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Preface

This volume contains the papers presented at the 8th IAPR TC3 workshop on Artificial
Neural Networks for Pattern Recognition (ANNPR 2018), held at the Universita di
Siena, Siena, Italy, during September 19-21, 2018. ANNPR 2018 follows the success
of the ANNPR workshops of 2003 (Florence), 2006 (Ulm), 2008 (Paris), 2010 (Cairo),
2012 (Trento), 2014 (Montreal), and 2016 (Ulm). The series of ANNPR workshops has
served as a major forum for international researchers and practitioners from the com-
munities of pattern recognition and machine learning based on artificial neural
networks.

From the 35 manuscripts submitted, the Program Committee of the ANNPR 2018
workshop selected 29 papers for the scientific program, organized in regular oral
presentations and one poster session. The workshop was enriched by three IAPR
invited sessions: What’s Wrong with Computer Vision? given by Prof. Marco Gori,
Universita di Siena, Italy; Deep Learning in the Wild presented by Prof. Thilo
Stadelmann, ZHAW Datalab & School of Engineering, Winterthur, Switzerland; and
an invited talk given by Prof. Marcello Pellilio, Universita Ca Foscari, Venice, Italy

The workshop would not have been possible without the help of many people and
organizations. First of all, we are grateful to all the authors who submitted their con-
tributions to the workshop. We thank the members of the Program Committee and the
many additional reviewers for performing the difficult task of selecting the best papers
from a large number of high-quality submissions. We hope that readers of this volume
may enjoy it and get inspired from its contributions. ANNPR 2018 was supported by
the International Association for Pattern Recognition (IAPR), by the IAPR Technical
Committee on Neural Networks and Computational Intelligence (TC3), and by the
DIISM of the University of Siena, Italy. Finally, we wish to express our gratitude to
Springer for publishing our workshop proceedings within their LNCS/LNALI series.

July 2018 Luca Pancioni
Friedhelm Schwenker
Edmondo Trentin
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What’s Wrong with Computer Vision?

Marco Gori®)

Department of Information Engineering and Mathematics,
University of Siena, Siena, Italy
marcoxgori@gmail.com
http://sailab.diism.unisi.it/people/marco-gori/

Abstract. By and large, the remarkable progress in visual object recog-
nition in the last few years is attributed to the availability of huge labelled
data paired with strong and suitable computational resources. This has
opened the doors to the massive use of deep learning which has led to
remarkable improvements on common benchmarks. While subscribing
this view, in this paper we claim that the time has come to begin work-
ing towards a deeper understanding of visual computational processes,
that instead of being regarded as applications of general purpose machine
learning algorithms, are likely to require appropriate learning schemes.
The major claim is that while facing nowadays object recognition prob-
lems we have been working a problem that is significantly more difficult
than the one offered by nature. This is due to learning algorithms that
are working on images while neglecting the crucial role of frame temporal
coherence. We address the limitations and discuss how the evolution of
the tradition of image recognition towards visual recognition might give
rise to remarkable advances in the field of computer vision.

Keywords: Computer vision - Object recognition - Machine learning
Motion invariance

1 Introduction

While the emphasis on a general theory of vision was already the main objective
at the dawn of the discipline [13], it has evolved without a systematic exploration
of foundations in machine learning. When the target is moved to unrestricted
visual environments and the emphasis is shifted from huge labelled databases to
a human-like protocol of interaction, we need to go beyond the current peaceful
interlude that we are experimenting in vision and machine learning. A funda-
mental question a good theory is expected to answer is why children can learn
to recognize objects and actions from a few supervised examples, whereas nowa-
days supervised learning approaches strive to achieve this task. In particular,
why are they so thirsty for supervised examples? Interestingly, this fundamental
difference seems to be deeply rooted in the different communication protocol at
the basis of the acquisition of visual skills in children and machines.

© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAT 11081, pp. 3-16, 2018.
https://doi.org/10.1007/978-3-319-99978-4_1
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So far, the semantic labeling of pixels of a given video stream has been
mostly carried out at frame level. This seems to be the natural outcome of well-
established pattern recognition methods working on images, which have given
rise to nowadays emphasis on collecting big labelled image databases (e.g. [4])
with the purpose of devising and testing challenging machine learning algo-
rithms. While this framework is the one in which most of nowadays state of
the art object recognition approaches have been developing, we argue that there
are strong arguments to start exploring the more natural visual interaction that
animals experiment in their own environment.

This suggests to process video instead of image collection, that naturally
leads to a paradigm-shift in the associated processes of learning to see. The idea
of shifting to video is very much related to the growing interest of learning in the
wild that has been explored in the last few years!. The learning processes that
take place in this kind of environments has a different nature with respect to
those that are typically considered in machine learning. Learning convolutional
nets on ImageNet typically consists of updating the weights from the processing
of temporally unrelated images, whereas a video carries out information where we
pass from one frame to the previous one by smooth changes. While ImageNet is
a collection of unrelated images, a video supports information only when motion
is involved. In presence of fixed images that last for awhile, the corresponding
stream of equal frames basically supports only the information of a single image.
As a consequence, it is clear that visual environments diffuse information only
when motion is involved. There is no transition from one image to the next one—
like in ImageNet—but, as time goes by, the information is only carried out by
motion, which modifies one frame to the next one according to the optical flow.
Once we deeply capture this fundamental features of visual environment, we
early realize that we need a different theory of machine learning that naturally
processes streams that cannot be regarded just as collection of independent
images anymore.

A crucial problem that was recognized by Poggio and Anselmi [15] is the need
to incorporate visual invariances into deep nets that go beyond simple translation
invariance that is currently characterizing convolutional networks. They propose
an elegant mathematical framework on visual invariance and enlightened some
intriguing neurobiological connections. Overall, the ambition of extracting dis-
tinctive features from vision poses a challenging task. While we are typically
concerned with feature extraction that is independent of classic geometric trans-
formation, it looks like we are still missing the fantastic human skill of capturing
distinctive features to recognize ironed and rumpled shirts! There is no apparent
difficulty to recognize shirts by keeping the recognition coherence in case we roll
up the sleeves, or we simply curl them up into a ball for the laundry basket.
Of course, there are neither rigid transformations, like translations and rotation,
nor scale maps that transforms an ironed shirt into the same shirt thrown into
the laundry basket. Is there any natural invariance?

! See. e.g. https://sites.google.com/site/wildml2017icml/.
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In this paper, we claim that motion invariance is in fact the only one that
we need. Translation and scale invariance, that have been the subject of many
studies, are in fact examples of invariances that can be fully gained whenever we
develop the ability to detect features that are invariant under motion. If my inch
moves closer and closer to my eyes then any of its representing features that
is motion invariant will also be scale invariant. The finger will become bigger
and bigger as it approaches my face, but it is still my inch! Clearly, translation,
rotation, and complex deformation invariances derive from motion invariance.
Humans life always experiments motion, so as the gained visual invariances natu-
rally arise from motion invariance. Animals with foveal eyes also move quickly the
focus of attention when looking at fixed objects, which means that they continu-
ally experiment motion. Hence, also in case of fixed images, conjugate, vergence,
saccadic, smooth pursuit, and vestibulo-ocular movements lead to acquire visual
information from relative motion. We claim that the production of such a contin-
uous visual stream naturally drives feature extraction, since the corresponding
convolutional filters are expected not to change during motion. The enforcement
of this consistency condition creates a mine of visual data during animal life.
Interestingly, the same can happen for machines. Of course, we need to com-
pute the optical flow at pixel level so as to enforce the consistency of all the
extracted features. Early studies on this problem [8], along with recent related
improvements (see e.g. [2]) suggests to determine the velocity field by enforcing
brightness invariance. As the optical flow is gained, it is used to enforce motion
consistency on the visual features. Interestingly, the theory we propose is quite
related to the variational approach that is used to determine the optical flow
in [8]. It is worth mentioning that an effective visual system must also develop
features that do not follow motion invariance. These kind of features can be con-
veniently combined with those that are discussed in this paper with the purpose
of carrying out high level visual tasks. Early studies driven by these ideas are
reported in [6], where the authors propose the extraction of visual features as
a constraint satisfaction problem, mostly based on information-based principles
and early ideas on motion invariance.

In this paper we mostly deal with an in-depth discussion of the principles
that one should follow to construct a sound theory of vision that, later on, can
likely be also applied to computer vision. In addition, we discuss some of the
reasons of the limitations of current approaches, where perceptual and linguistic
tasks interwound with vision are not properly covered. This issue is enlighten by
proposing a hierarchy of cognitive tasks connected to vision that contributes to
shed light on the intriguing connection between gaining perceptual and linguistic
skills. The discussion suggests that most problems of computer vision are likely
to be posed according to the historical evolution of the applications more than on
a formal analysis of the underlying computational processes. While this choice
has been proven to be successful in many real-world cases, stressing this research
guideline might lead, on the long run, to wrong directions.
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2 Top Ten Questions a Theory on Vision Should Address

The extraction of informative and robust cues from visual scenes has been
attracting more and more interest in computer vision. For many years, scien-
tists and engineers have contributed to the construction of solutions to extract
visual features, that are mostly based on clever heuristics (see e.g. [12]). How-
ever, the remarkable achievements of the last few years have been mostly based
on the accumulation of huge visual collections enriched by crowdsourcing. It has
created labels to carry out massive supervised learning in deep convolutional
networks, that has given rise to very effective internal representations of visual
features. The have been successfully used in an impressive number of application
(see e.g. [10,17]).

In this paper, we argue that while stressing this issue we have been facing
artificial problems that, from a pure computational point of view, are likely to
be significantly more complex than natural visual tasks that are daily faced
by animals. In humans, the emergence of cognition from visual environments
is interwound with language. This often leads to attack the interplay between
visual and linguistic skills by simple models that, like for supervised learning,
strongly rely on linguistic attachment. However, when observing the spectacular
skills of the eagle that catches the pray, one promptly realizes that for an in-
depth understanding of vision, that likely yields also an impact in computer
implementation, one should begin with a neat separation with language! This
paper is mostly motivated by the curiosity of addressing a number of questions
that arise when looking at natural visual processes [3]. While they come from
natural observation, they are mostly regarded as general issues strongly rooted
in information-based principles, that we conjecture are of primary importance
also in computer vision.

