
Rerandomizable and Replayable Adaptive
Chosen Ciphertext Attack Secure Cryptosystems

Jens Groth1,2

1 BRICS� � �, University of Aarhus, Ny Munkegade bd. 540, 8000 Århus C, Denmark
jg@brics.dk

2 Cryptomathic A/S†, Jægerg̊ardsgade 118, 8000 Århus C, Denmark

Abstract. Recently Canetti, Krawczyk and Nielsen defined the notion
of replayable adaptive chosen ciphertext attack (RCCA) secure encryp-
tion. Essentially a cryptosystem that is RCCA secure has full CCA2
security except for the little detail that it may be possible to modify a
ciphertext into another ciphertext containing the same plaintext.
We investigate the possibility of perfectly replayable RCCA secure en-
cryption. By this, we mean that anybody can convert a ciphertext y
with plaintext m into a different ciphertext y′ that is distributed iden-
tically to a fresh encryption of m. We propose such a rerandomizable
cryptosystem, which is secure against semi-generic adversaries.
We also define a weak form of RCCA (WRCCA) security. For this notion
we provide a construction (inspired by Cramer and Shoup’s CCA2 se-
cure cryptosystems) that is both rerandomizable and provably WRCCA
secure. We use it as a building block in our conjectured RCCA secure
cryptosystem.

1 Introduction

Security against adaptive chosen ciphertext attacks (CCA2) has become the
golden security standard for public-key cryptosystems. Dolev, Dwork and Naor
gave the first construction based on standard primitives in [1] and subsequent
work [2,3,4,5] includes practical constructions based on a variety of assumptions.
However, an unfortunate side effect of the strong security definition is the exclu-
sion of certain cryptosystems that intuitively are secure. Consider for instance a
cryptosystem that expands a CCA2 secure cryptosystem with a single bit, which
is ignored in decryption. By flipping this bit it is easy to create a new encryption
of the same plaintext and therefore the new cryptosystem is not CCA2 secure
even though the message is protected by the same encryption. A few proposals
for redefining CCA2 security to cover such cryptosystems were presented in [6,7],
but other natural examples that intuitively are “CCA2” secure but do not sat-
isfy these definitions exist. We believe that Canetti, Krawczyk and Nielsen have

� � � Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

† www.cryptomathic.com

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 152–170, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Rerandomizable RCCA Secure Cryptosystems 153

solved this problem satisfactorily in [8] by defining replayable adaptive chosen
ciphertext attack (RCCA) security.1

RCCA security essentially is the same as CCA2 security, except no guarantees
are given against adversaries that just try to modify a ciphertext into a new
ciphertext with the same plaintext. CCA2 security implies RCCA security, but
not the other way around. We could hope that a weaker definition might give
rise to more efficient constructions but this has so far not been the case. On
the other hand, it is a proven fact that given RCCA secure encryption we can
construct CCA2 secure cryptosystems. We refer the reader to [8] for several other
arguments for being interested in RCCA secure encryption.

The question we seek to answer in this paper is to what extend it may be
possible to maul an RCCA secure cryptosystem. We have the ambitious goal of
finding a cryptosystem, which is RCCA secure and has perfect rerandomization,
i.e., an efficient algorithm for converting an encryption y of plaintext m into a
ciphertext y′ that is perfectly indistinguishable from a fresh encryption of m.

Besides the theoretical perspective, we believe such cryptosystems may have
practical applications. Consider for instance an anonymization protocol where
in the end some party receives the encrypted messages and acts upon them, for
instance a voting protocol based on mix-nets.2 Here, we may want the ability
to rerandomize ciphertexts in order to anonymize them. On the other hand,
we may imagine an adversary that can inject ciphertexts into the anonymiza-
tion protocol and therefore gets access to an adaptive chosen ciphertext attack.
Rerandomizable RCCA secure encryption may be just the tool that gives us the
better of two worlds.

Constructing a rerandomizable RCCA secure cryptosystem is a hard prob-
lem, and is posed as an interesting open problem in [8]. The construction has to
be almost CCA2 secure and at the same time have enough mathematical struc-
ture to be rerandomizable. In particular, it seems like popular tools for building
CCA2 secure encryption such as random oracles and one-time signatures cannot
be used.

In this paper, we start out by defining a weaker notion of replayable security
called WRCCA security. This notion is stronger than IND-CCA1 but weaker
than RCCA security. It turns out that rerandomizable WRCCA secure cryp-
tosystem can be constructed under well-known intractability assumptions.

By choosing an appropriate group to work in, we get a rerandomizable WR-
CCA secure cryptosystem that may be extended in a way that gives rise to a
new rerandomizable cryptosystem. We believe this new cryptosystem is RCCA
secure. Since it is an extension of a WRCCA secure cryptosystem, it is provably
WRCCA secure. In itself, WRCCA security does not guarantee RCCA security
though. We give an additional security argument by proving that a semi-generic
adversary cannot break the scheme, where semi-generic means that it can only
perform standard group operations on parts of the ciphertext.

1 Independently we came up with exactly the same definition of RCCA security.
2 Duplication of votes must be avoided, for instance by inserting a nonce in the plain-

text and discarding extra pairs of the same vote and nonce.

154 J. Groth

2 Notions of Replayable Security

Notation. All algorithms and adversaries are modeled as probabilistic polyno-
mial time (possibly interactive) Turing machines. Our proofs hold for both uni-
form and non-uniform adversaries.

We assume that all algorithms and adversaries get a security parameter as
input. We write p1 ≈ p2 if p1 and p2 are functions of the security parameter such
that |p1 − p2| is a negligible function in the security parameter. A function that
is not negligible is said to be noticeable.

Definitions. We define a public-key cryptosystem in the usual way. The decryp-
tion function outputs invalid when a ciphertext does not decrypt properly to
a plaintext.

Definition 1 (RCCA security). A cryptosystem (K, E, D) is RCCA secure
if for any adversary A it is the case that

P [(pk, sk)← K(); (m0, m1)← AO1(pk); y ← Epk(m0) : AO2(y) = 1]
≈ P [(pk, sk)← K(); (m0, m1)← AO1(pk); y ← Epk(m1) : AO2(y) = 1],

where

– O1 works like Dsk.
– O2 works like Dsk except when the plaintext is m0 or m1. On m0 or m1 the

oracle outputs test.

