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Abstract. Creating high-quality training sets is the first step in design-
ing robust classifiers. However, it is fairly difficult in practice when the
data quality is questionable (data is heterogeneous, noisy and/or mas-
sively large). In this paper, we show how to apply a genetic algorithm
for evolving training sets from data corpora, and exploit it for artificial
neural networks (ANNs) alongside other state-of-the-art models. ANNs
have been proved very successful in tackling a wide range of pattern
recognition tasks. However, they suffer from several drawbacks, with
selection of appropriate network topology and training sets being one
of the most challenging in practice, especially when ANNs are trained
using time-consuming back-propagation. Our experimental study (cou-
pled with statistical tests), performed for both real-life and benchmark
datasets, proved the applicability of a genetic algorithm to select training
data for various classifiers which then generalize well to unseen data.
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1 Introduction

Artificial neural networks (ANNs) are an established and thoroughly researched
classifier applied in a wide range of real-life applications, including computer-
aided diagnosis [13,28], stock market index prediction [16], chemical engineer-
ing [9], weather forecasting [1], face and skin detection [2,8], and many other pat-
tern recognition tasks [6,22]. ANNs belong to the supervised classification engines
which require labeled training sets to be supplied to a training procedure—
commonly the back-propagation routine [26]—whose aim is to build a well-
generalizing (to the unseen data) model. Collecting high-quality training sets
(i.e., balanced, representative, and containing only correctly labeled examples)
is often a fairly user-dependent1 and expensive process. Low- or questionable-
quality data provided as a training set may easily hamper the learning and
1 As an example, there may be massive discrepancies between two equally-experienced

readers segmenting a medical image [21].
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deteriorate the performance of any supervised classifier, with ANNs not being an
exception [18]. Therefore, selecting reduced (or surrogate) training data from dif-
ficult datasets (i.e., very large, imbalanced or weakly-labeled) is a vital research
topic and should be considered while building a processing engine for a classifi-
cation task being tackled [18–20].

1.1 Related Work

Training set selection algorithms have been successfully applied for supervised
classifiers, including—among others—support vector machines (SVMs) [12,18,
19] and random forests [14]. Such algorithms are commonly divided into several
groups reflecting their underlying ideas. In basic random training set selection
techniques, reduced sets are sampled from the entire training set T without
building any surrogate model of the solution space S [3]. Although there exist
algorithms for intensifying the search in specific parts of S (which seem to encom-
pass important T vectors), their convergence abilities are still very limited.

In geometry-based approaches, the spatial characteristics of examples2 in T
are analyzed in search of important feature vectors, i.e., those influencing the
resulting classification model (e.g., vectors which will likely be selected as sup-
port vectors in SVMs). Geometry-based training set selection techniques are
built upon an assumption that the data geometry reflects the importance of
specific examples in T . This information can be extracted before learning a
classifier, hence “useless” vectors can be removed from the refined sets. Such
methods encompass clustering-based and clustering-free approaches—the for-
mer techniques exploit unsupervised algorithms to group T data in the first
step. Then, clusters are further analyzed (e.g., examples positioned inside a
cluster will most likely not influence the learning process, therefore can be safely
removed [18]). Similarly, neighborhood-based techniques traverse local relations
between T examples to find distinctive vectors [4]. Geometry- and neighborhood-
based algorithms are dependent on the size of T (given as t) which is their very
important downside (they may not be applicable in real-life scenarios in which
the cardinality of T easily exceeds millions). This problem is often not exposed
in randomized techniques which sample a subset of T of a size selected prior to
optimization.

Evolutionary algorithms (EAs), with genetic and memetic techniques (the
latter being hybrids of evolutionary algorithms and local-search procedures) vis-
ibly constituting the mainstream, have recently gained interest in the context of
selecting refined training sets, especially for SVMs [17,18]. In such techniques,
which are often independent from t, a population of candidate solutions (i.e., sur-
rogate sets) evolves in time in a biologically-inspired process. Since optimizing
training sets using EAs requires learning an underlying model with the reduced
set represented by each individual in the population (such approaches are called
the wrapper techniques), they may become fairly computationally-intensive for
larger sets. Nevertheless, they were shown to be outperforming other methods

2 In this paper, we use examples and vectors of features interchangeably.
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from the literature and to be able to deliver high-quality training sets (i.e., such
datasets from which an effective classifier can be learned). Importantly, such
methods are able to build surrogate models that contain vectors that would
have been rejected by geometry-based approaches (e.g., positioned within groups
of one-class examples), but turned to be important (and affecting the classifier
performance) in the course of evolution.

