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Abstract. We present a method for estimating intrinsic images from a
fixed-viewpoint image sequence captured under changing illumination di-
rections. Previous work on this problem reduces the influence of shadows
on reflectance images, but does not address shading effects which can sig-
nificantly degrade reflectance image estimation under the typically biased
sampling of illumination directions. In this paper, we describe how biased
illumination sampling leads to biased estimates of reflectance image de-
rivatives. To avoid the effects of illumination bias, we propose a solution
that explicitly models spatial and temporal constraints over the image
sequence. With this constraint network, our technique minimizes a regu-
larization function that takes advantage of the biased image derivatives
to yield reflectance images less influenced by shading.

1 Introduction

Variation in appearance caused by illumination changes has been a challenging
problem for many computer vision algorithms. For example, face recognition is
complicated by the wide range of shadow and shading configurations a single face
can exhibit, and image segmentation processes can be misled by the presence
of shadows and shading as well. Since image intensity arises from a product
of reflectance and illumination, one approach for dealing with variable lighting
is to decompose an image into a reflectance component and an illumination
component [7], also known as intrinsic images [I]. The reflectance image, free
of illumination effects, can then be processed without consideration of shadows
and shading.

Decomposition of an image into intrinsic images, however, is an undercon-
strained problem, so previous approaches in this area introduced additional con-
straints to make the problem tractable. In [6], it is assumed that the illumination
component is spatially smooth while the reflectance component exhibits sharp
changes, such that low-pass filtering of the input image yields the illumination
image. Similarly, [3] assumes smoothness of illumination and piecewise constant
reflectance, so that removing large derivatives in the input image results in the
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illumination image. In addition to illumination smoothness, Kimmel et al.
include constraints that the reflectance is smooth and the illumination image is
close to the input image.

Instead of relying on smoothness constraints, Tappen et al. [I0] proposed
a learning-based approach to separate reflectance edges and illumination edges
in a derivative image. Although this method successfully separates reflectance
and shading for a given illumination direction used in training, it is difficult to
create such a prior to classify edges under arbitrary lighting. Another edge-based
method was proposed by Finlayson et al. [I1] that suppresses color derivatives
along the illumination temperature direction to derive a shadow-free image of
the scene. In addition to shadow edges, this approach may remove texture edges
that also have a color derivative in the illumination temperature direction.

Rather than using only a single input image, Weiss [9] deals with the simp-
ler scenario of having an image sequence captured from a fixed viewpoint with
changing illumination conditions. This method employs a ML estimation frame-
work based on a prior that illumination images yield a Laplacian distribution of
derivatives between adjacent pixels. Experimental results demonstrate that this
technique efficiently and robustly removes cast shadows from reflectance images.
Shading on non-planar surfaces, however, can significantly degrade ML estima-
tion of intrinsic images by altering the distribution of derivatives, especially in
the typical case of a biased illumination distribution that is not centered aro-
und the surface normals of the adjacent pixel pair. More recently, Matsushita
et al. [12] extended Weiss’s method to handle the scenes where the Lambertian
assumption does not hold. Using the reflectance image estimated by ML esti-
mation as a scene texture image, their method derives time-varying reflectance
images instead of assuming a single reflectance image.

In our proposed method, we also take as input an image sequence and analyze
the derivative distributions. Because of the effects of illumination bias on the
derivative distributions, we present an alternative method for processing image
derivatives, based on explicit modeling of spatial and temporal constraints over
the image sequence. With this constraint network, a reflectance image and a
set of illumination images are estimated by minimizing a function based on
smoothness of illumination and reflectance. Although the derivative distributions
are unsuitable for ML estimation, our technique nevertheless takes advantage of
derivative distribution information to spatially vary the weight of the smoothness
constraints in a manner unlike previous regularization-based methods.

