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Abstract. Multiple-time signatures are digital signature schemes where
the signer is able to sign a predetermined number of messages. They
are interesting cryptographic primitives because they allow to solve
many important cryptographic problems, and at the same time offer
substantial efficiency advantage over ordinary digital signature schemes
like RSA. Multiple-time signature schemes have found numerous ap-
plications, in ordinary, on-line/off-line, forward-secure signatures, and
multicast /stream authentication. We propose a multiple-time signature
scheme with very efficient signing and verifying. Our construction is
based on a combination of one-way functions and cover-free families,
and it is secure against the adaptive chosen-message attack.

1 Introduction

One-time signature schemes proposed by Lamport [18] and Rabin [21] were
among the earliest signatures based on the idea of committing to secret keys
by one-way functions. For more than 25 years, various variants of Lamport and
Rabin’s schemes have been proposed and investigated by many researchers (see,
for example, [3, 5, 6, 13, 20]). In general, digital signatures can be divided into
two classes. The first class includes one-time signatures and their variants based
on one-way functions. These schemes can be used to sign a predetermined num-
ber of messages, we will call them multiple-time signature schemes (e.g., one-
time signature by Lamport and Rabin). The second class of schemes is based on
public-key cryptography and they can be used to sign unlimited number of mes-
sages. Examples of this class of schemes include RSA and ElGamal signatures.

Despite the limit imposed on the number of messages signed, multiple-time
signatures are very interesting cryptographic primitives as they typically offer
more efficient generation and verification of signatures than the schemes based on
public-key cryptography. Besides, multiple-time signatures can be constructed
based on an arbitrary one-way function without requiring a trapdoor function.
Multiple-time signatures have found many applications, for example, in the de-
sign of public-key signature schemes [21, 3, 10], on-line/off-line signatures [12],
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digital signatures with forward security properties [1], broadcast authentication
protocol [23] and stream-oriented authentication [27], just to mention a few.

All the previous multiple-time signature schemes follow the general idea that
the secret key is used as the input to a sequence of one-way functions which
generate a sequence of intermediate results and finally the public key. One-
wayness of the functions implies that it is infeasible to compute the secret key,
or any intermediate result of the computation, from the public key. For example,
the idea of the basic scheme of Lamport [18] is very simple: given a one-way
function f, one selects two random strings g, x1 as the secret key, and publishes
f(z0), f(x1) as the public key. Then, a single-bit message b € {0, 1} can be signed
by revealing . Bleichenbacher and Maurer in their series of papers [0, 7, 8],
developed the general model of these schemes based on the use of "graphs of
one-way functions”. The security proof under this model has been investigated
recently by Hevia and Micciancio [14].

Motivated by the applications of signatures to stream authentication and
broadcast authentication, Perrig in [23] proposes a one-time signature called
”BiBa”, which has the advantages of fast verification and being short signature
(perhaps, BiBa has the fastest verification of all previously known one-time sig-
nature schemes). The disadvantage of BiBa is, however, the signing time that is
longer than in other previous schemes.

Reyzin and Reyzin in [25] proposed a new one-time (r-time) signature, called
HORS (for Hash to Obtain Random Subset). HORS improves the BiBa scheme
with respect to the time overhead necessary for verifying and signing, and reduces
the key and signature sizes. This makes HORS the fastest one-time signature
scheme available so far. We note that the security of BiBa can be proved in the
random-oracle model while the security of HORS relies on the assumption of the
existence of one-way functions and the subset-resilience.

Our Contribution In this paper, we propose a new multiple-time signature
scheme. The scheme has the following advantages with respect to the security:
(i) the security relies solely on one-wayness of the functions used to generate
commitments (whereas BiBa is based on the assumption of random oracle and
HORS is based on one-wayness and subset-resilience); (ii) the scheme achieves
security against the r-adaptive chosen-message attack.

The new multiple-time signature is based on a one-way function and uses
a combinatorial object, called the cover-free family. It is worth pointing out that
the cover-free families introduced by Erdés et al [11], have also found numerous
other application in cryptography and communication [17, 30].

The main advantage of our new scheme is that it achieves the highest level
of security against the adaptive chosen-message attack. In comparison to the
BiBa and HORS schemes, however, our scheme is slightly worse with respect to
the time overhead needed for signing and verifying, and the length of signature.
Moreover, the security of our scheme solely relies on the one-wayness of the
function used to generate public keys. This assumption is substantially weaker
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than those required for the BiBa and HORS signatures (BiBa uses the random
oracle assumption while the HORS security relies on subset resilience).

