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Abstract. Converting a conventional contract into an electronic equivalent is
not trivial. The difficulties are caused by the ambiguities that the original hu-
man-oriented text is likely to contain. In order to detect and remove these ambi-
guities the contract needs to be described in a mathematically precise notation
before the description can be subjected to rigorous analysis. This paper identi-
fies and discusses a list of correctness requirements that a typical executable
business contract should satisfy. Next the paper shows how relevant parts of
standard conventional contracts can be described by means of Finite State Ma-
chines (FSMs). Such a description can then be subjected to model checking.
The paper demonstrates this using Promela language and the Spin validator.
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1 Introduction

A conventional contract is a paper document written in English or other natural lan-
guage that stipulates that two or more signatory parties agree to observe the clauses
stipulated in the document. An executable contract (x-contract) is the electronic ver-
sion of a conventional contract that can be enacted by a contract management system
to enforce what the English text contract stipulates. The purpose of both conventional
and electronic contracts is the same: enforcement of the rights and obligations of the
contracting parties. However, there is a crucial difference between the two kinds of
contract. A conventional contract is human oriented. Thus, it is likely to contain am-
biguities in the text that are detected and interpreted by humans when the contract is
performed; whereas an x-contract is computer oriented; consequently, it tolerates no
inconsistencies. According to our findings, contract inconsistencies can be catego-
rized into two groups. (i) Internal enterprise policies that conflict with contract
clauses. (ii) Inconsistencies in the clauses of the contract. In our view, and to gain in
simplicity, these two issues can be treated separately. In this paper we address the
second issue.

We have observed that inconsistencies in the clauses of conventional contracts are
normal rather than exceptional, for this reason the logical consistency of a conven-
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tional contract should be proven by some means before implementing it as an execu-
table contract.

The question that we attempt to answer in this paper is what are the correctness re-
quirements that a typical contract should satisfy and how can they be validated? The
paper is organised as follows: In Section 2 we discuss the differences between our ap-
proach to validating contracts and related research work. In Section 3, we provide a
list of what we consider the most common correctness requirements for business con-
tracts and classify them into conventional safety and liveness properties. In Section 4
we briefly discuss our contract model which is based on finite state machines. In Sec-
tion 5 we illustrate with examples how Spin can be used for validating correctness re-
quirements. Finally, we draw some conclusions in Section 6.

2 Related Work

In this section we will summarise the essential ideas behind three works that we con-
sider to be close to the research work of this paper.

In the work of Milosevic et. al. [1] [2] a contract is informally defined as a set of
policy statements that specify constraints in terms of permissions, prohibitions and
obligations for roles involved in the contract. A role (precisely, a role player) is an
entity (for example a human being, machine, program, etc.) that can perform an ac-
tion. Formally, each policy statement is specified in deontic logic constraints [3].Thus
each deontic constraint precisely defines the permissions, prohibitions, obligations,
actions, and temporal and non-temporal conditions that a role needs to fulfil to satisfy
an expected behaviour.

For example, a constraint can formally specify that, “Bob is obliged to deliver a
box of chocolates to Alice’s desk every weekday except on Wednesdays for three
years, between 9 and 9:15 am, commencing on the 1% of Jan 2004”. The expressive-
ness of deontic notation allows the contract designer to verify temporal and deontic
inconsistencies in the contract. The authors of this approach argue that it is possible to
build verification software to visually show that, Bob’s obligations do not overlap or
conflict. Such verification mechanisms would easily detect a conflicting situation
where Bob has to deliver a box of chocolates to Alice’s desk and to Claire’s who
works miles away from Alice’s desk. Similarly, the verifier would detect that Bob is
not obliged and prohibited to deliver chocolates to Alice during the same period of
time.

Another research work of relevance to ours is the EDEE system. EDEE provides a
framework for representing, storing and enforcing business contracts [4]. In EDEE a
contract is informally conceived as a set of provisions. In legal parlance, a provision
is an arrangement in a legal document, thus in EDEE a provision specifies an obliga-
tion, prohibition, privilege or power (rights). An example of a provision is “Alice is
obliged to pay Bob 20 cents before 1* Jan 2004”. Central to EDEE is the concept of
occurrence. An occurrence is a time-delimited relationship between entities. It can be
regarded as a participant-occurrence-role triple that contain the name of the partici-
pants of the occurrence, the name of the occurrence and the name of the roles in-
volved in the occurrence. An example of an occurrence that involves Alice (the payer)
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and Bob (the payee) is “Alice is paying Bob 20 cents on 31* Dec 2003.” The formal
specification of a contract in EDEE is obtained by translating the set of informal pro-
visions derived from the clauses of the contract into a set of formal occurrences. An-
other basic concept in EDEE is query. A query is a request for items satisfying certain
criteria (for example, “Payments performed by Alice before 31* Dec 2003”). At im-
plementation level, the occurrences representing the contract provisions are stored to-
gether with queries and new occurrences in an occurrence store in SQL views.

