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Abstract. Index structures designed for disk-based database systems
do not fulfill the requirements for modern database systems. To improve
the performance of these index structures, different approaches are pre-
sented by several authors, including horizontal vectorization with SIMD
and efficient cache-line usage.

In this work, we compare the adapted index structures Seg-Tree/Trie,
FAST, VAST, and ART and evaluate the usage of SIMD within these. We
extract important criteria of these adaptations and weight them accord-
ing to their impact on the performance. As a result, we infer adaptations
that are promising for our own index structure Elf.

1 Introduction

After decades of creating and improving index structures for disk-based database
systems, nowadays even large databases fit into main memory. Since index struc-
tures like the B+-tree or the radix tree have an important part in database
systems to realize scan or range-based search operations, these index structures
experienced many adaptations to fulfill the needs of modern database systems.
Instead of overcoming the bottleneck of IO-operations from disk to RAM, the
target of modern index structures is to improve the usage of CPU cache and
processor architectures [4]. Several index structures have already shown that
the bottleneck from RAM to CPU can be overcome using Single Instruction
Multiple Data (SIMD) [5,7,15] operations. These index structures include: the
k-ary Search Tree (Seg-Tree) [17], Adapted Radix Tree (ART) [10], Fast Archi-
tecture Sensitive Tree (FAST) [9], and Vector-Advanced and Compressed Struc-
ture Tree (VAST) [16]. All approaches use SIMD only for key comparison within
tree traversal and try to decrease the key size to fit more keys into one SIMD
register. Therefore FAST and Seg-Tree only provide implementations for search
algorithms. Despite several common features, all these structures have their spe-
cial and unique optimizations. In order to allow other approaches to benefit from
these highly-involved optimizations, we extract their optimizations in this work
while exposing their specific benefit for other structures.

In this work we make the following contributions:

– We compare different optimizations of index structures to fulfill requirements
of modern database systems
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– We highlight the usage of SIMD and the cache-line adaptations in all
approaches

– We state the performance impact of optimizations on the index structures
– We discuss the usefulness of optimizations for our own index structure Elf [6].

We organized the rest of the paper as follows. In Sect. 2, we give the preliminaries
for SIMD in general and for the use in index structures. In Sect. 3, we present
the different approaches of optimized index structures and compare them in
Sect. 4. In Sect. 5, we name related work. In Sect. 6, we present our conclusion
and describe future work.

2 SIMD-Style Processing
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Fig. 1. Single Instruction Single Data (SISD)
vs. Single Instruction Multiple Data (SIMD)
processing.

A common approach of decreas-
ing CPU cycles for algorithms is
to adapt the algorithm to pipelin-
ing. While one instruction is exe-
cuted, the next instruction is already
fetched. This approach executes
one instruction on one data item,
called Single Instruction Single Data
(SISD). In contrast to execute one
operation on one data item after
another, the idea of Single Instruc-
tion Multiple Data (SIMD) is to execute a single instruction on multiple data
items in parallel. In Fig. 1, we show the difference between SIMD and SISD.

Modern CPUs have additional SIMD registers along with an additional
instruction set adapted to process multiple data items in parallel. For exam-
ple, using the Streaming SIMD Extensions 2 (SSE2) on the example in Fig. 1,
we can add 4 values in one clock cycle. After loading 4 different signed 32-bit
integers in register a and 4 signed 32-bit integers in register b, we add them using
mm add epi32.

The main restriction of SIMD is that a sequential load of data is required. To
load data into a SIMD register, the data has to be stored consecutively in main
memory. Additionally, the size of SIMD registers is limited. Therefore processing
data types of a common size of 64-bit and more lead to a small performance
increase, since only few data items are processed with a single instruction.

Polychroniou et al. [11] show two general approaches to use SIMD, horizontal
and vertical vector processing. They name the comparison of one search key to
multiple other keys horizontal vectorization, whereas processing a different input
key per vector lane is named vertical vectorization.