First, we give the generic construction from cover-free families and show that
the efficiency of the scheme can be measured by the parameters of the under-
lying cover-free families. We then present three, very efficient, constructions.
These constructions apply polynomials, error-correcting codes, and algebraic
curves over finite fields. We further extend the scheme to increase the number
of messages to sign, using the concepts of one-way hash chains.

The paper is organised as follows. In Section 2, we review the generic scheme
proposed by Reyzin and Reyzin [25] that was used to construct their HORS and
our schemes. In Section 3, we propose the new multiple-time signature scheme,
the scheme is generic in the sense that is combines any one-way function with
a cover-free family with appropriate parameters. In Section 4, we demonstrate
efficiency of ne new proposed scheme by giving three constructions from polyno-
mials over finite fields, error-correct codes and algebraic curves over finite fields.
In Section 5 we extend our scheme and show how to increase the number of
messages to sign, using the hash chains. We conclude the paper in Section 6.

2 Reyzin-Reyzin Scheme

The HORS scheme proposed by Reyzin and Reyzin [25] is an extension of their
simpler scheme in the same paper, which we will call the RR scheme. We start
with the description of the RR signature.

The RR scheme Let b,t,k be integers such that (}i) > 20 Let T denote
the set {1,2,...,t} and 7} be the family of k-subsets of T'. Let S be a one-to-
one mapping from {0, 1,...,2% — 1} to 7 such that S(m) is the m-th k-element
subset of 7. Let f be a one-way function operating on £-bit strings, for a security
parameter ¢. The scheme works as follows.

Key generation: The secret key is SK = (s1,..., ), where s; are random (-
bit strings. The public key is PK = (v1,...,v:), where v1 = f(s1),...,0; =
f(se).

Signing: To sign a b-bit message m, the message is first interpreted as an integer
between 0 and 2° — 1, and next the mapping S is used to compute S(m) =
{i1,...,ik} € T,. The value s;,,...,s;, is the signature of m.

Verifying: To verify a signature (s, s5, ..., s}) on a message m, again the mes-
sage is interpreted as an integer between 0 and 2° — 1, and then the sequence
{i1,...,ix} is recalculated as the m-th k-element subset of 7. Finally, it is
checked if f(s}) = viy,-.., f(s}) = v;, holds.

Note that the Bos and Chaum’s scheme [2] is a special case of the above RR
scheme in which k = ¢/2. We also note that for k = ¢/2, Stinson [29] (page 217)
gave an algorithm that reduces the size of signature to half of the original size
of Bos-Chaum scheme.
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The security of this scheme relies on one-wayness of f. Indeed, in order
to forge a signature for a new message (or apply the adaptive chosen-message
attack), the adversary is forced to invert at least one of the ¢ — k values in
the public key for which the corresponding part of the secret key has not been
revealed.

We look at the efficiency of the scheme. The key generation requires ¢ evalu-
ations of one-way function. The secret key size is t£ bits, and the public key size
is fot bits, where fy is the length of the one-way function output on the input
length /. The signature is k¢ bit long. The signing algorithm takes as long as the
running time of the algorithm for S: the time required to find the m-th k-element
subset of a t-element set. In [25], Reyzin and Reyzin gives two algorithms for
implementation of the mapping S:

Algorithm 1 is based on the following equation:

By _(t-1), (11
k) \k—-1 k)’
and has the computation cost of O(tklog?t), provided O(k2log?t) bits extra

storage available.
Algorithm 2 is based on the following a slightly more complicated equa-

tion: (2) :i([t/-ﬂ) (]Lﬁt/_%)’

and has the computation cost of O(k%logtlogk), provided O(k?log?t) bits
extra storage available.

The verifying algorithm of the RR scheme takes the same amount of time as
signing, plus k evaluations of the one-way function.

Obviously, the most expensive part of the RR scheme is the computation of
the function S. Note that for the function S, it is impossible to find any two
distinct my and mg such that S(mz) C S(my). To improve efficiency of the RR
scheme, Reyzin and Reyzin proposed HORS in which the function S in the RR
scheme is replaced by another function H with a weaker property that it is infea-
sible to find two messages, my and mg such that H(mso) C H(m;), the function H
with such a property is called a subset-resilient function. In HORS, a conjec-
tured subset-resilient function is constructed from certain cryptographic hash
functions.

