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Abstract. Unconstrained large margin distribution machines (ULDMs)
maximize the margin mean and minimize the margin variance without
constraints. In this paper, we first reformulate ULDMs as a special case of
least squares (LS) LDMs, which are a least squares version of LDMs. By
setting a hyperparameter to control the trade-off between the generaliza-
tion ability and the training error to zero, LS LDMs reduce to ULDMs. In
the computer experiments, we include the zero value of the hyperparame-
ter as a candidate value for model selection. According to the experiments
using two-class problems, in most cases LS LDMs reduce to ULDMs and
their generalization abilities are comparable. Therefore, ULDMs are suffi-
cient to realize high generalization abilities without equality constraints.

1 Introduction

In a classification problem, margins between data and the separating hyperplane
play an important role. Here, margin is defined as the distance between a data
point and the separating hyperplane and it is nonnegative when correctly clas-
sified, and negative, when misclassified. In the support vector machine (SVM)
[1,2], the minimum margin is maximized.

Because the SVM does not assume a specific data distribution, the obtained
separating hyperplane is optimal under the assumption that the data obey an
unknown but fixed distribution. Therefore, if prior knowledge is available, it can
improve the generalization ability.

The central idea of SVMs, maximizing the minimum margin, has been
applied to improving generalization performance of other classifiers. However,
for AdaBoost, instead of the minimum margin, directly controlling the margin
distribution has been known to improve the generalization ability [3,4].

Among several classifiers to control the margin distribution [5–12], in [6],
the margin mean for the training data is maximized without constraints. This
approach is extended in [11]: the bias and slope of the separating hyperplanes
are optimized and then equality constraints are introduced. This introduction
results in the least squares SVM. According to the computer experiments, with-
out equality constraints, the generalization ability is inferior to that of the SVM.
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In [9,10], in addition to maximizing the margin mean, the margin variance is
minimized and the classifier is called large margin distribution machine (LDM).
The advantage of the LDM is that the generalization ability is better than or
comparable to that of the SVM, but one of the disadvantages is that two hyper-
parameters are added to the SVM. This will lengthen model selection. To solve
this problem, in [12], an unconstrained LDM (ULDM) is developed, where the
number of hyperparameters is the same as that of the SVM.

In this paper, we reformulate the ULDM as a special case of the least squares
LDM (LS LDM). As in [12], we formulate the LS LDM as maximizing the margin
mean and minimizing the margin variance, in addition to minimizing the square
norm of the coefficient vector of the hyperplane and the square sum of slack
variables. As in the LS SVM, we impose the equality constraints for training
data. Because the hyperparameters are necessary for the square sum of slack
variables and the margin variance, one hyperparameter is added to the LS SVM.
Eliminating the square sum of slack variables in the objective function and the
equality constraints, we obtain the ULDM.

By computer experiments we perform model selection of the LS LDM includ-
ing the parameter value of zero for the slack variables, which results in the
ULDM. Checking the number that the parameter value of zero is taken, we judge
whether the equality constraints are necessary for improving the generalization
ability.

In Sect. 2, we summarize the LS SVM. And in Sect. 3, we explain the LDM
and then discuss its variants: the LS LDM and ULDM. In Sect. 4, we evaluate
the effect of equality constraints to the ULDM using two-class problems.

2 Least Squares Support Vector Machines

Let the decision function in the feature space be

f(x) = w�φ(x) + b, (1)

where φ(x) maps the m-dimensional input vector x into the l-dimensional feature
space, w is the l-dimensional coefficient vector, � denotes the transpose of a
vector, and b is the bias term.

Let the M training input-output pairs be {xi, yi} (i = 1, . . . ,M), where xi

are training inputs and yi are the associated labels and yi = 1 for Class 1 and
−1 for Class 2.

The margin of xi, δi, is defined as the distance from the separating hyperplane
f(x) = 0, and is given by

δi = yi f(xi)/‖w‖. (2)

If δ ‖w‖ = 1, where δ is the minimum margin among δi (i = 1, . . . , M),
maximizing δ is equivalent to minimizing ‖w‖. To make δi larger than or equal
to 1, xi need to satisfy yi f(xi) ≥ 1. Then allowing misclassification, the LS
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SVM is formulated in the primal form as follows:

minimize Q(w, b, ξ) =
1
2
w�w +

C

2

M∑

i=1

ξ2i (3)

subject to yi f(xi) = 1 − ξi for i = 1, . . . ,M, (4)

where Q(w, b, ξ) is the objective function, C is the margin parameter that con-
trols the trade-off between the training error and the generalization ability, ξi
are the slack variables for xi, and ξ = (ξ1, . . . , ξM )�. If we change ξ2i to ξi, and
C/2 to C in (3), and the equality constraints in (4) to inequality constraints, we
obtain the L1 SVM.