Definition 2 (WRCCA security). A cryptosystem (K, E, D) is WRCCA se-
cure if for any adversary A it is the case that

P [(pk, sk)← K(); (m0, m1)← AO1(pk); y ← Epk(m0) : AO2(y) = 1]
≈ P [(pk, sk)← K(); (m0, m1)← AO1(pk); y ← Epk(m1) : AO2(y) = 1],

where

– O1 works like Dsk.
– O2 works like Dsk except when the plaintext is m0 or m1. On m0 or m1 the

oracle outputs invalid.

Let us illustrate the two types of security with the following example. We
assume that we are operating a Swiss bank, and account holders can send anony-
mous messages to us containing a password, the banking operation they want
to perform and perhaps a counter to prevent replay attacks. We do not reply
to these messages, but if the password is valid and the counter has not been
used before, we perform the banking operation. Suppose a client of ours sends
a ciphertext containing some banking operation he wants to perform and he is
being wiretapped by somebody who wants to know which operation he carried
out. Now the eavesdroppers may open an account with us, send ciphertexts to

Rerandomizable RCCA Secure Cryptosystems 155

us, and see what happens with the money in their account. This means that they
do have access to a chosen ciphertext attack. However, since they do not know
our client’s password they cannot probe the system with banking operations
on his account. WRCCA security is therefore sufficient to guarantee that the
eavesdroppers do not learn anything about the banking operation he performed.

Suppose we change the protocol to be user-friendlier: we send back one type
of error message if a banking operation has already been executed and another
type of error message if a ciphertext is invalid. Now the eavesdroppers have
access to a stronger attack and we need the cryptosystem to be RCCA secure.

In general WRCCA secure cryptosystems are only appropriate in protocols
where the adversary does not learn whether an injected ciphertext is valid or
invalid. Often this is not the case, consider for instance Bleichenbacher’s attack
on the PKCS #1 protocol [9].

Other types of security. Bellare and Sahai prove in [10] that non-malleability
is equivalent to indistinguishability under parallel attack. By a parallel attack
we mean the adversary has access to an oracle O2 that decrypts any number
of ciphertexts but may be invoked only once. This definition makes sense both
without and with access to O1. They call the security notions IND-PA0 and
IND-PA1. By modifying O2 such that it can decrypt one vector of ciphertexts
and will respond with respectively test and invalid on m0 and m1 we get four
other security notions IND-RPA0, IND-RPA1, IND-WRPA0 and IND-WRPA1.3

Relationship between security notions. Figure 1 in Appendix A describes com-
pletely the relationship between all the security notions. For our purposes the
interesting thing to note is that CCA2 security implies RCCA security, which
implies WRCCA security, which in turn implies IND-CCA1 security. On the
other hand all these notions are separate; IND-CCA1 does not imply WRCCA,
WRCCA does not imply RCCA, and RCCA does not imply CCA2 security.

3 Rerandomizable Weak RCCA Secure Encryption

In this section, we describe a rerandomizable WRCCA secure cryptosystem. The
idea bears some resemblance to Cramer-Shoup’s DDH based CCA2 secure cryp-
tosystem [3]. In their scheme a ciphertext looks like this (uL = gr

L, uR = gr
R, v =

hrm, α = (cdhash(uL,uR,v))r).4 If we have h = gxL

L = gxR

R , then α is a designated
verifier zero-knowledge proof that both decryption with xL and xR will give the
same plaintext. In the security proof, they use a hybrid argument where at one
point we actually have that xL and xR would give different decryptions of the
challenge ciphertext. At this point we simulate the designated verifier proof α.
Raising d to hash(u1, u2, v) ensures that the simulation only works when we are
3 These forms of non-malleability should not be confused with the NM-RCCA notion

in [8].
4 L = left, R = right.

156 J. Groth

using the actual challenge ciphertext, i.e., the designated verifier proof is simu-
lation sound. Therefore, the adversary cannot fake proofs in the oracle queries,
except if it copies the challenge ciphertext directly.

In our case we wish to allow rerandomization, provided the same plaintext
is used. Therefore, we wish to ensure that the adversary in the security proof
cannot fake the designated verifier proof unless the same plaintext as in the
challenge is used. For this reason we make a designated verifier proof that has
the form (cdhash(m))r. The cryptosystem and the proof do become more involved
than standard Cramer-Shoup encryption. One of the reasons for this is that we
have to take specifically into account in the hybrid argument how to shift from
using hash(m0) and hash(m1), where in the Cramer-Shoup scheme this is always
computed as hash(uL, ur, v).

Another problem with using the Cramer-Shoup cryptosystem is that even
with this new type of proof we cannot rerandomize it. To solve this problem we
instead encrypt the message one bit at a time as gr

L,i, g
r
R,i, h

mir where mi = ±1.
Now we can rerandomize by choosing a random exponent and then raise all parts
of the ciphertext to this exponent.

Key Generation: Choose a collision-free hash-function h : {−1, 1}k → {0, 1}t.
Choose a cyclic group G of order n where the DDH problem is hard.5 The
order n may be a prime or a composite. We demand that the smallest prime
factor of n is larger than 2t.
Select at random elements h1, . . . , hk ∈ G.
Choose xL,1, xR,1, . . . , xL,k, xR,k at random from Zn.

Set gL,1 = h
x−1

L,1
1 , gR,1 = h

x−1
R,1

1 , . . . , gL,k = h
x−1

L,k

k , gR,k = h
x−1

R,k

k .
Select at random kL,1, kR,1, . . . , kL,k, kR,k ∈ Zn and lL,1, lR,1, . . . , lL,k, lR,k ∈
Zn.
Set

c =
k∏

i=1

g
kL,i

L,i g
kR,i

R,i and d =
k∏

i=1

g
lL,i

L,i g
lR,i

R,i .

pk = (gL,1, gR,1, h1, . . . , gL,k, gR,k, hk, c, d,h).
sk = (pk, xL,1, . . . , xR,k, kL,1, . . . , kR,k, lL,1, . . . , lR,k).

Encryption: Given input m = m1 . . . mk ∈ {−1, 1}k.6
Epk(m; r) = (gr

L,1, g
r
R,1, h

m1r
1 , . . . , gr

L,k, gr
R,k, hmkr

k , (cdh(m))r).
Decryption: Given ciphertext y = (uL,1, uR,1, v1, . . . , uL,k, uR,k, vk, α).