One drawback with the RR scheme is that each public key/private key can
be used to sign a single message. Of course, to sign r messages, one can sim-
ply apply the scheme r times independently. This means that the cost of the
scheme will be linear in the number of messages r. The question is: can we
have a more efficient solution for signing r messages, where r > 1?7 Allowing
to sign multiple messages introduces a new attack on the scheme: the adap-
tive chosen-messages attack, where the adversary can choose the message for
signature after seeing a collection of messages and their signatures. Unlike the
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RR scheme, HORS can be used for signing multiple messages, but its security
is based on a much stronger assumption, i.e., subset-resilient function. In this
work, we propose a new multiple-time signature scheme that provides security
against the adaptive chosen-message attack, thus our scheme can be viewed as
a generalisation of Bos-Chaum scheme with improved efficiency and of HORS
with enhanced security.

3 The Scheme

As we have seen, both the Bos-Chaum scheme and the RR scheme can be used
to sign a single message. We intend to generalise their scheme so it can be used
for multiple signatures. We observe that the the basic requirement of S is such
that for any distinct messages mq,mg, we have S(m1) € S(mg) in the family
of subsets 7. If the function S has, however, the property that for any r + 1
messages mai, ma, ..., Myy1, S(my41) € Ui_;S8(m;), then the scheme can be
used to sign up to r messages. The required property of S can be captured by
a well known combinatorial object, called the cover-free family introduced by
Erdos et al [11].

Definition 1. A set system (X,B) with X = {x1,...,2:} and B = {B; C
X | i=1,...,n} is called an (n,t,r)-cover-free family (or (n,t,r)-CFF for
short) if for any subset A C {1,...,n} with |A| =r and any i € A,

B\ |JBj| > 1
JEA

Our new scheme HORS++ is based on a one-way function and a CFF with
appropriate parameters.

HORS-++ Scheme Let (X,B) be an (n,t,r)-CFF and let b be an integer
such that 2° < n, where b is the length of the message m to be signed. If the
message length is greater than b, then a collision-resistant hash function is used
to produce a b-bit digest of m. The signature is generated for the digest.

Assume S is a one-to-one mapping from {0,1}% to B (Since n > 2° such
a mapping S exists). The scheme works as follows.

Key generation: For the given security parameter 1¢, generate ¢ random /-bit
numbers s; and let the secret key be SK = (s1,...,s:). Compute the public
key as follows: PK = (v1,...,v;), where v1 = f(s1),...,v: = f(s¢) and [ is
a one-way function.

Signing: To sign a message m € {0,1}%, compute S(m) = {i1,...,ir} € B.
Reveal (s;,, Siy,---,Si,) as a signature.

Verifying: To verify a signature (s}, s5,...,s}) on a message m, recompute
S(m) = {i1,...,ix} € B. Verify that f(s]) =viy,..., f(s}) = vs,.
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Security Suppose that the adversary has seen r valid signatures for the mes-
sage my1, ..., m, chosen adaptively. In order to forge a signature on a new mes-
sage, the adversary would have to invert the one-way function f on the value
associated to the points of S(m,11)\ U/_;.S(m;) in the public key. Since (X, B)
is an (n,t,7)-CFF, it yields that |S(m,4+1) \ Ui_; S(m;)| > 1. That means that
the adversary has to invert the one-way function on at least one value, and so
the security of the signature is reduced to the one-wayness of f. Furthermore,
it is fairly easy to see that the property of the r-cover freeness guarantees that
the scheme is secure against the r-adaptive chosen-message attack.

Efficiency To measure the efficiency of the scheme, we consider two aspects of
performance: (i) the time needed for key generation, signing, and verifying; (ii)
the length of secret key, public key, and signature. The key generation requires ¢
evaluations of one-way function, the signing takes as long as the running time of
the algorithm for S and the verifying algorithm takes the same time as signing,
plus at most ¢ evaluations of the one-way function. The size of public and secret
key is determined by ¢ and the size of signature is determined by the size of
blocks |B;| in B.

Thus, the performance of the scheme is virtually determined by the param-
eters of the underlying cover-free family. Without considering the complexity of
algorithm S, it is expected that the underlying (n, ¢, r)-cover-free family has the
desired property that for given n and r, the parameter ¢ is as small as possible.
Constructions and bounds for (n,t,7)-CFF were studied by numerous authors
(see, for example, [11, 17, 30]). It is shown in [30] that for (n, t,r)-CFF with ¢t > 2,
t> clor; logn for some constant ¢ ~ 1/8. On the other hand, Erdds et al [11]
showed that for any n > 0, there exists an (n, t,7)-CFF with ¢t = O(r? logn) and
| B;| = O(rlogn). Therefore, we obtain the following theorem.

