[] shows an example of a geodesic path in § computed with this al-
gorithm. In this paper, we have added the invariance of shapes to reflections in
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Fig. 1. A geodesic path in shape space

R2. Essentially, one computes geodesics for both a shape and a reflection, and
selects the one with least length.

2.3 Karcher Mean Shapes

The use of Karcher means to define mean shapes in § is suggested in [I5]. If
01,...,0, € & and d(0,0;) is the geodesic distance between 6 and 6;, a Karcher
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mean is defined as an element p € 8 that minimizes the quantity Y., d*(6,6;).
An iterative algorithm for computing Karcher means in Riemannian manifolds is
presented in and particularized to the spaces € and 8 in [15]. An example
of a Karcher mean shape is shown in Figure [2

AL
LA

Fig. 2. The Karcher mean shape of eight boots.

2.4 Computational Speeds

To demonstrate the level of performance of the algorithm to compute geodesics
between two shapes, Table 241 shows the average computation times achieved
under several different settings, each estimated by averaging 1,225 calculations
on a personal computer with dual Xeon CPUs (at 2.20 GHz) running Linux.
Each shape is sampled using 7" points on the curve and tangent vectors are
approximated using 2m Fourier terms. Consistent with our analysis, the algo-

Table 1. Average computation time (in seconds) per geodesic.

T 50 50 100 | 100 | 200 | 200 | 400 | 400
m 50 100 | 100 | 200 | 200 | 400 | 400 | 800
Time (secs.)|0.0068|0.0133]0.0268(0.0525(0.1044|0.2066|0.4172|0.8274

rithm for calculating geodesics is linear in 7" and m. Computational efficiency
can be further improved with parallel processing, since the costliest step in the
algorithm consists of 2m calculations that can be executed independently.

3 Shape Learning

An important problem in statistical shape analysis is to “learn” probability
models for a collection of observed shapes. Assuming that the given shapes
are random samples from the same probability model, we wish to learn the
model. These models can then be used as shape priors in Bayesian inferences
to recognize or classify newly observed shapes. Implicit in our considerations is
the assumption that observed shapes have been pre-clustered, so that we are
seeking probability models for clusters of fairly small diameters in 8. Clustering
techniques on the shape space 8§ have been studied in [22].



Learning and Bayesian Shape Extraction for Object Recognition 67

Learning a probability model amounts to estimating a probability density
function on shape space, a task that is rather difficult to perform precisely. In this
paper, we assume a parametric form for the models so that learning is reduced
to an estimation of the relevant parameters. To simplify the discussion of proba-
bility models on infinite-dimensional manifolds, the models will be presented in
terms of their negative log-likelihood, i.e., the energy of the distribution.

The simplest model is a “uniform Gaussian” on §, whose energy is propor-
tional to d?(6, i) /2, where p is the Karcher mean of the sample. The constant of
proportionality is related to the variance, as usual. We wish to refine the model
to a multivariate normal distribution. Two main difficulties encountered are the
nonlinearity and the infinite-dimensionality of §, which are addressed as follows.

(i) Nonlinearity. Since 8 is a nonlinear space, we consider probability distri-
butions on the tangent space 7}, C at the mean pre-shape u € €, to avoid
dealing with the nonlinearity of § directly. This is similar to the approach
taken in [5].

(ii) Dimensionality. Our parametric models will require estimations of covari-
ance operators of probability distributions on 7, € C 2. We approximate
covariances by an operators defined on finite dimensional subspaces of 7),C.

Let © = {0y,...,0,} represent a finite collection of shapes. The estimation
of the Karcher mean shape p of © is described in [15]. Using p and the shapes
0;, 1 < j <r, we find tangent vectors g; € 7}, 8 such that the geodesic from p
in the direction g; reaches 6; in unit time, that is, exp,,(v;) = 6;. This lifts the
shape representatives to the tangent space at u.

