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Abstract. Given a bipartite graph G = (V, W, E), a bilayer drawing
consists of placing nodes in the first vertex set V on a straight line L1

and placing nodes in the second vertex set W on a parallel line L2.
The one-sided crossing minimization problem asks to find an ordering
of nodes in V to be placed on L1 so that the number of arc crossings
is minimized. In this paper, we prove that there always exits a solution
whose crossing number is at most 1.4664 times of a well-known lower
bound that is obtained by summing up min{cuv, cvu} over all node pairs
u, v ∈ V , where cuv denotes the number of crossings generated by arcs
incident to u and v when u precedes v in an ordering.

1 Introduction

Given a bipartite graph G = (V, W, E), a bilayer drawing consists of placing
nodes in the first vertex set V on a straight line L1 and placing nodes in the
second vertex set W on a parallel line L2. The problem of minimizing the number
of crossings between arcs in a bilayer drawing was first introduced by Harary
and Schwenk [5,6]. The one-sided crossing minimization problem asks to find an
ordering of nodes in V to be placed on L1 so that the number of arc crossings is
minimized (while the ordering of the nodes in W on L2 is given and fixed).

The problem has many applications such as VLSI layouts [11] and hierarchical
drawings [1]. However, the two-sided and one-sided problems are shown to be
NP-hard by Garey and Johnson [4] and by Eades and Wormald [3], respectively.
Muñoz et al. [10] have proven that the one-sided problem remains to be NP-
hard even for sparse graphs such as forests of 4-stars. Recently Dujmović and
Whitesides [2] have given an O(φc ·n2) time algorithm to the one-sided problem,
where c is the number of crossings to be checked, n = |V | + |W | and φ = 1+

√
5

2 ,
thus showing that the problem is Fixed Parameter Tractable.

There are several heuristics that deliver theoretically or empirically good solu-
tions. The so-called barycenter heuristic finds an O(

√
n)-approximation solution

or a (d − 1)-approximation solution, where d is the maximum degree of nodes
in the free side V (see [8] for the analysis). Eades and Wormald [3] proposed
a simple and theoretically better heuristic, the median heuristic which delivers
a 3-approximation solution. They also prove that the performance guarantee of
the median heuristic approaches to 1 if graphs become dense. Yamaguchi and
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Sugimoto [13] gave a 2-approximation algorithm if d ≤ 4. For all the known per-
formance guarantees of these heuristics are based on a conventional lower bound
that is obtained by summing up min{cuv, cvu} over all node pairs u, v ∈ V ,
where cuv denotes the number of crossings generated by arcs incident to u and
v when u precedes v in an ordering. An extensive computational experiment of
several heuristics including the above two has been conducted by Jünger and
Mutzel [7] and by Mäkinen [9]. Jünger and Mutzel [7] reported that most of the
heuristics gave good solutions whose crossing numbers are nearly equal to the
lower bound. However the theoretically best estimation to the gap between the
optimal and the lower bound is 3 due to the heuristic by Eades and Wormald
[3].

In this paper, we prove that there always exists a solution whose crossing
number is at most 1.4664 times of the lower bound. Our argument is based on a
probabilistic analysis, which provides a polynomial randomized algorithm that
delivers a solution whose average number of crossings is at most 1.4664 times of
the optimal.

2 Preliminaries

Let G = (V, W, E) be a bipartite graph with a partition V and W of a node
set. Assume that G has no isolated node. Let π denote a permutation of
{1, 2, . . . , |V |} and σ denote a permutation of {1, 2, . . . , |W |}. A pair of π and σ
defines a bilayer drawing of G in the plane in such a way that, for two parallel
horizontal lines L1 and L2, the nodes in V (resp., in W ) are arranged on L1
(resp., L2) according to π (resp., σ) and each arc is depicted by a straight line
segment joining the end-nodes, where the directions for traversing L1 and L2
are taken as the same one (see Fig. 1(a)). In a bilayer drawing (π, σ) of G two
arcs (v, w), (v′, w′) ∈ E intersect properly (or create a crossing) if and only if
(π(v)−π(v′))(σ(w)−σ(w′)) is negative. In this paper, we consider the following
problem.