The goal of this work is closely related to that of photometric stereo with un-
known light sources and spatially varying albedo. One strong assumption in most
uncalibrated photometric stereo approaches [T9J20i21] is that there are no cast
shadows. However, it is clear that this assumption does not hold in many situati-
ons for real world scenes. Yuille et al. [22] have proposed a method to handle cast
shadows using robust statistics; however, one drawback of the method is that it
assumes a single point source in each image. Photometric stereo yields accurate
results, but generally it is necessary to assume limiting conditions. While the
photometric stereo framework relies on the structural smoothness, our method
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relies more on the smoothness of reflectance and illumination images. In the con-
text of photometric stereo, Wolff and Angelopoulou [4] acquired multiple stereo
pairs of images of the same scene under different illumination conditions. With
two stereo pairs they obtain a stereo pair of photometric ratio images, in which
the albedo term is removed in order to extend geometric stereo reconstruction
to smooth featureless surfaces.

The remainder of the paper is organized as follows. Sec. 2 details the problem
of illumination bias and the resulting effects of shading on derivative distributi-
ons. In Sec. 3, we describe the constraints on the energy minimization process
and the influence of the derivative distribution. Our algorithm is presented in
Sec. 4, followed by experimental results in Sec. 5 and a conclusion in Sec. 6.

2 Effect of Illumination Bias

Before describing the effect of illumination bias on derivative distributions, we
begin with a brief review of intrinsic images and the ML estimation technique.

Under the Lambertian assumption, as expressed in the following equation,
an input image [ arises from a product of two intrinsic images: the reflectance
image p and the illumination image L. Since the viewpoint of the image se-
quence is fixed, p does not vary with time ¢. The illumination is comprised by
an ambient term « and a direct illumination term L p, which is the product of
the illumination intensity F, a binary shadow presence function ¢ and the inner
product of surface normal n and illumination direction I:

I(z,y, )= p(z,y)L(z,y,1)
= p(z,y){Lp(z,y,t) + a(z,y, 1)}
= plx, y {E (@, y,t) (n(z,y) - 1(t)) + oz, y,1)}
= p(z, {g z,y,t) (n(z,y) - 1)) + o (2, y,4) } (1)

where n -1 is always non-negative, and o’ indicates the ambient term normali-
zed by the illumination intensity F. In the ML estimation framework of [9], n
derivative filters f,, are first applied to the logarithms of images I(t). For each
filter, a filtered reflectance image p,, is then computed as the median value in
time of f,, xlog I, where % represents convolution:

log pn(z,y) = mediany{ f,, xlog I(x,y,t)}. (2)

The filtered illumination images log L, (x, y,t) are then computed using the esti-
mated filtered reflectance images log p,, according to

10g L (2,y,t) = fn *logI(z,y,t) — log pn(z,y). (3)

Finally, a reflectance image p and illumination images L are recovered from
the filtered reflectance images p, and illumination images L,(t) through the
following deconvolution process,

(log p,log L) = h % (Z 7+ (log pn,log L )) (4)
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(a) (b)

Fig. 1. Illumination conditions. (a) Uniform illumination, (b) biased illumination.

where f] is the reversed filter of f,,, and h is the filter which satisfies the following
equation:

h*(Zf;;*fn) = (5)

From (2)), it can be shown that for two adjacent pixels with intensities I (t)
and I(t),

R Li(t)

Prn = mediang P1 E(t){gl ’ (nl : l(t)) + 0/1}

IQ(t) = Inediantg : E(t){gz . (1’12 . l(t)) + a/2} . (6)

We assume that o/ is constant over an image, i.e., o} (t) = a4 (t). Cast shadows
affect this equation only when g1 # go. Since this instance seldom occurs, cast
shadows do not affect the median derivative values used in ML estimation. It can
furthermore be seen that when n; = ns, shading does not affect ML estimation
since n; -1 =ny -1 and consequently p,, = p1/pa.