Solving the equation in (4) for ξi and substituting it to the objective function
in (3), we obtain the unconstrained optimization problem:

minimize Q(w, b) =
1
2
w�w +

C

2

M∑

i=1

(1 − yi f(xi))2. (5)

The solution of the LS SVM can be obtained by solving a set of linear equa-
tions and generalization performance is known to be comparable to the L1 SVM
[2], but unlike the L1 SVM, the solution is not sparse.

In the following we use the LS SVM to derive an LS LDM, which is a variant
of the LDM, and also use to compare performance of the ULDM.

3 Large Margin Distribution Machines and Their
Variants

In this section, first we briefly summarize the LDM. Then, we define the LS
LDM and ULDM in a way slightly different from [12].

3.1 Large Margin Distribution Machines

The LDM [9] maximizes the margin mean and minimizes the margin variance.
The margin mean δ̄ and margin variance δ̂ are given, respectively, by

δ̄ =
1
M

M∑

i=1

δi, (6)

δ̂ =
1
M

M∑

i=1

(
δi − δ̄

)2 =
1
M

M∑

i=1

δ2i − δ̄2. (7)

Here, instead of (2), we consider the margin as

δi = yi f(xi). (8)
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Similar to the L1 SVM, the LDM is formulated as follows:

minimize Q(w, b, ξ) =
1
2
w�w − λ1 δ̄ +

1
2

λ2 δ̂ + C

M∑

i=1

ξi (9)

subject to yi f(xi) ≥ 1 − ξi for i = 1, . . . ,M, (10)

where λ1 and λ2 are parameters to control maximization of the margin mean
and minimization of the margin variance, respectively. In the objective function,
the second and the third terms are added to the L1 SVM.

Because the LDM uses all the training data to calculate the margin mean and
the margin variance, the solution is dense. Furthermore, because four parameter
values (including one kernel parameter value), instead of two, need to be deter-
mined by model selection, model selection requires more time than the L1 SVM
does.

3.2 Least Squares Large Margin Distribution Machines

The LS LDM that maximizes the margin mean and minimizes the margin vari-
ance is given by replacing the slack sum in (9) with the square sum and the
inequality constraints in (10) with the equality constraints as follows:

minimize Q(w, b, ξ) =
1
2
w�w − λ1 δ̄ +

1
2

λ2 δ̂ +
C

2

M∑

i=1

ξ2i (11)

subject to yi f(xi) = 1 − ξi for i = 1, . . . ,M. (12)

Solving the equation in (12) for ξi and substituting it to the objective function
in (11) yield

minimize Q(w, b) =
1
2
w�w − λ1 δ̄ +

1
2

λ2 δ̂ +
C

2

M∑

i=1

(1 − yi f(xi))2

=
1
2
w�w − λ1 δ̄ +

1
2

λ2 δ̂ +
C

2

M∑

i=1

(δi − 1)2. (13)

In the above objective function, the last term, which is the variance of margins
around the minimum margin works similarly to the third term, which is the
variance of margin around the margin mean, δ̂.

Now substituting (6), (7), and (8) into the objective function of (13) and
deleting the constant term, we obtain

Q(w, b) =
1
2
w�w +

λ2

2M

(
1 +

M C

λ2

) M∑

i=1

f2(xi) − λ2

2

(
1
M

M∑

i=1

yi f(xi)

)2

−
(

λ1

M
+ C

) M∑

i=1

yi f(xi). (14)
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The first three terms in the above objective function are quadratic and the last
term is linear with respect to w and b. Therefore, the coefficient of the linear
term is a scaling factor of the decision function obtained by minimizing (14)
with respect to w and b. Dividing (14) by λ2 and eliminating the coefficient of
the last term, we obtain

Q(w, b) =
1

2Cm
w�w +

1 + Ce

2M

M∑

i=1

f2(xi)

−1
2

(
1
M

M∑

i=1

yi f(xi)

)2

−
M∑

i=1

yi f(xi). (15)

Here, Cm = λ2 and Ce = M C/λ2.
According to the above formulation of the LS LDM, the parameter λ1 in (13)

does not work for controlling the margin mean. Therefore, the three hyperpa-
rameters in (11) and (12) are reduced to two.

