
Covering Approach to Action Rule
Learning

Pawe�l Matyszok, Marek Sikora, and �Lukasz Wróbel(B)

Institute of Informatics, Silesian University of Technology,
ul. Akademicka 16, 44-100 Gliwice, Poland

{pawel.matyszok,marek.sikora,lukasz.wrobel}@polsl.pl

Abstract. Action rules specify recommendations which should be fol-
lowed in order to transfer objects to the desired decision class. This
paper presents a proposal of a novel method for induction of action rules
directly from a dataset. The proposed algorithm follows the so-called
covering schema and employs a pruning procedure, thus being able to
produce comprehensible rule sets. An experimental study shows that the
proposed method is able to discover strong actions of superior accuracy.

1 Introduction

Action rules are one of the ways to use rule-based representations to search for
recommendations which indicate how the change of attribute values can cause
the change in the assignment of examples to the given decision class. There have
been several proposals of algorithms for action rule induction. Neither of the
proposed algorithms employs one of the most popular and efficient approaches to
the rule induction, which is the covering (known also as separate-and-conquer)
strategy [4,13]. The paper features a proposal of an algorithm for action rule
induction by means of the covering strategy. The algorithm generates action
rules which are enough to cover an analysed set of examples, thus significantly
limiting the number of generated rules.

The rule growing and pruning phases are guided by rule quality measures
[6,12]. The possibility to use different quality measures allows generating more
accurate or general rules, depending on the users’ needs [17,23]. A unique fea-
ture of the algorithm is the possibility to generate action rules on the basis of
numerical attributes with no necessity of their previous discretization.

The paper is organized as follows: Sect. 2 features related work on the action
rule induction, Sect. 3 describes the proposed algorithm. Section 4 presents the
results of the algorithm on datasets from the UCI repository. Section 5 gives the
conclusions and presents the possible future work.

2 Related Work

The first works in the field of action rule induction focused on generating action
rules on the basis of the existing classification rules generated by means of algo-
rithms based on the rough set theory [8,14,16]. The next proposed methods
c© Springer Nature Switzerland AG 2018
S. Kozielski et al. (Eds.): BDAS 2018, CCIS 928, pp. 182–193, 2018.
https://doi.org/10.1007/978-3-319-99987-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99987-6_14&domain=pdf

Covering Approach to Action Rule Learning 183

included also algorithms for direct induction of action rules from data, like asso-
ciation action rule induction and the ARED algorithm [3,11,15]. The ARED
method uses the concept of Pawlak’s information system [14] in which certain
relationships between granules, defined by indiscernibility relation of objects,
are identified. Some of these relationships are used to define the action rule. All
aforementioned approaches are based on the assumption that all possible rules
are generated which meet the minimum support and confidence constraints. In
[9] the authors proposed an algorithm for induction of action rules from tem-
poral decision tables. In this approach the rules are generated on the basis of
a dataset describing the behaviour/states of the object over the given period of
time (e.g. two-year observation of a patient), thus containing all available infor-
mation about the objects during the examined period (e.g. follow-up appoint-
ments, hospital stays).

Action rules reflect recommendations on the changes of attribute values but
they do not indicate which operations cause the changes (e.g. recommendation
“change blood sugar level from 95 to 80” does not show what kind of medicine
should be taken to apply this recommendation). In this case the usability of
action rules is understood as the analysis and identification of operations that
must be undertaken to change the values of the attributes occurring in the
premises of action rules. Such operations are called meta-actions. The analysis
of dependencies between action rules and meta-actions was presented in [20,22].
Recently, Almardini et al. [1] have presented procedure paths as a sequence of
procedures that a given patient undertakes to reach the desired treatment. In the
majority of the quoted papers, the authors illustrate their algorithms on medi-
cal data (Florida State Inpatient Databases, HEPAR Dataset) and the described
experiments contain mainly the analysis of a few rules from the generated ones.
However, there is no research on the comparisons between the proposed algo-
rithms in terms of criteria such as the number of rules, average number of con-
ditions in inducted rules, average quality of rules, etc.