Since FAST, Seg-Tree, ART and VAST only use horizontal vectorization, we
focus on this approach. For example, Zeuch et al. [17] use 128-bit SIMD registers
and adjusted SIMD operations to load data into a register and to compare the
data of one SIMD register with another. For example, a 128-bit SIMD register
processes sixteen 8-bit or eight 16-bit data items with one instruction.
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3 Optimized Main-Memory Tree Structures

In this section, we present the main concept of our multi-dimensional Elf index
structure. Furthermore, we review previously proposed one-dimensional index
structures Seg-Tree/Trie, FAST, ART, and VAST from which we want to extract
important optimizations that could be applied to our Elf. We consider the adap-
tations made compared to the base index structure, the usage of SIMD, and the
performance gain presented by the authors of the certain index structures.

3.1 Elf as Multi-column Selection Index

Elf is a multi-dimensional tree-based index structure that was initially pro-
posed to evaluate multi-column selection predicates (MCSPs, i.e., predicates
that include several columns of one table) [6]. To exploit the properties of multi-
dimensional data and MCSP queries, Elf features a special conceptual design
and memory layout. In this section, we explain both features in order to give a
broad overview on the basic functioning of Elf.

Design. To illustrate the design of Elf, we use the data in Fig. 2(a) which
has 4 columns and a TID to identify the tuple. Conceptually, the Elf indexes
a table column by column where each column corresponds to a level in the
tree. Each node of the Elf, called DimensionList, contains entries of the form
[V alue, Pointer], where V alue is the column value of the subordinate tuples
and Pointer points to the subordinate DimensionList. The first level of the
tree consists of one root node that contains every unique value of the first col-
umn – for instance, the values 0 and 1 of C1 in the constructed Elf in Fig. 2(b).
According to these prefixes, data items can be assigned to one of these paths.
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Fig. 2. Example data, Conceptual Elf, and Memory Layout of Elf
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A DimensionList in a lower level holds all values of the column that
have the prefix that is constructed following the path from the root to this
DimensionList. For example, a tuple stored in DimensionList (5) has the pre-
fix 0 in the first dimension and 2 in the second dimension. Constructing the tree
in this manner will span a tree with n levels where n corresponds to the number
of indexed columns. However, the more dimensions or columns are indexed, the
more sparsely populated (i.e., shorter) the DimensionLists are in deeper levels.
The worst case is that we have a linked-list like tree, which we counter with the
concept of MonoLists [6].

MonoList. Whenever, we encounter a path from a tree level t to n (where t < n ∧
n = number of columns) without any fanout from t to n, we can construct a
MonoList. In this case, a MonoList stores all values adjacent to each other
and, thus, omits the pointers compared to the linked-list like case. In the Elf in
Fig. 2(b), DimensionLists (3), (4), and (5) are a MonoList, because there is no
fan out since each of these DimensionLists correspond to only one tuple. The
benefits of MonoLists are that it reduces storage costs and also leads to better
performance due to less pointer chasing.

Memory Layout. The tree-based implementation using nodes and pointers yields
a flexible structure for updates and insert, however, to achieve peak performance
for analytical queries, a good memory layout is needed. In our experiments, our
linearized Elf has a performance benefit of Factor 10 compared to the tree-based
version. For linearizing the Elf into an array, we use a preorder traversal – i.e.,
we linearize the current node before storing the entries of the left subtree and
afterwards follow all right subtrees.

In Fig. 2(c), we present the corresponding linearized Elf. The first linearized
DimensionList is only storing pointer to the underlying DimensionLists,
because we create a hash map1 here. The second linearized DimensionList stores
values and pointers of the DimensionList (2), where values in brackets repre-
sent pointers into the array. In order to minimize the storage consumption of
metadata even further, we omit to store length information of a DimensionList.
Instead, we set the most significant bit (MSB) of the value to denote the end of
a DimensionList. We visualize this with a negative value – for example, the −2
at offset 4 denotes the last entry of DimensionList (2). In contrast to that, a
negative pointer means that we set the MSB of the pointer to indicate that the
following DimensionList is a MonoList.

3.2 Seg-Tree and Seg-Trie

Zeuch et al. adapted the B+-Tree by having a k-ary search tree as each inner
node, called segment, and perform a k-ary search on each segment. In Fig. 2, we
show the adaptation of nodes made by Zeuch et al. for Seg-Tree. The k-ary search

1 The first list is not important for this paper. The interested reader is referred to the
original publication [6].
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bases on the binary search but divides the search space into k partitions with k-1
separators. Compared to binary search, the k-ary search reduces the complexity
from O(log2 n) to O(logk n). Considering m as the maximum number of bits to
represent a data type and |SIMD| as the size of a SIMD-register, called SIMD
bandwidth: k = |SIMD|

m defines the number of partitions for the k-ary search.