Theorem 1. Given a one-way function f with the ¢-bit input and fe-bit out-
put. There exists a r-time signature scheme secure against the adaptive chosen-
message attack with the secret key size O(r? fol)-bits, public key size O(r? f?)-bits,
and with the size of signature O(r f¢{).

Proof. Taking n = 2/¢ and applying the results of cover-free family, the con-
struction will result in a scheme with the desired properties in Theorem 1.

However, Theorem 1 is only of theoretical interest, because it doesn’t take
into account the time cost of the implementation for the function S, so it is
only an existence result. As in the RR scheme, implementation of the function S
is the most time consuming part of the system. To make the proposed scheme
practical, we have to specify the function S and provide an algorithm for its
evaluation.

4 Constructions

In this section we give several constructions of .S for HORS++. Observe that in
the RR scheme, the parameters ¢, k of the function S are chosen in order to min-
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imise the expression (z) — 2% 50 the size of secret key/public key (corresponding
to t) and the size of signature (corresponding to k) is minimal (note that there
are some trade-offs between ¢ and k). In other words, the family 7, of k-subsets
of T is minimal such that there is a one-to-one mapping from {0,1,...,2° — 1}
to 7. The minimal size of 7; seems, however, to increase the difficulty (cost)
of the implementation of S. To efficiently implement S, we allow the size of the
range of S, i.e., the size of the blocks in the cover-free family, to be slightly larger
than the minimal value and then we can expect to have an easy implementation
for the one-to-one mapping S. We will elaborate this idea in this section, giving
several explicit constructions for S.

4.1 Construction of S Based on Polynomials

Consider polynomials of degree less that d over GF(2¢), where b = dc. For each
such polynomial g, we associate a set

By ={(z,g(x)} C GF(2°) x GF(2°).
Let X = GF(2°) x GF(2¢) and
B ={By | g is a polynomial of degree at most d — 1}.

It is easy to see that |B,| = 2¢ and |B| = 29¢ = 2°. Now if g1 # g2, then
|Bg, N By,| < d—1 since g(x) = gi(z) — g2(z) is a polynomial of degree d — 1
with at most d—1 different solution for the equation g(x) = 0. We can show that
(X,B) is a (2°,2¢,7)-CFF provided 2¢ > r(d—1)+ 1. Indeed, for any g, g1, .. ., gr
of polynomial of degree less than d over GF'(2¢), we have

|Bg\(Bgl U"'UBgr)| > |Bg|_(‘BgmBng""‘HBgmBgrD
>2°—r(d—1)
> 1.

It should be noted that the above cover-free family construction is not new,
it was first given by Erdds in [11] and further extended by many other authors.
Our main point is to give the explicit construction of S in an efficient way.

To fulfil the task for signing messages of arbitrary length, we propose using
a cryptographic hash function H, for example SHA-1 or RIPEMD and assume
that the output of the hash function is of b bits. To sign a message m, we first
hash m using H and construct the one-to-one mapping S as follows.

— Split H(m) into d substrings of length c-bit each, where b = cd.

— Interpret each c-bit substring as an element in GF'(2°), denote these d el-
ements as ag, a1, .. .,aq—1 and construct a polynomial g,,(x) = ag + a1z +
e 7O/d_1$d_1.

— We define the mapping S from {0,1}° to B as follows,

S(H(m)) = {(@, gm(a)) | @ € GF(2°)}.

The implementation of S only involves in the direct evaluation of polynomials
over the finite field GF(2¢). So both the sign and verification are very fast. The
sizes of key and signature are slightly worse than the RR scheme.
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4.2 Error-Correcting Code Construction

A more general explicit construction for the mapping S from the above poly-
nomial construction is through error-correcting codes. In fact, the polynomial
construction can be seen a special case of the construction from Reed-Solomon
codes.

Let Y be an alphabet of ¢ elements. An (N, M, D, q) code is a set C of M
vectors in YV such that the Hamming distance between any two distinct vectors
in C is at least D.

Consider an (N, M, D, q) code C. We write each codeword as ¢; = (¢;1, . . . ,¢in)
with ¢;;j € ¥V, where 1 < i < M,1 < j < N.Set X ={1,...,N} xY and
B={B;:1<1i< M}, where for each 1 < i < M we define B; = {(j,¢;;) : 1 <
Jj < N}. It is easy to check that | X| = Ngq, |B] = M and |B;| = N. For each pair
of i,k, we have |B; N By| = [{(j,cij) : 1 < j < N}N{(jycxj) : 1 <j <N} =
{j:cij = x| <N = D.