When a pair of pixels have different surface normals, ML estimation can also
deal with shading in cases of unbiased illumination samples. For a pair of adjacent
pixels with surface normals n; and ns, the set {2; of illumination samples 1(¢)
are unbiased only under the following condition:

mediany e, {n - 1(t) —ny - 1(1)} = 0. (7)

In other words, the illumination is unbiased for a given pair of pixels when
the illumination image value L(x,y) of both pixels is the same for the median
derivative value. Otherwise, the illumination distribution is biased. Figure [0
shows an illustration of unbiased illumination and biased illumination for a given
pair of pixels. With unbiased illumination as given in (@), it can be seen that ([
results in the correct value py/ps.

When a pair of adjacent pixels have different surface normals, illumination
bias will cause the ML estimation to be incorrect, because n; -1 # ny -1 for
the median derivative value. In this case, the illumination ratio in (@) does not
equal to one, and consequently p,, # p1/p2. This can be expected since different
shading is present in the two pixels for every observation.
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Fig. 2. Shading effect remains on reflectance estimate with ML estimation. Left: an
input image sequence, Right: the estimated reflectance image with ML estimation.

The case of different surface normals with illumination bias is a significant
one, because for a pair of adjacent non-planar pixels, unbiased illumination is
rare. So for most pairs of non-planar pixels, ML estimation fails to compute the
correct reflectance ratio and the estimated reflectance image contains shading.
Figure[Zshows a typical result of ML estimation applied to a synthetic scene with
non-planar surfaces. A ball on a plane is lit from various directions as exemplified
in the input images on the left side of Figure2l Although the illumination samples
are unbiased for some pairs of pixels, they are biased for most pairs of adjacent
pixels. As a result, shading remains in the estimated reflectance image as shown
on the right side of the figure.

3 Solution Constraints

Since ML estimation is generally affected by shading, we propose an alternative
solution method based on the constraints described in this section. Let us denote
i,j as labels for illumination directions, p,q for adjacent pixels, and N, M for
the number of observed illumination conditions and the number of pixels in an
image, respectively.

From a sequence of images, we can derive spatial constraints between adja-
cent pixels (inter-pixel) and temporal constraints between corresponding pixels
under different light directions (inter-frame). Moreover, we employ smoothness
constraints to make the problem tractable.

[Inter-frame constraint|
Assuming that the scene is composed of Lambertian surfaces, the reflectance
value at each point p is constant with respect to time. We can thereby derive a
temporal constraint as follows:
Ip(ti) _ Ly(t)

L) :m> 0<i,j<N;i#j (8)



Estimating Intrinsic Images from Image Sequences 279

A1

L) _p L)

ATRRVANATS

e]
o
o]

§

Il
L~
~

~
3
~

Fig. 3. Inter-frame and inter-pixel constraints. A set of constraints composes a con-
straint network.

This does not determine the absolute values of Ls; however, it fixes the ratios
among L,s.
[Inter-pixel constraint]

Letting w, be a set of pixels that are neighbours of p,

L) _py Lt
Iy(t:) Pq Lq(ti)7

This constraint can possibly be applied to non-neighboring pixels, however,
we restrict this to be applied only to neighboring pixels because we use the
flatness constraint and smooth reflectance constraint in the energy minimization
step.

These constraints can be derived from (), and they compose a 3-D constrai-
ned network about L and a 2-D constrained network about p as illustrated in
Fig.[3l We use them as hard constraints and force p and L to always satisfy the
following equation:

2 2
Lt _ Lyl L) _pp Lp(t) ) _
pi;ﬁ(fp(fj)_Lp(%)) > (Iqm)‘pq'w) -0

P:q,%:g€wWp

0<i<N;q€w,. (9)

[Smoothness constraints]

In addition to the above constraints, our technique favors smoothness over
both p and L. Smoothness is a generic assumption underlying a wide range of
physical phenomena, because it characterizes coherence and homogeneity. Based
on the fact that retinal images tend to be smooth according to natural image
statistics [I6], we assume that both p and L are smooth as well. By formulating
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these two assumptions into an energy function, we derive intrinsic images by an
energy minimization scheme.