The action rule induction is part of a more general issue of the usability and
actionability of the data exploration results. This issue has been raised more and
more often [10]. In the case of rule-based representations, the issue of actions
generation on the basis of classification rules, with no necessity to generate action
rules, was proposed in [21]. In [7,18,24] the authors discussed the methods of
rule assessment from the point of view of their usability and actionability. In
[24] actionability is defined as the compatibility of a classification rule structure
with specific requirements of the user, concerning the structure of conditions
contained in the rule premise. The remaining papers [7,18] concentrate on the
assessment of the strength of classification rules from the point of view of their
potential to change the examples assignment between decision classes.

3 Covering Approach to Action Rule Induction

Basic Notions
An action rule may be considered a composition of two decision rules. To define
the action rule, basic notions are presented in this section.

184 P. Matyszok et al.

Let us consider that a finite set of examples Tr is given. Each example in this
set can be described with a set of attributes A∪{d}, where a : Tr → Va for each
a ∈ A ∪ {d}. The set Va is called range of attribute a. The elements of A are
called conditional attributes, and the variable d is known as a decision attribute
– its value is considered as an assignment of an example to a decision class.
Conditional attributes can be numeric or symbolic type. Numeric attributes
values are real numbers, while symbolic attributes values have to be discrete.
The decision attribute is always symbolic. The conditional expression of the
following form is called decision rule:

w1 ∧∧∧ w2 ∧∧∧ . . .∧∧∧ wk THEN d = v

The part to the left of the word THEN is called premise and the part to the
right side of this word is called conclusion. The conclusion of a decision rule is
understood as an assignment of an example fulfilling the premise of this rule to
the concept bound with the value of the decision attribute d. The premise of
the decision rule is a conjunction of elementary conditions wi. The form of the
elementary condition used in the presented approach is wi ≡ ai ∈ Zi, where ai
is the name of the conditional attribute and Zi is the interval in this attribute
range Vai

. For symbolic attributes the elementary condition is simple ai = vj ,
where vj ∈ Vai

.
Let us consider two decision rules r1 and r2, such conclusions of those rules

are mutually exclusive (i.e. v1 �= v2):

r1: w11 ∧∧∧ w12 ∧∧∧ . . .∧∧∧ w1k THEN d = v1

r2: w21 ∧∧∧ w22 ∧∧∧ . . .∧∧∧ w2k THEN d = v2

The following composition of such rules is called action rule:

w11 → w21 ∧∧∧ w12 → w22 ∧∧∧ . . .∧∧∧ w1k → w2k THEN d = v1 → v2

This representation, with no loss of generality, may be rewritten in a simpler
form:

(a1, va11 → va12) ∧∧∧ (a2, va21 → va22) ∧∧∧ . . .∧∧∧ (ak, vak1
→ vak2

)
THEN (d = v1 → v2)

An action rule describes possible transition of examples between classes in
the given example set Tr based on the change in the attribute values of examples
in this set. The class on the left side of the action rule conclusion (v1) will be
called source class or source concept, while the one on the right side (v2) – target
class or target concept.

The elementary condition of the form (ai, vai1 → vai2) is called action and
should be interpreted as a request to change the value of the attribute ai of
examples fulfilling the condition ai ∈ vai1 , so that those examples could meet
the condition ai ∈ vai2 after the request (or action) is completed. The premise
of the action rule is a conjunction of actions. The conclusion of the action rule
is yet another action, which is interpreted as a change in the assignment of

Covering Approach to Action Rule Learning 185

examples fulfilling the left side of each action from the original concept v1 to a
new concept v2 after all actions in the premise are performed (meaning that the
examples fulfill now the right side of each action in the premise).

In the context of the action rules attributes can be treated as flexible or
stable. A flexible (or mutable) attribute is a kind of attribute whose value can
be changed, e.g. interest rate of a loan. Stable attributes are features of an
example than cannot be changed, e.g. date of birth. An action rule induction
algorithm must not create actions based on stable attributes.