3.3 Unconstrained Large Margin Distribution Machines

Deleting the square sum of the slack variables in (11) and equality constraints
in (12), we consider the unconstrained LDM (ULDM) as follows:

minimize Q(w, b) =
1

2Cm
w�w − M δ̄ +

1
2
δ̂

=
1

2Cm
w�w +

1
2M

M∑

i=1

f2(xi) − 1
2

(
1
M

M∑

i=1

yi f(xi)

)2

−
M∑

i=1

yi f(xi). (16)

Here, we multiply δ̄ with M so that the coefficient of the linear term is 1.
Comparing (15) and (16), the ULDM is obtained by setting Ce = 0 (C = 0).
Because the LS LDM includes the ULDM, we derive the optimality condi-

tions for (15) in the empirical feature space [2]. Let {z1, . . . , zN} be a subset
of {x1, . . . ,xM}, where N ≤ M and let {φ(z1), . . . ,φ(zN )} span the empirical
feature space. Then the mapping function that maps the input space into the
empirical feature space is expressed by

h(x) = (K(x, z1), . . . ,K(x, zN ))�, (17)

where K(x, zj) = φ�(x)φ(zj). Then the decision function (1) is expressed by

f(x) = w�h(x) + b. (18)

For a linear kernel with m < N , to improve sparsity, we use the Euclidean
coordinates: z1 = {1, 0, . . . , 0}, · · · , zm = {0, · · · , 0, 1}, and use the identity
mapping: h(x) = x.
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We derive the optimality condition of the LS LDM given by (15), using (18):

∂Q(w, b)
∂w

=
(

1
Cm

IN + (1 + Ce)K2 − Ky�
Ky

)
w

+
(
(1 + Ce)K̄� − ȳ Ky�)

b − Ky�
= 0, (19)

∂Q(w, b)
∂b

=
(
(1 + Ce) K̄ − ȳ Ky

)
w +

(
1 + Ce − ȳ2

)
b − ȳ = 0, (20)

where IN is the N × N unit matrix,

K2 =
1
M

M∑

i=1

K�
i Ki, K̄ =

1
M

M∑

i=1

Ki, Ky =
1
M

M∑

i=1

yiKi, ȳ =
1
M

M∑

i=1

yi,

Ki = (Ki1, . . . ,KiN ) = h�(xi),
Kij = K(xi, zj) for i = 1, . . . ,M, j = 1, . . . , N. (21)

In a matrix form, (19) and (20) are given by
(

1
Cm

IN + (1 + Ce)K2 − Ky�
Ky (1 + Ce) K̄� − ȳ Ky�

(1 + Ce) K̄ − ȳ Ky 1 + Ce − ȳ2

)(w
b

)

=

(
Ky�

ȳ

)
(22)

If C = 0, (22) reduces to the ULDM. The difference between (22) with C = 0
and the ULDM in [12] is that 1/Cm is used in (22) instead of Cm.

Because the coefficient matrix of (22) is positive definite, we can solve (22)
for w and b by the coordinate descent method [13] as well as by matrix inversion.

In model selection, we need to determine the values of Cm, C in Ce, and γ
in the kernel. To speed up model selection, as well as grid search of three values,
we consider line search: after determining the values of Cm and γ with C = 0
by grid search, we determine the C value fixing the values of Cm and γ with the
determined values.

4 Performance Evaluation

We compare performance of the ULDM with that of the LS LDM to clarify
whether the equality constraints in the LS LDM are necessary. We also compare
the ULDM with the LS SVM and the L1 SVM. Because of the space limitation,
we only use two-class problems.

4.1 Conditions for Experiment

Because the coefficient matrix of (22) is positive definite, (22) can be solved by
the coordinate descent method [9]. But to avoid the imprecise accuracy caused by
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the improper convergence, we train the ULDM and LS LDM by matrix inversion.
We also train the LS SVM given by (3) and (4) by matrix inversion. For the L1
SVM, we use SMO-NM [14], which fuses SMO (Sequential minimal optimization)
and NM (Newton’s method).