Check that all elements belong to G.
Compute for all i the mi ∈ {−1, 1} that satisfies vi = u

mixL,i

L,i = u
mixR,i

R,i .
Set m = m1 . . . mk.
Check that

α =
k∏

i=1

u
kL,i+h(m)lL,i

L,i u
kR,i+h(m)lR,i

R,i .

If everything works out return m, otherwise return invalid.
5 Membership of G should be easy to check and it should be easy to pick a generator

for the group.
6 Using {−1, 1} instead of {0, 1} makes notation a little less cumbersome.

Rerandomizable RCCA Secure Cryptosystems 157

Rerandomization: Given ciphertext (uL,1, uR,1, v1, . . . , uL,k, uR,k, vk, α).
Select at random r′ ∈ Z

∗
n. Return (ur′

L,1, . . . , v
r′
k , αr′

).

It is easy to see that this is a public key cryptosystem with perfect reran-
domization. For security, we have the following theorem.

Theorem 1. The cryptosystem is WRCCA secure provided the DDH assump-
tion holds for G and the hash-function is collision-free.

Proof. Consider the experiments in the definition of WRCCA security. The
only difference is in the challenge given to the adversary. We define several
probabilities p0, . . . , p6 of A outputting 1 given different challenges. I.e., we set
pi = Pr[(pk, sk) ← K(); (m0, m1) ← AO1(pk); y ← Chali : AO2(y) = 1], where
Chali for the various probabilities returns the following.

p0: (gr
L,1, g

r
R,1, h

m01r
1 , . . . , gr

L,k, gr
R,k, hm0kr

k , (cdh(m0))r).

p1: (. . . , gr
L,i, g

m0im0ir
R,i , hm0ir

i , . . . ,
∏k

i=1 u
kL,i+lL,ih(m0)
L,i u

kR,i+lR,ih(m0)
R,i).

p2: (. . . , gr
L,i, g

m0im1ir
R,i , hm0ir

i , . . . ,
∏k

i=1 u
kL,i+lL,ih(m0)
L,i u

kR,i+lR,ih(m0)
R,i).

p3: (. . . , gr
L,i, g

m0im1ir
R,i , hm0ir

i , . . . ,
∏k

i=1 u
kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i).

p4: (. . . , gm0im1ir
L,i , gr

R,i, h
m1ir
i , . . . ,

∏k
i=1 u

kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i).

p5: (. . . , gm1im1ir
L,i , gr

R,i, h
m1ir
i , . . . ,

∏k
i=1 u

kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i).

p6: (gr
L,1, g

r
R,1, h

m11r
1 , . . . , gr

L,k, gr
R,k, hm1kr

k , (cdh(m1))r).

p0 and p6 are the probabilities for the definition of WRCCA security. We must
therefore prove that p0 ≈ p6. To accomplish this we prove that p0 ≈ p1, . . . , p5 ≈
p6.

The proof goes as follows. It is easy to see that p0 = p1. In p1 we simulate
the proof α, however, the simulation is perfect. p1 ≈ p2 follows from Claim 11.
p2 ≈ p3 follows from Claim 13. p3 ≈ p4 follows from Claim 14. p4 ≈ p5 follows
by a completely similar proof as for Claim 11. p5 = p6 is seen by inspection since
again the only difference between them is a perfectly simulated proof α.

Claim 11. p1 ≈ p2.

Proof. Assume for contradiction WLOG that p1 is noticeably larger than p2. We
transform A into an adversary B that can break the following hard problem.

Hard problem. We select at random h1, . . . , hk and gR,1, . . . , gR,k from G. B
sees these and is allowed to choose m0, m1 ∈ {−1, 1}k. Subsequently we choose
at random r ∈ Z

∗
n. We give either (gm01m01r

R,1 , hm01r
1 , . . . , gm0km0kr

R,k , hm0kr
k) or

(gm01m11r
R,1 , hm01r

1 , . . . , gm0km1kr
R,k , hm0kr

k) to B. B must now output a bit. We con-
sider B successful if it can distinguish the two tuples.

The hardness of the problem relies on the DDH assumption. Sup-
pose B can distinguish the two types of challenge. By a hybrid ar-
gument there is an index i and a bit b such that B can distin-
guish (gm01m01r

R,1 , hm01r
1 , . . . , gm0imbir

R,i , hm0ir
i , . . . , gm0km1kr

R,k , hm0kr
k) and

158 J. Groth

(gm01m01r
R,1 , hm01r

1 , . . . , y, hm0ir
i , . . . , gm0km1kr

R,k , hm0kr
k), where y is chosen at

random.
Consider now a randomly chosen DDH challenge (g, h, z, hr) where we

must determine whether z = gr or z is chosen at random from G. We
set hi = h and gR,i = g. For all j �= i we select at random xj , xR,j

and compute hj = hxj and gR,j = h
x−1

R,j

j . We give gR,1, h1, . . . , gR,k, hk

to B and get the messages m0 and m1. Then we give B the challenge
(gm01m01r

R,1 , hm01r
1 , . . . , zm0imbi , hm0ir, . . . , gm0km1kr

R,k , hm0kr
k). We have now con-

verted B into a DDH distinguisher.

The algorithm B. We describe B. In its first invocation it gets the input
gR,1, . . . , gR,k, h1, . . . , hk. It selects at random xL,1, . . . , xL,k ∈ Zn. It sets

gL,1 = h
x−1

L,1
1 , . . . , gL,k = h

x−1
L,k

k . After this it selects kL,1, . . . , lR,k and sets

c =
k∏

i=1

g
kL,i

L,i g
kR,i

R,i and d =
k∏

i=1

g
lL,i

L,i g
lR,i

R,i .

B now has something that looks perfectly like a public key for our cryptosystem.
It does not know the full secret key since it does not know the discrete logarithms
xR,1, . . . , xR,k.
B runs the algorithm for A on the public key given above. Whenever

A queries the oracle O1 then B answers the query by extracting a mes-
sage m using its knowledge of xL,1, . . . , xL,k. It then checks that α =
∏k

i=1 u
kL,i+lL,ih(m)
L,i u

kR,i+lR,ih(m)
R,i . It returns m if everything works out OK. We

can see this as A getting its oracle queries answered by a left-oracle OL
1 . From

Claim 12 we see that with overwhelming probability these answers correspond
to the answers the real oracle O1 would make. A returns two messages m0 and
m1. This is the output of B after its first invocation.