Action Rule Induction

In this section a covering action rule induction algorithm is presented. The algo-
rithm utilizes a well known separate-and-conquer framework [4] and classification
rule quality measures [23] to induce action rules. The algorithm of rule induc-
tion is divided into two phases: growing and pruning (Algorithm 1). The action
rule is added to the resulting rule set, and all source class examples covered by
left side of newly created action rules are removed from the training set (line
11). The examples of the target class are never removed from the training set,
because we want to preserve as much information about the target class in the
training set as possible. Source class examples covered by the induced rule are,
however, removed from the training set to follow the sequential covering app-
roach. Rules are induced, until all examples of the source class in the training
set Tr are covered by left sides of the induced action rules.

Growth of Action Rule (Algorithm 2). First, the conclusion of an action
rule is stated and then actions are added to the action rule. The conclusion of a
newly created action rule contains two classes: the one on the left side of the con-
cluding action (source class), and the one on the right side of this action (target
class). When the action rule is growing, two classification rules are built concur-
rently: one with a source class in conclusion, and one with a target class. First,
the feature space of yet uncovered examples is searched for the best elementary
condition which separates the examples of the source class (line 6). The pro-
posed elementary conditions are built differently for categorical and numerical
attributes. When a categorical attribute is processed, an elementary condition
is induced for each distinct value of this attribute spotted in the training set.
When numerical attributes are processed, an elementary condition is created for
each cut-point between neighbouring values of that attribute in the training set.
The best condition is selected using the rule quality measure, which is one of
algorithm parameters, in the following way: the built classification rule is tem-
porarily extended with the proposed elementary condition, and the quality of
the resulting rule is assessed according to the selected measure. The elementary
condition, which yields the best quality in this procedure, is selected to be finally
added to the rule for the source class. The attribute used in the elementary con-
dition added to this rule is recorded, and the feature space search is conducted
for the best elementary condition separating target class examples, but only with
regard to the recorded attribute (line 8). The search is performed in the same

186 P. Matyszok et al.

Algorithm 1. Induction of action rule set
Input: D(A, C)—training set (set of attributes A and decision class C),

q—classification rule quality measure, mincov—minimal coverage, s—source class,
t—target class

Output: R—action rules set
1: function InduceActionRules(D, q, mincov, s, t)
2: R ← ∅
3: S ← GetExamples(s)
4: Dt ← D \ S
5: while D \ Dt �= ∅ do
6: Ds ← S ∩ D
7: r ← SpecializeActionRule(D, Ds, s, q, t, mincov)
8: r ← PruneActionRule(r, D, q)
9: R ← R ∪ {r}

10: Ds ← Coverage(r, D)
11: D ← D \ Ds

12: end while
13: return R
14: end function

manner as for elementary conditions for the source class, except that only the
values of attributes belonging to the examples of the target class are used as the
feature space. The conjunction of elementary conditions generated for the source
and target class is added as an action to the premise of the built action rule.

The intention of this procedure is to find actions which will have high impact
on transferring source class examples to the target class. The above described
algorithm is conducted iteratively, until no more actions can be generated.

The action generation procedure can be stopped when the rule extended
with the elementary condition generated for the source class does not cover
the minimal number of examples in the training set Tr – this value is another
parameter of the algorithm called mincov. After the rule is fully grown, the
procedure of pruning begins.

Pruning of Action Rule (Algorithm 3). The action rule pruning process
is performed according to the hill climbing strategy. In short, the actions in the
premise of the action rule are being iteratively trimmed or removed, as long
as the quality of the rule does not decrease. In this process the action rule is
represented as two classification rules: left, responsible for source class examples
and right, which selects target class examples.