Although the use of EAs for optimizing ANNs is not novel, such approaches
were mainly applied for optimizing the weights, learning rules, and net-
work topologies [7]. Evolutionary augmentation of “minimal” neural topologies
was a basis of a famous NEAT algorithm (Neuro-Evolution of Augmenting
Topologies), which was shown to be outperforming other fixed-topology ANNs
in reinforcement learning tasks. Importantly, candidate solutions get more com-
plex in the course of optimization in NEAT, hence this technique also proved
that strengthening the analogy with biological evolution is an important aspect
of well-designed EAs. A very interesting research pathway involves evolving neu-
ral network ensembles [27] (importantly, such classifier committees are gaining
research interest nowadays [15,23]). Such evolutionary ensembles are aimed at
extracting diverse groups of ANNs which are learned separately and are able to
provide an agreed classification outcome when classifying challenging datasets
(which is in line with the divide-and-conquer strategy). There exist methods for
evolving surrogate training sets for ANNs [5,10,24], however they have not been
extensively investigated in the literature.

Reducing the size of a training set is slightly counter-intuitive and can appear
simply incorrect, especially for larger ANN topologies3 (with a huge number of
neurons in hidden layers), because such networks are prone to memorizing small
sets (they can be easily overfitted to T ). In this paper, we address this issue
and carefully verify whether it is possible to train a well-generalizing ANN with
reduced T ’s, extracted using a genetic algorithm.

1.2 Contribution

The contribution of this work is multifold. We build upon a genetic algorithm
(GA) for evolving reduced training sets for SVMs [11], and exploit an analo-
gous approach for extracting reduced sets for ANNs (Genetic Algorithm for
Training Set selection, GA-TS), in which each candidate solution (an individ-
ual) in a population represents a surrogate set, and its fitness is quantified as
the classification performance of the underlying model trained using the corre-
sponding surrogate training set. These surrogate sets can be effectively used for
learning other classifiers as well.

Although GA-TS is a wrapper technique (i.e., calculating the fitness value
involves performing the full training procedure), our extensive and fairly rigorous
experiments (multifold cross-validation backed up with statistical tests) showed

3 Also in the context of recent advances in the field of deep learning, where data
augmentation—being a process of extending training sets rather than reducing their
size—became a critical step in designing deep network topologies [21].
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that is offers decent convergence capabilities for benchmark and real-life datasets
(the latter was extracted from the ECU database4 in the context of skin detection
and segmentation). In sensitivity analysis, we showed how the most important
parameters of GA-TS influence the optimization process alongside the classifiers
trained using such evolved surrogate training sets. The following insights can be
learned from our experimental study:

– Surrogate sets evolved using GA-TS can be effectively used to improve per-
formance of not only ANNs but other state-of-the-art classifiers as well (we
investigated several classification engines known from the literature).

– ANNs of a predefined topology can be learned from small training sets, and
they can generalize well to the unseen data.

– Increasing the number of generated children (beyond two) and population size
in GA-TS slows down the convergence and does not offer a visible increase in
the quality of extracted training sets.

– Reducing the cardinality of T helps improve all investigated classifiers, which
is in line in the conclusions reported in recent works on SVMs [17].

1.3 Paper Structure

This paper is structured as follows. Section 2 discusses our genetic algorithm for
evolving surrogate training sets for ANNs. In Sect. 3, we report and analyze the
results of our experiments performed using benchmark and real-life datasets.
Section 4 concludes the paper and highlights the future research pathways.

2 Genetic Evolution of Surrogate Training Sets

In this paper, we build upon a GA proposed in our previous work [11], and
present how to exploit an analogous algorithm for evolving training sets for
ANNs (GA-TS). Also, we show that T ’s extracted using our technique can be
effectively used for learning other state-of-the-art classifiers as well.

In GA-TS, a population of N solutions (surrogate training sets) undergoes
the evolution in search of high-quality reduced T . The size of individuals t′

(i.e., the cardinality of reduced sets) is kept constant across the population and is
set apriori5 (see the flowchart in Fig. 1). Then, the parents are paired for mating
and are subject to crossover (in Fig. 1, we render operations that are inherently
parallelizable as stacked steps). In this step, a child inherits distinct vectors
(from both classes) from both parents—if the number of vectors in an offspring
is smaller than t′, then random examples are drawn from T to keep the size of
individuals constant in the course of the optimization. An analogous approach
of replacing random examples from a surrogate model with those selected from

4 This database is available at: https://www.uow.edu.au/∼phung/download.html; last
access: January 4, 2018.

5 There exist approaches for updating the size of individuals dynamically [17], however
we abstract from them in this paper.

https://www.uow.edu.au/~phung/download.html
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Fig. 1. Evolution of training sets using a genetic algorithm.