The choice of energy function E(p, L) is a critical issue. Various kinds of
energy functions that measure the smoothness of observed data have been pro-
posed. For example, in regularization-based methods [I3|[14], the energy mini-
mization function makes the observed data smooth everywhere. This generally
yields poor results at object boundaries since discontinuities should be preser-
ved. One discontinuity-preserving function is Geman and Geman’s MRF-based
function [15].

Although our method assumes smoothness of L, this condition clearly does
not hold when the surface normals of adjacent pixels differ. In such instances, the
smooth L constraint should be weakened. To estimate the amount of difference
between neighboring surface normals, we use the information present in the
derivative distribution.

If a pair of pixels lie on a flat surface, the values of I,(t)/I,(t) are almost
always equal to 1 except when only one of the pixels is shadowed, as discussed
in [9). We use this strong statistic and define an error function based on the
hypothesis that I, and I, share the same surface normal:

1 1,
arctan{mediant <p> } - arctan{ p} (11)
1 Iy

In (II), mediang(I,/I,) corresponds to ML estimation, which gives the ratio of
reflectance if p and ¢ are co-planar. We evaluate the angle between the ratio of
reflectance and the ratio of observed intensity to determine if the observation
supports the flatness hypothesis. To determine the amount of support for the
flatness hypothesis, a threshold ¢ is used:

1 (epg(ti € : accept
qu(ti) = {O gepqgti; ; €: rejelc)t)) (12)

epq(ti) =

Finally, we compute the ratio of the number of acceptances £ to the number of
total observations N to test the surface-flatness hypothesis. When the surface
flatness f is high, it is likely that L is smooth. On the other hand, when f is
not high, the smoothness assumption for L should be weakened. We define the
flatness f as the square of the acceptance ratio:

o= (Betntt)? ”

Using the surface flatness evaluated by (I3), we define an energy function
F to minimize:

Bo = Y By(40,, AL, (1)

=375 {(0p = £a)? + Moa(ti) (Ly(t:) — Ly(t:)*} (14)

P qE€wp

where A is a coefficient that balances the smoothness of p and L.
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Equation ([[d) always converges to a unique solution because Fy, is convex
with respect to p, and L. This is confirmed by taking E,’s Hessian H,
H. = 32Ep/ap2 82Ep/apaL . quwp 1 0 (15)

P 0%E,/0Ldp O*E,/O0L* | — 0 A e, froal|’

the leading principal minors of which are 1 > 0, Af,; > 0 where A > 0, f,; > 0,
so that the function FE, is strictly convex. Since the sum of convex functions is
convex, Eg is also convex because Eg = ) Ej,.

4 Algorithm

With the constraints described in the preceding section, our algorithm can pro-
ceed as follows.

[Step 1 : Initialization] Initialize p and L.

[Step 2 : Hard constraints] Apply the inter-frame and inter-pixel constraints
expressed in (I0). Since it is difficult to minimize the two terms in (I0) simulta-
neously, we employ an iterative approach for minimization.

1. Inter-frame constraint. Update L,(¢;).

Ip(ti)
Ly(ti) Ly(t;) ) /(N = 1) (16)
;(Ip(tj) )

2. Inter-pixel constraint. Update L,(t;) and p, with ratio error 3. Letting M,,,
be the number of p’s neighboring pixels,

I(t:)  peLy(ts
) = (3 26 oerty ) e )

4€w, Pp i

Since the error ratio 3,(t;) can be caused by some unknown combination of
p and L, we distribute the error ratio equally to both p and L in ([I8) and

(20), respectively.
Ly(t;) « \/ﬂp(ti)Lp(ti)a (18)
5= (X ayte ). (19)

Pp \/@/ﬁ?' (20>

3. Return to 1. unless Equation (I0) is satisfied.
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Fig. 4. Input image samples from synthetic scene. Illumination samples are chosen to
be biased.

