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Abstract. The main goal of this research is to study the usefulness
of the Simulated Annealing (SA) approach, developed in the context of
the Fuzzy Inductive Reasoning (FIR) methodology, for the automatic
identification of fuzzy partitions in the human Central Nervous System
(CNS) modeling problem. The SA algorithm can be viewed as a pre-
process of the FIR methodology that allows the modeler to use it in a
more efficient way. Two different SA algorithm cost functions have been
studied and evaluated in this paper. The new approach is applied to
obtain accurate models for the five controllers that compose the CNS.
The results are compared and discussed with those obtained by other
inductive methodologies for the same problem.

1 Introduction

The human central nervous system controls the hemodynamical system, by gen-
erating the regulating signals for the blood vessels and the heart. These signals
are transmitted through bundles of sympathetic and parasympathetic nerves,
producing stimuli in the corresponding organs and other body parts.

In this work, CNS controller models are identified for a specific patient by
means of the Fuzzy Inductive Reasoning (FIR) methodology. FIR is a data
driven methodology that uses fuzzy and pattern recognition techniques to infer
system models and to predict its future behavior. It has the ability to describe
systems that cannot easily be described by classical mathematics (e.g. linear
regression, differential equations) i.e. systems for which the underlying physical
laws are not well understood. The FIR methodology is composed of four main
processes, namely: fuzzification, qualitative model identification, fuzzy forecast
and defuzzification.

The first step of the FIR methodology is the fuzzification process, that con-
verts quantitative data stemming from the system into fuzzy data. In this process
the number of classes of each variable (i.e. the partition) needs to be provided.
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In this paper an algorithm based on a simulated annealing technique/method,
developed in the context of FIR, is used to automatically suggest a good parti-
tion of the system variables in an efficient way. The SA algorithm can be viewed
as a pre-process of the FIR methodology that allows the modeler not to rely on
heuristics for the definition of a system variable partition. Two SA algorithm cost
functions are proposed in this research that make use of the qualitative model
identification and the forecast processes of FIR methodology. A brief description
of these processes are given next. The qualitative model identification process of
the FIR methodology is the responsible to find causal and temporal relations
between variables and therefore to obtain the best model that represents the
system. A simplified diagram of the qualitative model identification process is
presented in figure [
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Fig. 1. Simplified diagram of the FIR qualitative model identification process

A FIR model is composed of a mask (model structure) and a pattern rule
base. An example of a mask is presented in figure [[] Each negative element in
the mask is called a m-input (mask input). It denotes a causal relation with the
output, i.e. it influences the output up to a certain degree. The enumeration
of the m-inputs is immaterial and has no relevance. The single positive value
denotes the output. In position notation the mask of figure [l can be written
as (2,5,8,11,12), enumerating the mask cells from top to bottom and from
left to right. The qualitative identification process evaluates all the possible
masks and concludes which one has the highest prediction power by means of an
entropy reduction measure, called the quality of the mask (). The mask with the
maximum Q value is the optimal mask. Starting from the fuzzified system data
and using the optimal mask, the pattern rule base is then synthesized. Both,
the pattern rule base and the mask constitute the FIR model. Once the pattern
rule base and the optimal mask are available, system predictions can take place
using FIR inference engine. This process is called fuzzy forecast. FIR inference
engine is a specialization of the k-nearest neighbor rule, commonly used in the
pattern recognition field. Defuzzification is the inverse process of fuzzification. It
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allows to convert the qualitative predicted output into quantitative values that
can then be used as inputs to an external quantitative model. For a deeper inside
of the FIR methodology refer to [1].