Business operations invoked by the contractual parties are seen as occurrences in-
tercepted and passed through the occurrence store where they are analysed to see if
they satisfy the contractual occurrences associated with the operations. EDEE has
been provided with some means for detecting contract inconsistencies. To detect
overlap between queries (a set of occurrences being both prohibited and permitted, a
set of occurrences being obliged and prohibited, etc.) the authors of EDEE rely on a
locally implemented coverage-checking algorithms.

Of relevance to our research is also the Ponder language [5]. Ponder is a declara-
tive language that permits the specification of policies for managing a distributed
system or contractual service level agreements between business partners. Ponder
specifies policies in terms of obligations, permissions and prohibitions and provides
means for defining roles and relationships. To detect and prevent policy conflicts such
as conflict for a given resource or overlapping of duties, Ponder’s notation permits the
specification of semantic constraints that limit the applicability of a given policy in
accordance with person playing the role, time, or state of the system.

A common pattern of the related works discussed above is that all of them rely on
elaborate logical notations that include temporal constraints and role players in their
parameters. The expectation is that this notation should be able to specify arbitrarily
complex business contracts and detect all kind of inconsistencies. This generality is
certainly desirable; however, because of the complexity of the problem it might be
rather ambitious. We believe that a modular approach is more realistic for detecting
contract ambiguities. For that to be possible, we need to be able to identify and isolate
the different sources of possible inconsistencies in business contracts.

In our business model [6] enterprises that engage in contractual relationships are
autonomous and wish to remain autonomous after signing a contract. Thus a signing
enterprise has its own resources and local policies. In our view each contracting en-
terprise is a black box where private business processes represented as finite state ma-
chines, workflows or similar automaton, run. A private business process interacts with
its external environment through the contract from time to time to influence the
course of the shared business process. Thus, a contract is a mechanism that is con-
ceptually located in the middle of the interacting enterprises to intercept all the con-
tractual operations that the parties try to perform. Intercepted operations are accepted
or rejected in accordance with the contract clauses and role players’ authentication.

From this perspective, we can identify two fairly independent sources of contract
inconsistencies:

e Internal enterprise policies conflicting with contractual clauses.
¢ Inconsistencies in the clauses of the contract.

It is our view that these two issues should be treated separately rather than encum-
bering a contract model with excessive notation (details, concepts and information)
that might be extremely difficult to validate. Such a separation is not considered in the
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work discussed above. In this paper we address only the second issue, that is, we are
concerned only with the cooperative behaviour of business enterprises and not their
internal structure.

Our approach is to represent business interactions as finite state machines. Use of
finite state machines for representing such interactions has been proposed for Web
services (Web service conversation language, WSCL [7]). We note that inter-
organisation business interactions, PIPs (partner interaction processes) as specified in
Rosettanet industrial consortium [8] can also be represented as finite state machines.

In our business model each contracting enterprise has the privilege and responsi-
bility of verifying that its internal policies do not conflict with the clauses of the con-
tract. Similarly, each enterprise exercises its independence to choose the roles players
that would invoke operations on the contract and provide them with a proper contract
role player certificate (a cryptographic key for example). Consequently, it is the re-
sponsibility of each enterprise to prevent inconsistencies with role players such as
duty overlapping, duty separation, etc.

In our contract model we intentionally leave the notion of role players out of the
game. However, we assume they are authenticated by the contract management sys-
tem before they are allowed to perform operations of the FSMs. It can be argued that
our FSM model is less expressive in comparison with the related works discussed
above. However we believe that its expressiveness is good enough for modeling a
wide variety of business interactions. Our model is simple. Thanks to this simplicity
we can rely on widely used of-the-shelf model checkers like Spin [9] to validate gen-
eral safety and liveness properties of contracts, relatively easily. We have to admit
that so far he have modeled static contracts (contracts whose clauses do not change
once the contract is signed), it remains to be seen whether we can use the same para-
digm for describing complex contracts where the clauses change and the signing par-
ties join and leave while the contract is in execution. This is a topic for further re-
search.