A challenge (uR,1, v1, . . . , uR,k, vk) for the hard problem is now se-
lected and given to B. B converts this challenge into what looks like a

ciphertext by setting uL,1 = v
m01x−1

L,1
1 , . . . , uL,k = v

m0kx−1
L,k

k and α =
∏k

i=1 u
kL,i+lL,ih(m0)
L,i u

kR,i+lR,ih(m0)
R,i . In case we have uR,1 = gm01m01r

R,1 , v1 =
hm01r

1 , . . . , uR,k = gm0km0kr
R,k , vk = hm0kr

k then the ciphertext will be as in the
challenge in p1. In case we have uR,1 = gm01m11r

R,1 , v1 = hm01r
1 , . . . , uR,k =

gm0km1kr
R,k , vk = hm0kr

k then we have a ciphertext on the form of the challenge
in p2.
B now runs A on this ciphertext. It answers queries in the same way as

before, i.e., using OL
2 that decrypts using xL,1, . . . , xL,k and then checks the

proof. Again using Claim 12 we get that the oracle queries are answered as the
real oracle O2 with access to the discrete logarithms xR,1, . . . , xR,k would do. In
the end, A answers with a bit. B uses this bit as its output.

Depending on the challenge, we have either probability p1 for B outputting
1 or probability p2 for B outputting 1. If the two probabilities are noticeably

Rerandomizable RCCA Secure Cryptosystems 159

different, this means that we have created a distinguisher for the hard problem
and thereby broken the DDH assumption.

Claim 12. It is infeasible for A to find a ciphertext y′ with proof α′ that gets
answered differently by the real oracles O1,O2 and modified oracles OL

1 ,OL
2 that

only left-decrypt, even if A sees a fake ciphertext y as the challenge in p2 with
simulated proof α.

Proof. Consider the difficult case, namely finding a query that O2 and OL
2 answer

differently. The information available to A about kL,1, . . . , lR,k comes from c, d
and the fake ciphertext y. If we compute the discrete logarithms with respect to
some base g for these elements, we get the following system of linear equations
in Zn to be satisfied, where α′ is the “proof” in the newly created ciphertext.





1 1 · · · 0 0 · · ·
0 0 · · · 1 1 · · ·
r rδ1 · · · rh(m0) rδ1h(m0) · · ·

rL,1 rR,1 · · · rL,1h(m) rR,1h(m) · · ·









log(gL,1)kL,1
log(gR,1)kR,1

...
log(gL,1)lL,1
log(gR,1)lR,1

...





=





log(c)
log(d)
log(α)
log(α′)



 ,

where we define δi = m0im1i.
Since kL,1, . . . , lR,k are unknown and randomly chosen the only chance for

the proof α′ to be correct is if the last row is a linear combination of the first
three rows. Already at this point we can therefore see that we must have some
rL such that for all i we have rL = rL,i. Reducing the matrix we get





1 1 · · · 0 0 · · ·
0 0 · · · 1 1 · · ·
0 δi − 1 · · · 0 (δi − 1)h(m0) · · ·
0 rR,1 − rL · · · 0 (rR,1 − rL)h(m) · · ·



 .

We see that there must be some µ such that the fourth row is µ times the
third row. This means that for all i with δi = 1 we have rR,i = rL. Consider
from now on the remaining i’s where δi = −1. We see that for all these i’s we
have

rR,i − rL = −2µ and (rR,i − rL)h(m) = −2µh(m0).

If µ = 0 then rR,i = rL for all i and therefore both left-decryption and right-
decryption give the same result. In that case, the left-oracle answers correctly.

If µ �= 0 then we have for these i’s that (rR,i − rL)(h(m) − h(m0)) = 0 and
rR,i − rL �= 0. This implies that h(m) = h(m0), since the hashes are smaller
than the smallest prime factor of n. Collision-freeness of the hash-function now
implies that m = m0. But in that case, both OL

2 and O2 answer invalid. We
therefore see that the left-oracle answers the same as the real oracle.

160 J. Groth

Claim 13. p2 ≈ p3.

Proof. Let i be an index such that m0im1i = −1. We will argue that even if A
is computationally unbounded and given kL,j , kR,j , lL,j , lR,j for all j �= i it still
cannot distinguish the two challenges.

From the available information A can use c to compute

Ki = log(gL,i)kL,i + log(gR,i)kR,i mod n

and d to compute

Li = log(gL,i)lL,i + log(gR,i)lR,i mod n

as well as α to compute

Ai = log(gL,i)(kL,i + h(mb)lL,i)− log(gR,i)(kR,i + h(mb)lR,i) + h(mb)∆
= Ki − 2 log(gR,i)kR,i + h(mb)(Li − 2 log(gR,i)lR,i + ∆) mod n,

where ∆ depends on the other k’s and l’s, but not kL,i, kR,i, lL,i, lR,i. However,
since kL,i, lR,i, lL,i, lR,i are chosen at random this does not reveal whether b = 0
or b = 1.
A cannot use the decryption queries to learn anything. If A wants to make a

decryption query that has noticeable chance of being valid it must be on the form
(gr1

L,1, g
r1
R,1, h

m1r1
1 , . . . , gri

L,i, g
ri

R,i, h
miri
i , . . . , grk

L,k, grk

R,k, hmkrk

k ,
∏k

j=1 gKj+h(m)Lj).
This does not reveal any new information on kL,i, kR,i, lL,i, lR,i and therefore b
remains hidden.

Claim 14. p3 ≈ p4.

Proof. By a hybrid argument if A can distinguish the two challenges then there
is an index i such that A can be used to distinguish challenges on the form
(gr

L,1, g
m01m11r
R,1 , hm01r

1 , . . . , gr
L,i, g

m0im1ir
R,i , hm0ir

i , . . . , gm0km1kr
L,k , gr

R,k, hm1kr
k ,

∏k
i=1 u

kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i) and (gr

L,1, g
m01m11r
R,1 , hm01r

1 , . . . , gm0im1ir
L,i , gr

R,i,

hm1ir
i , . . . , gm0km1kr

L,k , gr
R,k, hm1kr

k ,
∏k

i=1 u
kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i).