T is used in mutation (which is performed with the probability Pm). The fitness
of an individual is quantified as the classification performance (e.g., accuracy or
area under the receiver operating characteristic curve) of a classifier (we exploit
the accuracy of a trained ANN in this work) learned using the corresponding
surrogate set over the validation set V .

The GA is stopped if a termination condition is met—it may happen if a
surrogate set of a desired quality has been obtained, the maximum number of
generations have been already processed, or the maximum allocated execution
time elapsed. Finally, the best individual from the last generation is returned
and considered the final surrogate training set (in fact, we return a model trained
using this surrogate set which is ready to use for new data). For more details on
a GA to evolve surrogate training sets, we refer to [11].

3 Experimental Validation

GA-TS was implemented in C++. We analyzed several classifiers (implemented
in sklearn in Python), including: artificial neural networks (ANNs), logistic
regression (LR), AdaBoost (AB), Gaussian Naive Bayes (GNB), quadratic dis-
criminant analysis (QDA), k-nearest neighbors (k-NN), decision trees (DTs) and
random forests (RFs), and SVMs. The crossover and mutation probabilities in
GA-TS were tuned experimentally to Pc = 0.7 and Pm = 0.1, respectively, and
remained constant across the entire experimental study. Similarly, the learning
rate of our ANN was kept constant and equal to 0.6.

3.1 Datasets

We focused on one UCI benchmark (Wisconsin breast cancer6, 699 examples
containing 10 attributes, not balanced, with 458 benign and 241 malignant exam-
ples), and one real-life set from the field of skin segmentation (Skin, 105 exam-
ples of RGB values, balanced). The latter set contains examples of skin and
6 This dataset is available at: https://archive.ics.uci.edu/ml/datasets/breast+cancer+

wisconsin+(original); last access: January 4, 2018.

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
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non-skin pixels sampled from the ECU images (see example images rendered
in Fig. 2—very high variability of inner-class vectors representing human skin
can be noticed here). Both datasets were divided into a training set T from
which surrogate sets are evolved, validation set V on which the fitness of indi-
viduals is calculated (during the evolution), and test set Ψ used to quantify
the generalization capabilities of a learned model (this set was not used during
the evolution and contains unseen data). For Wisconsin, we followed the 5-fold
cross-validation scenario, whereas Skin was divided randomly into |T | = 8 · 104

training, |V | = 104 validation, and |Ψ | = 104 test examples.

Fig. 2. Example ECU images used to elaborate the Skin dataset.

3.2 Experiment 1: Skin Dataset

In this experiment, we verify the impact of the GA parameters, i.e., the pop-
ulation size (N), number of children generated for each pair of parental solu-
tions during crossover (Nch), and size of surrogate sets being evolved (t′), on its
search capabilities and quality of final solutions (ANNs learned using evolved
T ’s)—each variant of GA-TS was executed 10×. We focused on Skin, and our
ANN was fairly small (built with two hidden layers containing 6 and 3 neu-
rons, respectively). The evolution of training sets was terminated if there was
no improvement in the best fitness in five consecutive generations.

In Table 1, we gather the results (alongside the convergence time of our
genetic technique) obtained using ANNs learned using surrogate sets extracted
with GA-TS run in all investigated configurations. For very small sets (contain-
ing .1% of samples from the entire training set T ), GA-TS prematurely converges
to the final solutions, and these surrogate training sets are low-quality (they are
much worse compared to other sets, and the differences are statistically relevant
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Table 1. Classification performance of ANNs trained using Skin surrogate sets
extracted using GA-TS for all investigated configurations: Acc—accuracy obtained
for the test set Ψ , Δη—gain in the average fitness (note that the gain can be negative
because we do not exploit any elitism), τ—GA convergence time; for all measures we
report the minimum, average, and maximum values (the best values are boldfaced).