2 Simulated Annealing for Identification of Fuzzy
Partitions in FIR

Simulated annealing is a generalization of a Monte Carlo method and it is used
to approximate the solution of large combinatorial optimization problems [4].
A simulated annealing algorithm consists of two loops. The outer-most loop
sets the temperature and the inner-most loop runs a Metropolis Monte Carlo
simulation at that temperature. The algorithm starts with an initial solution to
the problem, which is also the best solution so far and a value for an initial high
temperature. Each iteration consists of the random selection of a new solution
(candidate solution) from the neighborhood of the current one. The cost function
of the candidate solution is evaluated and the difference with respect to the cost
function value of the current solution is computed. If this difference is negative
the candidate solution is accepted. If the difference is positive the candidate
solution is accepted with a probability based on the Boltzmann distribution.
The accepted candidate solution becomes the current solution and if its cost
function value is lower than the one of the best solution, this one is updated. If
the candidate solution is rejected the current solution stays the same and it is
used in the next iteration. The temperature is lowered in each iteration down to
a freezing temperature where no further changes occur. A detailed description
of the simulated annealing algorithm developed for the automatic identification
of fuzzy partitions in the FIR methodology can be found in [2].

Two main aspects of the simulated annealing algorithm that need to be
considered here are the new solution generation mechanism and the cost function.
Both are highly important to achieve a good performance of the algorithm.

The new solution generation mechanism consists of two tasks. The first one is
the generation of the initial partition at the beginning of the algorithm execution.
The second one is the generation of a new solution (i.e. candidate solution)
starting from the current solution, in each algorithm iteration. Two options have
been studied in this paper to generate an initial partition: 3-classes partition and
random partition. The first one sets all the variables to 3 classes. The second one
performs a random generation of the number of classes for each system variable.
In this research the number of classes allowed for each system variable is in the
range [2...9].

The procedure to generate a new solution, i.e., the candidate solution, from
the current one is to increment or decrement by one the number of classes as-
sociated to a certain system variable. The variable that is going to be modified
is chosen randomly out of the vector of variables. The decision to increase or
decrease the number of classes of this variable is also randomly taken.

Two different cost functions have been studied in this work: the quality of
the optimal mask and the prediction error of the training data set.



548 F. Mugica and A. Nebot

As has been explained earlier, in the qualitative model identification process
of the FIR methodology the optimal mask (i.e. the best model structure) is
identified by means of a quality measure, (). The quality of a mask is a value
between 0 and 1, where 1 indicates the highest quality. Therefore, the first cost
function proposed is 1 — @, due to the fact that the algorithm task should
minimize the cost function.

The second cost function is defined as the prediction error of a portion of
the training data set. The normalized mean square error in percentage (MSE),
given in equation [ is used for this purpose.

s Flu® =50

-100% 1
Yvar )

§(t) is the predicted output, y(¢) the system output and yy,, denotes the variance
of y(t). The idea is to use part of the training data set to identify the model and
the rest of the data set to evaluate the prediction performance of that model.
The prediction error of the portion of the training data set not used in the model
identification process is used as the cost function for the SA algorithm. The size
of the portion of the training data set actually used for cost function evaluation
purposes is defined with respect to the size of the whole training data set.

3 Central Nervous System Modeling

The central nervous system is composed of five controllers, namely, heart rate
(HR), peripheric resistance (PR), myocardiac contractility (MC), venous tone
(VT) and coronary resistance (CR). All the CNS controllers are SISO models
driven by the same input variable, the carotid sinus pressure (CSP). The input
and output signals of the CNS controllers were recorded with a sampling rate
of 0.12 seconds from simulations of the purely differential equation model [3],
obtaining 7279 data points. The model had been tuned to represent a specific
patient suffering a coronary arterial obstruction, by making the four different
physiological variables (right auricular pressure, aortic pressure, coronary blood
flow, and heart rate) of the simulation model agree with the measurement data
taken from the real patient. The five models obtained were validated by using
them to forecast six data sets not employed in the training process. Each one
of these six test data sets, with a size of about 600 data points each, contains
signals representing specific morphologies, allowing the validation of the model
for different system behaviors.

The main goal of this research is to study the usefulness of the SA approach
as a pre-processing tool of the FIR methodology for the identification of good
models for each of the five controllers. Let us explain the experimentation pro-
cedure for the coronary resistance controller. The same strategy has been used
for the other four controllers. Their results are presented later.