Let V' be the subspace of 7),8 spanned by {vi,...,v,}, and {er,... ,en}
an orthonormal basis of V. Given v € V| write it as v = z1e1 + ... + Tpmem.
The correspondence v — X = (21, ..., %, ) identifies V' with R™, so we assume
that v; € R™. We still have to decide what model to adopt for the probability
distribution. We assume a multivariate Gaussian model for x with mean 0 and
covariance matrix K € R™*™_ The estimation of K using sample covariance
follows the usual procedures. Depending on the number and the nature of the
shape observations, the rank of K may be much smaller than m. Extracting the
dominant eigenvectors and eigenvalues of the estimated covariance matrix, one
captures the dominant modes of variation and the variances along these principal
directions.

To allow small shape variations in directions orthogonal to those determined
by the non-zero eigenvalues of K, choose £ > 0 somewhat smaller than the
dominant eigenvalues of K. If K. = K + £21,,, where I,,, is the m x m identity
matrix, we adopt the multivariate normal distribution

1 xT K71(x)
2m)m/2 det(K.)1 /2 P <_ 2 ) @

on the subspace V of T,,8. If 6§ € §, let g € T,8 satisty ¥(u,g,1) = 6, and let
gv = >_i', x;€; be the orthogonal projection of g onto V. We adopt a probability
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model on 8§ whose energy is given up to an additive constant by

XT~KE_1 b'¢
FOpK) = ——F—— &

1
+ 5 g, 3)
where gt € T,8 is the component of g orthogonal to V. Strictly speaking,
this definition is only well posed if the exponential map is globally one-to-one.
However, for most practical purposes, one can assume that this condition is
essentially satisfied because clusters are assumed to be concentrated near the
mean and finite-dimensional approximations to # are used.

The first row of Figure B3| shows eigenshapes associated with the first five
eigenvalues (in decreasing order) of the multivariate normal model derived from
the shapes in Figure [2. The solid lines show the mean shape, and the dotted
lines represent variations about the mean along principal directions. Variations
are uniformly sampled on an interval of size proportional to the eigenvalues.

Having obtained a probability model for observed shapes, an important task
is to validate it. This can be done in a number of ways. As an illustration, we
use the model for random sampling. The second and third rows of Figure[3 show
examples of random shapes generated using the Gaussian model learned from

the shapes in Figure
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Fig. 3. The first row shows eigenboots in dotted lines, i.e., variations about the mean
shape of Figure P (displayed in solid lines) along principal directions associated with
the five dominant eigenvalues. The second and third rows display 18 random shapes
sampled from the proposed multivariate normal model.

Another example is shown in Figure @l A set of nineteen observed shapes
of swimming ducks is analyzed for learning a probability model. We calculated
the mean shape — shown on the lower right corner — and estimated the sample
covariance matrix K. Figure [B] shows variations of the mean shape along the
dominant principal directions and ten random shapes generated using the learned
probability model.
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Fig. 4. Nineteen shapes of swimming ducks and their mean shape displayed on the
lower right corner.
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Fig. 5. Eigenducks (first row) and ten random shapes generated by sampling from a
multivariate normal tangent-space model.

4 Bayesian Extraction of Shapes

The extraction of shapes of partially occluded objects from noisy or low-contrast
images is a difficult problem. Lack of clear data in such problems may severely
limit the performance of image segmentation algorithms. Thus, techniques for
integrating some additional knowledge about shapes of interest into the inference
process are sought. The framework developed in this paper is well suited to the
formulation and solution of Bayesian shape inference problems involving this
type of imagery. We assume that the shape to be extracted is known a priori
to be related to a family modeled on a probability distribution of the type
discussed in Section Bl The case of several competing models can be treated with
a combination of our shape extraction method and hypothesis testing techniques.
We emphasize that our goal is to extract just enough features of shapes present in
images to be able to recognize objects as belonging to certain known categories,
not to capture minute details of shapes. Such low-resolution approach is more
robust to noise and allows for greater computational efficiency.

Our analysis thus far has focused on shape, a property that is independent of
variables that account for rotations, translations, and scalings of objects. How-
ever, shapes appear in images at specific locations and scales, so the process
of shape extraction and recognition should involve an estimation of these nui-
sance variables as well. Hence, in this context, the data likelihood term assumes
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knowledge of shape, location, and scale variables, while the prior term depends
only on shape. Therefore, we first revisit our shape representation to incorporate
these extra variables.