According to the DDH assumption it is impossible to tell whether a challenge
(g, h, gr, z) has z = hr or z chosen at random from G. This implies that it is
hard to distinguish (g, h, gr, hr) and (g, h, gr, h−r).

So given a challenge (g, h, gr, z), where z = hr or z = h−r, we set hi = h
and for all j �= i we compute hj = gxj , where we choose xj at random. We
have now selected h1, . . . , hk and carry out the rest of the key generation pro-
cedure. This gives us a public key and a secret key. Now we run the first invo-
cation of A on this challenge. A produces two challenge messages m0 and m1.
If m0i = m1i we stop and guess at random a bit b. However, if m0i �= m1i then
we set vi = z. We may now set it up such that z = hm0ir gives us the challenge
(gr

L,1, g
m01m11r
R,1 , hm01r

1 , . . . , gr
L,i, g

m0im1ir
R,i , hm0ir

i , . . . , gm0km1kr
L,k , gr

R,k, hm1kr
k ,

∏k
i=1 u

kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i), while z = hm1ir gives us the challenge

(gr
L,1, g

m01m11r
R,1 , hm01r

1 , . . . , gm0im1ir
L,i , gr

R,i, h
m1ir
i , . . . , gm0km1kr

L,k , gr
R,k, hm1kr

k ,
∏k

i=1 u
kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i). Since A can distinguish these two challenges

this means we have broken the DDH assumption. ��

Rerandomizable RCCA Secure Cryptosystems 161

4 Rerandomizable RCCA Secure Encryption

The WRCCA secure cryptosystem is not RCCA secure. First, let us ar-
gue that the WRCCA secure cryptosystem from the previous section is not
RCCA secure. So we are given a ciphertext (uL,1, uR,1, v1, . . . , uL,k, uR,k, vk, α)
and want to know whether it encrypts m0 or m1. We simply transform
it into (uL,1gL,1, uR,1gR,1, v1h

m01
1 , . . . , uL,kgL,k, uR,kgR,k, vkhm0k

k , αcdh(m0)). We
then submit this modified ciphertext to the oracle O2. If the encrypted message
is m0 then we have a new encryption of m0, and O2 answers test. On the other
hand, if the encrypted message is m1, then we have messed things up and O2
answers invalid. This means that we can distinguish between encryptions of
the two possible plaintexts.

Improving the cryptosystem to have RCCA security. In the following, we attempt
to fix the WRCCA secure cryptosystem. The problem in the attack above is that
the adversary can rerandomize the ciphertext in a way such that he depending
on the message inside gets either test or invalid as the answer. To prevent
this we wish for a cryptosystem where the adversary is forced to make a correct
rerandomization, and if he does not then he has overwhelming probability of
getting invalid as answer.

To accomplish this we raise α to a random value Z. Rerandomization still
works by raising all parts of the ciphertext to some random r′. Assuming the
receiver knows this secret Z he can decrypt the ciphertext. On the other hand an
adversary that does not know Z can only modify the proof in a meaningful way
by raising the proof to some exponent. The adversary is therefore forced to either
make correct rerandomizations or make some garbage. In particular he cannot
use the previous attack where he with 50% probability creates a rerandomization
and with 50% probability makes some garbage.

For this to be a public key cryptosystem we need the sender to choose Z
and transmit it to the receiver. Therefore, she encrypts Z and sends it to the
receiver. Since we want to have perfect rerandomization we also need to be able
to rerandomize Z and the encryption of Z. We therefore use a homomorphic
cryptosystem with message space Zn to transmit Z to the receiver. This could
for instance be Paillier-encryption, Cramer-Shoup Lite encryption based on the
decisional composite residuosity assumption or perhaps some elliptic curve based
cryptosystem.

Key generation: We set up the same public private keys (pk, sk) as in the pre-
vious section. Generate also keys (pkn, skn) for an additively homomorphic
cryptosystem with message space Zn. We demand that it is infeasible to find
non-trivial factors of n.
The public key is PK = (pk, pkn).
The secret key is SK = (sk, skn).

Encryption: Input: m ∈ {−1, 1}k.
EPK(m; r, R, Z) = (gr

L,1, g
r
R,1, h

m1r
1 , . . . , gr

L,k, gr
R,k, h

mkr
k , (cdh(m))rZ , Epkn(Z; R)).

162 J. Groth

Decryption: Given a ciphertext Y = (uL,1, uR,1, v1, . . . , uL,k, uR,k, vk, β, y).
Compute Z = Dskn

(y). Check that Z ∈ Z
∗
n. Set α = βZ−1

. Finally, compute
m = Dsk(uL,1, uR,1, v1, . . . , uL,k, uR,k, vk, α).
If all checks and computations work out return m, otherwise return invalid.

Rerandomization: Input: PK and a ciphertext Y .
Format Y as (uL,1, uR,1, v1, . . . , uL,k, uR,k, vk, β, y). Check that all of these
elements belong to appropriate groups.
Select randomizers r′, Z ′, R′.
Return (ur′

L,1, u
r′
R,1, v

r′
1 , . . . , ur′

L,k, ur′
R,1, v

r′
k , βr′Z′

, Epkn
(0; R′)yZ′

).

It is straightforward to verify that the cryptosystem is rerandomizable, and
WRCCA security follows from the previous section. Left is the question whether
it is RCCA secure.

Speaking against this idea is the fact that the adversary does actually get
access to a chosen ciphertext attack on the homomorphic cryptosystem. For in-
stance, given a y, it may form (gr

L,1, . . . , h
r
k, (cdh(1k))z, y). Giving this ciphertext

to O2 it can learn whether y contains z or not. Of course, if the adversary can
use queries like this to figure out Z of the challenge encryption, then it may use
the attack on the WRCCA scheme to violate the RCCA security of the proposed
cryptosystem.

The semi-generic model. We are unable to prove security of the cryptosystem
directly and likewise unable to break it. We therefore try to formulate a reason-
able security model that says something about the security of the cryptosystem.
Since random oracles are no good with respect to rerandomizable encryption we
instead turn to the generic model, which has been explored in several papers
including [11,12,13]. In other words, we will prove that if a generic homomor-
phic cryptosystem over Zn is used to encrypt Z, then the construction is RCCA
secure.