178
3-ary Seg Tree

52

10 43 76 109 1312 1615

1411

1918 2221 2524

2320

Fig. 3. Inner node format of Seg-Tree

SIMD Adaptation. As mentioned before, each segment of the Seg-Tree is a k-
ary search tree. To perform a k-ary search on a segment, Zeuch et al. liearize
the elements of the segment. They show two algorithms for linearization using
breadth-first search and depth-first search. Because of the condition k = |SIMD|

m ,
each partition of the k-ary search fits into a SIMD register and is compared to
the search key. A perfect k-ary search tree contains Smax = kh − 1 keys for an
integer h > 0. The considered search algorithm only works for sequences with a
multiple of k − 1 keys. In case of sequences with less than a multiple of k − 1
keys, they replenish the sequence with elements having the value kmax + 1 for
the maximal key value kmax in the sequence. Consequently, the adapted search
algorithm also works for sequences with less than a multiple of k − 1 keys.

Performance Improvement. The performance of Seg-Tree depends on k-ary
search and horizontal vectorization. The smaller a key the more keys are com-
pared parallel. Due to the relevance of 32 and 64-bit data types in modern
systems, the k-ary search performance increases up to a factor of four for 32-bit
types and two for 64-bit types.

Zeuch et al. also show the k-ary search on an adapted prefix trie (trie for
short) called Seg-Trie. A trie is a search tree where nodes store parts of the key,
called chunks. For example, a 32 bit key with a chunk size of 8 bit is stored
in a trie with 4 levels. The Seg-TrieL is defined as a balanced trie where each
node on each level contains one part of a key with L Bits. The tree has r = m

L
levels (E0, E1, . . . , Er), where m is the number of most bits to represent the data
type. Similar to the Seg-Tree, each node is again designed as a k-ary search tree.
Complete keys are stored in leaf nodes or are build by concatenating partial keys
from the root node to a leaf node. This approach benefits of the separation of
the keys in different levels of the tree. Consequently, they are smaller and more
keys can be compared in parallel.

To perform a tree traversal on the Seg-Trie, the search key is split into r
segments, each segment ri being compared to level Ei. If a matching partial
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key is found in a node of Ei, the search continues at the referenced node for
the partial key. If no match of the partial key is found, the Seg-Trie does not
contain the search key and the search is finished. Consequently, the advantage of
Seg-Trie against tree structures is the reduced comparison effort for non-existing
key segments.

3.3 FAST

SIMD Blocking

Cache Line Blocking

Page Blocking

Fig. 4. Index tree blocked in three-level hier-
archy: first-level page blocking, second-level
cache-line blocking, third-level SIMD block-
ing of FAST. Adapted from Kim et al. [9].

Kim et al. adapted a binary tree
to optimize for architecture fea-
tures like page size, cache-line size,
and SIMD bandwidth called Fast
Architecture Sensitive Tree [9]. In
contrast to Seg-Trees, FAST is
also adapted to disk-based database
systems. Kim et al. show the
performance increase because of
decreasing cache misses and bet-
ter cache-line usage. In order to
optimize for architectural features,
tree nodes are rearranged for hier-
archical blocking. In Fig. 3, we show
an index tree blocked in three-level
hierarchy introduced by Kim et al.
They split the tree into a number of subtrees, each one fitting a page block.
These sub-trees can be further split into cache-line-sized subtrees building the
second level in the hierarchy. Each of these subtrees that fit a cache line can be
further split into a number of nodes that fit a SIMD register. These nodes are
laid out in a breadth-first fashion (the first key as root, the next keys as children
on depth 2) representing a SIMD block (Fig. 4).

SIMD Adaptation. Kim et al. present implementations for building and travers-
ing the tree adapted for CPU and also for GPU. Building up the tree, SIMD is
used to computing the index for each set of keys within the SIMD-level block
in parallel, achieving around 2X SIMD scaling as compared to the scalar code.
With a Core i7 processor, the runtime of building a FAST tree with 64M tuples
is less than 0.1 s. Traversing the tree, they compare one search key to multiple
keys of the index structure. To use the complete bandwidth of cache and main
memory within the search, blocks are loaded completely into associated mem-
ories from large blocks to small blocks. For a page block, at first the page is
loaded into main memory. Then cache-line blocks are loaded one after another
in the cache and for each cache-line block, the included SIMD blocks are loaded
into the SIMD register. All keys of this SIMD block are compared with one
SIMD instruction. After examining the bitmask as result fo the comparison, the
corresponding next SIMD block is loaded (including the load of the surrounding
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larger blocks) until the key is found or the last level of the index structure is
reached.