To account for translational effects, we introduce a variable p € R? that
identifies the centroid of a constant-speed curve a: I — R?, which is given by
p = (1/2m) fo% a(s)ds. We adopt a logarithmic scale for the length by writing
L = e’ ¢ € R. Lastly, to allow arbitrary rotations, we simply relax the constraints
on 6 used in the description of the pre-shape manifold € and only require that
0 satisfy the closure conditions

2m 2m
/ cosf(s)ds =0 and / sinf(s) ds = 0. (4)
0 0

Thus, pre-shapes that can change position and are free to shrink or stretch
uniformly will be described by triples (p, 4, 0) € R? x R x L2 satisfying (@). The
collection of all such triples will be denoted F. An element (p, ¢, 0) € F represents
the curve

s e( 27 s )
a(s) =p+ ee/ @) dy — — / / @) dy ds. (5)
0 2m Jo 0

For shape extraction, we do not need to further consider the quotient space
under the action of the re-parameterization group S' on F. The data likelihood
and shape prior terms will be invariant under the S'-action, so the posterior
energy will be constant along S' orbits. We now describe the posterior energy
for our Bayesian inference.

(a) Data Likelihood. Let D C R? be the image domain and I: D — R* be an
image. A closed curve represented by (p, £,6) divides the image domain into
aregion D;(p, ¢, 0) inside the curve, and a region D, (p, £, ) outside. Let p; be
a probability model for the pixel values inside the curve, and p, be a model
for pixels outside. For simplicity, we assume a binary image model choosing
p; and p, to be Gaussian distributions with different means. (Alternatively,
one can use variants of the Mumford-Shah image model [19]). For a given
(p, £, 0), the compatibility of an image I with (p, ¢, 0) is proportional to

o) =~ [[  ogntnds- [ logpi(i)dy
Di(p7e:9) Do(pxe30)
(6)
(b) Shape Prior. Let p and K represent the mean and the covariance matrix
associated with the shape prior model. Set the prior energy to be F([6]; 1, K),

as in Equation Bl where [f] indicates that € has been normalized to have
average .

Combining the two terms, up to an additive constant, the posterior energy is
proportional to

P)\ (Pa&e\f) = )\H(I|p7£,9) + (1 _>‘)F<[9];MaK)a
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Fig. 6. An example of shape extraction. Top row from left to right: an image, the same
image with a partial occlusion, and the prior mean. The bottom row shows MAP shape
estimates with an increasing influence of the prior from left to right.

Fig. 7. A shape extraction experiment. The top row shows an image of a skull to be
analyzed after being artificially obscured and a second skull whose contour is used as
prior mean. The bottom row shows various stages of the curve evolution during the
shape extraction.

where 0 < X\ < 1. As before, it is convenient to lift 6 to the tangent space at the
mean p. Letting 6 = ¥(u,g,1) = exp,(g), with g in the tangent space at p, we
rewrite the posterior energy as

Ex(p, €, g|I) = Px (p, {,exp,,(9)|]) .

We use a gradient search for a MAP estimation of (p, ¢, g), approximating g with
a truncated Fourier series.

Shown in Figure [0l are illustrations of this Bayesian shape extraction using
a uniform Gaussian prior. The top row shows an object embedded in an image,
the same image with the object partially obscured, and the prior mean shape.
The bottom row displays MAP estimates of the shape of the object under an
increasing influence of the prior. The improvements in discovering hidden shapes
despite partial occlusions emphasize the need and power of a Bayesian approach
to such problems using shape priors.

Figure [ depicts the results of another shape extraction experiment. On the
top row, the first panel displays the image of a skull that is artificially obscured
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for shape extraction. The second panel shows the contour of a different skull
used as prior mean. The second row shows various stages of the curve evolution
during the gradient search of a MAP estimate of the shape.

5 Summary

We presented an algorithm for the extraction of shapes of partially obscured
objects from noisy, low-contrast images for the recognition and classification
of imaged objects. The image model adopted involves a data likelihood term
based on pixel values and a shape prior term that makes the algorithm robust to
image quality and partial occlusions. We discussed learning techniques in shape
space in order to construct probability models for clusters of observed shapes
using the framework for shape analysis developed in [I5] A novel technique that
models the dynamics of active contours on vector fields on shape manifolds was
employed. Various shape extraction experiments were carried out to demonstrate
the performance of the algorithm.
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