By a generic cryptosystem, we mean the following functionality. On an input
(Encrypt, z) we choose y at random and store (z, y). On a query (Add, y, y′) we
look up whether y, y′ have already been stored. In that case we select at random
y′′ and store (z + z′, y′′). On input (Decrypt, y) we look up whether (z, y) has
been stored for some z, and in that case we return z. Note that both adding a
known value to an encrypted message and multiplying an encrypted message by
some known number can be built from these two functions. This means that we
allow use of the well-known homomorphic properties of cryptosystems such as
Paillier encryption, CS-Lite encryption or elliptic curve based encryption. In the
following, we use the shorthand [x] to denote a generic encryption of x.

Encryption and decryption work as before, except we now use this generic
cryptosystem to encrypt Z. The problem in the WRCCA case was that our oracle
that just used left-decryption could not tell when to answer test and invalid,
and indeed we showed with a concrete attack that this difference is important.
We will argue that this problem goes away in the semi-generic model.

Recall that in the intuition provided for our conjectured RCCA secure cryp-
tosystem we imagined Z to be completely unknown to the adversary. Since the

Rerandomizable RCCA Secure Cryptosystems 163

adversary has access to a chosen ciphertext attack it is not possible to use se-
mantic security of the encryption of Z to argue RCCA security. The semi-generic
model intuitively corresponds to a “perfect” encryption of Z, which at the same
time has the needed homomorphic property.

Theorem 2. The cryptosystem described above is RCCA secure against semi-
generic adversaries under the DDH assumption and the collision-freeness of the
hash-function.

Proof. Consider the definition of RCCA security. We will replace the or-
acle O2 with a different oracle O′. O′ works like O2 except when seeing
a ciphertext Y that left-decrypts to m0 and right-decrypts to m1. In this
special case it will check whether the proof α is valid with either h(m0) or
h(m1). In those two cases, O′ returns test, while in all other cases it acts like O2.

Just as in the proof of Theorem 1 we consider probabilities p0, . . . , p6 that
we define the following way: pi = Pr[(pk, sk)← K(); (m0, m1)← AO1(pk); y ←
Chali : AO(y) = 1], where Chali for the various probabilities gives the following
challenges, and in p0, p6 we use O = O2, while in p1, p2, p3, p4 we use O = O′.

p0: (gr
L,1, g

r
R,1, h

m01r
1 , . . . , gr

L,k, gr
R,k, hm0kr

k , (cdh(m0))rZ , [Z]).

p1: (. . . , gr
L,i, g

m0im0ir
R,i , hm0ir

i , . . . , (
∏k

i=1 u
kL,i+lL,ih(m0)
L,i u

kR,i+lR,ih(m0)
R,i)Z , [Z]).

p2: (. . . , gr
L,i, g

m0im1ir
R,i , hm0ir

i , . . . , (
∏k

i=1 u
kL,i+lL,ih(m0)
L,i u

kR,i+lR,ih(m0)
R,i)Z , [Z]).

p3: (. . . , gr
L,i, g

m0im1ir
R,i , hm0ir

i , . . . , (
∏k

i=1 u
kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i)Z , [Z]).

p4: (. . . , gm0im1ir
L,i , gr

R,i, h
m1ir
i , . . . , (

∏k
i=1 u

kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i)Z , [Z]).

p5: (. . . , gm1im1ir
L,i , gr

R,i, h
m1ir
i , . . . , (

∏k
i=1 u

kL,i+lL,ih(m1)
L,i u

kR,i+lR,ih(m1)
R,i)Z , [Z]).

p6: (gr
L,1, g

r
R,1, h

m11r
1 , . . . , gr

L,k, gr
R,k, hm1kr

k , (cdh(m1))rZ , [Z]).

To prove that the cryptosystem is RCCA secure we need to prove that p0 ≈
p6. p0 ≈ p1 according to Claim 21. p1 ≈ p2 according to Claim 22. p2 ≈ p3
according to Claim 22. p3 ≈ p4 follows from a similar argument as we gave
for Claim 14 in the proof of Theorem 1. p4 ≈ p5 follows from a quite similar
argument as the one given for Claim 22. p5 ≈ p6 likewise follows from the proof
of Claim 21.

Claim 21. p0 ≈ p1.

Proof. Both challenges are computed the same way. The difference between the
probabilities is the oracles O2 and O′. However, we will argue that it is infeasible
even for a computationally unbounded adversary A to distinguish between the
two oracles as long as it may only make a polynomial number of queries, and even
if A is allowed to freely make decryption queries to the generic cryptosystem.

The information available to A about kL,1, . . . , lR,k is what
it can tell from c and d and the challenge. Consider a query
(u′

L,1, u
′
R,1, v

′
1, . . . , u

′
L,k, u′

R,k, v′
k, β′, [Z ′]). Calling the respective discrete

164 J. Groth

logarithms rL,1, rR,1, r1, . . . , rL,k, rR,k, rk, Z ′ log(α′) we get the following system
of linear equations.





1 1 · · · 0 0 · · ·
0 0 · · · 1 1 · · ·
r r · · · rh(m0) rh(m0) · · ·

rL,1 rR,1 · · · rL,1h(m) rR,1h(m) · · ·









log(gL,1)kL,1
log(gR,1)kR,1

...
log(gL,1)lL,1
log(gR,1)lR,1

...





=





log(c)
log(d)
log(α)
log(α′)



 .

If the query is to return something else than invalid with more than negli-
gible probability then A must use rL,1 = rR,1 = · · · = rL,k = rR,k. But on such
queries O2 and O′ work the same way.

Claim 22. p1 ≈ p2.

Sketch of proof. Just as in Claim 11 in the proof of Theorem 1 we may argue
that we can break the DDH assumption if A distinguishes between the two
challenges. The difference between Claim 11 and Claim 22 is the oracles that are
used. However, here we may also argue just as in the proof of that claim that
left-decryptions work just as well as right-decryptions. This follows from Claim
23.

Claim 23. The oracles OL
1 ,O′L that only left-decrypt ciphertexts give the same

answers as O1,O′.