The actions (elementary conditions) in the action rule premise are temporar-
ily pruned. To prune the actions means to get rid of the right side of the action:
(ai, vai1 → vai2) becomes (ai, vai1). This means that the selected elementary
condition is removed from the right rule only. If the quality of this rule was
not decreased when compared with original rule quality, the temporarily pruned
action would be marked as candidate to final pruning (line 14). Now the respec-
tive elementary condition from the left rule is also temporarily removed from

Covering Approach to Action Rule Learning 187

Algorithm 2. Specialization of action rule
Input: D(A, C)—training set: set of attributes A and decision class C, Ds—set of

yet uncovered source class examples, Dt—set of all target class examples, q—
classification rules quality measure function, minvoc—minimal coverage, s—source
class, t—target class

Output: r—action rule
1: function SpecializeActionRule(D, Ds, q, s, t, mincov)
2: r ← (∅ → (s → t))
3: � Empty classification rules targeting source and target class
4: rs ← (∅ → C = s), rt ← (∅ → C = t)
5: repeat
6: wbests ← GetBestElementaryCondition(rs, D, q, mincov)
7: atr ←GetAttribute(wbests)
8: wbestt ←GetBestElementaryConditionForAttribute(atr, rt, Dt, q,

mincov)
9: rs ← rs ∧ wbests , rt ← rt ∧ wbestt

10: � Extend action rule with action built from best conditions
11: r ← r∧MakeAction(wbests , wbestt)
12: until (wbests = ∅)
13: return r
14: end function

that rule, and the quality is recorded. When this value is not less the quality
recorded on not modified left rule, the whole action is marked as candidate to
removal. This process is performed on each action in the premise. The best can-
didate to prune or remove is selected, and the rule is modified according to this
selection (lines 23 through 29). The whole process is repeated until no more
candidates to prune or remove can be distinguished.

The rule pruned using the above described procedure is added to the overall
rule set. Examples which are covered by the left rule are removed from the
training set Tr. If there are more examples of the source class in the training set,
the process of growing and pruning a new rule starts again.

4 Experiments

Experiments of the proposed method were conducted on several widely known
datasets from the UCI repository. The program was parameterized in such a
way that the minimum coverage of a rule extended by the proposed elemen-
tary condition during the rule specialization is equal to 5. During specialization
and pruning of the rules the Correlation quality measure was used. The Cor-
relation measure is defined as (pN − Pn)/

√
PN(p + n)(P − p + N − n) and it

evaluates the correlation coefficient between the predicted and the target labels.
As empirical [5,17] studies show, it maintains good balance between accuracy
and comprehensibility of rules generated in covering schemas. Let us recall the
meaning of the variables used in the Correlation measure formula, with regard
to the given classification rule r:

188 P. Matyszok et al.

Algorithm 3. Pruning of action rule
Input: D(A, C)—training set (set of attributes A and decision class C), r—action rule

to prune, q—classification rule quality measure
Output: r′—pruned action rule
1: function PruneActionRule(D, r, q)
2: r′ ← r
3: � Disassemble action rule to classification rules
4: rs ←GetLeftRule(r′) , rt ←GetRightRule(r′)
5: repeat
6: wremoval ← wprune ← a ← ∅
7: qremoval ← q(rs, D), qprune ← q(rt, D)
8: for w ∈ r′ do
9: wp ←GetRightSideOfAction(w)

10: wr ←GetLeftSideOfAction(w)
11: � Try to prune action
12: qr ← q(rt \ wp, D)
13: if qr ≥ qprune then
14: wprune ← wp, qprune ← qr

15: a ← w
16: end if
17: � Try to get rid of whole action
18: qr ← q(rs \ wr, D)
19: if qr ≥ qremoval then
20: wremoval ← wr, qremoval ← qr

21: end if
22: end for
23: if wprune �= ∅ then
24: if wremoval �= ∅ then
25: r′ ← r′ \ a
26: else
27: r′ ← (r′ \ a) ∧ PruneAction(a)
28: end if
29: end if
30: until ((wremoval = ∅ ∧ wprune = ∅) ∨ (|r′| = 1))
31: return r′

32: end function

– P stands for the number of examples in the dataset of the class pointed by
the conclusion of the rule r,

– N is substituted by the number of examples that are not covered by the
conclusion of r,

– p is the number of true positives, that is, the number of examples covered by
both the premise and the conclusion of the rule r,

– n is the number of false positives, that is, the number of examples covered by
the premise, but not covered by the conclusion of the rule r.