Using an identical argument to the one applied in the polynomial construc-
tion, it is easy to see that (X,B) is (M, Ngq,r)-CFF if the condition r < NZXD
holds. We thus obtain that if there is an (N, M, D, q) code, then there exists an
(M, Ngq,r)-CFF provided r < NZXD.

Note that the above coding construction is explicit. That is, given a code
word ¢; € C, it is straightforward to find its corresponding block B;. Now to ex-
plicitly construct the mapping S, we only need to find the one-to-one mapping
from {H(m) | m in the message space} to B, which is the same as the encod-
ing algorithm in the error-correcting code, and so can be very efficient. In the
following we show how to construct S using a linear error-correcting codes.

Let C be an (N, ¢%, D, q) linear error-correcting code with a d by N generating
matrix A. Each code word can be indexed by the elements in GF(g)?, using the
encoding algorithm: (y1,ya2,...,yn) = (x1,22,...,24)A,V(21,29,...,24) € C.
For the implementation consideration we may further assume, without loss of
generality, that ¢ = 2° and the hash output of the messages to be signed is of cd
bits. The one-to-one mapping S is then constructed as follows.

— Split H(m) into d substrings of length ¢-bit each, where b = cd.

— Interpret each c-bit substrings as an element in GF'(2¢), and denote H(m)
as a d-vector (z1,7a,...,24) € (GF(2°))%.

— Define the one-to-one mapping S : {0,1}* — B as follows,

S(H(m)) ={(,y;) : 1 <j < N}
= {(Lyl)’ (27y2)a B (Na yN)}7

where (ylay27' . 7yN) = ('TMIQW . 7Id)A = H(m)A

Again, the algorithm for the S implementation is quite efficient as it only
involves in the matrix multiplication over a finite field. A further interesting
question is to find the good codes satisfying the required conditions that should
result in a good performance for the proposed scheme.
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4.3 Algebraic Curve Construction

If we apply the code construction of CFFs in Section 4.2 to algebraic geometry
codes, we immediately obtain the following result (the reader may refer to [22]
for the background on algebraic codes and curves).

Corollary 1. Let X/GF(q) be an algebraic curve of genus g with N +1 rational
points. Then for any integer d with g < d < N, there exists a (¢~ 9%, Ngq, | (N —
1)/d])-CFF.

To study the asymptotic behaviour of CFFs in Corollary 1, we need some
notation from algebraic geometry (see [22]). Define

) N(X)
A(q) := limsup ,
g(X)—o0 g(‘)()

where N (X) stands for the number of the rational points of the curve X defined
over GF(q), and ¢g(X) for the genus of X. By [22] (Example 5.4.1), we know that
A(q) = \/q — 1 if ¢ is a square prime power.

Combining Corollary 1 with the definition of A(g), we obtain the following
asymptotic result.

Corollary 2. For a fized v and a square prime power q with r < \/q — 1, there
exists a sequence of CFFs with parameters

(g%~ 91, Nyq,r)

such that
. logq®9tt  logg 1 1
lim = x( -
i—oo N; q roo/q—1

)- (1)
Remark Corollary 2 shows that for any fixed r there are infinite families of
(n,t,7)-CFF in which ¢t = O(logn). In fact, the constructions are explicit in the

sense that the mapping S can be constructed explicitly as long as the curves
have explicit equations.

For the rest of this section, we are going to improve the asymptotic result in
Corollary 2.

Let X be an algebraic curve of genus g with at least n+ g+ 1 rational points.
By using an identical argument in the proof of [28] (Proposition 1.6.10), we can
show that there exist n + 1 rational points P., P, ..., P, such that

LirdP — Y P) = {0}
i=1

if rd—n < g—1, where L(D) stands for the Rieman-Roch space for a divisor D,
ie.,
L(D) := {functions f : div(F) + D > 0}.
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For each f € L(dPx), we denote By = {(P;, f(F;)) | ¢ = 1,2,...,n}. For
any r + 1 distinct f1, fo,..., fr, f € L(dPx), we have [['_,(f — fi) € L(dPx)
as f # f; for any ¢ = 1,...,r. On the other hand, Since []_,(f — fi) # 0, we
have [T_,(f — fi) € L(rdPs — >, P;). Therefore, there exists a P; such that
[T (g —g9:)(P;) #0, ie., f(Pj)# fi(P;), Vi=1,2,...,n, We then conclude
(Pj, f(P;)) € By and (Py, f(P;)) & Ui—; By,. That is,

|Bf \Uiz1 By,| =2 1.