As mentioned before, two cost functions were studied in this work. Table [I
shows the results obtained for the coronary resistance controller when 1 — @ was
used as cost function. Table [ presents the results of the same controller when
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Table 1. Partition results of the CR controller obtained using 1 — @) as cost function

Ini.Part. Fin.Part. Opt.Mask Q 1—Q MSFEiest #GS Time

CSP CR CSP CR
(3,3) (9,3) (1,4,6) 0.9787  0.0213 3.85% 35 2.98
(3,3) (7,3) (1,4,6) 0.9776  0.0224 4.76% 26 1.97
(3,3) (8,3) (1,4,6) 0.9776  0.0224 4.25% 37 2.56
(3,3) (6,3) (1,4,6) 0.9762 0.0238 1.75% 27 1.41
(3,3) (5,3) (1,4,6) 0.9749  0.0251 2.34% 24 1.69
(3,3) (4,3) (1,4,6) 0.9748  0.0252 1.33% 26 1.38
(8,8) (9,3) (1,4,6) 0.9787  0.0213 3.85% 33 6.17
(9,6) (9,3) (1,4,6) 0.9787  0.0213 3.85% 26 3.18
(7,2) (9,3) (1,4,6) 0.9787  0.0213 3.85% 35 2.38
(6,5) (9,3) (1,4,6) 0.9787  0.0213 3.85% 25 3.60
(5,5) (9,3) (1,4,6) 0.9787  0.0213 3.85% 35 3.24
(5,2) (5,3) (1,4,6) 0.9749  0.0251 2.34% 37 1.44

Optimal Solution: Opt.Mask= (9,3); Q= 0.9787;

the cost function is defined as the prediction MSE of a portion of the training
data set. In this application the last 25% of the training signal is used for cost
function evaluation and only the first 75% of the signal is used to obtain the
FIR models.

Both, the 3-classes and the random options have been evaluated as initial
partitions. The upper rows of tables [l and B show the results of the 3-classes
initial partition, whereas the lower rows present the results of the random initial
partition. For both options, 40 executions of the SA algorithm were performed.
For an initial partition of 3 classes the SA algorithm suggested up to 6 different
final partitions when 1 — @ is used as cost function (see table [[) and 3 possible
final partitions when the prediction error is used as cost function (see table ).
When the random initial partition is used, only 2 and 4 different final parti-
tions are suggested by the SA algorithm for the 1 — @ and prediction error cost
functions, respectively.

The tables are organized as follows. The first column indicates the initial
partition from which the SA algorithm starts the search. The second column
presents the final partition suggested by the SA algorithm when the cooler tem-
perature is reached (i.e. the algorithm stops). Note that the final partition is
the input parameter to the fuzzification process of the FIR methodology. The
third and fourth columns contain the optimal mask obtained by FIR for that
specific partition (in position notation) and its associated quality, respectively.
The fifth column corresponds to the cost function evaluation. Note that in table
[M the cost function is 1 — @ and in table Bl the cost function is the prediction
MSE of the last 25% data points of the training set. The next column shows
the prediction error of the test data sets. As mentioned before, six test data sets
of 600 data points each are available for each controller. The results presented
in the tables are the mean value of the predictions errors obtained for these
six test data sets. The seventh column indicates the total number of generated



550 F. Mugica and A. Nebot

Table 2. Partition results of the CR controller obtained using the prediction error of
the last 25% of the training data set as cost function

Ini.Part. Fin.Part. Opt.Mask Q MSFEirain MSFEies: #GS Time
CSP CR CSP CR
(3,3) (2,5) (1,4,5,6) 0.9642 0.08% 0.15% 19  19.40