3  Common Correctness Requirements

Knowing the correctness requirements of an x-contract at design time is crucial as an
x-contract can be proven correct only with respect to a specific list of correctness re-
quirements. It is sensible to think, that different contract users would be interested in
being assured of the correctness of different parts of a given contract. On the other
hand, the parts of a contract that more likely contain logical inconsistencies vary from
contract to contract. Because of this, it is too ambitious to intend to identify a com-
plete list of correctness requirements for business contracts. However, it is possible to
provide a list of fairly standard correctness requirements and to generalise them. The
list provided below, is the result of analyzing several traditional business contracts.
Hopefully, this generalisation will help designers of x-contracts reason about correct-
ness requirements of x-contracts in terms of conventional and well understood termi-
nology such as correct termination, deadlocks, etc. In the following list CR stands for
correctness requirement:



Model Checking Correctness Properties of Electronic Contracts 307

CR1: Correct commencement: An x-contract should start its execution in a well-
defined initial state on a specific date or when something happens. This correctness
requirement is a special case and cannot be guaranteed by the x-contract itself but by
the human being or system (software or hardware) that triggers the execution of the x-
contract.

CR2: Correct termination: An x-contract should reach a well-defined termination
state on a specific date or when something happens. For example, the x-contract ter-
minates on the 31* of Dec 2005 or the x-contract terminates when the purchaser de-
livers 500 cars.

CR3: Attainability: Each and every state within an x-contract should be attain-
able, i.e. executable at least in one of the execution paths of the x-contract.

CR4: Freedom from deadlocks: An x-contract should never enter a situation in
which no further progress is possible. For example, an x-contract should not make a
supplier wait for a payment before sending an item to the purchaser while the pur-
chaser is waiting for the item before sending the payment to the supplier.

CRS5: Partial correctness: If an x-contract begins its execution with a precondi-
tion true then, the x-contract will never terminate (normally or abnormally) with the
precondition false, regardless of the path followed by the x-contract from the initial to
its final state. For example, if the amount of money borrowed by a customer from a
bank is Debt= 0 at the beginning of the x-contract, the x-contract cannot be closed
unless Debt=0.

CR6: Invariant: If an x-contract begins its execution with a precondition true
then, the precondition should remain true for the whole duration of the contract. A
slight variation of this correctness requirement would be a requirement that the pre-
condition remains true only or at least during certain parts of the execution of the x-
contract. To mention an example we can think that an x-contract between a banker
and a customer stipulates that the amount of money borrowed by the customer should
never exceed the customer’s credit limit.

CR7: Occurrence or accessibility: A given activity should be performed by an x-
contract at least once no matter what execution path the x-contract performs. A slight
variation of this requirement is one that demands that a certain activity should be per-
formed infinitely often. For example, an x-contract between a bank and a customer
should guarantee that the customer will receive bank statements at least once a month.

CRS: Precedence: An x-contract can perform a certain activity only if a given
condition is satisfied. For example, the lend period of a book in the possession of a
student should not be extended unless the waiting list for the book is empty.

CR9: Absence of livelocks: The execution of an x-contract should not loop infi-
nitely through a sequence of steps that has been identified as undesirable, presumably
because the sequence produces undesirable output or no output at all. For example, an
x-contract between an auctioneer and a group of bidders should not allow one of the
bidders to place his bids infinitely often and leave the rest of the bidders bid-starving.
This correctness requirement is also known as fairness or absence of individual star-
vation.

CR10: Responsiveness: The request for a service will be answered before a finite
amount of time. For example, an x-contract should guarantee that a buyer responds to
every offer from a client in less than five days.
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CR11: Absence of unsolicited responses: An x-contract should not allow a con-
tractual party to send unsolicited responses. For example, an x-contract between a
banker and a customer should not allow the banker to send unsolicited advertisement
to the customer.

3.1 Model-Based Validation of Correctness Requirements

Model-based validation is widely used for validating correctness requirements. This
approach relies on the use of software tools that are known as model checkers. The
core idea behind this approach is to use model-checking algorithms to determine
[Spin-Book-chapter11], whether the contract model (a finite state transition system)
satisfies a list of correctness requirements. The correctness requirements are specified
as safety and liveness properties translated into temporal logics or regular expres-
sions. We discuss safety and liveness properties thoroughly in the Section 3.2. Model-
based validation is a compromise between bare-eye inspection and mathematical
proof and works well for distributed applications of moderate complexity. For this
reason from here on we will focus our discussion on model-based validation and leave
bare-eye inspection and mathematical proof aside.