Accmin Accavg Accmax Δηmin Δηavg Δηmax τmin τavg τmax

t′ Population size: N = 10, number of children: Nch = 2

.001 · t .500 .758 .871 −.093 .003 .075 23 173.5 671

.01 · t .819 .851 .869 −.058 .001 .047 56 432.3 902

.03 · t .819 .849 .870 −.307 .006 .330 70 528.1 1722

.05 · t .838 .870 .883 −.021 <.001 .028 93 768.9 1697

.1 · t .815 .867 .881 −.021 <.001 .026 140 1271.1 2900

N Cardinality of sets: t′ = .01 · t, number of children: Nch = 2

10 .799 .842 .870 −.097 <.001 .092 79 396.4 1168

20 .819 .851 .869 −.058 .001 .047 56 432.3 902

40 .500 .816 .883 −.031 −.001 .035 115 1017.2 3185

Nch Cardinality of sets: t′ = .01 · t, population size: N = 10

1 .795 .839 .882 −.500 .001 .048 53 324.9 561

2 .819 .851 .869 −.058 .001 .047 56 432.3 902

10 .793 .832 .877 −.080 <.001 .069 51 919.4 3450

at p < .01 in Wilcoxon test—the null hypothesis saying that these GA-TS vari-
ants give the same-quality surrogate sets can be safely rejected). On the other
hand, increasing the cardinality of evolved training sets does not necessarily
improve their quality (the differences are not statistically important; p-value
equals .52 for the Wilcoxon test), but notably slows down the convergence (see
sets with 5% of T examples compared with those containing 10% of T vectors).
Similarly, the population size should be kept as small as possible to speed up
exploration of the solution space (candidate solutions with relatively small fitness
values need more time to be improved in larger populations—see the minimum Ψ
accuracy for N = 40). Finally, generating even two children (instead of one) for
each parental pair can help boost the exploitation and create well-fitted offspring
solutions. However, it causes increasing the execution time of GA-TS, because
all generated children must be assessed during the evolution (hence, it requires
training a classifier using the surrogate set represented by a new individual).
Therefore, selecting training sets can be seen as a multi-objective optimization
problem—on one hand, performance of the final classifier is to be maximized,
on the other hand—a selection algorithm should work as fast as possible (also,
training time of a classifier should be minimized).

Example ECU images segmented using selected classifiers trained with the
entire training set, and reduced training sets (evolved using GA-TS and sampled
randomly from T ) are rendered in Fig. 3 (also, we present a manual ground-truth
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GA-TS Random Full T
Original (a) Ground-truth AB, .7979 AB, .7969 AB, .7977

Original (b) Ground-truth SVM, .9479 SVM, .9476 SVM, .9454

Original (c) Ground-truth QDA, .7420 QDA, .4301 QDA, .4301

Fig. 3. Example ECU images segmented using selected classifiers learned with: a set
of 0.25 · |T | vectors evolved using GA, randomly sampled from T , and the entire T .

segmentation of those images). It can be seen that sets evolved using a genetic
technique allowed for learning well-performing models for very heterogeneous
data (see inner-class variability in Fig. 2). It is especially visible for QDA, where
the classification accuracy was improved by a margin greater than 30% (lots of
false positives were filtered out). Hence, GA-TS can be effectively applied for
other learners (even if the quality of surrogate sets during the evolution was
quantified using a different classifier) as well to help boost their classification
performance over difficult training sets. Also, it is possible to easily change the
underlying classification engine that is used to elaborate the fitness value.

In Table 2, we report the classification accuracy alongside processing time
(training and classification) over the selected ECU images for all investigated
classifiers (learned using the entire set T , and surrogate training sets extracting
with our GA-TS and sampled randomly from T—both sets contained 0.25 · |T |
vectors). The results show that evolved sets not only do allow for obtaining
highest-quality classification scores, but are also helpful in decreasing the exe-
cution time of the classification engine (especially when compared with learners
trained using the entire training set). Interestingly, removing samples from T
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Table 2. Accuracy for selected ECU images (see a–c in Fig. 3) elaborated using all
investigated classifiers trained with surrogate sets obtained using GA-TS and random
sampling, and with the entire training set T , alongside their training and classification
(of all pixels in the corresponding image) times (τT+C, in seconds). The best results
for each image are boldfaced.

Image→ (a) (b) (c)