(3,3) (3,4) (4,5,6) 0.9638 0.12% 0.28% 32 38.39
(3,3) (6.4) (3,4,6) 0.9666 0.17% 0.42% 33 22.37
(4,4) (25) (1,456)  0.9642 0.08% 0.15% 24 17.51
(2,6) (2,5) (1,45,6)  0.9642 0.08% 0.15% 19 10.79
(3,5) (3,4) (4,5,6) 0.9638 0.12% 0.28% 23 12.31
(6,5) (6,4) (3,4,6) 0.9666 0.17% 0.42% 33 11.55
(5,4) (6,4) (3,4,6) 0.9666 0.17% 0.42% 30 16.28
(9,6) (7,4) (4,5,6) 0.9677 0.18% 0.41% 28 14.29

Optimal Solution: Opt.Mask=  (2,5); MSEiain= 0.08%;

solutions during the execution of the SA algorithm. The last column contain the
CPU time (in seconds) used by the algorithm to find the final partition. Clearly,
the biomedical application presented in this paper is not a large optimization
problem, it is rather small due to the fact that only two variables are involved
and a maximum of nine classes is allowed (in fact there are only eight, because
class 1 is not used). Therefore, there exists 64 possible solutions and an exhaus-
tive search can be performed easily. However, it is interesting to work with a
real application that shows clearly the usefulness of the SA algorithm for the
automated definition of fuzzy sets in the FIR methodology. Moreover, the FIR
performance is considerably increased when the SA algorithm is used in the CNS
application.

If we look closer to table [l it is clear that the optimal solution that corre-
sponds to the (9, 3) partition with a quality of 0.9787 is reached in both initial
partition options. All the final partitions obtained when a (3, 3) initial partition
is used have in common that a partition of 3 classes is always suggested for the
output variable, whereas 4,5,6,7,8 or 9 classes are good partitions for the input
variable. Notice that the qualities of all the suggested partitions are very close
to the optimal one. With a random initial partition, only two final partitions
are suggested by the SA algorithm, i.e. the optimal one (9, 3) and a suboptimal
one (5, 3). The proportion shown in table[T] i.e. five times partition (9, 3) vs. one
time partition (5, 3) is the relation encountered in the 40 runs of the algorithm.

Table 3. MSE prediction errors of the CNS controller models using NARMAX, TDNN
and RNN methodologies (mean value of the 6 test data sets for each controller)

HR PR MC VT CR
NARMAX 9.3% 18.5% 22.0% 22.0% 25.5%
TDNN 15.3% 33.7% 34.0% 34.0% 55.6%
RNN 18.3% 31.1% 35.1% 34.7% 57.1%
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Table Pl shows the results of the same controller when the prediction error
of part of the training data set has been used as a cost function for the SA
algorithm. The function to be minimized now is the M S Fy,.qn. It is interesting
to remark, that in this case, the mask is obtained using exclusively the first 75%
data points of the training signal. Therefore, the data used for the cost function
evaluation has not been seen for the model before. This is the reason why the best
predictions obtained for the last 25% values of the training set do not correspond
necessarily to the partitions with the associated optimal mask of highest quality.
However, the quality of the optimal masks found for the suggested partitions are
still high, i.e. 0.96. The optimal solution is the partition (2,5) with a M S Etrqin
of 0.08%, that is really very low. The SA algorithm is able to find the best final
partition with both initial partition options, as happened also for the quality
cost function. The (3,4) and (6,4) partitions with errors of 0.12% and 0.17%,
respectively, are the best suboptimal solutions. Therefore, the SA algorithm
obtains in fact the best three final partitions. Notice that although the number
of generated solutions remains almost the same than table[I, the CPU time has
considerably increased. This is due to the fact that the cost function evaluation
is much more expensive computationally. Now, not only the qualitative model
identification process of the FIR methodology is executed but also the fuzzy
forecast process is.