We use the radial basis function (RBF) kernels: K(x,x′) = exp(−γ||x −
x′||2/m), where m is the number of inputs for normalization and γ is used to
control a spread of a radius. We carry out model selection by fivefold cross-
validation. To speed up cross-validation for the LS LDM, which has three hyper-
parameters including γ for the RBF kernel, we use line search in addition to grid
search of the optimal values of C, Cm and γ. In line search, after determining
the values of Cm and γ by grid search, we determine the optimal value of C by
cross-validation. Therefore Cm and γ for the ULDM give the same values for the
LS LDM by line search.

We select the γ value from {0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 50, 100, 200}, for
the C value from {0.1, 1, 10, 50, 100, 500, 1000, 2000}, and for the Cm value
from {0.1, 1, 10, 100, 1000, 104, 106, 108}. In the LS LDM, we also include 0 as
a candidate of the C value. Then if 0 is selected, the LS LDM reduces to the
ULDM.

We measure the average CPU time per data set including model selection by
fivefold cross-validation, training a classifier, and classifying the test data by the
trained classifier. We used a personal computer with 3.4 GHz CPU and 16 GB
memory.

4.2 Results for Two-Class Problems

Table 1 lists the numbers of inputs, training data, test data, and data set pairs of
two-class problems [15]. Each data set pair consists of the training data set and
the test data set. Using the training data set, we determine parameter values
by cross-validation, train classifiers with the determined parameter values and
evaluate the performance using the test data set. Then we calculate the average
accuracy and the standard deviation for all the test data sets.

Table 2 lists the parameter values determined by cross-validation. In the first
row, (l) and (g) show that the three hyperparameters of the LS LDM are deter-
mined by linear search and grid search, respectively. Because each classification
problem consists of 100 or 20 training and test data pairs, we show the most
frequently selected parameter values. For the LS LDM, most selected value for
C is 0. Thus, in the table, we show the number that C �= 0 is selected in the
parentheses.

As we discussed before, the Cm and γ values for the ULDM and the LS
LDM (l) are the same. Therefore, if the number that C �= 0 is selected is 0, the
LS LDM (l) reduces to ULDM for all the training data sets. This happens for
seven problems. Except for the german problem, the C value of zero is selected
frequently. For the LS LDM (g) also, the C value of zero is frequently selected.
Therefore, LS LDM (g) reduces to ULDM frequently. These results indicate that
the equality constraints are not important in the LS LDM.
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Table 1. Benchmark data for two-class problems

Data Inputs Train Test Sets

Banana 2 400 4, 900 100

Breast cancer 9 200 77 100

Diabetes 8 468 300 100

Flare-solar 9 666 400 100

German 20 700 300 100

Heart 13 170 100 100

Image 18 1, 300 1, 010 20

Ringnorm 20 400 7, 000 100

Splice 60 1, 000 2, 175 20

Thyroid 5 140 75 100

Titanic 3 150 2, 051 100

Twonorm 20 400 7, 000 100

Waveform 21 400 4, 600 100

The γ values for the three classifiers are very similar and so are the C values
for the LS and L1 SVMs.

In the following we show the distributions of C, Ce, and γ values for the
german data, in which C = 0 is least frequently selected for the LS LDM.

Table 3 shows the C value distributions for the german data. The distribu-
tions for the LS LDM by line search and by grid search are very similar. The
values of C smaller than or equal to 1 are selected 93 times and 90 times for the
LS LDM (l) and LS LDM (g), respectively. Therefore, C does not affect much
to the generalization ability. The distributions for the LS SVM and L1 SVM are
similar and although the value of 1 is frequently selected, the larger values are
also selected. This means that the value of C affect directly on the generalization
ability.

Table 4 shows the distributions of Cm values for the ULDM and LS LDM
(g). The both distributions are similar. The distribution for the LS LDM (l) is
the same as that for the ULDM.

Table 5 lists the γ value distributions for the german data. The γ values larger
than 20 are not selected for the four classifiers. The distributions of the ULDM
(LS LDM (l)) and LS LDM (g) are similar although smaller values are selected
for the ULDM (LS LDM (l)). The distributions of the LS SVM and L1 SVM are
similar and tend to gather towards smaller values than those of the ULDM (LS
LDM (l)) and LS LDM (g).