Q1 How can animals conquer visual skills without requiring “intensive supervi-
sion”?
Recent remarkable achievements in computer vision are mostly based on
tons of supervised examples—of the order of millions! This does not explain
how can animals conquer visual skills with scarse “supervision” from the
environment. Hence, there is plenty of evidence and motivations for invoking
a theory of truly unsupervised learning capable of explaining the process
of extraction of features from visual data collections. While the need for
theories of unsupervised learning in computer vision has been advocated in
a number of papers (see e.g. [7,11,16,19]), so far, the powerful representa-
tions that arise from supervised learning, because of many recent successful
applications, seem to attract much more interest. While information-based
principles could themselves suffice to construct visual features, the absence
of any feedback from the environment make those methods quite limited
with respect to supervised learning. Interestingly, the claim of this paper is
that motion invariance offers a huge amount of free supervisions from the
visual environment, thus explaining the reason why humans do not need
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the massive supervision process that is dominating feature extraction in
convolutional neural networks.

How can animals gradually conquer visual skills in a visual environments?
Animals, including primates, not only receive a scarse supervision, but they
also conquer visual skills by living in their own visual environment. This
is gradually achieved without needing to separate learning from test envi-
ronments. At any stage of their evolution, it looks like they acquire the
skills that are required to face the current tasks. On the opposite, most
approaches to computer vision do not really grasp the notion of time. The
typical ideas behind on-line learning do not necessarily capture the natu-
ral temporal structure of the visual tasks. Time plays a crucial role in any
cognitive process. One might believe that this is restricted to human life,
but more careful analyses lead us to conclude that the temporal dimension
plays a crucial role in the well-positioning of most challenging cognitive
tasks, regardless of whether they are faced by humans or machines. Inter-
estingly, while many people struggle for the acquisition of huge labeled
databases, the truly incorporation of time leads to a paradigm shift in the
interpretation of the learning and test environment. In a sense, such a dis-
tinction ceases to apply, and we can regard unrestricted visual collections
as the information accumulated during all the agent life, that can likely
surpass any attempt to collect image collection. The theory proposed in
this paper is framed in the context of agent life characterized by the ordi-
nary notion of time, which emerges in all its facets. We are not concerned
with huge visual data repositories, but merely with the agent life in its own
visual environments.

Can animals see in a world of shuffled frames?

One might figure out what human life could have been in a world of visual
information with shuffled frames. Could children really acquire visual skills
in such an artificial world, which is the one we are presenting to machines?
Notice that in a world of shuffled frames, a video requires order of mag-
nitude more information for its storing than the corresponding temporally
coherent visual stream. This is a serious warning that is typically neglected;
any recognition process is remarkably more difficult when shuffling frames,
which clearly indicates the importance of keeping the spatiotemporal struc-
ture that is offered by nature. This calls for the formulation of a new theory
of learning capable of capturing spatiotemporal structures. Basically, we
need to abandon the safe model of restricting computer vision to the pro-
cessing of images. The reason for formulating a theory of learning on video
instead of on images is not only rooted in the curiosity of grasping the com-
putational mechanisms that take place in nature. It looks like that, while
ignoring the crucial role of temporal coherence, the formulation of most of
nowadays current computer vision tasks leads to tackle a problem that is
remarkably more difficult than the one nature has prepared for humans!
We conjecture that animals could not see in a world of shuffled frames,
which indicates that such an artificial formulation might led to a very hard
problem. In a sense, the very good results that we already can experiment
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nowadays are quite surprising, but they are mostly due to the stress of the
computational power. The theory proposed in this paper relies of the choice
of capturing temporal structures in natural visual environments, which is
claimed to simplify dramatically the problem at hand, and to give rise to
lighter computation.

How can humans attach semantic labels at pizel level?

Humans provide scene interpretation thanks to linguistic descriptions. This
requires a deep integration of visual and linguistic skills, that are required to
come up with compact, yet effective visual descriptions. However, amongst
these high level visual skills, it is worth mentioning that humans can attach
semantic labels to a single pixel in the retina. While this decision process
is inherently interwound with a certain degree of ambiguity, it is remark-
ably effective. The linguistic attributes that are extracted are related to the
context of the pixel that is taken into account for label attachment, while
the ambiguity is mostly a linguistic more than a visual issue. The theory
proposed in this paper addresses directly this visual skill since the labels are
extracted for a given pixel at different levels of abstraction. Unlike classic
convolutional networks, there is no pooling; the connection between the sin-
gle pixels and their corresponding features is kept also when the extracted
features involve high degree of abstraction, that is due to the processing
over large contexts. The focus on single pixels allows us to go beyond object
segmentation based sliding windows, which somewhat reverses the pool-
ing process. Instead of dealing with object proposals [21], we focus on the
attachment of symbols at single pixels in the retina. The bottom line is that
human-like linguistic descriptions of visual scenes is gained on top of pixel-
based feature descriptions that, as a byproduct, must allow us to perform
semantic labeling. Interestingly, there is more; as it will be shown in the
following, there are in fact computational issues that lead us to promote the
idea of carrying our the feature extraction process while focussing attention
on salient pixels.

Why are there two mainstream different systems in the visual cortex (ven-
tral and dorsal mainstream)?

It has been pointed out that the visual cortex of humans and other pri-
mates is composed of two main information pathways that are referred to
as the ventral stream and dorsal stream [5]. The traditional distinction
distinguishes the ventral “what” and the dorsal “where/how” visual path-
ways, so as the ventral stream is devoted to perceptual analysis of the visual
input, such as object recognition, whereas the dorsal stream is concerned
with providing motion ability in the interaction with the environment. The
enforcement of motion invariance is clearly conceived for extracting features
that are useful for object recognition to assolve the “what” task. Of course,
neurons with built-in motion invariance are not adeguate to make spatial
estimations. A good model for learning of the convolutional need to access
to velocity estimation, which is consistent with neuroanatomical evidence.
Why s the ventral mainstream organized according to a hierarchical archi-
tecture with receptive fields?
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Beginning from early studies by Hubel and Wiesel [9], neuroscientists have
gradually gained evidence of that the visual cortex presents a hierarchical
structure and that the neurons process the visual information on the basis
of inputs restricted to receptive field. Is there a reason why this solution has
been developed? We can promptly realize that, even though the neurons
are restricted to compute over receptive fields, deep structures easily con-
quer the possibility of taking large contexts into account for their decision.
Is this biological solution driven by computational laws of vision? In [3],
the authors provide evidence of the fact that receptive fields do favor the
acquisition of motion invariance which, as already stated, is the fundamen-
tal invariance of vision. Since hierarchical architectures is the natural solu-
tion for developing more abstract representations by using receptive fields,
it turns out that motion invariance is in fact at the basis of the biological
structure of the visual cortex. The computation at different layers yields
features with progressive degree of abstraction, so as higher computational
processes are expected to use all the information extracted in the layers.
Why do animals focus attention?

The retina of animals with well-developed visual system is organized in
such a way that there are very high resolution receptors in a restricted
area, whereas lower resolution receptors are present in the rest of the retina.
Why is this convenient? One can easily argue that any action typically takes
place in a relatively small zone in front of the animals, which suggests that
the evolution has led to develop high resolution in a limited portion of the
retina. On the other hand, this leads to the detriment of the peripheral
vision, that is also very important. In addition, this could apply for the
dorsal system whose neurons are expected to provide information that is
useful to support movement and actions in the visual environment. The
ventral mainstream, with neurons involved in the “what” function does
not seem to benefit from foveal eyes. From the theory proposed in this
paper, the need of foveal retinas is strongly supported for achieving efficient
computation for the construction of visual features. However, it will be
argued that the most important reason for focussing attention is that of
dramatically simplifying the computation and limit the ambiguities that
come from the need to sustaining a parallel computation over each frame.
Why do foveal animals perform eye movements?

Human eyes make jerky saccadic movements during ordinary visual acqui-
sition. One reason for these movements is that the fovea provides high-
resolution in portions of about 1,2 degrees. Because of such a small high
resolution portions, the overall sensing of a scene does require intensive
movements of the fovea. Hence, the foveal movements do represent a good
alternative to eyes with uniformly high resolution retina. On the other
hand, the preference of the solution of foveal eyes with saccadic movements
is arguable, since while a uniformly high resolution retina is more complex
to achieve than foveal retina, saccadic movements are less important. The
information-based theory presented in this paper makes it possible to con-
clude that foveal retina with saccadic movements is in fact a solution that
is computationally sustainable and very effective.
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Why does it take 8—12 months for newborns to achieve adult visual acuity?
There are surprising results that come from developmental psychology on
what a newborn see. Charles Darwin came up with the following remark:

It was surprising how slowly he acquired the power of following with

his eyes an object if swinging at all rapidly; for he could not do this

well when seven and a half months old.
At the end of the seventies, this early remark was given a technically sound
basis [20]. In the paper, three techniques,—optokinetic nystagmus (OKN),
preferential looking (PL), and the visually evoked potential (VEP)—were
used to assess visual acuity in infants between birth and 6 months of age.
More recently, the survey by Braddick and Atkinson [14] provides an in-
depth discussion on the state of the art in the field. It is clearly stated that
for newborns to gain adult visual acuity, depending on the specific visual
test, several months are required. Is the development of adult visual acuity
a biological issue or does it come from higher level computational laws?
Causality and Non Rapid Eye Movements (NREM) sleep phases
Computer vision is mostly based on huge training sets of images, whereas
humans use video streams for learning visual skills. Notice that because of
the alternation of the biological rhythm of sleep, humans somewhat process
collections of visual streams pasted with relaxing segments composed of
“null” video signal. This happens mostly during NREM phases of sleep, in
which also eye movements and connection with visual memory are nearly
absent. Interestingly, the Rapid Eye Movements (REM) phase is, on the
opposite, similar to ordinary visual processing, the only difference being
that the construction of visual features during the dream is based on the
visual internal memory representations [18]. As a matter of fact, the process
of learning the filters experiments an alternation of visual information with
the reset of the signal. A good theory of learning visual features should
provide evidence to claim that such a relaxation coming from the reset
of the signal nicely fits the purpose of optimizing an overall optimization
index based on the previously stated principles. In particular, in [3], the
authors point out that periodic resetting of the visual information favors the
optimization under causality requirements. Hence, the role of eye movement
and of sleep seem to be important for the optimal development of visual
features.