Performance Improvement. Kim et al. consider the search performance as
queries per second. The CPU search performance on the Core i7 with 64M 32-bit
(key, rowID) pairs is 5X faster than the best reported number [14], resulting in
a throughput of 50M search queries per second. Considering larger index struc-
tures, the GPU performance increase exceeds the CPU performance increase,
because TLB and cache misses grow up and the CPU search becomes band-
width bound.

3.4 VAST

Yamamuro et al. extended FAST by building an index structure called Vector-
Advanced and Compressed Structure Tree (VAST) [16]. They adapt the block-
ing and aligning structure of FAST and add compression of nodes along with
improved SIMD usage.

In order to decrease the size of the index structure to better fit into main
memory, they compress inner nodes. Inner nodes above a given threshold are
compressed to 16 bit keys using lossy compression, while nodes in deeper levels
are compressed to 8 bit with lossy compression. In the leaf nodes, Yamamuro
et al. decrease the node size with the lossless compression algorithm P4Delta,
which results in a good balance between compression ratio and decompression
speed. To compensate errors that occur due to lossy compression, they present an
algorithm for error correction. In a nutshell, they use prefix and suffix truncation
to compress keys and calculate an offset Δw of the incorrect key to the correct
key during tree traversal. If Δw �= 0, VAST scans the leaf nodes sequentially
until Δw becomes 0.

SIMD Adaptation. Along with the other considered index structures, Yamamuro
et al. compare multiple keys to one search key with SIMD in the tree traversal.
Due to the key compression of nodes, VAST compares more keys in parallel than
FAST. Additionally, they reduce branch misses with an adapted SIMD usage.
They use addition and multiplication operations on the results of a SIMD key
comparison, instead of conditional branches (if-then paths), to find the next node
in tree traversal.

Performance Improvement. Due to lossy and lossless compression of the major-
ity of nodes, Yamamuro et al. reach 95% less space consumption of the VAST
compared to a binary tree or FAST. When considering an index with 232 keys,
they reach up to 6.0 and 1.24 times performance increase compared to a binary
tree and FAST. Although errors occur due to lossy compression, the error cor-
rection does not take a major influence on the traversal speed.
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3.5 ART
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Fig. 5. Inner nodes of ART. The par-
tial keys 0, 2, 3, and 255 are mapped
to pointers of the subtrees. Adapted
from Leis et al. [10]

Leis et al. adapted a radix tree for effi-
cient indexing in main-memory database
systems called Adaptive Radix Tree [10].
Similar to the Seg-Trie, the height of a
radix tree depends on the chunk size of
the keys stored in each node. ART divides
keys into 8-bit chunks. They differentiate
between inner nodes and leaf nodes and
adapt each of them in a different way.

Instead of using a constant node size
for each inner node, they present four
types of nodes with different numbers
of keys and children. In Fig. 5, we show
these node types containing keys that are
mapped to subtrees. The types of nodes,
sorted ascending by their size, are Node4,
Node16, Node48, and Node256.

Node4: The smallest node type consists
of one array with up to four sorted keys
and another array with up to four children.
The keys and pointers are stored at corre-
sponding positions.

Node16: This node type consists of arrays of 16 keys and 16 children, storing
keys and children analogue to Node4.

Node48: To avoid searching keys in many elements, this node type does not
store the keys explicitly. Instead, an array with 256 elements is used. This array
can be indexed with key bytes directly. It stores indexes into a second array with
the size of 48 elements containing the pointers to child nodes.

Node256: The largest node type is simply an array of 256 pointers. Conse-
quently, the next node can be found efficiently using a single lookup of the key
byte in that array.

When the capacity of a node is exhausted due to insertion, it is replaced by
a larger node type. When a node becomes underfull (e.g., due to key removal),
it is replaced by a smaller node type.

For leaf nodes, Leis et al. use a mix of pointer and value slots in an array.
If the value fits within the slot, they store it directly in the slot. Otherwise,
a pointer to the value is stored. They tag each element with an additional bit
indicating if a pointer or a value is stored.