3.2 Safety and Liveness Properties

Informally we can define safety and liveness properties as follows: a property is a
quality of a programme that holds true for every possible execution of the program.
Properties are expressed as statements. A safety property is a statement that claims
that something will not happen. In other words, a safety property is a claim that a pro-
gramme will never perform a given activity (for example, send message; before mes-
sage;) presumably, because the activity is bad, that is, undesirable. Similarly, a live-
ness property is a statement that claims that something will eventually happen. In
other words, a liveness property dictates that a programme will eventually perform a
given activity (for example, send the sequence of messages message; message; mes-
sagey), presumably because the activity is good and desirable.

On the ground of our own experience with x-contract validation we argue that
most, if not all, correctness requirements of traditional business contracts can be
readily expressed either as safety or liveness properties. With the intention of giving
the designer of an electronic contract some guidance about the kind of correctness re-
quirement he/she is faced with, we will classify into safety and liveness properties the
list of typical correctness requirements of electronic business contracts provided in
Section 3:

e Safety properties: attainability, partial correctness, invariant, deadlocks, prece-
dence, absence of unsolicited responses.
e Liveness properties: correct termination, occurrence, livelocks, responsiveness.

We are aware that it has been shown that not all correctness requirements can be
readily classified as either safety or liveness property [10]. Fortunately, it has been
formally proven that any correctness property can be represented as the intersection of
a safety property and a liveness property [11]. The idea behind our approach is that a
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complex correctness requirement demanded by a signing party can always be ex-
pressed as a combination of a number of the basic correctness requirements listed in
Section 3.

4 Representation of Contracts by Means of FSMs

A contract can be represented as a set of FSMs, one for each of the contracting parties
that interact with each other. Conceptually, we can assume that a FSM is located
within each contracting party and that these FSMs communicate with each other
through communication channels. Each entry in a contract is called a term or a clause.
The clauses of a contract stipulate how the signing parties are expected to behave. In
other words, they list the rights and obligations of each signing party. The rights and
obligations stipulated in a contract can be abstracted and grouped into a set of Rights
(R) and a set of Obligations (O). The sets R and O can be mapped into the events and
the operations that the x-contract involves.

Fig. 1, shows the graphical representation of x-contracts we use in this paper,

where e and o stand for event and operation, respectively (a null operation will be rep-
resented by €). Thus e are business events, and o are business operations.
Any event can be triggered by a decision taken internally within the enterprise in
which the event is to be performed (for example the purchaser exercising the right of
deciding to send a purchase order), or by an operation performed externally within
another enterprise (for example when the supplier wants to offer a new item to the
purchaser).

The lines between the finite state machines in Fig. 1 indicate events being triggered
by external operations. For example the event p was triggered at the purchaser’s side
when the Supplier exercised the right of performing operation O1.

The supplier’s FSM will allow the supplier to execute only the operations he has the
right to execute and nothing else. Likewise, the FSM enforces the supplier to execute
the operations he has the obligation to execute. The purchaser’s FSM works in a
similar way.

For more details on representing contracts as FSMs, we refer the reader to [6].

S Validation of Correctness Requirements with Spin

Spin is a model checker that has gained a wide acceptance. Spin validates safety and
liveness properties of models coded in the Pomela modelling language. The Spin
toolkit is freely available, and includes a simulator and a validator.

5.1 Spin Verification Tools

Spin comes with a graphical user interface called XSpin which can be used to edit
Promela code, and to run the simulator and the validator.
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purchaser's rights supplier’s obligations

Supplier

Purchaser

purchaser’s obligations supplier’s rights

Fig. 1. Contractual rights and obligations represented with FSMs.

The Spin Simulator

The Simulator runs through a single sequence of reachable states (path or routes) of
the model coded in Promela. The designer can choose a specific path for the simulator
to run through, or can leave the simulator to run through a random path. The simulator
will test a specific path for some safety correctness requirements; freedom from
deadlocks (CR4), unspecified receptions (which covers CR11), and unattainable states
(CR3).

The Spin Validator

The Validator is used for validating the correctness requirements of Promela code
(the verification model). It generates and inspects all the states and paths of the sys-
tem that are reachable from the initial state. The Spin validator lists a number of cor-
rectness properties that the designer can choose from to validate the correctness of its
model. Spin’s correctness properties are very similar to the contractual correctness re-
quirements that we listed in Section 3. Consequently we have found that Spin’s vali-
dator can be used to successfully validate contract correctness requirements.