One-sided Crossing Minimization: Given a bipartite graph G = (V, W, E)
and a permutation σ on W , find a permutation π on V that minimizes the
number of crossings in a bilayer drawing (π, σ) of G.

Since the permutation σ on W = {1, 2, . . . , |W |} is fixed, we assume through-
out the paper that σ(i) = i for all i ∈ W . For each node u in G, let Γ (u) denote
the set of nodes adjacent to u, and let du = |Γ (u)|. For two nodes u, v ∈ V , let
∆uv = |Γ (u) ∩ Γ (v)|. The crossing number cuv for an ordered pair of two nodes
u, v ∈ V is the number of crossing generated by an arc incident to u and an
arc incident to v when π(u) < π(v) holds in a bilayer drawing (π, σ). (Fig. 1(b)
shows the crossing numbers in the graph in Fig. 1(a).) It is a simple matter to
see that

dudv = cuv + cvu + ∆uv, min{cuv, cvu} ≥ ∆uv(∆uv − 1)
2

.
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Fig. 1. (a) A bilayer drawing of a bipartite graph. (b) Crossing numbers for each pair
of nodes in the top layer.

For a permutation π on V , let

cross(u, v; π) :=
{

cuv if π(u) < π(v),
cvu otherwise.

Define
cross(π) :=

∑
u,v∈Y :π(u)<π(v)

cuv =
∑

u,v∈V

cross(u, v; π).

The optimal to the problem is denoted by opt = min{cross(π) | permutation π
on V }. For LB =

∑
u,v∈V min{cuv, cvu}, it holds

opt ≥ LB.

In this paper, we prove the next result.

Theorem 1. For a bipartite graph G = (V, W, E) with a permutation σ on W ,
there exists a permutation π on V such that cross(π) ≤ 1.4664LB. ��

Note that the one-sided crossing minimization is a purely combinatorial prob-
lem in the sense that the number of crossings is determined by a permutation
π, not by the actual positions of nodes in the layers. However, in this paper, we
convert the problem into a geometric problem to derive Theorem 1. For this, we
first introduce a geometric representation that illustrates how two sets Γ (u) and
Γ (v) determine crossing numbers cuv and cvu in a bipartite graph G.

Rectangles that we treat here are axis-parallel in the xy-coordinate, and they
are denoted by the coordinates of the lower-left corner and the upper-right cor-
ner, where the x-coordinate increases in the right direction and the y-coordinate
increases in the upward direction. For example, [(0, 0), (1/2, 1)] represents the
square with four corners (0, 0), (0, 1), (1/2, 0) and (1/2, 1).

Let S denote the square [(0, 0), (1, 1)]. For a connected region R in S, we may
use R to denote the sets of points in the region R, and let a(R) denote the area
size of R. For two points b, b′ ∈ S, a line segment connecting b and b′ is denoted
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by bb′. A part of the boundary of a region R may be called an edge if it is a line
segment. For a line segment (or an edge) e, its length is denoted by �(e). We say
that edge e overlaps with another edge e′ if the intersection of e and e′ is a line
segment of a positive length.

A path P between points (0, 0) and (1, 1) in S is called monotone if none of
the x- and y-coordinates of the point on P decreases when we traverse points on
P from (0, 0) to (1, 1) (in general a monotone path is not necessarily piecewise
linear).

For two integers d, d′ ≥ 1, the square S = [(0, 0), (1, 1)] is called (d, d′)-sliced
if it is sliced by (d − 1) horizontal line segments and (d′ − 1) vertical segments
so that these line segments give rise to d× d′ congruent rectangles. Each of such
rectangles is called a block, which has four edges.