Hierarchical Description of Visual Tasks

In this section we discuss visual tasks and their intriguing connection with lan-
guage. This analysis is motivated by the evidence provided in nature of excellent
visual skills that arise regardless of language. At the light of the following anal-

ysis,

one should consider to start go beyond the tradition of computer vision

of emphasizing classification tasks. Visual perception drives different functional
tasks in animals, so as the human intersection with language must properly be
analyzed.
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Let 7 = [to,t1] be the temporal domain and let 2~ C R? be the retina. We
consider the video domain 2 := .7 x 2 so as

v: 92— R (t,x) — [vi(t,z), ..., vq(t, )]

is the video signal on 2. In the classic case of RGB coding, we have d = 3.
Throughout the paper, v(%) denotes any video, while we use ¥ to denote the
universal set of videos, where any video belongs to. Likewise, v (¢, Z") denotes the
frame at t and .# denotes the universal set of images with values v(t,z) € R9.
Clearly, we have v(Z) € ¥. Now, humans are capable of providing sophisticated
linguistic representations from video v(Z) € ¥, which involve both local and
global features. Clearly, abstract descriptions of a visual scene do require con-
siderable linguistic skills, which emerge also at local level when specific words
can also be attached to any pixel of a given visual frame. Basically, humans are
capable of providing a linguistic description of v(2) that goes well beyond object
classification. The amount of visual information is typically so huge that for an
appropriate cognitive transcription at linguistic level to take place one cannot
rely on classification, but must necessarily involve the compositional structure
of language. This kind of difficulty clearly emerges when trying to provide a lin-
guistic description to blind people, a task which is quite difficult also for humans.

3.1 Pixel-Wise and Abstract Visual Interpretations

One of the most challenging issues in vision is human ability to jump easily from
pixel-wise to recognition processes and more abstract visual interpretations that
involve frames as well as portions of a video. When focussing attention on a
certain pixel in a picture, humans can easily make a list of “consistent objects”
that reflects the visual information around that pixel. Interestingly, that process
takes place by automatically adapting a sort of “virtual window” used for the
decision. This results in the typical detection of objects with dimension which is
growing as that virtual window gets larger and larger. More structured objects
detected at a given pixel are clearly described by more categories than simple
primitive objects, but, for humans, the resulting pizel-wise process is surpris-
ingly well-posed from a pure cognitive point of view. However, such a pixel-wise
process seems to emerge upon request; apparently, humans do not carry out
such a massive computation over all the retina. In addition, there are abstract
visual skills that are unlikely to be attacked by pixel-wise computation. Humans
provide visual interpretations that goes beyond the truly visual pattern (see e.g.
Kanizsa’s illusions). This happens because of the focus of attention, which some-
how locates the object to be processed. As the focus is on the pixel f(t), the
corresponding object can be given an abstract geometrical interpretation by its
shape expressed in term of its contour. While pixel-based processes are based on
all the visual information of the retina associated with a given pixel, shape-based
recognition emerges when recognizing objects on the basis of their contour, once
we focus attention of a point of the object.

Pixel-wise processes can only lead to the emergence of decisions on objects,
which is fact a static concept. It cannot allow us to draw conclusions on actions,
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whose understanding does require to involve portions of video. However, like for
objects, the detection of the “contour of actions” yields a very useful abstraction.
The notion object affordance has a strict connection with that of action. We carry
out many object recognition processes on the basis of actions in which they are
involved, so as objects are detected because of their role in the scene. In other
words, the affordance involves the functional role of objects, which is used for
the emergence of abstract categories.

3.2 The Interwound Story of Vision and Language

In the previous section, we have discussed pixel-wise versus abstract computa-
tional processes aimed at generating labels to be attached to objects and actions.
We can think of two different alphabets ¥, and X5 which refer to words related
to pizel-wise and shape-based recognition processes, respectively. For instance,
while terms like eye, mouth, and face are typical elements of X, their geomet-
rical description is based on terms in Y. So we say that the face has an oval
shape, where oval is a typical elements of Y.

Overall, a visual agent performs cognitive tasks by working on X, = X,V ;.
It is important to point out that X, is only the alphabet of primitive terms,
since when dealing with structured objects and actions, visual agents play with
concepts described by additional terms

Basically, the extraction of semantics from video requires linguistic descrip-
tions, even at local level, where one is asked to select words from the alphabet
w € X,. Here we regard any word w as a symbol with attached semantics, like
in the case of any natural language.

The most abstract task that humans are capable to face is that of constructing
a function y o 38 follows

X, YV — Lo:v(2) — XO(U(@)>7 (1)

where Ly C X} is a type zero language in Chomsky’s hierarchy. This embraces
any linguistic report from visual scenes, like, for instance, movie review. In addi-
tion to the ability of extracting information from visual sources, a remarkable
specific problem in the construction of X, is that of properly handing the tem-
poral flow of the frames and to provide a semantic representation of the movie
actions. Clearly, a movie review does not only require the ability of extract-
ing a visual representation, but also to properly understand the actions so as
to produce a corresponding descriptions. While cats and eagles are commonly
regarded as animals with very good visual skills, they cannot produce movie
reports. Basically, the sentence x| (v(2)) € X7 is expected to be taken from a
language L of highest level in Chomsky classification, which is denoted by L.

Another fundamental visual task is that of query answer, that can be regarded
as

Xg: ¥V xLo— Lo: v(P) — X()(v(@)), (2)
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Table 1. Hierarchical structure of semantic labeling.

input J\,—) semantic description Remarks
XO(U(@ ) N\~ Lo The language involves ordinary human scene descriptions. Spa-
tial and knowledge levels are both involved.
Xl(v(t, 2)) N~ Lo The language involves ordinary human picture descriptions.
Spatial knowledge is only involved.
Xz(t’ z,v(t, 2)) N> L1 The language consists of a list of words (language degenera-
tion, no ordering), that is £_; C X7 only.
Xy (t,x,v(t, 2)) N L2 The language consists of a vector of words (language degener-
ation, no order). Unlike £_1, the number of symbols is known
in advance.

A simplified version and more realistic formulation of semantic labeling, when
actions are not the target, is the one in which

X, = Lo (v(t, 2)) = x, (v(t, 2)). 3)

This tasks still requires L for linguistic description, but only spatial knowledge
KCs is needed, since, unlike the previous case, there is no temporal processing
required (Table1).

A dramatic drop of complexity arises when asking the agent to provide visual
skills on v(t, Z") while focussing attention to (t,z). This is described by

X, I x I — Y (tz,vlt, X)) — X2(t7x,v(t, 2)), (4)

Basically, while the decision is based on u(t,z) = (¢,z,v(t, Z)) € %, which
represents quite an unusual granule of information with respect to what is typ-
ically processed in machine learning and pattern recognition, this time there is
no linguistic description, since we only expected the agent to return a list of
symbols of X;. This simplifies dramatically the overall problem, thus contribut-
ing to decoupling visual and semantic processes. It is worth mentioning that the
dramatic reduction of complexity in the semantic processes is paired with the
emergence of focus of attention, namely with decisions based on u(t,z) € % . In
principle, one can expect semantic labeling of (¢, x) by means of a single w € X,
but in some cases dozens of words might be associated with w(¢,z). While the
linguistic structure degenerates, we are still in presence of a compositional struc-
ture, so as the agent might generate remarkable lengthy sentences of pertinent
words X7,

3.3 When Vision Collapses to Classification

An additional simplification on the semantic level arises when considering that
the process of generating the words w € X* can be thought of as a compositional
process based on a set Xz of “dummy symbols”, so as

Xy ! Dx I — Xq: (tx,v(t, 27)) — X3(t,x,v(t, 2)), (5)
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Basically, the transition from x,(-) to x,(-) involves a further definitive lin-
guistic simplification, which restricts the symbolic description from X% to Xj.
In so doing, all the complexity is now on the visual side, which requires deci-
sions based on u(t, ), so as we are finally in front of a classification problem.
This description of visual tasks makes it clear that in order to conquer abstract
computer vision skills, any agent does require to address both issues of input
representation and linguistic descriptions. We claim that any systematic app-
roach to vision cannot avoid to face the issue of decoupling the classification of
visual features, with symbols in X4, and the appropriate linguistic description.

Let us analyze the problems connected with the construction of y 0 and x K
which both operate on global input representation, thus disregarding any focus
of attention mechanism. The complexity can be promptly appreciated also in
the simplest task x_ . Clearly, it cannot be regarded as a classification since the
agent is expected to provide truly linguistic descriptions. On top of that, when
dealing with unrestricted visual environments, the interpretation of v(t, Z") is
trapped into the chicken-egg dilemma on whether classification of objects or
segmentation must take place first. This is due to the absence of any focus of
attention, which necessarily leads to holistic mechanisms of information extrac-
tion. Unfortunately, while holistic mechanisms are required at a certain level of
abstraction, the direct process of v(t, Z") do not offer the right source for their
activation. Basically, there is no decoupling between the visual source and its
linguistic description.

Interestingly, this decoupling takes place when separating X3( -) with respect
to the others. The development of abstract levels of description can follow the
chaining process

X, X X X
% —J> Ed —2> Z: —1> (2:,£07K:3) —0) (E;(?‘C’Oa’csalct)’ (6)

where x,(-) is the only one which deals with the visual signal. All the other
functions involve symbolic processes at different levels of abstraction. From one
side, XB(-) exploits the focus of attention on (¢,x) € 2 to better process the visual
information, and, from the other side, it gets rid of any linguistic structure by
relying on the classification of dummy symbols.