SIMD Adaptation. According to FAST and Seg-Tree, Leis et al. use SIMD within
the tree traversal. They use horizontal vectorization, comparing the search key
against multiple keys of a node. In contrast to Zeuch et al., using horizontal
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vectorization for each inner node, Leis et al. only compare the keys of nodes
with type Node16 in parallel. Therefor, they replicate the search key 16 times
and compare these against all keys of nodes of type Node16.

In contrast to FAST and Seg-Tree, the goal of ART is also to reduce space
consumption. Leis et al. use lazy expansion and path compression. The first
technique, lazy expansion, is to create inner nodes only if they are required to
distinguish at least two leaf nodes. The second technique, path compression,
removes all inner nodes that have only one child.

Performance Improvement. Since SIMD is only used in the tree search, we do
not consider the performance increases of ART in insert and update operations.
Leis et al. show, that looking up random keys using ART is faster than Seg-
Tree and FAST, because ART has less cache misses and less CPU cycles per
comparison. They consider the performance increases for dense and sparse keys,
while ART works better with dense keys. Also they show that a span of 8 results
in better performance than a smaller span.

4 Evaluation

In this section, we define criteria to compare the adaptation made in Seg-Tree,
FAST, ART, and VAST to increase performance and show differences. These
criteria will also show important optimizations that we should include in our own
index structure Elf. We primarily focus on the usage of SIMD within the adapted
index structures. We summarize the performance criteria and their impact on
performance increase in Table 1 and show which index structure implements
which of the criteria. In the following, we consider each criterion in detail before
summarizing the comparison. For each criterion, we show how the index structure
implements it. If the index structure does not implement a criterion, we consider
if it is possible to implement it. Furthermore, we constitute why the adaptation
cannot compared directly in view of performance.

4.1 Horizontal Vectorization

Segmenting the index structure is important to reach a better performance
increase with SIMD instructions. Since the data for a SIMD operation has to
be stored sequentially in main memory, a good segmenting and blocking strat-
egy is necessary. In Sect. 2, we present vertical vectorization as alternative to
horizontal vectorization. Due to the necessity of sequential data storage in main
memory, comparing a different search key per vector lane is not applicable for
SIMD instructions in tree traversal. All considered adaptation except Elf use
horizontal vectorization in search operation for a single search key in the index
structure. Hence, the usage of horizontal vectorization seems more promising
than a vertical one.
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Table 1. Comparison of the considered index structures based on extracted criteria
and the impact on performance increase

Criterion Seg-Tree/Trie FAST ART VAST Elf Impact

Horizontal vectorization x x x x - High

Minimized key size o - x x - High

Adapted node sizes/types - x - x - Low

Decreased branch misses - x - x - Medium

Exploit cache lines using
blocking and alignment

- x - x x Medium

Usage of Compression o - x x x Medium

Adapt search algorithm
for linearized nodes

x - - - x Low

Legend: x = implements the issue; o = partially implements the issue; - = does not
implement the issue

4.2 Minimized Key Size

Minimizing the key size as much as possible speeds up the search performance,
because more keys can be compared with a single SIMD instruction. Addition-
ally, the smaller the keys are, the more keys fit into a cache line. Since tries or
radix trees, depending on their span, have small chunks of the search key in each
node, more keys are compared in parallel.

Zeuch et al. minimize the key size for the Seg-Trie using a small chunk size.
This leads to a bigger tree height, but the performance increase of compar-
ing more keys in parallel leads to better search performance. For the Seg-Tree,
they do not use adaptation to minimize the key size, therefore the performance
increase with SIMD depends on the size of the used data type. Analogue to the
Seg-Trie, Leis et al. use a small key size for ART to increase the performance
speed up.

Kim et al. do not minimize the key size for FAST, therefore the performance
increase with SIMD also depends on the size of the used data type. Yamamuro
et al. use compression to minimize the key size of VAST, respectively to the
layer. Since VAST is an extended Version of FAST, there is no need to check if
this adaptation is also applicable for FAST.

Elf currently does not feature a special compression mechanism of node
entries. However, since the value range is usually known, compression will defi-
nitely pay out in this scenario. Especially in combination with SIMD accelera-
tion, a magnitude of performance improvement is reasonable to expect.