It is worth noticing that the quality measure is used to build or prune tem-
poral classification rules during action rule induction, as described in Sect. 3.

Covering Approach to Action Rule Learning 189

Sequential covering of the training dataset is stopped when only 0.5% of the
initial number of examples are uncovered. The rule growing phase is stopped
when no new conditions can be induced (i.e. not meeting the minimum coverage
criterion), or when the count of elementary conditions in the rule exceeds 0.9 ×
number of attributes in dataset.

The statistics of action rules generated on the examined datasets are shown
in Table 1. The table presents the summary of induced rule sets before and after
the pruning – the total number of rules, the average number of conditions in
a rule and the average number of actions per rule. As it can be observed, the
pruning procedure is able to significantly reduce the number of rules as well
as the number of conditions occurring in rules. Additionally, the number of
actions is reduced in each rule set obtained on tested datasets. This means that
the pruning process allows better generalization of suggested actions – fewer
actions will be needed to achieve the same effect regarding the class change. For
comparison purposes, the results obtained with the custom ARED algorithm
implementation are also presented. To make possible the generation of rules
for datasets which contain numerical attributes (i.e. Diabetes-c, Labor, Wine
and Prnn-synth), the discretization of those dataset was conducted using the
entropy criterion. For all datasets minimum support was set to the value 5 and
the minimum confidence parameter was equal to 0.9. For both ARED and the
proposed method all attributes of all tested datasets were marked as flexible.

Table 1. The characteristics of unpruned and pruned action rule sets: the number
of rules (#rules), the average number of elementary conditions per rule (conds), the
average number of actions per rule (actions).

Dataset Unpruned rule set Pruned rule set ARED rule set

#rules conds actions #rules conds actions #rules conds actions

Car 85 3.95 3.1 25 2.9 1.3 13930 3.79 3.79

Diabetes-c 7 3.71 3.71 7 3.57 2.0 22 1.04 1.04

Labor 2 3.5 3.5 2 3.0 2.0 15 1.0 1.0

Monk1 11 2.5 2.1 7 1.7 1.1 33 1.32 1.32

Prnn-synth 4 1.5 1.5 3 1.33 1.0 7 1.0 1.0

Titanic 6 3.0 1.83 2 2.0 0.5 8 1.0 1.0

Wine 1 12.0 12.0 1 2.0 1.0 5 1.0 1.0

An Illustrative Example. For three datasets from Table 1 a brief study of
the rules induced was conducted too.

– Car – this dataset contains information about different car models. All
6 attributes are nominal: number of doors, purchase cost, maintenance
cost, number of passangers, luggage boot size, and safety. A class attribute
represents the concept of attractiveness of a given car for the buyer. For
demonstration purpose this dataset has been reduced to contain only exam-
ples representing the classes unacc and acc, which are represented by

190 P. Matyszok et al.

(respectively) 1210 and 384 examples. In the original set there are also rep-
resentatives of the classes good and v-good.

– Monk1 (First Monk’s Problem) – synthetic dataset with 6 nominal attributes
attr1 . . . attr6. Examples can belong to one of two classes. The examples
belonging to the positive class are characterized by having the property
attr1 = attr2 ∨ attr5 = 1. During experiments a training set was used, which
contains 62 examples of each class.

– Wine – consists of 13 numerical attributes which characterize different culti-
vars of red wine grown in a region of Italy. Among the attributes, one can find
the color intensity or alcohol content. This dataset has also been reduced to
contain only two classes, represented by 59 (class 1) and 71 (class 2) examples.