Classifier↓ Acc τT+C Acc τT+C Acc τT+C

Classifiers trained using surrogate sets selected
using GA-TS

ANN .740 67.30 .759 4.32 .607 18.09

LR .808 27.05 .861 1.05 .600 7.68

AB .798 515.12 .858 16.71 .595 113.04

GNB .293 179.01 .553 5.38 .817 46.11

QDA .278 184.13 .775 9.39 .742 42.01

SVM .263 489.12 .948 23.56 .407 112.72

k-NN .804 211.57 .757 6.89 .682 55.55

DT .798 27.74 .858 .95 .595 7.89

RF .818 454.78 .771 15.13 .681 116.63

Classifiers trained using surrogate sets selected
randomly

ANN .733 76.71 .745 3.52 .682 19.66

LR .808 30.05 .861 .98 .600 6.92

AB .797 518.19 .857 16.47 .594 2.28

GNB .289 182.09 .557 6.02 .815 42.45

QDA .274 199.36 .743 6.41 .430 42.62

SVM .263 456.79 .948 24.35 .336 115.02

k-NN .802 211.89 .756 7.12 .682 56.23

DT .797 28.03 .857 1.01 .594 7.96

RF .795 451.84 .807 16.07 .594 113.98

Classifiers trained using the entire T

ANN .728 71.83 .324 12.79 .684 30.54

LR .814 29.62 .862 1.89 .605 7.16

AB .798 549.14 .858 23.18 .595 143.30

GNB .289 179.26 .557 5.14 .815 44.62

QDA .277 204.52 .743 5.35 .430 42.42

SVM .258 348.32 .945 300.03 .408 721.22

k-NN .805 215.02 .756 7.42 .683 58.15

DT .798 27.25 .858 1.01 .595 8.11

RF .796 444.65 .858 15.70 .595 122.63
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helped improve the accuracy—it may exhibit the presence of “noisy” vectors in
T which should be rejected from the training set before the training process to
maximize the generalization capabilities of a model.

3.3 Experiment 2: Wisconsin Breast Cancer Dataset

In this experiment, we compared pretty small ANNs (two hidden layers with
three neurons each) trained using surrogate models (of various sizes) with state-
of-the-art classifiers learned with the entire T for the Wisconsin benchmark
dataset (as already mentioned, we performed 5-fold cross-validation and present
the results averaged across the folds). Similarly to the previous experiment, each
variant of GA-TS was executed 10× for each fold.

The classification accuracies reported in Table 3 confirm that ANNs outper-
form other approaches and deliver very fast operation and training (see τT+C).
Also, the results are fairly consistent across the folds (see the ANN standard
deviation σ). The increase in classification abilities of ANNs show that GAs can
be successfully used for evolving T ’s not only for SVMs [17]. It is interesting to
note that training of ANNs did not significantly vary across different surrogate
set cardinalities (the boost in classification accuracy was not notable either).
This is an indicator showing that this dataset is not very challenging, and even
for an entire training set the learning process is affordable.

Table 3. Accuracy for Wisconsin breast cancer using the investigated classifiers, along-
side their training and classification (of the test set) times (τT+C, in seconds). The best
results in each column are boldfaced.

Classifier Accavg σ(Accavg) τT+C
avg σ(τT+C

avg )

Classifiers trained using the entire T

LR .962 .032 .003 .001

AB .948 .035 .165 .014

GNB .965 .014 .002 .001

QDA .958 .018 .002 .002

SVM .956 .027 .010 .001

k-NN .949 .042 .008 .007

DT .936 .028 .091 .199

RF .962 .023 1.418 .019

ANN .964 .019 .190 .037

ANNs trained using surrogate sets of various
cardinalities t′

ANN, t′ = 0.2 · t .979 .005 .188 .031

ANN, t′ = 0.1 · t .976 .006 .184 .049

ANN, t′ = 0.05 · t .977 .005 .183 .040
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4 Conclusions and Future Work

In this paper, we exploited a genetic algorithm for evolving surrogate training
sets (of significantly lower cardinalities than the original set) for ANNs. Also, we
showed that such evolved sets can be effectively used for other state-of-the-art
classifiers without introducing any changes in the core algorithm. Experimental
validation (coupled with statistical tests) performed on real-life and benchmark
datasets confirmed the applicability of this evolutionary training set selection
scheme in practice. Classifiers learned with surrogate sets were confronted with
those trained using the entire set and random surrogate sets, and they were
shown to be outperforming the latter techniques. It is an indicator that training
set selection should be used in practice for large, heterogeneous and potentially
noisy datasets in order to select only those examples which are distinctive.

It would be interesting to see if a surrogate training set evolved for a given
classifier can be directly used to improve a different learner—it could be poten-
tially useful to decrease the fitness evaluation time in the course of optimization,
and exploit the fastest classifiers to quantify the quality of surrogate sets during
the evolution. Although the results reported in this paper are a very good indica-
tor that it is possible, this issue requires further investigation. We currently work
on a fully hands-free algorithm for evolving SVMs, in which not only surrogate
models are optimized, but also features and kernel hyperparameters evolve. This
algorithm will be applied to segment brain lesions from FLAIR MRI sequences
and other medical images [25]. Finally, we aim to tackle the problem of selecting
training sets for deep neural networks by means of evolutionary computation.
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