4.3 Adapted Node Sizes and Types

Index structures for disk-based database systems often adapt their node size
to the page size of disk. In modern database systems, this adaptation becomes
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obsolete. Consequently, the considered index structures adapt their node to other
parameters.

Zeuch et al. adapted the B+-Tree by having a k-ary search tree as each inner
node. To perform k-ary search on the keys of a node, each node has the size of
multiple of the SIMD-bandwidth k.

Kim et al. segment FAST into SIMD, cache, and page blocks. Each block
contains multiple nodes, respectively to the block size. Since FAST is based on
binary tree, every node contains still a single element and is not adapted in type
or size. VAST uses the same hierarchical blocking and also does not adapt single
nodes.

Leis et al. present different node types for inner nodes of ART. The node
types differ in the number of keys and child nodes. Although Elf does not feature
special node types, there are several possibilities to support those. In fact, large
inner nodes could be represented as a k-ary search tree or even Seg-Trie.

4.4 Decreased Branch Misses

Evaluating comparisons using conditional branches can lead to branch misses, if
the CPU prefetches the wrong branch. Consequently, decreasing branch misses
improves search performance because less CPU cycles are needed. Yamamuro et
al. use addition and multiplication operations in VAST to find the next node in
their evaluation of the comparison result. This avoids conditional branching and
therefore decreases branch misses.

Zeuch et al. use conditional branches in their search algorithms for the Seg-
Tree and Seg-Trie, which can be replaced by the approach of VAST to decrease
branch misses. Analogue, ART and Elf can be adapted using this approach to
speed up the search performance.

4.5 Exploit Cache Lines Using Blocking and Alignment

In main-memory database systems, the IO-bottleneck moves from being between
disk and RAM further to being between RAM and cache. Consequently, an
efficient cache-line usage is important to speed up the performance of index
structures. An efficient cache-line usage is reached by blocking parts of index
structures to cache-line size.

Zeuch et al. linearize keys to a multiple of the SIMD bandwidth with the
Seg-Tree but do not adapt the node size to the cache-line size. Accordingly, an
adaptation of the inner nodes of Seg-Tree to the cache-line size could lead to
better cache-line usage and consequently to better search performance. This is
similar to Elf that also features a linearization of nodes for better cache-line
usage.

Kim et al. segmented FAST into SIMD, cache, and page blocks. They highly
optimize FAST for efficient cache-line usage by blocking the index structure into
blocks with the size of a cache line.



116 M. Wallewein-Eising et al.

Leis et al. also do not make adaptation of ART in view of blocking to the
cache-line size. Thus, a performance increase can be reached by adapting ART
to cache-line size.

4.6 Usage of Compression

Along with the fast growing amount of data stored in modern database systems,
the size of index structures grows fast. Compression of nodes decreases the size
of index structures. Key compression leads to better search performance with
SIMD, because more keys are compared in parallel.

Zeuch et al. do not use any node or key compression for Seg-Tree. Kim
et al. also do not compress nodes or keys in FAST. Consequently, considering
compression for Seg-Tree and FAST provides space for additional performance
increase.

Yamamuro et al. use lossy block compression to decrease the key size of
blocks. Consequently, they compare more keys with one SIMD instruction,
whereas performance decrease of the occurring errors is smaller than the perfor-
mance increase of the compression. Instead of compressing blocks, Seg-Trie and
ART use path compression to decrease the tree height. Consequently, less nodes
are passed to reach the matching leaf node, if it exists.

Leis et al. use path compression within ART. Path compression removes all
inner nodes that have only one child to decrease the tree height and therefore
increase search performance. Key compression is a possible adaptation for ART
to improve the search performance. This is also an idea that Elf exploits. We
create MonoLists when there is no fan out in the lower levels anymore.

4.7 Adapt Search Algorithm for Linearized Nodes

Searching children in nodes with many keys can be speeded up with adapted
search algorithms compared to linear search.

Zeuch et al. introduce k-ary search for the Seg-Tree and Seg-Trie, which
performs in O(logn) compared to O(n) of linear search, where k is the SIMD
bandwidth. Consequently, less keys are compared in one node, whereas a lin-
earised storage of the keys in the node is required.