This shows that there exists a (|£(dPx )|, ng, r)-CFF or, equivalently, a (¢?=9%!,
ng,r)-CFF. Moreover, if we let » = g — 1 4+ n/d| then we obtain a

(¢* 9" ng, lg— 1+ n/d]) — CFF.

Thus, we have proved the following corollary.

Corollary 3. If q is a square prime power, then for a fized v we obtain a se-
quence of CFFs with parameters

(qdi_g—i_lu Niqv T)

such that
_ logg®—9tt  logq (1 1 1 )
lim = X — .

1—
i—oo  Niq q T r)m—?

Obviously, bound (1) improves bound (2) for » < ,/q — 1.

Remarks

(i) Corollary 2 and 3 shows that the existence bounds of CFFs in [11, 30] can
be asymptotically met by the explicit constructions.

(ii) Most previous explicit constructions for CFFs typically apply the tricks
from coding constructions of Section 4.2. Thus, Corollary 3 can be also
used to improve previous results on cover-free families, for example, the

7

explicit construction from algebraic geometry codes in [17].

5 Extensions

Consider the following question: suppose that r is the maximal value that
HORS++ scheme can be used to sign up to r messages, i.e., r is maximal for
which the set system (X, B) is a (n, ¢, r)-cover-free family (for the fixed n and ¢).
What will happen if we want the scheme to sign r + 1 or more than r + 1 mes-
sages? In this section we will suggest a solution to extend the scheme to increase
the number of messages to sign.

One-way hash chains, or simply one-way chains, are build on using a one-way
function repeatly to a random input, they are a frequently used cryptographic
primitive in the design of secure protocols [19, 26, 15]. By a one-way chain we
mean a sequence of values < sg, $1, ..., 8q >, where sq is a value chosen uniformly
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at random from {0, 1}, and s; = f((s;41), where f: {0,1}* — {0,1} is a hash
function or a publicly computable one-way function.

We can employ one-way hash chains to our basic scheme to increase the
number of the messages to be signed.

1. Create a sequence of secret keys and their public keys:

S1,dy S1,d—1, " S1,1, 51,0 — V1

S2,d> $2,d—1, """ S2,1, 82,0 — V2

St,dy St,d—1, " St,1, St,0 — Ut
such that s; ;1 = f(s;;) fori=1,...,t and j =1,...,d while v; = f(s0)
and f is a one-way function. The secret key is (s1,4; - - ., S¢,4) and the public

key is (v1,...,v¢).

2. To sign a sequence of messages using HORS++, the signer first uses the
first level of secret keys (i.e., (s1,0,.-.,5¢0)) to sign the r message and go
backwards to the second level of secret keys (i.e., (s1,1,- .., 5¢,1) for the next r
messages, and so on.

3. Verification of the signatures is exactly the same as HORS++

Using this approach, the scheme can be used to sign up to (d + 1)r messages.
The properties of one-way chains leave room to improve the time overhead of
the signature verification. Note that given an existing authenticated element of
a one-way hash chain, it is possible to verify elements later in the sequence of
use within the chain, without evaluating all the sequence of the hash function.
For example, if d; ; has been used to sign among the (j+ 1)th » messages and its
value is revealed, then d; j13 can be used to sign the message from the (j+4)th r
messages, by simply computing f(f(f(sij+3))) and verifying that the resulting
value equals s; j, rather than computing f774(s; j1+3) and verifying its equality
with v;. Recently, Jakobsson [16] and Coppersmith and Jakobsson [9] propose
a computation-efficient mechanism for one-way chains, it requires only O(log d)
computation to verify the elements for a one-way chain of d elements, rather than
the O(d) computation of the trivial approach. An interesting research problem to
ask is whether their techniequs can be incorporated into our scheme to improve
the time overhead.

Also, it is worth pointing out that the above extended scheme is not se-
cure against the adaptive chosen-message attacks, but only against the random
chosen-message attacks.

6 Conclusion

In this paper, we proposed a multiple-time signature scheme with security against
adaptive-chosen-message attacks. Our construction is based on a one-way func-
tion and a cover-free family in which the security solely relies on the one-wayness
of the one-way function, whereas the efficiency can be measured by the underly-
ing cover-free family. We show several constructions of cover-free families can be
used to construct this new multiple-time signature scheme in an effective way.
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