Table 6 shows the average accuracies and their standard deviations of the
five classifiers with RBF kernels. Among the five classifiers the best average
accuracy is shown in bold and the worst average accuracy is underlined. The
“Average” row shows the average accuracy of the 13 average accuracies and
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Table 2. Most-frequently-selected parameter values for the two-class problems. The
numeral in the parentheses shows the number that C �= 0 is selected.

Data ULDM LS LDM (l) LS LDM (g) LS SVM L1 SVM

Cm, γ Cm, γ (C) Cm, γ (C) C, γ C, γ

Banana 104, 50 104, 50 (1) 104, 100 (1) 10, 50 1, 20

B. cancer 10, 0.01 10, 0.01 (17) 10, 10 (30) 1, 5 1, 0.5

Diabetes 100, 5 100, 5 (10) 100, 5 (22) 1, 0.5 500, 0.1

Flare-solar 10, 0.01 10, 0.01 (0) 10, 1 (0) 10, 0.01 50, 0.01

German 100, 10 100, 10 (31) 100, 10 (38) 1, 0.1 1, 0.1

Heart 100, 0.01 100, 0.01 (0) 104, 0.5 (1) 10, 0.01 100, 0.01

Image 108, 15 108, 15 (1) 108, 20 (1) 50, 50 50, 100

Ringnorm 10, 50 10, 50 (0) 10, 100 (0) 0.1, 50 1, 50

Splice 104, 10 104, 10 (0) 106, 10 (0) 10, 10 10, 10

Thyroid 10, 100 10, 100 (0) 10, 200 (6) 1, 100 50, 5

Titanic 104, 0.01 104, 0.01 (0) 10, 1 (3) 10, 0.01 50, 0.01

Twonorm 1000, 0.01 1000, 0.01 (0) 100, 5 (1) 50, 0.01 1, 0.01

Waveform 100, 50 100, 50 (10) 100, 50 (21) 1, 20 1, 15

Table 3. Distribution of C values for the german data

C LS LDM (l) LS LDM (g) LS SVM L1 SVM

0.0 69 62 — —

0.1 11 11 0 0

1 13 17 42 32

10 3 4 11 9

50 2 2 14 20

100 1 2 7 8

500 0 1 9 8

1000 0 0 5 7

2000 1 1 12 16

the two numerals in the parentheses show the numbers of the best and worst
accuracies in the order. We performed Welch’s t test with the confidence intervals
of 95%. The “W/T/L” row shows the results; W, T, and L denote the numbers
that the ULDM shows statistically better than, the same as, and worse than the
LS LDM (l), LS LDM (g), LS SVM, and L1 SVM, respectively. Symbols “+”
and “−” in the L1 SVM column show that the ULDM is statistically better and
worse than the L1 SVM, respectively.

Ignore the difference of 0.01 for the average accuracies and the standard
deviations. Then the results of the ULDM and those of the LS LDM (l) are



50 S. Abe

Table 4. Distribution of Cm values for the german data

Ce ULDM LS LDM (g)

0.1 7 5

1 44 50

10 18 21

100 12 13

103 6 5

104 2 4

106 5 2

108 6 0

Table 5. Distribution of γ values for the german data

γ value ULDM LS LDM (g) LS SVM L1 SVM

0.01 11 0 10 12

0.1 2 6 23 24

0.5 9 8 16 16

1 8 9 11 13

5 23 26 22 15

10 27 30 12 8

15 9 10 5 8

20 11 11 1 4

50 0 0 0 0

100 0 0 0 0

200 0 0 0 0

different only for the german problem. Whereas for the ULDM and LS LDM
(g), only the ringnorm problem gives the same results.

From the table, from the standpoint of the average accuracy, the ULDM and
LS LDM (l) performed best and the LS SVM, the worst. But from the standpoint
of statistical analysis the ULDM is statistically comparable with the remaining
four classifiers.

Therefore, because the LS LDM frequently reduces to the ULDM and the
ULDM is comparable with the LS LDM, the LS LDM can be replaced with the
ULDM.