To validate a contract model, we run the validator against each of the desired cor-
rectness requirements. The validator will highlight any paths through the model that
have errors. The designer can then use the Simulator to run through the erroneous
path, and trace the point at which the error originated.

In this section, we present an example of a contract (Fig. 2) for the supply of e-
goods between a Supplier and a Purchaser. The contract at a first glance looks cor-
rect. We will use Spin to verify whether the contract satisfies some of the correctness
requirements listed in Section 3, and therefore discovering any inconsistencies within
the contract.
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The contract clauses that we would like to verify are the following:
2. Offer
2.1 The supplier may use his discretion to send offers to the purchaser.
2.2 The purchaser is entitled to accept or reject the offer, but he shall notify his deci-
sion to the supplier.
3 Commencement and completion
3.1 The contract shall start immediately upon signature.
3.2 The purchaser and the supplier shall terminate the x-contract immediately after
reaching a deal for buying an item.

This deed of agreement is entered into as of the effective date identified below.

Between

[Name] of [Address] (To be known as the (Supplier)), and [Name] of [Address] (To be knows as the
(Purchaser)).

Whereas

(Supplier) desires to enter into an agreement to supply (Purchaser) with [ltem].

Now it is hereby agreed that (Supplier) and (Purchaser) shall enter into an agreement subject to the following
terms and conditions:

1. Definitions and Interpretations

1.1 Price, Dollars or $ is a reference to the currency of the [Country].

1.2 All information (purchase order, payment, notifications, etc.), is to be sent electronically.

1.3 This agreement is governed by [Country] law and the parties hereby agree to submit to the jurisdiction of
the Courts of the [Country] with respect to this agreement.

2. Offer

2.1 The supplier may use his discretion to send offers to the purchaser.

2.3 The purchaser is entitled to accept or reject the offer, but he shall notify his decision to the supplier.

3. Commencement and completion

3.1 The contract shall start immediately upon signature.

3.2 The purchaser and the supplier shall terminate the x-contract immediately after reaching a deal for buying
an item.

4. Disputes

4.1 (Supplier) and (Purchaser) shall attempt to settle all disputes, claims or controversies arising under or in
connection with the agreement through consultation and negotiations in good faith and a spirit of mutual
cooperation.

4.2(Supplier) and (Purchaser) shall provide electronic evidences about breaches of the e-contract.

4.3 This method of determination of any dispute is without prejudice to the right of any party to have the matter
Judicially determined by a [Country] Court of competent jurisdiction.

5 Amendment

5.1 This agreement may only be amended in writing signed by or on behalf of both parties.

E-SIGNATURES

In witness whereof (Supplier) and (Purchaser) have caused this agreement to be entered into by their duly
authorized representatives as of the effective date written below.

Effective date of this agreement: [day] of [month] [year]

[E-signature] [E-signature]

[Person] [Person]

[Role] [Role]
E-address for Notices:

[E-address] [E-address]

Fig. 2. A contract between a purchaser and a supplier for the purchase of goods.

From these contract clauses, we can extract the sets of rights and obligations for
the Purchaser and the Supplier and express them in terms of operations for FSMs. The
sets of rights and obligations stipulated in this contract look as follows:

Purchaser’s rights:
R : SendAccepted -- right to accept offers.

R} : SendRejected -- right to reject offers.
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Purchaser’s obligations:
O/ : StartEcontract -- obligation to start the x-contract.

0} : SendAccepted or SendRejected -- obligation to reply to offers.
0! : EndEcontract -- obligation to terminate the x-contract.
Supplier’s rights:

R, : SendOffer -- right to send offers.

Supplier’s obligations:
OIS : StartEcontract -- obligation to start the x-contract.

07 : EndEcontract -- obligation to terminate the x-contract.

Fig. 3 shows how the sets R and O are mapped into FSMs.

Purchaser Supplier

EcontractSigned

E-contractSigned
P StartEcontract
O,
1

5
O, StartEcontract
Editing
offer

OfferRejectedRevd

OfferRejected OfferRevd OfferEdited

0, SendRejected R}’ SendOffer

€

OfferAccepted

~ OfferAcceptedRevd
Ozp SendAccepted, 03' EndEcontract _—

s
Oz EndEcontract

Fig. 3. Representation of a contract for the purchase of goods, with FSMs.

To validate our contract clauses we have to convert the FSM shown into the mod-
eling language Promela first. The result of this conversion is shown in Fig. 4.