4 Conclusions

By and large, there is a lot of excitement around computer vision that is definitely
motivated by the successful results obtained in the last few years by deep learn-
ing. While recognizing the fundamental progress gained under this new wave
of connectionist models, this paper claims that the bullish sentiment behind
these achievements might not be fully motivated and that the time has come to
address a number of fundamental questions that, once properly addressed, could
dramatically improve nowadays technology. The discussion is stimulated by the
remark that the construction of learning theories of vision properly conceived for
intelligent agents working on video instead of large image collections simplifies
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any visual task. In particular, the paper promotes the principle of developing
visual features invariant under motion, which is claimed to be the only signifi-
cant invariance that is required to gain the “what” function typical of the ventral
mainstream.
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Abstract. Deep learning with neural networks is applied by an increas-
ing number of people outside of classic research environments, due to
the vast success of the methodology on a wide range of machine per-
ception tasks. While this interest is fueled by beautiful success stories,
practical work in deep learning on novel tasks without existing baselines
remains challenging. This paper explores the specific challenges arising
in the realm of real world tasks, based on case studies from research &
development in conjunction with industry, and extracts lessons learned
from them. It thus fills a gap between the publication of latest algorith-
mic and methodical developments, and the usually omitted nitty-gritty
of how to make them work. Specifically, we give insight into deep learn-
ing projects on face matching, print media monitoring, industrial quality
control, music scanning, strategy game playing, and automated machine
learning, thereby providing best practices for deep learning in practice.
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1 Introduction

Measured for example by the interest and participation of industry at the annual
NIPS conference!, it is save to say that deep learning [49] has successfully tran-
sitioned from pure research to application [32]. Major research challenges still
exist, e.g. in the areas of model interpretability [39] and robustness [1], or gen-
eral understanding [53] and stability [25,67] of the learning process, to name
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a few. Yet, and in addition, another challenge is quickly becoming relevant: in
the light of more than 180 deep learning publications per day in the last year?,
the growing number of deep learning engineers as well as prospective researchers
in the field need to get educated on best practices and what works and what
doesn’t “in the wild”. This information is usually underrepresented in publica-
tions of a field that is very competitive and thus striving above all for novelty
and benchmark-beating results [38]. Adding to this fact, with a notable exception
[20], the field lacks authoritative and detailed textbooks by leading representa-
tives. Learners are thus left with preprints [37,57], cookbooks [44], code® and
older gems [28,29,58] to find much needed practical advice.

In this paper, we contribute to closing this gap between cutting edge research
and application in the wild by presenting case-based best practices. Based on a
number of successful industry-academic research & development collaborations,
we report what specifically enabled success in each case alongside open chal-
lenges. The presented findings (a) come from real-world and business case-backed
use cases beyond purely academic competitions; (b) go deliberately beyond what
is usually reported in our research papers in terms of tips & tricks, thus com-
plementing them by the stories behind the scenes; (¢) include also what didn’t
work despite contrary intuition; and (d) have been selected to be transferable as
lessons learned to other use cases and application domains. The intended effect
is twofold: more successful applications, and increased applied research in the
areas of the remaining challenges.

We organize the main part of this paper by case studies to tell the story
behind each undertaking. Per case, we briefly introduce the application as well
as the specific (research) challenge behind it; sketch the solution (referring details
to elsewhere, as the final model architecture etc. is not the focus of this work);
highlight what measures beyond textbook knowledge and published results where
necessary to arrive at the solution; and show, wherever possible, examples of
the arising difficulties to exemplify the challenges. Section 2 introduces a face
matching application and the amount of surrounding models needed to make
it practically applicable. Likewise, Sect.3 describes the additional amount of
work to deploy a state-of-the-art machine learning system into the wider IT
system landscape of an automated print media monitoring application. Section 4
discusses interpretability and class imbalance issues when applying deep learning
for images-based industrial quality control. In Sect. 5, measures to cope with the
instability of the training process of a complex model architecture for large-scale
optical music recognition are presented, and the class imbalance problem has a
second appearance. Section 6 reports on practical ways for deep reinforcement
learning in complex strategy game play with huge action and state spaces in
non-stationary environments. Finally, Sect. 7 presents first results on comparing
practical automated machine learning systems with the scientific state of the
art, hinting at the use of simple baseline experiments. Section 8 summarizes the
lessons learned and gives an outlook on future work on deep learning in practice.

2 Google scholar counts > 68,000 articles for the year 2017 as of June 11, 2018.
3 See e.g. https://modelzoo.co/.
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2 Face Matching

Designing, training and testing deep learning models for application in face recog-
nition comes with all the well known challenges like choosing the architecture,
setting hyperparameters, creating a representative training/dev/test dataset,
preventing bias or overfitting of the trained model, and more. Anyway, very good
results have been reported in the literature [9,42,50]. Although the challenges in
lab conditions are not to be taken lightly, a new set of difficulties emerges when
deploying these models in a real product. Specifically, during development, it is
known what to expect as input in the controlled environment. When the models
are integrated in a product that is used “in the wild”, however, all kinds of input
can reach the system, making it hard to maintain a consistent and reliable pre-
diction. In this section, we report on approaches to deal with related challenges
in developing an actual face-ID verification product.

D
Detection &
classification

[ DL ENSEMBLE ]

User Replay
Action Attack

Prediction > Detection
[ CNN + FCNN ] [ DL ENSEMBLE ]
Image Face Face
Orientation Detection Matching Bip
Detection > > > *»

Handling
[ DL ENSEMBLE ] [ MTCNN ] [CNN + FCNN ]

Image
Quality
Measure

[ analytics + CNN + FCNN ]

Fig. 1. Schematic representation of a face matching application with ID detection,
anti-spoofing and image quality assessment. For any pair of input images (selfie and ID
document), the output is the match probability and type of ID document, if no anomaly
or attack has been detected. Note that all boxes contain at least one or several deep
learning (DL) models with many different (convolutional) architectures.

Although the core functionality of such a product is to quantify the match
between a person’s face and the photo on the given ID, more functionality is
needed to make the system perform its task well, most of it hidden from the
user. Thus, in addition to the actual face matching module, the final system
contains at least the following machine learnable modules (see Fig.1):

Image orientation detection When a user takes a photo of the ID on a flat
surface using a mobile phone, in many cases the image orientation is random.
A deep learning method is applied to predict the orientation angle, used to
rotate the image in the correct orientation.
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Image quality assessment consists of an ensemble of analytical functions and
deep learning models to test if the photo quality is sufficient for a reliable
match. It also guides the user to improve the picture taking process in case
of bad quality.

User action prediction uses deep learning to predict the action performed by
the user to guide the system’s workflow, e.g. making a selfie, presenting an
ID or if the user is doing something wrong during the sequence.

Anti-Spoofing is an essential module that uses various methods to detect if
a person is showing his “real” face or tries to fool the system with a photo,
video or mask. It consists of an ensemble of deep learning models.

For a commercial face-ID product, the anti-spoofing module is both most cru-
cial for success, and technically most challenging; thus, the following discussion
will focus on anti-spoofing in practice. Face matching and recognition systems
are vulnerable to spoofing attacks made by non-real faces, because they are not
per se able to detect whether or not a face is “live” or “not-live”, given only
a single image as input in the worst case. If control over this input is out of
the system’s reach e.g. for product management reasons, it is then easy to fool
the face matching system by showing a photo of a face from screen or print on
paper, a video or even a mask. To guard against such spoofing, a secure system
needs to be able to do liveness detection. We’d like to highlight the methods we
use for this task, in order to show the additional complexity of applying face
recognition in a production environment over lab conditions.

Fig. 2. Samples from the CASIA dataset [66], where photo 1, 2, and 3 on the left hand
side show a real face, photo 4 shows a replay attack from a digital screen, and photos
5 and 6 show replay attacks from print.

One of the key features of spoofed images is that they usually can be detected
because of degraded image quality: when taking a photo of a photo, the qual-
ity deteriorates. However, with high quality cameras in modern mobile phones,
looking at image quality only is not sufficient in the real world. How then can a
spoof detector be designed that approves a real face from a low quality grainy
underexposed photo taken by an old 640 x 480 web cam, and rejects a replay
attack using a photo from a retina display in front of a 4K video camera (compare
Fig.2)?

Most of the many spoofing detection methods proposed in the literature
use hand crafted features, followed by shallow learning techniques, e.g. SVM
[18,30,34]. These techniques mainly focus on texture differences between real
and spoofed images, differences in color space [7], Fourier spectra [30], or optical
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flow maps [6]. In more recent work, deep learning methods have been introduced
[3,31,63,64]. Most methods have in common that they attempt to be a one-size-
fits-all solution, classifying all incoming cases with one method. This might be
facilitated by the available datasets: to develop and evaluate anti-spoofing tools,
amongst others CASIA [66], MSU-USSA [43], and the Replay Attack Database
[12] exist. Although these datasets are challenging, they turn out to be too easy
compared to the input in a production environment.

The main differences between real cases and training examples from these
benchmark databases are that the latter ones have been created with a low vari-
ety of hardware devices and only use few different locations and light conditions.
Moreover, the quality of images throughout the training sets is quite consistent,
which does not reflect real input. In contrast, the images that the system receives
“in the wild” have the most wide range of possible used hardware and environ-
mental conditions, making the anticipation of new cases difficult. Designing a
single system that can classify all such cases with high accuracy seems therefore
unrealistic.

We thus create an ensemble of experts, forming a final verdict from 3 inde-
pendent predictions: the first method consists of 2 patch-based CNNs, one for
low resolution images, the other one for high resolution images. They operate on
fixed-size tiles from the unscaled input image using a sliding window. This tech-
nique proves to be effective for low and high quality input. The second method
uses over 20 image quality measures as features combined with a classifier. This
method is still very effective when the input quality is low. The third method
uses a RNN with LSTM cells to conduct a joint prediction over multiple frames
(if available). It is effective in discriminating micro movements of a real face
against (simple) translations and rotations of a fake face, e.g. from a photo on
paper or screen. All methods return a real vs. fake probability. The outputs of
all 3 methods are fed as input features to the final decision tree classifier. This
ensemble of deep learning models is experimentally determined to be much more
accurate than using any known method individually.

Note that as attackers are inventive and come up with new ways to fool the
system quickly, it is important to update the models with new data quickly and
regularly.

3 Print Media Monitoring

Content-based print media monitoring serves the task of delivering cropped digi-
tal articles from printed newspapers to customers based on their pre-formulated
information need (e.g., articles about their own coverage in the media). For
this form of article-based information retrieval, it is necessary to segment tens
of thousands of newspaper pages into articles daily. We successfully developed
neural network-based models to learn how to segment pages into their consti-
tuting articles and described their details elsewhere [35,57] (see example results
in Fig.3a-b). In this section, we present challenges faced and learnings gained
from integrating a respective model into a production environment with strict
performance and reliability requirements.
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Fig. 3. Good (a) and bad (b) segmentations (blue lines denote crop marks) for realistic
pages, depending on the freedom in the layout. Image (c) shows a non-article page that
is excluded from automatic segmentation. (Color figure online)

FEzxclusion of Non-article Pages. A common problem in print segmentation
are special pages that contain content that doesn’t represent articles in the com-
mon sense, for example classified ads, reader’s letters, TV program, share prices,
or sports results (see Fig. 3c). Segmentation rules for such pages can be compli-
cated, subjective, and provide little value for general use cases. We thus utilize
a random forest-based classifier on handcrafted features to detect such content
and avoid feeding respective pages to the general segmentation system to save
compute time.