Two of the rules generated on the Car dataset show very clearly that knowl-
edge they represent is close to intuition:

car-r1: (persons, 4) ∧∧∧ (safety, low→high) ∧∧∧ (lug boot, big)
THEN (class, unacc→acc) [pl = 64, nl = 0, pr = 108, nr = 36]

car-r8: (persons, 2→4) ∧∧∧ (safety, high→med) ∧∧∧ (lug boot, big)
THEN (class, unacc→acc) [pl = 64, nl = 0, pr = 40, nr = 12]

Apart from each rule, the number of true positives (p) and false positives (n)
covered by the left (pl, nl) and the right-side (pr, nr) of the action rule are given.

The rule car-r1 suggests that when designing a city car for four passengers
with a big trunk, attention should be kept on security features of that car, as
this influences the car perception by a potential buyer who may accept that the
car is not spacious (only four passengers) but wants it be safe. On the other
hand, the rule car-r8 shows that the car may also be acceptable with a lower
degree of safety, as long as it maintains a large luggage boot and can contain
at least four passengers. Both rules show intuitive knowledge, as people tend
to take care about safety when driving a car, and cars for two passengers are
considered unpractical.

To present the ability to generate more general rules, a rule induced on the
Wine dataset, before and after pruning, is shown.

wine-r1: (Nonflavanoid phenols, < 0.085,∞) →< 0.145,∞)) ∧∧∧
(Color intensity, (3.375,∞) →< 1.7,∞)) ∧∧∧
(Proanthocyanins, < 1.095,∞) → (0.52,∞)) ∧∧∧
(Ash, < 1.36,∞) →< 1.095,∞)) ∧∧∧
(Total phenols, < 1.65,∞) →< 1.21,∞)) ∧∧∧
(Proline, < 755.0,∞) → (−∞, 492.5)) ∧∧∧
(Alcohol, < 6.935,∞) →< 5.78,∞)) ∧∧∧
(Magnesium, < 47.0,∞) →< 40.5,∞)) ∧∧∧
(Flavanoids, < 1.965,∞) →< 1.125,∞))
THEN (class, 1→2) [pl = 57, nl = 0, pr = 35, nr = 0]

wine-r1-pruned: (Color intensity, (3.375,∞)) ∧∧∧
(Proline, < 755.0,∞) → (−∞, 492.5))
THEN (class, 1→2) [pl = 57, nl = 0, pr = 35, nr = 0]

Covering Approach to Action Rule Learning 191

The pruned rule does not lower the quality, but it is much shorter and more
comprehensible for the user of the method. Due to the pruning procedure, many
actions which do not have much influence on the change of examples assignment
to a class are removed.

The proposed method performs well in the task of discovering hidden rules
about data. This will be shown by means of a rule induced on the Monk1 set.
Let us recall that in this dataset the rule for assignment to class 1 is: attr1 =
attr2∨attr5 = 1. The described method is unable to discover the exact condition
attr1 = attr2, however it is able to generate rules following this rule, for example:

monk-r2: (attr2, 2→3) ∧∧∧ (attr1, 1→3)
THEN (class, 0→1) [pl = 15, nl = 2, pr = 17, nr = 0]

monk-r3: (attr2, 3) ∧∧∧ (attr1, 1→3)
THEN (class, 0→1) [pl = 16, nl = 3, pr = 17, nr = 0]

These two rules suggest actions that will have the effect of examples meeting
the condition attr1 = attr2.

The proposed algorithm is also able to discover the other rule of the Monk1
problem, which is attr5 = 1:

monk-r1: r1: (attr5, 4→1) ∧∧∧ (attr1, 1)
THEN (class, 0→1) [pl = 13, nl = 1, pr = 29, nr = 0]

monk-r4: (attr5, 4→1)
THEN (class, 0→1) [pl = 23, nl = 11, pr = 29, nr = 0]

monk-r7: (attr5, 3→1)
THEN (class, 0→1) [pl = 19, nl = 11, pr = 29, nr = 0]

Other rules induced from this dataset have the following forms:

monk-r5: (attr6, 2) ∧∧∧ (attr5, 2→1) ∧∧∧ (attr2, 1)
THEN (class, 0→1) [pl = 8.0, nl = 1.0, pr = 29.0, nr = 0.0]

monk-r6: (attr4, 2→1)
THEN (class, 0→1) [pl = 24.0, nl = 15.0, pr = 26.0, nr = 16.0]