5.2 X-Contract Verification

Safety Properties
Safety properties can be categorized into, general safety properties that must hold true
for any x-contract (CR3: Attainability, CR4: Freedom from deadlocks, CR11: Ab-
sence of unsolicited responses), and specific safety properties that must hold true only
if so required by the contracting parties for the specific requirements of a certain x-
contract (CRS5: Partial correctness, CR6: Invariant, and CR8: Precedence).

Running the Spin validator under its default settings will check for general safety
properties. Validation of the remaining specific safety properties can be done by in-
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serting “Assertions” within the Promela code. Running the Spin validator under its
default settings gives us the results shown in Fig. 5.

[*Verification Model for the Contract Finite State Machines*/

[*in their initial ambiguous state*/

#define
#define OA 1 /[*Offer accepted */
#define OR 0 /*Offer rejected*/

mtype = {Offer, Response}
chan S2P = [1] of {mtype, int};
chan P2S = [1] of {mtype, byte};

proctype Supplier() /***Suppliers FSM***/

int offerValue;
byte responseValue; /*OA or OR*/
SupEContractSigned:
EditingOffer:
if
:: offerValue = 30; /* An offer that is too high > MA*/
:: offerValue = 20; /* < MA */
. offerValue = 10; /* < MA */
fi;
if
:: S2P!10ffer(offerValue) -> goto WaitingForResults;
:: skip /*Taking into account the possiblity that*/
fi;  /*the supplier might not send anything */
WaitingForResults:
P2S ? Response(responseValue);
if
:: (responseValue == OR) -> goto EditingOffer;
:: (responseValue == OA) -> goto Deal;
fi;
Deal:
printf("\n\n Supplier: Deal \n\n");
end:
printf("\n\n Supplier: End \n\n");

MA 20 /*Maximum acceptable offer*/

proctype Purchaser() /***Purchasers FSM***/

int offerValue;
PurEContractSigned:
WaitingForOffer:
S2P ? Offer(offerValue) ->
DecidingToBuy:
if
. (offerValue>MA)-> P2S!Response(OR);
goto WaitingForOffer;
. else -> P2S | Response (OA); goto Deal;
fi;
Deal:
printf("\n\n Purchaser: Deal\n\n");
end:
printf("\n\n Purchaser: End\n\n");

init

run Supplier();
run Purchaser();

Fig. 4. A contract coded in Promela.

. Verification Output

_: pan: inwalid endstate (at depth 11)
pan: wrote pan_in. trail
(Spin Version 4.0.1 -- 7 January 2003}
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never-claim - (none specified)
assertion violations - (disabled by -& flag)
cycle checks - (disabled by -DSAFETT)
invalid endstates +

/ State-vector 44 byte, depth reached 23, errors: 1

Fig. 5. Output of the Spin validator.

Spin has detected an error in our verification model. “invalid endstate (at depth
11)”. The fourth line in Fig. 5 indicates that the Spin validator stops the verification
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process before completion because it detects an error in the model. XSpin saves the
path where the error is detected. To trace the point at which the error occurred we can
instruct XSpin to run the simulator through the offending path. The results of this
simulation are shown in Fig. 6.

‘Simulation Output =] |
- preparing trail, please wait. done
1: proc (:init:) llne 78 pan in" (state 1) {run Supplieri)}]
o proc 1 {Supplier) line 26 "pan_ 1n" (state 1) offerWalue = 30]
3 proc 0 {:imit:) line 79 "pan in" (state 2} {run Purchaser())]
4: proc 1 {Supplier) line 32 "pan_in" {state -} [values: ll0ffer, 30]
4: proc 1 {Supplier) line 32 "pan_in" {state &) S2Pl0ffer, offerValue]
5. proc 2 {(Purchaser) line 60 "pan_in" (state -} [values: 170ffer, 30]
5. proc 2 (Purchaser) line 60 "pan in" (state 1) [S2ZP?0ffer, offer¥alue]
b proc 2 (Purchaser) line 65 "pan in" (state 2) [(({offer¥alue:20})]
T: proc 2 (Purchaser) line 65 "pan in" (state -) [wvalues: Z|Response, 0]
T: proc 2 (Purchaser) line 65 "pan in" (state 3) [P25|Response, 0]
g: proc 1 (Supplier) line 37 "pan_in" (state - values: 27Response, 0]
g: proc 1 (Supplier) line 37 "pan_in" (state 11)
[P257Response, responseValue]
9 proc 1 (Supplier) line 40 "pan_in" (state 12} [(({responseValue==0))]
10: proc 1 (Supplier) line 27 "pan_in" (state 2} offervalue = 20]
11: proc 1 (Supplier) line 33 "pan_in" (state 8) (1y]
spin: trail ends after 12 steps
#procesaes 3
proc 2 (Purchaser) line 60 "pan_in" (state 1)
12 proc 1 (Supplier) line 37 "pan_in" (state 11)
12 proc 0 (:init:) line 80 "pan_ in" (state 3}
3 processes created
Exit-Status 0
Single Step Suspend Save in: l:l Clear Cancel