Model Management. One advantage of an existing manual segmentation
pipeline is the abundance of high quality, labeled training data being produced
daily. To utilize this constant flow of data, we have started implementing an
online learning system [52] where results of the automatic segmentation can be
corrected within the regular workflow of the segmentation process and fed back
to the system as training data.

After training, an important business decision is the final configuration of a
model, e.g. determining a good threshold for cuts to weigh between precision and
recall, or the decision on how many different models should be used for the pro-
duction system. We determined experimentally that it is more effective to train
different models for different publishers: the same publisher often uses a similar
layout even for different newspapers and magazines, while differences between
publishers are considerable. To simplify the management of these different mod-
els, they are decoupled from the code. This is helpful for rapid development and
experimentation.

Technological Integration. For smooth development and operation of the neu-
ral network application we have chosen to use a containerized microservices archi-
tecture [14] utilizing Docker [62] and RabbitMQ [26]. This decoupled architecture
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Fig. 4. Architecture of the overall pipeline: the actual model is encapsulated in the
“FCNN-based article segmentation” block. Several other systems are required to war-
rant full functionality: (a) the Prozy is responsible to control data input and output
from the segmentation model; (b) RabbitM@ controls the workflow as a message bro-
ker; (¢c) MongoDB stores all segmentation results and metrics; (d) the Lectorate Ul
visualizes results for human assessment and is used to create training data.

(see Fig.4) brings several benefits especially for machine learning applications:
(a) a separation of concerns between research, ops and engineering tasks; (b)
decoupling of models/data from code, allowing for rapid experimentation and
high flexibility when deploying the individual components of the system. This
is further improved by a modern devops pipeline consisting of continuous inte-
gration (CI), continuous deployment (CD), and automated testing; (c) infras-
tructure flexibility, as the entire pipeline can be deployed to an on-premise data
center or in the cloud with little effort. Furthermore, the use of Nvidia-docker
[62] allows to utilize GPU-computing easily on any infrastructure; (d) precise
controlling and monitoring of every component in the system is made easy by
data streams that enable the injection and extraction of data such as streaming
event arguments, log files, and metrics at any stage of the pipeline; and (e) easy
scaling of the various components to fit different use cases (e.g. training, testing,
experimenting, production). Every scenario requires a certain configuration of
the system for optimal performance and resource utilization.

4 Visual Quality Control

Manual inspection of medical products for in-body use like balloon catheters
is time-consuming, tiring and thus error-prone. A semi-automatic solution with
high precision is thus sought. In this section, we present a case study of deep
learning for visual quality control of industrial products. While this seems to
be a standard use case for a CNN-based approach, the task differs in several
interesting respects from standard image classification settings:
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Fig. 5. Balloon catheter images taken under different optical conditions, exposing (left
to right) high reflections, low defect visibility, strong artifacts, and a good setup.

Data collection and labeling are one the most critical issues in most practi-
cal applications. Detectable defects in our case appear as small anomalies on
the surface of transparent balloon catheters, such as scratches, inclusions or
bubbles. Recognizing such defects on a thin, transparent and reflecting plastic
surface is visually challenging even for expert operators that sometimes refer to
a microscope to manually identify the defects. Thus, approx. 50% of a 2-year
project duration was used on finding and verifying the optimal optical settings
for image acquisition. Figure 5 depicts the results of different optical configura-
tions for such photo shootings. Finally, operators have to be trained to produce
consistent labels usable for a machine learning system. In our experience, the
labeling quality rises if all involved parties have a basic understanding of the
methods. This helps considerably to avoid errors like e.g. only to label a defect
on the first image of a series of shots while rotating a balloon: while this is
perfectly reasonable from a human perspective (once spotted, the human eas-
ily tracks the defect while the balloon moves), it is a no-go for the episodic
application of a CNN.

Network and training design for practical applications experiences chal-
lenges such as class imbalance, small data regimes, and use case-specific learning
targets apart from standard classification settings, making non-standard loss
functions necessary (see also Sect.5). For instance, in the current application,
we are looking for relatively small defects on technical images. Therefore, archi-
tectures proposed for large-scale natural image classification such as AlexNet
[27], GoogLeNet [59], ResNet [24] and modern variants are not necessarily suc-
cessful, and respective architectures have to be adapted to learn the relevant
task. Potential solutions for the class imbalance problem are for example:

— Down-sampling the majority class

— Up-sampling the minority class via image augmentation [13]

— Using pre-trained networks and applying transfer learning [41]

— Increasing the weight of the minority class in the optimization loss [8]

— Generating synthetic data for the minority class using SMOTE [11] or GANs
21]

Selecting a suitable data augmentation approach according for the task is a
necessity for its success. For instance, in the present case, axial scratches are
more important than radial ones, as they can lead to a tearing of the balloon
and its subsequent potentially lethal remaining in a patient’s body. Thus, using
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Fig. 6. Visualizing VGG19 feature responses: the first row contains two negative exam-
ples (healthy patient) and the second row positives (containing anomalies). All depicted
samples are correctly classified.

90° rotation for data augmentation could be fatal. Information like this is only
gained in close collaboration with domain experts.

Interpretability of models received considerable attention recently, spurring
hopes both of users for transparent decisions, and of experts for “debugging”
the learning process. The latter might lead for instance to improved learning
from few labeled examples through semantic understanding of the middle layers
and intermediate representations in a network. Figure 6 illustrates some human-
interpretable representations of the inner workings of a CNN on the recently
published MUsculoskeletal RAdiographs (MURA) dataset [45] that we use here
as a proxy for the balloon dataset. We used guided-backpropagation [56] and
a standard VGG19 network [55] to visualize the feature responses, i.e. the part
of the X-ray image on which the network focuses for its decision on “defect”
(e.g., broken bone, foreign object) or “ok” (natural and healthy body part).
It can be seen that the network mostly decides based on joints and detected
defects, strengthening trust in its usefulness. We described elsewhere [2] that
this visualization can be extended to an automatic defense against adversarial
attacks [21] on deployed neural networks by thresholding the local spatial entropy
[10] of the feature response. As Fig. 7 depicts, the focus of a model under attack
widens considerably, suggesting that it “doesn’t know where to look” anymore.

5 Music Scanning

Optical music recognition (OMR) [46] is the process of translating an image of a
page of sheet music into a machine-readable structured format like MusicXML.
Existing products exhibit a symbol recognition error rate that is an order of
magnitude too high for automatic transcription under professional standards,
but don’t leverage deep learning computer vision capabilities yet. In this section,
we therefore report on the implementation of a deep learning approach to detect
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Fig. 7. Input, feature response and local spatial entropy for clean and adversarial
images, respectively. We used VGG19 to estimate predictions and the fast gradient
sign attack (FGSM) method [21] to compute the adversarial perturbation.

and classify all musical symbols on a full page of written music in one go, and
integrate our model into the open source system Audiveris? for the semantic
reconstruction of the music. This enables products like digital music stands based
on active sheets, as most of todays music is stored in image-based PDF files or
on paper.

We highlight four typical issues when applying deep learning techniques to
practical OMR: (a) the absence of a comprehensive dataset; (b) the extreme class
imbalance present in written music with respect to symbols; (c¢) the issues of
state-of-the-art object detectors with music notation (many tiny and compound
symbols on large images); and (d) the transfer from synthetic data to real world
examples.

Synthesizing Training Data. The notorious data hunger of deep learning has
lead to a strong dependence of results on large, well annotated datasets, such
as ImageNet [48] or PASCAL VOC [16]. For music object recognition, no such
dataset has been readily available. Since labeling data by hand is no feasible
option, we put a one-year effort in synthesizing realistic (i.e., semantically and
syntactically correct music notation) data and the corresponding labeling from
renderings of publicly available MusicXML files and recently open sourced the
resulting DeepScores dataset [60].

Dealing with Imbalanced Data. While typical academic training datasets
are nicely balanced [16,48], this is rarely the case in datasets sourced from real

* See http://audiveris.org.
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Fig. 8. Symbol classes in DeepScores with their relative frequencies (red) in the dataset.
(Color figure online)

world tasks. Music notation (and therefore DeepScores) shows an extreme class
imbalance (see Fig.8). For example, the most common class (note head black)
contains more than 55% of the symbols in the entire dataset, and the top 10
classes contain more than 85% of the symbols. At the other extreme, there is a
class which is present only once in the entire dataset, making its detection by
pattern recognition methods nearly impossible (a “black swan” is no pattern).
However, symbols that are rare are often of high importance in the specific pieces
of music where they appear, so simply ignoring the rare symbols in the training
data is not an option. A common way to address such imbalance is the use of a
weighted loss function, as described in Sect. 4.

This is not enough in our case: first, the imbalance is so extreme that naively
reweighing loss components leads to numerical instability; second, the signal of
these rare symbols is so sparse that it will get lost in the noise of the stochastic
gradient descent method [61], as many symbols will only be present in a tiny
fraction of the mini batches. Our current answer to this problem is data syn-
thesis [37], using a three-fold approach to synthesize image patches with rare
symbols (cp. Fig.8): (a) we locate rare symbols which are present at least 300
times in the dataset, and crop the parts containing those symbols including their
local context (other symbols, staff lines etc.); (b) for rarer symbols, we locate
a semantically similar but more common symbol in the dataset (based on some
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Fig. 9. Schematic of the Deep Watershed Detector model with three distinct output
heads. N and M are the height and width of the input image, #classes denotes the
number of symbols and #energy _levels is a hyperparameter of the system.

expert-devised notion of symbol similarity), replace this common symbol with
the rare symbol and add the resulting page to the dataset. This way, synthesized
sheets still have semantic sense, and the network can learn from syntactically
correct context symbols. We then crop patches around the rare symbols similar
to the previous approach; (c) for rare symbols without similar common symbols,
we automatically “compose” music containing those symbols.