We represent the positions of nodes in Γ (u) and Γ (v) in the permutation σ by
using the unit square S in the xy-coordinate. Let Γ (u) = {u′

1, u
′
2, . . . , u

′
du

} and
Γ (v) = {v′

1, v
′
2, . . . , v

′
dv

}. For an ordered pair (u, v) of nodes in V , we consider
dudv blocks in the (du, dv)-sliced square S. We denote these blocks by

bl(i, j) = [( j−1
dv

, i−1
du

), ( j
dv

, i
du

)], 1 ≤ i ≤ du and 1 ≤ j ≤ dv

We let bl(i, j) correspond to a pair of arcs (u, u′
i) and (v, v′

j). Note that arcs
(u, u′

i) and (v, v′
j) create a crossing in a permutation π with π(u) < π(v) or

π(u) > π(v) if u′
i �= v′

j , but generate no crossing in any permutation π otherwise.
We call a block bl(i, j) with u′

i �= v′
j an up-block if arcs (u, u′

i) and (v, v′
j) creates

a crossing in a permutation π with π(u) < π(v) and an down-block otherwise.
We call a block bl(i, j) with u′

i = v′
j a neutral-block. Observe that the number of

up-blocks (resp., down-blocks and neutral-blocks) is equal to cuv (resp., cvu and
∆uv = ∆vu). We here partition the set of these blocks into two groups UP and
DWN as follows (where a neutral-block may be split into two half blocks in the
partitioning).

u v

W

V

(a) (b)

µ(u) µ(v)

P

(0,1)

(0,0)

(1,1)

(1,0)

Rup

Rdwn

Fig. 2. (a) Two nodes u and v in the top layer, where cuv = 3 and cvu = 8. (b) A
(u, v)-path P of a (4, 3)-sliced square S in the case of (i).
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Definition 1. For each node u ∈ V , where Γ (u) = {w1, w2, . . . , wdu} ⊆ W
(w1 < w2 < · · · < wdu), we define the median index µ(u) of its neighbors by

µ(u) :=

{
w du+1

2
if du is odd,

1
2 (w du

2
+ w du

2 +1) if du is even.

(i) If µ(u) < µ(v), then let UP be the set of all up-blocks, and DWN be the set
of down-blocks and neutral-blocks (see Fig. 2).

(ii) If µ(u) > µ(v), then let UP be the set of all up-blocks and neutral-blocks,
and DWN be the set of down-blocks (see Fig. 3).

(iii) If µ(u) = µ(v), then split each neutral-block [p, q] into two parts by the line
segment pq, and put the upper-left part into UP and the other in DWN .
Then put all up-blocks in the UP , and all down-blocks in the DWN .

The set of all points in the blocks in UP forms a connected region, which we
denoted by Rup. Similarly Rdwn is defined by DWN . ��

u v

W

V

(a) (b)

µ(u)µ(v)

(0,1)

(0,0)

(1,1)

(1,0)

P

Fig. 3. (a) Two nodes u and v in the top layer. (b) A (u, v)-path P of a (2, 5)-sliced
square S in the case of (ii).

From the definition, we observe the next property.

Lemma 1. Let Rup and Rdwn be the regions defined for an ordered pair of nodes
u and v in V . Then there is a monotone path P that separates S into Rup and
Rdwn, and it holds

a(Rup) =




cuv

dudv
if µ(u) < µ(v),

cuv+ ∆uv
2

dudv
if µ(u) = µ(v),

cuv+∆uv

dudv
if µ(u) > µ(v).

Moreover, Rup contains point (0.5, 0.5) if µ(u) ≥ µ(v). ��
Such a path P in the lemma is called the (u, v)-path with respect to G and

σ.
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Lemma 2. Let u, v ∈ V be two nodes in (G, σ) such that 1 ≤ cuv < cvu and
cuv < 2∆uv. Then µ(u) < µ(v) holds unless u and v satisfies one of the following
conditions (1), (2) and (3):

cuv = 3, cvu = 4, du = dv = 3 and ∆uv = 2, (1)
cuv = 3, cvu = 5, {du, dv} = {2, 5} and ∆uv = 2 (see Fig. 3), (2)

cuv = 5, cvu = 7, {du, dv} = {3, 5} and ∆uv = 3. (3)

Proof. Omitted. ��
We close this section by showing some technical lemmas.