Fig. 6. Spin output showing and erroneous path.

After step 10, the Supplier was expected to send an offer to the Purchaser, but the
Simulator does not show this occurring. A closer look at step 11 reveals that the trail
ended after the simulator went through line 33 of the Promela verification model:

31 if

32 S2P!0Offer (offervalue) -> goto WaitingForResults;
33 skip /*Taking into account the possibility that*/
34 fi; /*the supplier might not send anything */

Line 33 represents the fact that the Supplier might choose not to send the offer to
the Purchaser for whatever reason. Fig. 5 also shows that the simulator detects prob-
lems in lines 60, and 37:

59 WaitingForOffer:

60 S2P ? Offer (offervValue) ->

36 WaitingForResults:

37 P2S ? Response (responseValue) ;

No offerValue was received by the Purchaser process, and subsequently, no re-
sponseValue was received by the Supplier process. The finite state machines of the
Supplier and the Purchaser fall into a deadlock situation.
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A possible solution to avoid this undesirable situation is to make use of the
Promela “timeout” statement. This statement allows a process to abort and not wait
indefinitely for a condition that can no longer become true such as the one we just en-
countered:

59 WaitingForOffer:

60 if

61 ::82P ? Offer(offervValue)
62 ::timeout -> goto end

63 fi;

We can run the validator as many times as necessary, and after ensuring the cor-
rectness of the general safety requirement, we can use the validator to check for some
specific safety correctness requirements. For example, we would like to check that the
invariant “The price offered by the Supplier should not be accepted by the Purchaser
if the price exceeds an agreed price P” holds (see CR6 in Section 3). To guarantee
this invariant we can insert an assertion of the form assert(offerValue<=P) at the re-
quired check points in the verification model. We then set and run the validator to
check for assertions. The validator does not signal any errors, so we know that the in-
variant we specified holds true.

Liveness Properties
Unlike safety properties, there are no general liveness properties. All liveness proper-
ties are specific to the requirements of the contracting parties depending on the pur-
poses of a specific contract. To validate liveness properties (correct termination, oc-
currence or accessibility, livelocks, responsiveness) we can insert specifically
designed labels such as “accept” labels that check for livelocks, “progress” labels that
check for progress states, and temporal claims, in the Promela code.

As an example, in our x-contract we would not desire a situation where the sup-
plier infinitely often makes undesirable offers. That is we do not want livelock (CR9)
in the x-contract. We can insert an accept label in line 20 as follows:

17 EditingOffer:

18 if

19 :: offervalue = 30;

20 acceptOfferTooHigh: skip /* An offer that is too
high > MA*/

21 :: offervalue = 20; /* < MA */

22 :: offervValue 10; /* < MA */

23 fi;

We can now set the validator verification parameters to detect “livelock”. The out-
put results show that the search stops after detecting an error. A simulator run would
show that the problem occurs after the Supplier makes an offer with offerValue=30.
The output shows that we have an undesirable situation where the Supplier can make
unacceptable offers infinitely. There are many possible solutions to this problem, one
would be for example to limit the Supplier to N<=10 offers.
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Following testing the x-contract model against the desired correctness properties,
and removal of detected ambiguities, the verification model and therefore the x-
contract must be modified accordingly. For our example, the finite state machines are
modified as can be seen in Fig. 7.

Purchaser Supplier

E-contractSigned
StartEcontract

EcontractSigned
StartEcontract

Wating
Y\_for offer

Editing 7dayTimeOut

offer

OfferRejected
SendRejected

OfferEdited
SendOffer

Waiting
for results

Fig. 7. Representation of a contract with FSMs (revised version of Fig. 3).