Then, during training, we augment each input page in a mini batch with 12
randomly selected synthesized crops of rare symbols (of size 130 x 80 pixels) by
putting them in the margins at the top of the page. This way, that the neural
network (on expectation) does not need to wait for more than 10 iterations to
see every class which is present in the dataset. Preliminary results show improve-
ment, though more investigation is needed: overfitting on extreme rare symbols
is still likely, and questions remain regarding how to integrate the concept of
patches (in the margins) with the idea of a full page classifier that considers all
context.

Enabling and Stabilizing Training. We initially used state-of-the-art object
detection models like Faster R-CNN [47] to attempt detection and classification
of musical symbols on DeepScores. These algorithms are designed to work well on
the prevalent datasets that are characterized by containing low-resolution images
with a few big objects. In contrast, DeepScores consists of high resolution musical
sheets containing hundreds of very small objects, amounting to a very different
problem [60]. This disconnect lead to very poor out-of-the-box performance of
said systems.

Region proposal-based systems scale badly with the number of objects
present on a given image, by design. Hence, we designed the Deep Watershed
Detector as an entirely new object detection system based on the deep water-
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Fig. 10. Top: part of a synthesized image from DeepScores; middle: the same part,
printed on old paper and photographed using a cell phone; bottom: the same image,
automatically retrofitted (based on the dark green lines) to the original image coordi-
nates for ground truth matching (ground truth overlayed in neon green boxes). (Color
figure online)

shed transform [4] and described it in detail elsewhere [61]. It detects raw musical
symbols (e.g., not a compound note, but note head, stem and flag individually)
in their context with a full sheet music page as input. As depicted in Fig.9,
the underlying neural network architecture has three output heads on the last
layer, each pertaining to a separate (pixel wise) task: (a) predicting the under-
lying symbol’s class; (b) predicting the energy level (i.e., the degree of belonging
of a given pixel location to an object center, also called “objectness”); and (c)
predicting the bounding box of the object.

Initially, the training was unstable, and we observed that the network did not
learn well if it was directly trained on the combined weighted loss. Therefore,
we now train the network on each of the three tasks separately. We further
observed that while the network gets trained on the bounding box prediction and
classification, the energy level predictions get worse. To avoid this, the network
is fine-tuned only for the energy level loss after being trained on all three tasks.
Finally, the network is retrained on the combined task (the sum of all three losses,
normalized by their respective running means) for a few thousand iterations,
giving excellent results on common symbols.

Generalizing to Real-World Data. The basic assumption in machine learn-
ing for training and test data to stem from the same distribution is often violated
in field applications. In the present case, domain adaptation is crucial: our train-
ing set consists of synthetic sheets created by LilyPond scripts [60], while the
final product will work on scans or photographs of printed sheet music. These
test pictures can have a wide variety of impairments, such as bad printer quality,
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torn or stained paper etc. While some work has been published on the topic of
domain transfer [19], the results are non-satisfactory. The core idea to address
this problem here is transfer learning [65]: the neural network shall learn the
core task of the full complexity of music notation from the synthetic dataset
(symbols in context due to full page input), and use a much smaller dataset to
adapt to the real world distributions of lighting, printing and defect.

We construct this post-training dataset by carefully choosing several hundred
representative musical sheets, printing them with different types of printers on
different types of paper, and finally scanning or photographing them. We then
use the BFMatcher function from OpenCV to align these images with the original
musical sheets to use all the ground truth annotation of the original musical sheet
for the real-world images (see Fig. 10). This way, we get annotated real-looking
images “for free” that have much closer statistics to real-world images than
images from DeepScores. With careful tuning of the hyperparameters (especially
the regularization coefficient), we get promising - but not perfect - results during
the inference stage.

6 Game Playing

In this case study, deep reinforcement learning (DRL) is applied to an agent
in a multi-player business simulation video game with steadily increasing com-
plexity, comparable to StarCraft or SimCity. The agent is expected to compete
with human players in this environment, i.e. to continuously adapt its strategy
to challenge evolving opponents. Thus, the agent is required to mimic somewhat
general intelligent behavior by transferring knowledge to an increasingly com-
plex environment and adapting its behavior and strategies in a non-stationary,
multi-agent environment with large action and state spaces. DRL is a general
paradigm, theoretically able to learn any complex task in (almost) any environ-
ment. In this section, we share our experiences with applying DRL to the above
described competitive environment. Specifically, the performance of a value-
based algorithm using Deep Q-Networks (DQN) [36] is compared to a policy
gradient method called PPO [51].

Dealing with Competitive Environments. In recent years, astounding
results have been achieved by applying DRL in gaming environments. Examples
are Atari games [36] and AlphaGo [54], where agents learn human or superhuman
performance purely from scratch. In both examples, the environments are either
stationary or, if an evolving opponent is present, it did not act simultaneously in
the environment; instead, actions were taken in turns. In our environment, multi-
ple evolving players act simultaneously, making changes to the environment that
can not be explained solely based on changes in the agent’s own policy. Thus, the
environment is perceived as non-stationary from the agent’s perspective, result-
ing in stability issues in RL [33]. Another source of complexity in our setting
is a huge action and state space (see below). In our experiments, we observed
that DQN got problems learning successful control policies as soon as the envi-
ronment became more complex in this respect, even without non-stationarity
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Fig. 11. Heuristic encoding of actions to prevent combinatorial explosion.

induced by opponents. On the other hand, PPQO’s performance is generally less
sensitive to increasing state and action spaces. The impact of non-stationarity
to these algorithms is subject of ongoing work.

Reward Shaping. An obvious rewarding choice is the current score of the game
(or its gain). Yet, in the given environment, scoring and thus any reward based
on it is sparse, since it is dependent on a long sequence of correct actions on
the operational, tactical and strategic level. As any rollout of the agent without
scoring is not contributing to any gain in knowledge, the learning curve is flat
initially. To avoid this initial phase of no information gain, intermediate rewards
are given to individual actions, leading to faster learning progress in both DQN
and PPO.

Additionally, it is not sufficient for the agent to find a control policy eventu-
ally, but it is crucial to find a good policy quickly, as training times are anyhow
very long. Usually, comparable agents for learning complex behaviors in com-
petitive environments are trained using self-play [5], i.e., the agents are always
trained with “equally good” competitors to be able to succeed eventually. In our
setting, self play is not a straightforward first option, for several reasons: first, to
jump-start learning, it is easier in our setting to play without an opponent first
and only learn the art of competition later when a stable ability to act is reached;
second, different from other settings, our agents should be entertaining to human
opponents, not necessarily winning. It is thus not desirable to learn completely
new strategies that are successful yet frustrating to human opponents. There-
fore, we will investigate self-play only after stable initializations from (scripted)
human opponents on different levels.

Complex State and Action Spaces. Taking the screen frame (i.e., pixels) as
input to the control policy is not applicable in our case. First, the policy’s input
needs to be independent of rendering and thus of hardware, game settings, game
version etc. Furthermore, a current frame does not satisfy the Markov property,
since attributes like “I own item z” are not necessarily visible in it. Instead,
some attributes need to be concluded from past experiences. Thus, the state
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space needs to be encoded into sufficient features, a task we approach with
manual pre-engineering.

Next, a post-engineering approach helps in decreasing the learning time in
case of DQN by removing unnecessary actions from consideration as follows:
in principal, RL algorithms explore any theoretically possible state-action pair
in the environment, i.e., any mathematically possible decision in the Markov
Decision Process (MDP). In our environment, the available actions are dependent
on the currently available in-game resources of the player, i.e., on the current
state. Thus, exploring currently impossible regions in the action space is not
efficient and is thus prevented by a post-engineered decision logic built to block
these actions from being selected. This reduces the size of the action space per
time stamp considerably. These rules where crucial in producing first satisfying
learning results in our environment using DQN in a stationary setting of the
game. However, when training the agent with PPO, hand-engineered rules where
not necessary for proper learning.

The major problem however is the huge action and state space, as it leads
to ever longer training times and thus long development cycles. It results from
the fact that one single action in our environment might consist of a sequence of
sub-decisions. Think e.g. of an action called “attack” in the game of StarCraft,
answering the question of WHAT to do (see Fig. 11). It is incompletely defined
as long as it does not state WHICH opponent is to be attack using WHICH unit.
In other words, each action itself requires a number of different decisions, chosen
from different subcategories. To avoid the combinatorial explosion of all possible
completely defined actions, we perform another post-processing on the resource
management: WHICH unit to choose on WHICH type of enemy, for example, is
hard-coded into heuristic rules.

This case study is work in progress, but what becomes evident already is
that the combination of the complexity of the task (i.e., acting simultaneously
on the operational, tactical and strategic level with exponentially increasing
time horizons, as well as a huge state and action space) and the non-stationary
environment prevent successful end-to-end learning as in “Pong from pixels’®.
Rather, it takes manual pre- and post-engineering to arrive at a first agent that
learns, and it does so better with policy-based rather than DQN-based algo-
rithms. A next step will explore an explicitly hierarchical learner to cope with
the combinatorial explosion of the action space on the three time scales (opera-
tional/tactical /strategic) without using hard-coded rules, but instead factorizing
the action space into subcategories.

7 Automated Machine Learning

One of the challenging tasks in applying machine learning successfully is to select
a suitable algorithm and set of hyperparameters for a given dataset. Recent
research in automated machine learning [17,40] and respective academic chal-
lenges [22] accurately aimed at finding a solution to this problem for sets of

5 Compare http://karpathy.github.io/2016,/05/31/11/.
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practically relevant use cases. The respective Combined Algorithm Selection
and Hyperparameter (CASH) optimization problem is defined as finding the
best algorithm A* and set of hyperparameters A\, with respect to an arbitrary
cross-validation loss £ as follows:

K
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where o7 is a set of algorithms, A 4 the set of hyperparameters per algorithm
A (together they form the hypothesis space), K is the number of cross valida-
tion folds and D are datasets. In this section, we compare two methods from
the scientific state-of-the-art (one uses Bayesian optimization, the other genetic
programming) with a commercial automated machine learning prototype based
on random search.