Lemma 3. For constants a > 0, b, c > 0 and d such that ad − bc ≥ 0, function
f(x) = (ax+b)( 1

cx+d −2) takes the maximum 1
c (

√
a−√

2(ad − bc))2 over x with
cx + d > 0. ��

Lemma 4. For four positive constants a, b, c and d with b
a < d ≤ 1√

2c
, function

f(x) = (ax−b)2( 1
cx2 −2) ( b

a < x ≤ d) takes the maximum at x = min{d, ( b
2ac )

1
3 }.
��

3 Algorithm and Analysis

Let θ : V → [0, 1] be a function from V to the set of reals in [0, 1], where θ(u)
is called the real key of node u. Given a real-key function θ, we construct a
permutation πθ of {1, 2, . . . , |V |} by the next procedure.

PERMUTE(θ; πθ): Step 1. For each node u ∈ V , compute j = �θ(u)du�, and
define an integer key κ(u) of u by

κ(u) := wj for the j-th neighbor wj ∈ Γ (u),

where Γ (u) = {w1, w2, . . . , wdu
} (w1 < w2 < · · · < wdu

).

Step 2. Sort nodes u ∈ V in the lexicographical order with respect to
(κ(u), µ(u)), where the ties among nodes u with the same key (κ(u), µ(u)) are
broken randomly. We denote by πθ the resulting permutation of {1, 2, . . . , |V |}.

��

We see the following important property.

Lemma 5. For two nodes u, v ∈ V , let Rup and Rdwn be the regions in Defini-
tion 1. Then for a given real-key function θ, πθ(u) < πθ(v) if point (θ(u), θ(v))
is inside Rdwn and πθ(u) > πθ(v) if point (θ(u), θ(v)) is inside Rup. ��
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A scheme based on which we choose a real-key function θ probabilistically
is defined by a set of tuples of reals S = {(si, ti, pi) | i = 1, 2, . . . , h}, such that
0 < si ≤ ti < 1 and 0 ≤ pi for i = 1, 2, . . . , h and

∑
1≤i≤h pi = 1, where we call

each (si, ti, pi) a subscheme. Given a scheme S, we choose a real-key function θ
in the following manner.

RANDOM-KEY(S; θ):
Step 1. Choose a subscheme (si, ti, pi) ∈ S with probability pi.

Step 2. For each node u ∈ V , choose a real key θ(u) from [si, ti] uniformly. ��

We denote by ES [cross(u, v; πθ)] and ES [cross(πθ)] respectively the expecta-
tions of cross(u, v; πθ) and cross(πθ) over all real-key functions θ resulting from
RANDOM-KEY. In this paper, we prove the next result.

Theorem 2. There is a scheme S such that ES [cross(πθ)] ≤ 1.4664LB. ��

By the linearity of expectations, if we have a constant α ≥ 1 such that

ES [cross(u, v; πθ)] ≤ α min{cuv, cvu}, u, v ∈ V,

then it holds ES [cross(πθ)] ≤ αLB.
In the rest of this paper, we fix two nodes u, v ∈ V , and analyze

ES [cross(u, v; πθ)] for a given scheme S. Without loss of generality we assume
that 1.46cuv < cvu and du ≤ dv (the case of max{cuv, cvu} < 1.46 min{cuv, cvu}
needs no special consideration to prove Theorem 2, and we have du ≤ dv by
renaming u and v after reversing the permutation σ). Note that none of (1)
and (3) holds since 1.46cuv < cvu. Moreover, we can assume that cuv ≥ 1 since
otherwise (i.e., cuv = 0) πθ(u) < πθ(v) holds in any permutation πθ computed
by PERMUTE due to the comparison of µ(u) and µ(v).

For a given scheme S and a region R ⊆ S, let pS(R) denote the probability
that point (θ(u), θ(v)) falls inside R. By Lemma 5, we observe the next formula.