Rule monk-r5 recognizes the attr5 = 1 principle, while putting more con-
straints on examples to which it is applicable. Rule monk-r6, which is following
neither of the Monk1 rules, is an effect of using Correlation during rule induction
– this measure prefers rules of greater coverage, though lower accuracy. Choos-
ing a different measure, for example Precision, may result in producing a greater
number of more accurate rules. In general, the algorithm provides recommen-
dation compliant with (an unknown) class definition – even rules monk-r5 and
monk-r6 are able to transfer most of the covered examples to the target class.

5 Conclusions

In this paper an idea of a new algorithm for the induction of action rules directly
from data was presented. An important feature of the method is the ability

192 P. Matyszok et al.

to generate rules from datasets consisting of both numerical and categorical
attributes. The presented approach was tested on several datasets from the UCI
repository. As an experimental study shows, the rules generated with our method
on those datasets are more compact than rules generated by the ARED method.

It was also shown that rules induced by the proposed method are consistent
with intuition. Particularly on the Monk1 set the method was able to discover
hidden rules of the assignment of examples to the positive class.

Future work will focus on the development of measures and methods for
assessing the quality of inducted action rules and sets. It is planned to adapt the
measures dedicated to the quality evaluation of classification rules. Our work
will focus on measures which assess the coverage and precision of a rule at the
same time. In the case of large datasets or the necessity to reduce the num-
ber of rules, the methods of example selection, as well as rules filtering will be
used [2,19]. Employing the one-vs-all binarization schema will allow to use the
method for multi-class problems. A very important next step is the preparation
of datasets where successive decision tables will reflect successive moments of
time (control points). The tables will contain information about the application
of certain actions to specific examples. A part of the datasets will be generated
synthetically (e.g. the inverted pendulum problem), another part will describe a
real-life problem (PersonALL project – see acknowledgment).

Acknowledgement. This work was partially supported by Polish National Cen-
tre for Research and Development (NCBiR) within the programme Prevention
and Treatment of Civilization Diseases – STRATEGMED III, grant number
STRATEGMED3/304586/5/NCBR/2017 (PersonALL).

A part of the work was carried out within the statutory research project of the
Institute of Informatics, BK-213/RAU2/2018.

References

1. Almardini, M., et al.: Reduction of readmissions to hospitals based on actionable
knowledge discovery and personalization. In: Kozielski, S., Mrozek, D., Kasprowski,
P., Ma�lysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015-2016. CCIS, vol. 613,
pp. 39–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34099-9 3

2. Blachnik, M.: Instance selection for classifier performance estimation in meta learn-
ing. Entropy 19(11), 583 (2017). https://doi.org/10.3390/e19110583

3. Dardzinska, A.: Action Rules Mining, vol. 468. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35650-6

4. Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54
(1999)

5. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learn-
ing. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7.
http://www.springer.com/978-3-540-75196-0

6. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM
Comput. Surv. 38(3), 9 (2006)

7. Greco, S., Matarazzo, B., Pappalardo, N., S�lowinski, R.: Measuring expected effects
of interventions based on decision rules. J. Exp. Theor. Artif. Intell. 17(1–2), 103–
118 (2005)

https://doi.org/10.1007/978-3-319-34099-9_3
https://doi.org/10.3390/e19110583
https://doi.org/10.1007/978-3-642-35650-6
https://doi.org/10.1007/978-3-540-75197-7
http://www.springer.com/978-3-540-75196-0

Covering Approach to Action Rule Learning 193

8. Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets. Data Min.:
Oppor. Chall. 2, 142–173 (2003)

9. Hajja, A., Raś, Z.W., Wieczorkowska, A.A.: Hierarchical object-driven action rules.
J. Intell. Inf. Syst. 42(2), 207–232 (2014)