Table 4. Partition results of the HR, PR, MC and VT controllers obtained using 1 — Q
cost function and prediction error of the last 25% of the training data set cost function

HR PR

1-Q Fin.Part. 1-Q MSFE;es:| Fin.Part. 1-Q MSFE;est
(7,2)* 01674  13.43% | (8,7)*  0.1448 599 %
(8,2) 0.1861  12.63% | (7.7) 0.1505  4.59 %
(7.4) 02739  261% | (57) 0.1564  3.15 %
MSEtrm‘n Fin.Part. MSEtTM'n MSEtest Fin.Part. MSEtrm‘n MSEtest
(3,7)*  089%  9.15% | (49*  0.93% = 2.28%
(5,9) 1.01% 2.54% (7,7) 1.08% 3.34%
(6,7) 1.15%  13.39% | (2,6) 1.64%  3.77%

MC vT

1-@Q Fin.Part. 1-Q MSFE;cs:| Fin.Part. 1-Q MSFE;est
(8,7)*  0.1866  11.88% | (8,7)*  0.1858  13.00%
(7,7) 0.1950  42.45% | (7,7) 0.1952  41.88%
(5,7) 0.2019  52.94% | (5,7) 0.2032  53.01%
MSEtrain Fin.Part. MSthnain MSEtest Fin.Part. MSEt'fain MSEtest
(4,9 060%  251% | (25)* 0.6117%  1.66%
(2,5) 0.63% 2.74% (2,8) 0.6359% 1.55%
(3,9) 1.10%  3.87% | (3,7)  0.7855%  2.12%

It is interesting to analyze the M S E;.s columns of both tables. As expected,
the M SFE4.q:n cost function is able to obtain partitions with higher performance
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on the prediction of the test data sets than the ones obtained by the 1 — @ cost
function. However, the results obtained in both cases are very good if compared
with the ones obtained when other inductive methodologies are used . Table
contains the predictions achieved when NARMAX, time delay neural networks
and recurrent neural networks are used for the same problem. The columns of the
table specify the average prediction error of the 6 test sets for each controller. All
methodologies used the same training and test data sets previously described.

The errors obtained for all the controllers using the SA approach hand in
hand with the FIR methodology are much better than the ones obtained by the
inductive methodologies presented in table Moreover, the highest MSFE;qq
of 4.76% obtained with the 1 — @ cost function is half the value of the lower
error obtained with these methodologies, i.e. 9.3%. Therefore, in this application,
both cost functions can be considered good for the task at hand. The 1 — @ cost
function needs less time to be evaluated but the performance with respect to
the test set prediction is lower. Contrarily, the M S FE};.q;n cost function is more
expensive from the CPU time point of view but the performance is higher. The
user should decide which cost function to use taking into account the size of the
optimization problem and his/her own needs.

Table (] contains the partition results of the other four CNS controllers. The
random initial partition option has been used in all the executions. The SA al-
gorithm has been executed 40 times for both cost functions for each controller.
The final partition, the value of the cost function and the mean MSE of the 6
test data sets are presented for each controller and cost function. An * means
that that partition is the best possible one, and therefore it is the optimal so-
lution. As can be seen in table H] the optimal solution is reached for both cost
functions in all partitions. The CPU time and number of generated solutions
are equivalent to those of the CR controller in tables [l and 2] It is interesting
to analyze the M SFE;.s of the HR, PR, MC and Vt controllers. The errors of
the test sets obtained when the M SFE},. 4, cost function is used are quite good
for all controllers, and much better than the ones obtained using the inductive
methodologies of table Bl However, this is not the case for all controllers when
the 1 — @ cost function is used. Notice that, although the SA algorithm finds
both the best solution and good suboptimal solutions, the prediction errors of
the test data sets obtained are of the same order of magnitude than the ones
obtained by the NARMAX, time delay and recurrent neural networks, partic-
ularly for the MC and VT controllers. In this case, the quality measure used
by the FIR methodology is not doing a good job. It can be interesting to study
alternative quality measures for the task at hand.

4 Conclusions

In this paper the usefulness of a simulated annealing approach for the automated
definition of fuzzy sets in the identification of human central nervous system FIR
models has been shown. Two cost functions have been evaluated and compared
from the perspective of their performance and computational time. The results
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obtained in the CNS applications are much better than the ones obtained by
other inductive methodologies such as NARMAX, time delay neural networks
and recurrent neural networks.
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