Lemma 6. ES [cross(u, v; πθ)] = pS(Rdwn)cuv + pS(Rup)cvu. ��

We are ready to derive an important inequality.

Lemma 7. Assume that 1 ≤ cuv < cvu/1.46 holds. Then it holds

ES [cross(u, v; πθ)]
min{cuv, cvu} ≤

{
1+pS(Rup)( 1

a(Rup) −2) if µ(u)<µ(v),
1+pS(Rup)( 1.5

a(Rup) −2.5) if µ(u)≥µ(v)

unless (2) holds.
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Proof. By Lemma 6, we get

ES [cross(u, v; πθ)]
min{cuv, cvu} =

pS(Rdwn)cuv + pS(Rup)cvu

cuv

=
(1−pS(Rup))cuv + pS(Rup)(dudv−cuv−∆uv)

cuv
= 1 + pS(Rup)(

dudv−∆uv

cuv
−2).

First consider the case of µ(u) < µ(v). By Lemma 1, we have a(Rup) = cuv

dudv
.

Hence

dudv − ∆uv

cuv
− 2 =

1
cuv

(
cuv

a(Rup)
− ∆uv) − 2 ≤ 1

a(Rup)
− 2.

Next consider the case of µ(u) ≥ µ(v). By Lemma 1, we have a(Rup) ≤ cuv+∆uv

dudv
.

Since 1 ≤ cuv < cvu holds but (2) does not holds for the u and v, Lemma 2 implies
∆uv ≤ cuv/2. Then

dudv − ∆uv

cuv
− 2 ≤ 1

cuv
(
cuv + ∆uv

a(Rup)
− ∆uv) − 2 =

cuv + ∆uv(1 − a(Rup))
cuva(Rup)

− 2

≤ cuv + 1
2cuv(1 − a(Rup))
cuva(Rup)

− 2 =
1.5

a(Rup)
− 2.5.

This completes the proof. ��

We wish to find a scheme S that minimizes maxu,v∈V
ES [cross(u,v;πθ)]

min{cuv,cvu} (even
though finding such an S analytically seems a hard problem). For this, we con-
sider the set of all monotone paths P for a given scheme S. Let P be an arbitrary
monotone path between points (0, 0) and (1, 1) in a unit square S (not neces-
sarily a (u, v)-path for particular nodes u, v ∈ V ). Define Rup(P ) and Rdwn(P )
be the regions obtained by splitting S with P , where we assume that Rup(P ) is
above Rdwn(P ). Let

β(S, P ) :=

{
pS(Rup(P ))( 1

a(Rup(P )) − 2) if (0.5, 0.5) �∈ Rup(P ),
pS(Rup(P ))( 1.5

a(Rup(P )) − 2.5) if (0.5, 0.5) ∈ Rup(P ),

and β(S) := max{β(S, P ) | monotone path P}. Given a scheme S, a monotone
path P from (0, 0) to (1, 1) in a unit square S is called S-maximal if β(S, P ) =
β(S).

Since the choice of monotone paths P is relaxed, we obtain ES [cross(πθ)] ≤
(1 + β(S))LB. (Recall that (0.5, 0.5) ∈ Rup holds if µ(u) ≥ µ(v) by Lemma 1.)
Therefore, to prove Theorem 2, it suffices to show that there exists a scheme S
such that β(S) < 0.4664 (provided that the case of (2) is treated separately to
prove Theorem 2).
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4 A Scheme S
We consider scheme

S = {(s1 = 0.0957, t1 = 0.5, p1 = 0.5), (s2 = 0.5, t2 = 0.9043, p2 = 0.5)}.