Proof. We look at the difficult case, namely whether O′ and O′L answer the
same. Consider the information available to an adversary regarding kL,1, . . . , lR,k.
There is c, d and possibly a fake ciphertext. From this it must create a ciphertext
with “proof” β′. Since we are using a generic cryptosystem for storing Z, the
adversary must store some value f(Z) in the homomorphic encryption. With the
generic cryptosystem f(Z) = aZ + b mod n with a, b known to the adversary.

Defining δi = m0im1i we get the following system of linear equations in Zn.





1 1 · · · 0 0 · · ·
0 0 · · · 1 1 · · ·
r rδ1 · · · rh(m0) rδ1h(m0) · · ·

rL,1 rR,1 · · · rL,1h(m) rR,1h(m) · · ·









log(gL,1)kL,1
log(gR,1)kR,1

...
log(gL,1)lL,1
log(gR,1)lR,1

...





=





log(c)
log(d)
log(β)

Z
log(β′)
f(Z)



 .

It is immediate that for any query with noticeable chance of being valid we
must have some rL = rL,i for all i. Reducing the matrices we get





1 1 · · · 0 0 · · · log(c)
0 0 · · · 1 1 · · · log(d)
0 δ1 − 1 · · · 0 (δ1 − 1)h(m0) · · · log(β)

rZ − log(c)− h(m0) log(d)
0 rR,1 − rL · · · 0 (rR,1 − rL)h(m) · · · log(β′)

f(Z) − rL log(c)− rLh(m) log(d)





Rerandomizable RCCA Secure Cryptosystems 165

If we have rL = rR,i for all i then the left-decryption corresponds to the real
decryption and both pairs of oracles answer the same. Assuming we are not in
this trivial situation we can argue that for all i with δi = 1 we have rR,i = rL.
Similarly we have some rR such that for all the other i’s we have rR = rR,i.
We also see that m = m0 by the collision-freeness of the hash-function. Adding
rR−rL

2 times row three to row four we get:





1 1 · · · 0 0 · · · log(c)
0 0 · · · 1 1 · · · log(d)
0 δ1 − 1 · · · 0 (δ1 − 1)h(m0) · · · log(β)

rZ − log(c)− h(m0) log(d)
0 0 · · · 0 0 · · · log(β′)

f(Z) − rL log(c)− rLh(m0) log(d)

− rL−rR

2 (log(β)
rZ − log(c)− h(m0) log(d))





We must therefore have

2
log(β′)
f(Z)

− (rL + rR)(log(c) + h(m0) log(d)) + (rR − rL)
log(β)

rZ
= 0 mod n.

This implies

2 log(β′)rZ−(rL+rR)(log(c)+h(m0) log(d))rZf(Z)+(rR−rL) log(β)f(Z) = 0 mod n.

Since we use a generic cryptosystem the adversary cannot produce anything but
f(Z) = aZ+b with a and b known. We then get a degree 2 polynomial on the left
side of the equation. Since Z is unknown, the adversary can only have a chance
at producing correct proofs by making sure that it is the zero-polynomial on the
left side.

So if the left side of the equation is the zero-polynomial then we get (rR −
rL) log(β)b = 0 mod n. Since b cannot be a non-trivial factor of n this implies
b = 0 or rR − rL = 0. In the latter case both right- and left-decryption is the
same and we are done. We therefore continue under the assumption that b = 0.

Considering the Z2-part we get (rL+rR)(log(c)+h(m0) log(d))ra = 0 mod n.
This implies a = 0 or rR = −rL. However, a = 0 would mean that y′ contains
0Z + 0 which automatically leads to the response invalid by both the real
oracles and the left-oracles. On the other hand if we have rR = −rL then we
have for all i’s where δi = −1 that rR = δirL. Since the left-decryption is m0
then this implies a right-decryption to m1. But also in this case we then have
the left-oracles give the same answer as the real oracle.

Remark 1. It is worth noting that even if we allow other types of mauling of the
generic cryptosystem, we may have security. In particular, if we allow it to be
algebraically homomorphic (i.e., both addition and multiplication of plaintexts
is possible) this does not break our construction. In that case f(Z) becomes a
polynomial in Z with a polynomial number of different roots and we can use
arguments similar to the one above to show that the left-oracles works the ame
way as the real oracles.

166 J. Groth

Claim 24. p2 ≈ p3

Proof. Assume WLOG that A is computationally unbounded (but may only
make a polynomial number of queries to the oracles) and knows the secret keys
except kL,1, . . . , lR,k. We may argue from Claim 13 in the proof of Theorem 1
that it does not have any information on h(mb) from the challenge itself, and
therefore cannot distinguish the two experiments without making oracle queries.

Let us consider the oracle queries that it may make. We label the discrete log-
arithms of a successful query (u′

L,1, u
′
R,1, v

′
1, . . . , u

′
L,k, u′

R,k, v′
k, (α′)Z′

, [Z ′]) with
(rL,1, rR,1, r1, . . . , rL,k, rR,k, rk,−,−). We then have the following system of
equations.





1 1 · · · 0 0 · · ·
0 0 · · · 1 1 · · ·
r rδ1 · · · rh(mb) rδ1h(mb) · · ·

rL,1 rR,1 · · · rL,1h(m) rR,1h(m) · · ·









log(gL,1)kL,1
log(gR,1)kR,1

...
log(gL,1)lL,1
log(gR,1)lR,1

...





=





log(c)
log(d)
log(α)
log(α′)



 .

We see that there is an element rL such that for all i we have rL,i = rL.
Reducing the matrix we get.





1 1 · · · 0 0 · · ·
0 0 · · · 1 1 · · ·
0 δ1 − 1 · · · 0 (δ1 − 1)h(mb) · · ·
0 rR,1 − rL · · · 0 (rR,1 − rL)h(m) · · ·



 .

Unless rR,i = rL for all i, then h(m) = h(mb) and rR,i = rR,1 for all i. Those
two options correspond to respectively make a new ciphertext, or rerandomize
the challenge. In either case, A does not learn anything new from O′’s answers.

��
Theorem 2 tells us is that the scheme is RCCA secure against semi-generic

adversaries that only use standard group operations on the encryption of Z.
We can instantiate the cryptosystems with many possible homomorphic cryp-
tosystems, for instance Paillier encryption, CS-Lite encryption or elliptic curve
encryption. We could also use a multiplicative homomorphic property instead
and use standard RSA to encrypt Z. To break the scheme we would have to come
up with some non-standard way of mauling these cryptosystems. We believe such
a result would be highly interesting in itself.