Scientific State-of-the-Art. Auto-sklearn [17] is the most successful auto-
mated machine learning framework in past competitions [23]. The algorithm
starts with extracting meta-features from the given dataset and finds models
which perform well on similar datasets (according to the meta-features) in a
fixed pool of stored successful machine learning endeavors. Auto-sklearn then
performs meta-learning by initializing a set of model candidates with the model
and hyperparameter choices of k nearest neighbors in dataset space; subse-
quently, it optimizes their hyperparameters and feature preprocessing pipeline
using Bayesian optimization. Finally, an ensemble of the optimized models is
build using a greedy search. On the other side, Tree-based Pipeline Optimiza-
tion Tool (TPOT) [40] is toolbox based on genetic programming. The algorithm
starts with random initial configurations including feature preprocessing, feature
selection and a supervised classifier. At every step, the top 20% best models are
retained and randomly modified to generate offspring. The offspring competes
with the parent, and winning models proceed to the next iteration of the algo-
rithm.

Commercial Prototype. The Data Science Machine (DSM) is currently used
inhouse for data science projects by a business partner. It uses random sam-
pling of the solution space for optimization. Machine learning algorithms in
this system are leveraged from Microsoft Azure, scikit-learn and can be user-
enhanced. DSM can be deployed in the cloud, on-premise, as well as standalone.
The pipeline of DSM includes data preparation, feature reduction, automatic
model optimization, evaluation and final ensemble creation. The question is: can
it prevail against much more sophisticated systems even at this early stage of
development?

FEvaluation is performed using the protocol of the AutoML challenge [22] for
comparability, confined to a subset of ten datasets that is processable for the
current DSM prototype (i.e., non-sparse, non-big). It spans the tasks of regres-
sion, binary and multi-class classification. For applicability, we constrain the
time budget of the searches by the required time for DSM to train 100 models
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Table 1. Comparison of different automated machine learning algorithms.

Dataset Task Metric Auto-Sklearn TPOT DSM
Validation | Test Validation | Test Validation | Test
Cadata Regression Coefficient of 0.7913 0.7801 |0.8245 0.8017|0.7078 0.7119
determination

Christine |Binary Balanced accuracy |0.7380 0.7405 |0.7435 0.7454|0.7362 0.7146
classification score

Digits Multiclass Balanced accuracy |0.9560 0.9556|0.9500 0.9458 |0.8900 0.8751
classification score

Fabert Multiclass Accuracy score 0.7245 0.7193/0.7172 0.7006 |0.7112 0.6942
classification

Helena Multiclass Balanced accuracy |0.3404 0.3434(0.2654 0.2667 |0.2085 0.2103
classification score

Jasmine Binary Balanced accuracy |0.7987 0.8348 |0.8188 0.8281 |0.8020 0.8371
classification score

Madeline |Binary Balanced accuracy |0.8917 0.8769|0.8885 0.8620 |0.7707 0.7686
classification score

Philippine | Binary Balanced accuracy |0.7787 0.7486 |0.7839 0.7646|0.7581 0.7406
classification score

Sylvine Binary Balanced accuracy |0.9414 0.9454 |0.9512 0.9493|0.9414 0.9233
classification score

Volkert Multiclass Accuracy score 0.7174 0.7101|0.6429 0.6327 |0.5220 0.5153
classification

Average performance 0.7678 0.7654|0.7586 0.7497 |0.7048 0.6991

using random algorithm selection. A performance comparison is given in Table 1,
suggesting that Bayesian optimization and genetic programming are superior to
random search. However, random parameter search lead to reasonably good mod-
els and useful results as well (also in commercial practice). This suggests room
for improvement in actual meta-learning.

8 Conclusions

Does deep learning work in the wild, in business and industry? In the light of the
presented case studies, a better questions is: what does it take to make it work?
Apparently, the challenges are different compared to academic competitions:
instead of a given task and known (but still arbitrarily challenging) environment,
given by data and evaluation metric, real-world applications are characterized
by (a) data quality and quantity issues; and (b) unprecedented (thus: unclear)
learning targets. This reflects the different nature of the problems: competitions
provide a controlled but unexplored environment to facilitate the discovery of
new methods; real-world tasks on the other hand build on the knowledge of a zoo
of methods (network architectures, training methods) to solve a specific, yet still
unspecified (in formal terms) task, thereby enhancing the method zoo in return
in case of success. The following lessons learned can be drawn from our six case
studies (section numbers given in parentheses refer to respective details):

Data acquisition usually needs much more time than expected Sect. 4, yet is the
basis for all subsequent success Sect. 5. Class imbalance and covariate shift
are usual Sects. 2, 4, 5.
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Understanding of what has been learned and how decisions emerge help both
the user and the developer of neural networks to build trust and improve
quality Sects. 4, 5. Operators and business owners need a basic understanding
of used methods to produce usable ground truth and provide relevant subject
matter expertise Sect. 4.

Deployment should include online learning Sect.3 and might involve the
buildup of up to dozens of other machine learning models Sects. 2, 3 to flank
the original core part.

Loss/reward shaping is usually necessary to enable learning of very complex
target functions in the first place Sects.5, 6. This includes encoding expert
knowledge manually into the model architecture or training setup Sects. 4,
6, and handling special cases separately Sect.3 using some automatic pre-
classification.

Simple baselines do a good job in determining the feasibility as well as the
potential of the task at hand when final datasets or novel methods are not
yet seen Sects. 4, 7. Increasing the complexity of methods and (toy-)tasks in
small increments helps monitoring progress, which is important to effectively
debug failure cases Sect. 6.

Specialized models for identifiable sub-problems increase the accuracy in pro-
duction systems over all-in-one solutions Sects. 2, 3, and ensembles of experts
help where no single method reaches adequate performance Sect. 2.

Best practices are straightforward to extract on the general level (“plan
enough resources for data acquisition”), yet quickly get very specific when broken
down to technicalities (“prefer policy-based RL given that ...”). An overarching
scheme seems to be that the challenges in real-world tasks need similar amounts
of creativity and knowledge to get solved as fundamental research tasks, suggest-
ing they need similar development methodologies on top of proper engineering
and business planning.

We identified specific areas for future applied research: (a) anti-spoofing for
face verification; (b) the class imbalance problem in OMR; and (c) the slow
learning and poor performance of RL agents in non-stationary environments
with large action and state spaces. The latter is partially addressed by new
challenges like Dota 2%, Pommerman or VizDoom’, but for example doesn’t
address hierarchical actions. Generally, future work should include (d) making
deep learning more sample efficient to cope with smaller training sets (e.g. by
one-shot learning, data or label generation [15], or architecture learning); (e)
finding suitable architectures and loss designs to cope with the complexity of
real-world tasks; and (f) improving the stability of training and robustness of
predictions along with (d) the interpretability of neural nets.

Acknowledgements. We are grateful for the invitation by the ANNPR chairs and the
support of our business partners in Innosuisse grants 17719.1 “PANOPTES”, 17963.1

5 See e.g. https://blog.openai.com/dota-2/.
" See https://www.pommerman.com/competitions and http://vizdoom.cs.put.edu.pl.
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“DeepScore”, 25256.1 “Libra”, 25335.1 “FarmAl”, 25948.1 “Ada” and 26025.1 “Qual-
itAT”.
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Abstract. Unconstrained large margin distribution machines (ULDMs)
maximize the margin mean and minimize the margin variance without
constraints. In this paper, we first reformulate ULDMs as a special case of
least squares (LS) LDMs, which are a least squares version of LDMs. By
setting a hyperparameter to control the trade-off between the generaliza-
tion ability and the training error to zero, .S LDMs reduce to ULDMs. In
the computer experiments, we include the zero value of the hyperparame-
ter as a candidate value for model selection. According to the experiments
using two-class problems, in most cases LS LDMs reduce to ULDMs and
their generalization abilities are comparable. Therefore, ULDMs are suffi-
cient to realize high generalization abilities without equality constraints.

1 Introduction

In a classification problem, margins between data and the separating hyperplane
play an important role. Here, margin is defined as the distance between a data
point and the separating hyperplane and it is nonnegative when correctly clas-
sified, and negative, when misclassified. In the support vector machine (SVM)
[1,2], the minimum margin is maximized.

Because the SVM does not assume a specific data distribution, the obtained
separating hyperplane is optimal under the assumption that the data obey an
unknown but fixed distribution. Therefore, if prior knowledge is available, it can
improve the generalization ability.

The central idea of SVMs, maximizing the minimum margin, has been
applied to improving generalization performance of other classifiers. However,
for AdaBoost, instead of the minimum margin, directly controlling the margin
distribution has been known to improve the generalization ability [3,4].

Among several classifiers to control the margin distribution [5-12], in [6],
the margin mean for the training data is maximized without constraints. This
approach is extended in [11]: the bias and slope of the separating hyperplanes
are optimized and then equality constraints are introduced. This introduction
results in the least squares SVM. According to the computer experiments, with-
out equality constraints, the generalization ability is inferior to that of the SVM.
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In [9,10], in addition to maximizing the margin mean, the margin variance is
minimized and the classifier is called large margin distribution machine (LDM).
The advantage of the LDM is that the generalization ability is better than or
comparable to that of the SVM, but one of the disadvantages is that two hyper-
parameters are added to the SVM. This will lengthen model selection. To solve
this problem, in [12], an unconstrained LDM (ULDM) is developed, where the
number of hyperparameters is the same as that of the SVM.

In this paper, we reformulate the ULDM as a special case of the least squares
LDM (LS LDM). As in [12], we formulate the LS LDM as maximizing the margin
mean and minimizing the margin variance, in addition to minimizing the square
norm of the coefficient vector of the hyperplane and the square sum of slack
variables. As in the LS SVM, we impose the equality constraints for training
data. Because the hyperparameters are necessary for the square sum of slack
variables and the margin variance, one hyperparameter is added to the LS SVM.
Eliminating the square sum of slack variables in the objective function and the
equality constraints, we obtain the ULDM.

By computer experiments we perform model selection of the LS LDM includ-
ing the parameter value of zero for the slack variables, which results in the
ULDM. Checking the number that the parameter value of zero is taken, we judge
whether the equality constraints are necessary for improving the generalization
ability.

In Sect. 2, we summarize the LS SVM. And in Sect. 3, we explain the LDM
and then discuss its variants: the LS LDM and ULDM. In Sect.4, we evaluate
the effect of equality constraints to the ULDM using two-class problems.

2 Least Squares Support Vector Machines

Let the decision function in the feature space be

f(x) =wTp(x) +0b, (1)

where ¢(x) maps the m-dimensional input vector x into the I-dimensional feature
space, w is the [-dimensional coefficient vector, T denotes the transpose of a
vector, and b is the bias term.