Table 7 shows the average CPU time per data set for calculating the accu-
racies. The last row shows the numbers that each classifier shows best/worst
execution time. In average, the LS SVM is the fastest and the LS LDM (g)
the slowest because of the slow model selection by grid search of three hyper-
parameters. Because the ULDM and LS SVM are trained by solving the sets
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Table 6. Accuracy comparison of the two-class problems for RBF kernels

Data ULDM LS LDM (l) LS LDM (g) LS SVM L1 SVM

Banana 89.13±0.69 89.13±0.69 89.16±0.59 89.17±0.66 89.17±0.72

B. cancer 73.73±4.34 73.73±4.35 73.73±4.48 73.13±4.68 73.03±4.51

Diabetes 76.52±1.95 76.52±1.95 76.32±2.00 76.19±2.00 76.29±1.70

Flare-solar 66.33±2.02 66.33±2.02 66.18±1.94 66.25±1.98 −66.99±2.12

German 76.14±2.30 76.10±2.30 76.25±2.17 76.10±2.10 75.95±2.24

Heart 82.61±3.61 82.61±3.61 82.33±3.77 82.49±3.60 82.82±3.37

Image 97.16±0.68 97.17±0.68 97.23±0.53 97.52±0.54 97.16±0.41

Ringnorm 98.16±0.35 98.16±0.35 98.17±0.34 98.19±0.33 98.14±0.35

Splice 89.13±0.60 89.13±0.60 89.17±0.55 88.98±0.70 88.89±0.91

Thyroid 95.28±2.28 95.28±2.28 95.25±2.42 95.08±2.55 95.35±2.44

Titanic 77.45±0.89 77.45±0.89 77.48±0.87 77.39±0.83 77.39±0.74

Twonorm 97.43±0.25 97.43±0.25 97.37±0.28 97.43±0.27 97.38±0.26

Waveform 90.19±0.52 90.19±0.53 90.22±0.51 90.05±0.59 +89.76±0.66

W/T/L — 0/13/0 0/13/0 0/13/0 1/11/1

Average 85.33 (3/2) 85.33 (3/1) 85.30 (5/3) 85.23 (4/3) 85.26 (4/7)

Table 7. Execution time comparison of the two-class problems (in seconds)

Data ULDM LS LDM(l) LS LDM(g) LS SVM L1 SVM

Banana 28.13 30.67 249.08 12.03 4.92

B. cancer 2.91 3.17 25.83 1.69 7.08

Diabetes 44.13 48.63 428.30 20.3 22.96

Flare-solar 223.96 249.05 2067.59 67.28 218.67

German 383.45 431.55 3387.80 98.72 776.53

Heart 1.66 1.87 15.04 1.12 1.75

Image 4813.18 5419.68 46138.67 1826.86 56.7

Ringnorm 26.68 29.42 237.83 13.15 12.57

Splice 1919.64 1986.73 15747.32 740.76 30.71

Thyroid 0.96 1.06 8.68 0.69 0.33

Titanic 1.20 1.33 10.93 0.75 21.25

Twonorm 27.81 30.83 271.14 13.33 10.46

Waveform 26.64 29.96 246.24 13.64 35.61

B/W 0/0 0/0 0/12 7/0 6/1

of linear equations with the equal number of variables, slower training by the
ULDM is due to more complex calculation in setting the coefficients of the linear
equations. Because the matrix size is the number of training data plus one and
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because the numbers of training data are smaller than 1000 except for the image
and splice data sets, the execution time is relatively short.

The L1 SVM is trained by iterative method. Therefore the training speed
depends on the parameter values and for the titanic data, training of the L1
SVM is the slowest. For the ULDM, LS LDM, and LS SVM, the execution time
depends on the number of training data not on the parameter values.

5 Conclusions

The unconstrained large margin distribution machine (ULDM) maximizes the
margin mean and minimizes the margin variance without constraints.

In this paper, we investigated the effect of the constraints to the ULDM. To
do this, we derived the ULDM as a special case of the least squares (LS) LDM,
which is the least squares version of the LDM. If the hyperparameter associated
with the constraints is set to be zero, the LS LDM reduces to the ULDM. In
computer experiments, we carried out model selection of the LS LDM including
the zero value of the hyperparameter as a candidate value. For the two-class
problems with 100 or 20 data set pairs, in most cases, the LS LDM reduced
to the ULDM and if not, there was no statistical difference of generalization
abilities. According to the results, the effect of the equality constraints to the
generalization ability of the LS LDM is considered to be small and the ULDM
can be used instead of the LS LDM.
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