5 Discussion

To evaluate our results we find it useful to compare them with the development
of standard CCA2 secure public key encryption. In this process, Naor and Yung
[14] invented a CCA1 secure encryption scheme. Dolev, Dwork and Naor [1] then

Rerandomizable RCCA Secure Cryptosystems 167

suggested a CCA2 secure cryptosystem. Several years after this Cramer and
Shoup [3] suggested the first practical CCA2 secure cryptosystem. Furthermore,
several schemes have been proposed that are secure in the random oracle model.
A proof of security in the random oracle model is not a real proof of security,
but it is better than no proof at all.

With respect to rerandomizable encryption our intuition is that WRCCA
secure encryption is a step on the way. WRCCA secure encryption may have its
uses, however, as CCA2 secure encryption is the standard for public key encryp-
tion we think RCCA secure encryption is the right standard for rerandomizable
encryption. As stated earlier we believe coming up with a rerandomizable RCCA
secure encryption scheme is a very hard task, and certainly an interesting open
problem. In lack of such a scheme, we have suggested using another security
paradigm, namely RCCA security against semi-generic adversaries. Just as prov-
ing CCA2 security in the random oracle model is not the same as proving CCA2
security in the standard model, proving RCCA security in the semi-generic model
is not the same as proving RCCA security in the standard model, but it is better
than no proof at all.

Acknowledgments. Moni Naor suggested the idea of rerandomizable encryp-
tion in a conversation with us and we also appreciate his encouragement during
the research. Thanks goes to Alon Rosen and Jesper Buus Nielsen for discussions.

References

1. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. of Com-
puting 30 (2000) 391–437 Earlier version at STOC ’91.

2. Sahai, A.: Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In: proceedings of FOCS ’01. (2001) 543–553

3. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. In: proceedings of
CRYPTO ’98, LNCS series, volume 1462. (1998) 13–25

4. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: proceedings of EUROCRYPT ’02,
LNCS series, volume 2332. (2002) 45–64

5. Lindell, Y.: A simpler construction of cca2-secure public-key encryption under
general assumptions. In: proceedings of EUROCRYPT ’03, LNCS series, volume
2656. (2003) 241–254

6. Shoup, V.: A proposal for an iso standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112 (2001) http://eprint.iacr.org/2001/212.

7. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
In: proceedings of EUROCRYPT ’02, LNCS series, volume 2332. (2002) 83–107

8. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
proceedings of CRYPTO ’03, LNCS series, volume 2729. (2003) 565–582

9. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa
encryption standard pkcs 1. In: proceedings of CRYPTO ’98, LNCS series, volume
1462. (1998) 1–12

168 J. Groth

10. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions,
and an indistinguishability-based characterization. In: proceedings of CRYPTO
’99, LNCS series, volume 1666. (1999) 519–536

11. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography. In: proceedings of CRYPTO ’96, LNCS series, volume 1109. (1996)
283–297

12. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: pro-
ceedings of EUROCRYPT ’97, LNCS series, volume 1233. (1997) 256–266

13. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: proceedings of EUROCRYPT ’02, LNCS
series, volume 2332. (2002) 256–271

14. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: proceedings of STOC ’90. (1990) 427–437

15. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: proceedings of CRYPTO ’98, LNCS
series, volume 1462. (1998) 26–45

A Appendix

Theorem 3. The directed graph in Figure 1 describes completely the relations
between our security notions. ATT1 security implies ATT2 security if there is
a path from ATT1 to ATT2. If there is no path from ATT1 to ATT2, then a
cryptosystem with ATT1 security implies the existence of a ATT2 secure cryp-
tosystem, which is not ATT1 secure.

Sketch of proof. It is trivial to follow each arrow and see that it leads to a weaker
security notion.

We list the constructions that can be used to separate the security notions.
To show that ATT1 � ATT2 we assume that (K, E, D) is an ATT1 secure
cryptosystem and present (K ′, E′, D′) that is ATT1 secure but not ATT2 secure.
K ′, E′ will be as follows

Key generation: K ′ runs (pk, sk) ← K(). It also selects at random a seed s
for a pseudorandom function PRF and a random nonce r. It returns (pk′ =
(pk, r), sk′ = (sk, r, s)).

Encryption: E′
pk′(m; r) = (0, Epk(m)).

Left is to describe how D′ works, which we do in the table of inputs and corre-
sponding outputs in the table below.

RCCA+PA1 � CCA2 :
(0, y) : Dsk(y)
(1, y) : PRFs(y)
(2, p, y) : If p = PRFs(y) return Dsk(y), else return invalid.

WRCCA+ATT � RCCA, where ATT∈{RPA1,RPA1+PA0,PA1}
(0, y) : Dsk(y)
(1, y) : PRFs(y)
(2, p, m, y) : If p = PRFs(y) and m = Dsk(y) return m, else return invalid.

Rerandomizable RCCA Secure Cryptosystems 169

RPA1

RCCA

WRCA

WRCCA+RPA1+PA0

WRPA1+RPA0

CCA1+RPA0

WRCCA+PA0
�

�

�

�

�

CCA2

RCCA+PA1

WRCCA+RPA1

WRCCA+RPA0

WRPA1

WRPA1+PA0

RPA1+PA0

CCA1+PA0

WRPA0

RCCA+PA0 WRCCA+PA1

CCA1+WRPA0 RPA0

PA1

PA0

CPA

�
�

�
��

�
�

��

�
�

��

�
�

��

�
�

��

�

�
�

��

�
�

��

�

�
�

��

�
�

��

�
�

��

�

�
�

��

�
�

��

�
�

���

�

�
�

���

�
�

��

�
�

��

�
�

�
��

�

�
�

���

�
�

��

�
�

���

�
�

���

�
�

���

�

Fig. 1. Relations between security notions.

170 J. Groth

�
It is interesting to note that Theorem 3 implies that a cryptosystem that

is both IND-CCA1 secure and NM-CPA secure is not necessarily NM-CCA1
secure. This combination was not considered in [15].

	Introduction
	Notions of Replayable Security
	Rerandomizable Weak RCCA Secure Encryption
	Rerandomizable RCCA Secure Encryption
	Discussion
	Appendix