Denote the squares S1 = [(s1, s1), (0.5, 0.5)] and S2 = [(0.5, 0.5), (t2, t2)],
and the corners of these squares by A1 = (0.0957, 0.0957), A2 = (0.5, 0.5),
A3 = (0.9043, 0.9043), B1 = (0.5, 0.0957), B2 = (0.9043, 0.5), C1 = (0.0957, 0.5)
and C2 = (0.5, 0.9043). (The constant 0.0957 and others have been determined
through some computational experiment.) Fig. 4 illustrates this scheme.

b0

b1 b2

S1
p1=0.5

B1

A1

A2

S2 p2=0.5

e1

e3

e2

e4

e6

e5

B2

A3

C1

C2

b3
b4

b5 b6

0.0957 0.9043

0.4043

Fig. 4. Illustration of scheme S = {(0.0957, 0.5, 0.5), (0.5, 0.9043, 0.5)}, where a grey
line indicates an example of a monotone path P .

We first consider the case of (2). In (2), where cuv = 3, cvu = 5 and
pS(Rup) = pS(Rdwn) = 0.5 holds, we have by Lemma 6, ES [cross(u, v; πθ)] =
pS(Rdwn)cuv + pS(Rup)cvu = 4 < 1.4664cuv.

Now consider nodes u and v in the general case. It is not difficult to see that an
S-maximal monotone path P consists of axis-parallel line segments, and that the
resulting region Rup(P ) contains at most one convex corner in each subscheme
Si (i = 1, 2). For simplicity, we consider a single subscheme Si. It should be
noted that pS(Rup) (or the contribution from Si to pS(Rup)) is given by a(Si ∩
Rup(P ))/a(Si). As shown in Fig. 5(a), if a monotone path P does not satisfy
these properties, then we can modify the path P into another monotone path P ′

such that a(Si ∩ Rup(P ′)) = a(Si ∩ Rup(P )) and a(Rup(P ′)) ≤ a(Rup(P )). For
such an axis-parallel piecewise linear monotone path P , we denote the sequence
of the corner points by

b0 = (0, 0), b1, . . . , bk = (1, 1),



An Improved Approximation to the One-Sided Bilayer Drawing 415

and the sequence of the edges by

e1 = b0b1, e2 = b1b2, . . . , ek = bk−1bk

(see Fig. 4). Let e be an edge on a path P , where e may be a partial segment of
some edge ei. Without loss of generality we further assume that an S-maximal
monotone path P is chosen so that the number of edges of squares in subschemes
or of the entire unit square that are overlapped by the edges in P is maximized
among all S-maximal monotone paths.

(a)

P'

(0,1)

(0,0)

(1,1)

(1,0)

(b)

SiP

(0,1)

(0,0)

(1,1)

(1,0)

Rup(P)

Si

Rdwn(P)

Rup(P)

Rdwn(P)

Fig. 5. A monotone path P that passes through a square Si.

We define the gain of edge e at a subscheme Si = (si, ti, pi) ∈ S as follows.
Consider how much amount of pS(Rup) changes if we move the line segment L in
its orthogonal direction by an infinitely small amount ε. The change in pS(Rup)
is

ε · �(e ∩ Si) · pi

(ti − si)2
,

where �(e ∩ Si) means the length of the intersection of e and Si. On the other
hand, the change in a(Rup(P )) is ε ·�(e). The gain is defined by the ratio of these
two, i.e.,

g(e) =
�(e ∩ Si) · pi

(ti − si)2 · �(e)
.

A vertical line segment e on a path P is called incrementable (resp., decre-
mentable) if

– There is a real δ > 0 such that e has the same gain g(e) (with respect to a
subscheme Si) after translating it rightward (resp., leftward) by any amount
δ′ ∈ [0, δ] (i.e., e remains to be intersecting Si),

– For the rectangle R formed between e and the translated edge e′ and the
current path P , there is a monotone path P ′ such that Rup(P ′) = Rup(P )∪R
(resp., Rup(P ′) = Rup(P ) − R).



416 H. Nagamochi

Analogously, the incrementability (resp., decrementability) of a horizontal
line segment e is defined by replacing “rightward” with “ downward” (resp.,
“leftward” with “upward”).