Fig. 5. Estimated reflectance images. Left : our method, Center : the ground truth,
Right : ML estimation.

[Step 3 : Energy minimization)]

Evaluate the energy function (I4)), and find p and L that lower the total
energy. If the total energy can still decrease, update p and L, then go back to
Step 2. Otherwise, we stop the iteration. By fixing p, and L in (Id), the energy
minimization is performed for each E, using the conjugate gradient method. The
conjugate gradient method is an iterative method for solving linear systems of
equations which converge faster than the steepest descent method. For further
details of the algorithm, readers may refer to a well presented review [18].

5 Experimental Results

To evaluate our method, we carried out experiments over one synthetic image
sequence and three real world image sequences. In these experiments, we used
11 different lighting conditions, and set A = 0.4. We used ¢ = 0.02 which is
empirically obtained in Equation (IZ) for all experiments. The determination
of € has dependency on minimum signal-to-noise ratio. Starting with constant
initial values, p and L are iteratively updated. There is no restriction about the
initial values, however, we used flat images for their initial values because of the
smoothness assumption.

5.1 Synthetic Scene

For a synthetic scene, we prepared a Lambertian scene with a sphere and a plane
as shown in Figure[d. The illumination samples are biased in most cases, since
most of them lie on the left-hand side of the images. Figure Blshows the result of



Estimating Intrinsic Images from Image Sequences 283

() FEP B o

Py= s [

[
e TR R R |

(a) S

Fig. 7. (a) Estimated illumination image, and (b) the corresponding input image.

our method, the ground truth, and the result of ML estimation from left to right.
Due to the scaling ambiguity of the reflectance images, we adjusted the scaling
of each reflectance image for better comparison and display. As we can clearly
see in the figure, our method can successfully derive shading-free a reflectance
image which is close to the ground truth.

5.2 Real World Scenes

For real world scenes, we captured two image sequences of toy scenes and used
Yale Face Database B [17]. Figure Bl and Figure Blshow the result of reflectance
estimation from Lambertian scenes. In both figures, the left image shows the re-
sult of our method, while the right image shows the result of ML estimation. As
we can see clearly in them, our method handles shading more correctly and sha-
ding effect is much reduced in our reflectance estimates. Figure[d and [@show the
estimated illumination images and corresponding input images. In illumination
images, reflectance edges such as texture edges are well removed.

On the other hand, Figure [[0] shows a negative result, especially on the hair.
Since the human hair shows high specularity, and it is hard to model it as Lam-
bertian. This non-Lambertian property affects to our method and turns those
area into white. This is because our method is based on Lambertian model, and
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Fig. 8. Toy scene 2. Estimated reflectance images. (a) Our method, (b) ML estimation.

(a) (b)
Fig. 9. (a) Estimated illumination image, and (b) the corresponding original image.

it implies that our method does not handle specular reflections well. However, as
for the non-specular part such as the human face, shading effect is much reduced
by our method.

6 Conclusion

We have presented a method that robustly estimates intrinsic images by energy
minimization. Unlike previous methods, our method is not affected by illumina-
tion bias which generally exists. In our framework, we explicitly modeled spatial
and temporal constraints over the image sequence to form a constraint network.
Using this as a hard constraint, we minimized an energy function defined from
the assumptions that reflectance and illumination are smooth. By weighting
these smoothness constraints according to a surface flatness measure estimated
from derivative distributions, we estimated intrinsic images with improved hand-
ling of shading. Evaluation with both synthetic and real world image sequences
shows that our method can robustly estimate shading-free reflectance image and
illumination images. Some of the next steps of our research will include the ac-
celeration of energy minimization part and extension of our model to correctly
handle specularity.
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(a) (b)

Fig. 10. Reflectance images estimated from Yale Face Database B. (a) Our method,
(b) ML estimation. The result shows the limitation of our method, i.e. high specularity
affects the result.
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