For FAST and VAST, the k-ary search is not applicable because they are
adapted from binary trees and have only one key in each node. Leis et al. use
linear search in their adapted nodes of ART to find children. For the node type
Node256 k-ary search can speed up finding the correct child node. Similar to
this, the sort order in nodes of Elf is not fixed. Hence, ART and Elf provide
space to use k-ary search.

4.8 Summary

After considering each performance criterion in detail, we summarize the compar-
ison and weight the mentioned criteria according to their performance increase.
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As mentioned before, comparing a different search key per vector lane is
not applicable for SIMD instructions in tree traversal. Therefore, all considered
adaptation use horizontal vectorization, but evaluate the result of the SIMD com-
parison in different ways. Since horizontal vectorization with SIMD, depending
on the key size, leads to direct performance increase up to a multiple, we assign
the highest weight to it.

Due to the mentioned performance increase of horizontal vectorization, min-
imizing key size also leads to better search performance. We assign the second
highest weight to minimizing the key size, since more keys are compared in par-
allel. Because of the compression of keys, VAST reaches the highest performance
increase by minimizing key size compared to the other index structures.

Compared to horizontal vectorization and minimizing key size, an efficient
cache-line usage and avoiding branch misses lead to lesser performance increase.
Although, both criteria decrease the number of CPU cycles, the performance
increase does not reach a multiple. Therefore, we assign the third highest weight
to efficient cache-line usage and to avoiding branch misses.

Afterwards, we assign the fourth highest weight to the usage of compression.
With key compression, the performance increase of horizontal vectorization rises.
Path compression decreases the height of index structures and consequently less
nodes are passed during traversal.

We assign the lowest weight to the adaptation of nodes and to the usage of
an adapted search algorithm. The adaptation of nodes does not lead directly to
performance increase, but is the basis for horizontal vectorization and efficient
cache-line usage. The usage of an adapted search algorithm, for example k-ary
search, needs lesser comparisons. Nevertheless, it is not applicable for all of
the considered index structures and it requires large node sizes to increase the
performance.

Overall, this survey has shown that our index structure Elf already shares
some characteristics with highly-tuned main-memory index structures. However,
especially the most promising optimizations (horizontal vectorization, minimiz-
ing key sizes, and branch misses) are currently not used. Still, we have argued
that all these optimizations are possible to be implement in future work.

5 Related Work

In main-memory database systems, a B+-Tree does not fulfill the requirements
of efficient cache-line usage. Therefore, it is important to adapt B+-Trees to
efficient cache-line usage. Rao et al. show improved cache-line usage for B+-
Trees [12]. Compression is used to decrease the index size to fill more keys into
the cache line. Zukowski et al. show the performance increase of better cache-
line usage with compression [18]. This adaptation gives an alternative for us
compared to the compression used in VAST.

Graefe et al. present and summarize several techniques for improving cache
performance for B-Trees [8]. Furthermore, Bender et al. show a cache oblivi-
ous B-Tree [1] and a cache oblivious B-Tree for string data types [2]. Borodin
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et al. show improved page and cache-line usage in generalized search trees of
PostgreSQL [3]. Other adapted index structures are shown by Rao et al., the
Cache-Sensitive Search Trees (CSS-Tree) [12], and the Cache Sensitive B+-Tree
(CSB+-Trees) [13]. They construct the tree such that the keys are placed with
the best cache optimization as possible in terms of spatial or temporal locality.
Since we consider efficient cache-line usage as an important criterion for mod-
ern index structures, these adaptation gave useful ideas to measure performance
increase due to efficient cache-line usage.

6 Conclusion and Future Work

In this work, we compare the adapted index structures Seg-Tree/Trie, FAST,
VAST, and ART and compared their properties to our own index structure Elf. A
special consideration was given here to the usage of SIMD. We extract important
criteria of these adaptations and weight them according to their impact on the
performance.

Due to direct performance increase of horizontal vectorization with SIMD
up to a multiple, this is the highest weighted criterion. Minimizing the key size
leads to the comparison of more keys in parallel and is therefore assigned with the
second highest weight. Afterwards, we assign the efficient usage of the cache line
and the decrease of branch misses the third highest weight. The other considered
criteria, in descending order in view of performance increase, are the usage of
compression, the adaptation of node types and size, and the usage of an adapted
search algorithm to find keys within nodes.

Since, currently, Elf does not feature most of these powerful optimizations of
the considered index structures, we plan to integrate them into Elf.
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