An edge ei between two corners in a path P is called a free edge if it does not
overlap with any edge of square Si in a subscheme or of the entire unit square
S. For example, in Fig. 4, e2, e3 and e4 are free edges, and e5 is decrementable,
but not incrementable.

By definition, we observe the following.

Lemma 8. For an S-maximal monotone path P , let e and e′ be respectively
an incrementable edge and a decrementable edge such that (0.5, 0.5) is not an
internal point in any of e and e′. Then if e and e′ are not adjacent, then g(e) <
g(e′). If e and e′ are adjacent, then g(e) = g(e′).

Proof. Otherwise we would have another monotone path P ′ such that β(S, P ′) >
β(S, P ) or such that β(S, P ′) = β(S, P ) and P ′ overlaps with more edges of the
squares than P does. ��

In particular, there is no pair of non-adjacent free edges in an S-maximal
monotone path P .

b0

b1 b2

S1

p1=0.5

B1

A1

A2

x

y
_

0.5

e1

e3

e2

P

0.0957

0.9043
0.4043

0.17308302

b0

b1

b2

S1

p1=0.5

B1

A1

A2

xe1

e3

e2

P

0.0957

0.9043

0.4043

(b)(a)

Fig. 6. Illustration for Case-(A,1), where (a) indicates the case where a corner point
of P is inside S1, and (b) indicates the case where edge A1B1 of S1 is overlapped by
edge e2 of P .

In the sequel, P is assumed to be an S-maximal monotone path, and for
simplicity Rup(P ) is written by Rup. To prove that β(S, P ) ≤ 0.4664 holds for
our scheme S, we distinguish the following cases.

Case-A: point (0.5, 0.5) is not on the boundary of Rup or inside Rup; β(S, P )
is given by pS(Rup)( 1

a(Rup) − 2).
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Case-B: point (0.5, 0.5) is on the boundary of Rup or inside Rup; β(S, P ) is
given by pS(Rup)( 1.5

a(Rup) − 2.5).
Case-1: Rup contains an internal point from exactly one of S1 and S2; Without

loss of generality Rup contains no internal point in S2.
Case-2: Rup contains an internal point from each of S1 and S2.
In the following, we only treat Case-(A,1) due to the space limitation.
In this case, Rup has no convex corner in S2, and exactly one convex corner

b3 in S1 (see Fig. 6(a)). Consider edges e2 = b1b2 and e3 = b2b3 in P . By
(0.5, 0.5) ∈ Rup, e3 does not overlaps with B1A2, and thereby e3 is a free edge.
Let x = �(e2) and ȳ = �(e3).

First consider the case where e2 does not overlaps with A1B1, i.e., e3 is a
free edge. Then g(e2) = 0.5

(0.4043)2 × x−0.0957
x , and g(e3) = 0.5

(0.4043)2 × ȳ−0.5
ȳ . Since

P is S-monotone, it must hold g(e2) = g(e3) for two free edges. Thus we have
ȳ = 0.5

0.0957x. Hence by ȳ ≤ 0.9043, we have x < 0.9043 × 0.0957
0.5 = 0.17308302.

By ȳ = 0.5
0.0957x, we have ȳ − 0.5 = 0.5

0.0957x − 0.5 = 0.5
0.0957 (x − 0.0957). We have

a(Rup) = xȳ and pS(Rup) = 0.5× (x−0.0957)(ȳ−0.5)
(0.4043)2 = 0.5×0.5

(0.4043)2×0.0957 (x−0.0957)2.
Then β(S, P ) = pS(Rup)( 1

a(Rup) −2) = 0.5×0.5
(0.4043)2×0.0957 (x−0.0957)2( 1

0.5
0.0957 x2 −2).

By Lemma 4 with a = 1, b = 0.0957 and c = 0.5
0.0957 , this takes the maximum at

x = min{0.17308302, ( 0.0957
2× 0.5

0.0957
)

1
3 } (the latter is at least 0.209).

Cases-(A,2), (B,1) and (B,2) can be treated similarly. This establishes β(S) <
0.4664 and hence Theorems 2 and 1.
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