10. He, Z., Xu, X., Deng, S.: Data mining for actionable knowledge: a survey. arXiv
preprint cs/0501079 (2005)

11. Im, S., Raś, Z.W.: Action rule extraction from a decision table: ARED. In: An, A.,
Matwin, S., Raś, Z.W., Śl ↪ezak, D. (eds.) ISMIS 2008. LNCS (LNAI), vol. 4994, pp.
160–168. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68123-
6 18

12. Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Mach.
Learn. 78(3), 343–379 (2010). https://doi.org/10.1007/s10994-009-5162-2

13. Kaufman, K.A., Michalski, R.S.: Learning in an inconsistent world: rule selection
in STAR/AQ18. Technical report, Machine Learning and Inference Laboratory
(1999)

14. Pawlak, Z.: Information systems theoretical foundations. Inf. syst. 6(3), 205–218
(1981)

15. Raś, Z.W., Dardzinska, A., Tsay, L.S., Wasyluk, H.: Association action rules. In:
IEEE International Conference on 2008 Data Mining Workshops, ICDMW 2008,
pp. 283–290. IEEE (2008)

16. Raś, Z.W., Tzacheva, A.A., Tsay, L.S., Giirdal, O.: Mining for interesting action
rules. In: IEEE/WIC/ACM International Conference on Intelligent Agent Tech-
nology, pp. 187–193. IEEE (2005)

17. Sikora, M., Wróbel, �L.: Data-driven adaptive selection of rule quality measures
for improving rule induction and filtration algorithms. Int. J. Gen. Syst. 42(6),
594–613 (2013). https://doi.org/10.1080/03081079.2013.798901

18. S�lowiński, R., Greco, S.: Measuring attractiveness of rules from the viewpoint of
knowledge representation, prediction and efficiency of intervention. In: Szczepa-
niak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol.
3528, pp. 11–22. Springer, Heidelberg (2005). https://doi.org/10.1007/11495772 3

19. Stańczyk, U., Zielosko, B.: On combining discretisation parameters and attribute
ranking for selection of decision rules. In: Polkowski, L. (ed.) IJCRS 2017. LNCS
(LNAI), vol. 10313, pp. 329–349. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60837-2 28

20. Touati, H., Raś, Z.W., Studnicki, J., Wieczorkowska, A.A.: Mining surgical meta-
actions effects with variable diagnoses’ number. In: Andreasen, T., Christiansen,
H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp.
254–263. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1 26

21. Trépos, R., Salleb-Aouissi, A., Cordier, M.O., Masson, V., Gascuel-Odoux, C.:
Building actions from classification rules. Knowl. Inf. Syst. 34(2), 267–298 (2013)

22. Wang, K., Jiang, Y., Tuzhilin, A.: Mining actionable patterns by role models. In:
Proceedings of the 22nd International Conference on 2006 Data Engineering, ICDE
2006, p. 16. IEEE (2006)

23. Wróbel, �L., Sikora, M., Michalak, M.: Rule quality measures settings in classi-
fication, regression and survival rule induction-an empirical approach. Fundam.
Inform. 149(4), 419–449 (2016)

24. Zhu, H.M., Huang, W.D., Zheng, H.S.: Method for discovering actionable rule. In:
Fourth International Conference on 2007 Fuzzy Systems and Knowledge Discovery,
FSKD 2007, vol. 1, pp. 397–401. IEEE (2007)

https://doi.org/10.1007/978-3-540-68123-6_18
https://doi.org/10.1007/978-3-540-68123-6_18
https://doi.org/10.1007/s10994-009-5162-2
https://doi.org/10.1080/03081079.2013.798901
https://doi.org/10.1007/11495772_3
https://doi.org/10.1007/978-3-319-60837-2_28
https://doi.org/10.1007/978-3-319-60837-2_28
https://doi.org/10.1007/978-3-319-08326-1_26

	Covering Approach to Action Rule Learning
	1 Introduction
	2 Related Work
	3 Covering Approach to Action Rule Induction
	4 Experiments
	5 Conclusions
	References