After the corresponding modifications the contract clauses look as follows:
2 Offer
2.1 The supplier may use his discretion to send offers to the purchaser.
2.2 If no offer is sent within seven days after the signature of the x-contract, or after
the latest rejected offer, the x-contract shall be terminated.
2.3 The purchaser is entitled to accept or reject the offer, but he shall notify his
decision to the supplier within five days after the receipt of the offer.
3 Commencement and completion
3.1 The contract shall start immediately upon signature.
3.2 The purchaser and the supplier shall terminate the x-contract immediately after
reaching a deal for buying an item.

Complex Correctness Requirements

A very useful facility provided by Spin is the verification of “temporal claims”. Tem-
poral claims can be used to express complex correctness requirements. This facility is
very useful as transactions between parties to a contract may need to run in a certain
sequence, and/or under certain conditions.

As a separate example let us consider the Promela code of Fig. 8 which describes a
complaint handling state machine. We want the validator to check the requirement
that a complaint about the quality of the goods must not be sent by the Purchaser be-
fore the goods are received from the Supplier. The verification model to express pos-
sible scenarios is shown in Fig. 8.
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In XSpin, verification of temporal claims is done using the Linear Temporal Logic
(LTL) Manager. We are claiming the following: It is invariantly true that following
the placement of an order a complaint should not be received before the order is re-
ceived. This is expressed in Linear Temporal Logic as follows:

[1 (placeOrder -> !complaintRecd U orderRecd).

We can enter this formula into the LTL Manager (Fig. 8) and then run the valida-
tor. As expected, the validator detects that our claim is false. As it can be proved with
the validator, it is enough to remove the lines in the Promela model that gives the Pur-
chaser the option to complain before receiving the order, to make our claim hold true.

¥ Linear Time Temporal Logic Formulae I n
« :
/' Goods complaint example Formula: |] (alaca0mder -= | comlaintfecd U onzaflesd] Lead... |
" Operamm:llu u|—>|anﬂi|£
bool placeOrder = false ; Property holds for: & Al Executions {desived behavior) - Ho Execulions (emor behaviar)

bool complaintRecd = false ; Hotes [Mla Momeipeh7Z1 392id0csghardars e
bool orderRecd = false ; 1% Use Load ta open = Fils oc 3 seaplate.

active proctype OrderPlacementy()
{ 7
l/lplacct)e gn o_rc:er . Symhol Definitions:
placeOrder = frue , . . gdefine placaizder placairder
I/ Premature complaint randomly sent or not #define camplaintfecd  canplaintFecd
Il sent to the Supplier — #ickine ocdechesd ordechesd
if

:: complaintRecd = true ; /fcomplaint received by Supplier "e# €am: | D
«+ akin - | e
“skip J . Formila & Typed: || iplacelzdes =» | corplaanthiecd U orderfecd)
fi; * The Kever Clain Below Corcesponds
. * Tg The Kegated Poxmuls | || (placeDrder -: | corplaintfecd 0
Il receive order ordechecd])
orderRecd = true : + (fomalizing violzticns of the acigiral)
. «
Ila complaint was made i d
If JaintRecd = true - esification Result: nol valid P Verification
gﬁ::p alnirecd = e ; _ Foll atatespace ssarch for:
" ' never-clain +
fi asserbion vislabicns - (2F ithin scope of clai]
J acceptance  cpcles + ifoirmess diazoled)
} irmalad endstatas - (dizzbled by rever-clain)
J Stats-vector 16 byte, depth reached 7, ecrocs: 1
Help  Clear Cose | Save 5.

Fig. 8. Use of the LTP property manager for validating a temporal claim in a Promela model.

6 Conclusions and Further Work

This paper contains some of the results we have obtained from our work on modeling
business contracts. Our thesis is that contracts are complex systems that involve con-
tractual and private policies. Contractual policies regulate the interaction between the
trading enterprises, whereas private policies regulate the interaction between the
members of a trading enterprise and the contract. To simplify the problem, we pro-
pose to study the two kinds of policies separately. Thus in this paper we focused on
contractual policies. We argue that conventional business contracts normally contain
ambiguities that should be detected and eliminated before converting the contract into
its electronic equivalent. To help the validator of an electronic contract, we provide a
list of correctness requirements that most traditional business contracts should satisfy.
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The list is not exhaustive but illustrative. To put contract correctness in the context
of traditional program correctness, we mapped the list of contract correctness re-
quirements into conventional safety and liveness properties. We also argue that FSMs
are a suitable formal notation for describing conventional contracts and show how a
contract described by means of FSMs can be validated using standard and readily
available model checkers such as Spin. To support our arguments we illustrate the
validation of two simple contracts. More complex examples are discussed in [12].
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