Let the M training input-output pairs be {x;,y;} (i = 1,..., M), where x;
are training inputs and y; are the associated labels and y; = 1 for Class 1 and
—1 for Class 2.

The margin of x;, J;, is defined as the distance from the separating hyperplane
f(x) =0, and is given by

0 = yi f(xi)/|[wl|. (2)

If 6||lw|| = 1, where § is the minimum margin among 6; (i = 1,..., M),
maximizing § is equivalent to minimizing ||w||. To make d; larger than or equal
to 1, x; need to satisfy y; f(x;) > 1. Then allowing misclassification, the LS
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SVM is formulated in the primal form as follows:

1 C&
L. T o 2
minimize Q(w,b,&) = 5W WS ;:1 & (3)
subject to  y; f(x;)=1—-¢& for i=1,..., M, (4)

where Q(w, b, £) is the objective function, C' is the margin parameter that con-
trols the trade-off between the training error and the generalization ability, &;
are the slack variables for x;, and € = (£1,...,&y) . If we change €2 to &, and
C/2 to C in (3), and the equality constraints in (4) to inequality constraints, we
obtain the L1 SVM.

Solving the equation in (4) for &; and substituting it to the objective function
in (3), we obtain the unconstrained optimization problem:

L 1, & )
minimize Q(w,b) = W W + 5 Z(l —yi f(xi))~. (5)
i=1

The solution of the LS SVM can be obtained by solving a set of linear equa-
tions and generalization performance is known to be comparable to the L1 SVM
[2], but unlike the L1 SVM, the solution is not sparse.

In the following we use the LS SVM to derive an LS LDM, which is a variant
of the LDM, and also use to compare performance of the ULDM.

3 Large Margin Distribution Machines and Their
Variants

In this section, first we briefly summarize the LDM. Then, we define the LS
LDM and ULDM in a way slightly different from [12].

3.1 Large Margin Distribution Machines

The LDM [9] maximizes the margin mean and minimizes the margin variance.
The margin mean ¢ and margin variance 0 are given, respectively, by

1 M

‘SZM;@” (6)
. 1 M . 1 M -

‘SZM;(&_&) :M;@?—(SZ. (7)

Here, instead of (2), we consider the margin as

0 = yi f(xi)- (8)
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Similar to the L1 SVM, the LDM is formulated as follows:

M
minimize Q(w,b,€) = 1WTW AL+ % A2 b+ CZ& (9)

=1

subjectto y; f(x;) >1-¢& for i=1,..., M, (10)

where A1 and Ay are parameters to control maximization of the margin mean
and minimization of the margin variance, respectively. In the objective function,
the second and the third terms are added to the L1 SVM.

Because the LDM uses all the training data to calculate the margin mean and
the margin variance, the solution is dense. Furthermore, because four parameter
values (including one kernel parameter value), instead of two, need to be deter-
mined by model selection, model selection requires more time than the L1 SVM
does.

3.2 Least Squares Large Margin Distribution Machines

The LS LDM that maximizes the margin mean and minimizes the margin vari-
ance is given by replacing the slack sum in (9) with the square sum and the
inequality constraints in (10) with the equality constraints as follows:

1
minimize Q(w,b, &) = fw W= A0+ = )\2 b+ — Z{ (11)
subjectto y; f(x;) =1—-¢&; for i=1,..., M. (12)

Solving the equation in (12) for &; and substituting it to the objective function
in (11) yield

M
minimize Q(w,b) = %WTW — A6+ % A2 b+ % Z(l — i f(x4))?
i=1

1 1 C
R 5 ; 12
=W w—)\1(5+§/\25+ 5 ii_l(éz 1)%. (13)

In the above objective function, the last term, which is the variance of margins
around the minimum margin works similarly to the third term, which is the
variance of margin around the margin mean, 5.

Now substituting (6), (7), and (8) into the objective function of (13) and
deleting the constant term, we obtain

Q(w,b) = ;wTw+2A_,f4<1+>Zf xi) = 5 (MZyl xz>2
(+C)Z (14)
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The first three terms in the above objective function are quadratic and the last
term is linear with respect to w and b. Therefore, the coefficient of the linear
term is a scaling factor of the decision function obtained by minimizing (14)
with respect to w and b. Dividing (14) by A2 and eliminating the coefficient of
the last term, we obtain

Q(Wvb) = Ew Zfz Xz

1(1
-5 <Mizlyif<xi>> —;yif(xn. (15)

Here, Cp, = Mg and C, = M C/ As.

According to the above formulation of the LS LDM, the parameter \; in (13)
does not work for controlling the margin mean. Therefore, the three hyperpa-
rameters in (11) and (12) are reduced to two.

3.3 Unconstrained Large Margin Distribution Machines
Deleting the square sum of the slack variables in (11) and equality constraints

n (12), we consider the unconstrained LDM (ULDM) as follows:

minimize Q(w,b) = Lw—r M6+ %5
1 1 < 1 & ’
:WW w + 2 Zf2 (szzf(xz>>
m i=1 i=1
M
= i f(xi). (16)
i=1

Here, we multiply 0 with M so that the coefficient of the linear term is 1.
Comparing (15) and (16), the ULDM is obtained by setting C. = 0 (C' = 0).
Because the LS LDM includes the ULDM, we derive the optimality condi-

tions for (15) in the empirical feature space [2]. Let {z1,...,zn} be a subset

of {x1,...,xpn}, where N < M and let {¢p(z1),...,¢(zn)} span the empirical
feature space. Then the mapping function that maps the input space into the
empirical feature space is expressed by

h(x):(K(szl)a-“aK(szN))Ta (17)
where K (x,2;) = ¢ ' (x) ¢(z;). Then the decision function (1) is expressed by
f(x) =w'h(x) +b. (18)

For a linear kernel with m < N, to improve sparsity, we use the Euclidean
coordinates: z; = {1,0,...,0}, -+ ,z, = {0,---,0,1}, and use the identity
mapping: h(x) = x.
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We derive the optimality condition of the LS LDM given by (15), using (18):

W _ (ClmzNHHcc)szTKy) w
+(A+CORT - 5K ) oK' =, (19)
PO _ (14 ok~ KT wt (14 Cem i) b—g =0, (20)

where Iy is the N x N unit matrix,

1 M 1 M 1 M 1 M
K?=—-) K/K; K=—>) K;, Kv=— K, §=— ;
K7.:<K2177K1N):h—r(xl)7

KijZK(XZ‘,Zj) fOI"L'ZL...,M,j:l,...,N. (21)

In a matrix form, (19) and (20) are given by

Iy +(1+C)K? KV K7 (1+Co) KT — 5KV (w>
(1+Ce) K —yKY 1+ C, — 2 b

m'r
o)

If C =0, (22) reduces to the ULDM. The difference between (22) with C' = 0
and the ULDM in [12] is that 1/Cy, is used in (22) instead of Cly,.

Because the coefficient matrix of (22) is positive definite, we can solve (22)
for w and b by the coordinate descent method [13] as well as by matrix inversion.

In model selection, we need to determine the values of Cy,, C' in C,, and y
in the kernel. To speed up model selection, as well as grid search of three values,
we consider line search: after determining the values of Cy, and v with C' =0
by grid search, we determine the C value fixing the values of Cy, and « with the
determined values.

4 Performance Evaluation

We compare performance of the ULDM with that of the LS LDM to clarify
whether the equality constraints in the LS LDM are necessary. We also compare
the ULDM with the LS SVM and the L1 SVM. Because of the space limitation,
we only use two-class problems.

4.1 Conditions for Experiment

Because the coefficient matrix of (22) is positive definite, (22) can be solved by
the coordinate descent method [9]. But to avoid the imprecise accuracy caused by
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the improper convergence, we train the ULDM and LS LDM by matrix inversion.
We also train the LS SVM given by (3) and (4) by matrix inversion. For the L1
SVM, we use SMO-NM [14], which fuses SMO (Sequential minimal optimization)
and NM (Newton’s method).

We use the radial basis function (RBF) kernels: K (x,x') = exp(—v||x —
x'||?/m), where m is the number of inputs for normalization and ~ is used to
control a spread of a radius. We carry out model selection by fivefold cross-
validation. To speed up cross-validation for the LS LDM, which has three hyper-
parameters including 7 for the RBF kernel, we use line search in addition to grid
search of the optimal values of C', C}, and ~. In line search, after determining
the values of Cy,, and « by grid search, we determine the optimal value of C' by
cross-validation. Therefore C, and ~y for the ULDM give the same values for the
LS LDM by line search.

We select the « value from {0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 50, 100, 200}, for
the C value from {0.1, 1, 10, 50, 100, 500, 1000, 2000}, and for the C, value
from {0.1, 1,10, 100, 1000, 10%,10%,10%}. In the LS LDM, we also include 0 as
a candidate of the C' value. Then if 0 is selected, the LS LDM reduces to the
ULDM.

We measure the average CPU time per data set including model selection by
fivefold cross-validation, training a classifier, and classifying the test data by the
trained classifier. We used a personal computer with 3.4 GHz CPU and 16 GB
memory.

4.2 Results for Two-Class Problems

Table 1 lists the numbers of inputs, training data, test data, and data set pairs of
two-class problems [15]. Each data set pair consists of the training data set and
the test data set. Using the training data set, we determine parameter values
by cross-validation, train classifiers with the determined parameter values and
evaluate the performance using the test data set. Then we calculate the average
accuracy and the standard deviation for all the test data sets.

Table 2 lists the parameter values determined by cross-validation. In the first
row, (1) and (g) show that the three hyperparameters of the LS LDM are deter-
mined by linear search and grid search, respectively. Because each classification
problem consists of 100 or 20 training and test data pairs, we show the most
frequently selected parameter values. For the LS LDM, most selected value for
C is 0. Thus, in the table, we show the number that C' # 0 is selected in the
parentheses.

As we discussed before, the Cy, and v values for the ULDM and the LS
LDM (1) are the same. Therefore, if the number that C' # 0 is selected is 0, the
LS LDM (1) reduces to ULDM for all the training data sets. This happens for
seven problems. Except for the german problem, the C value of zero is selected
frequently. For the LS LDM (g) also, the C value of zero is frequently selected.
Therefore, LS LDM (g) reduces to ULDM frequently. These results indicate that
the equality constraints are not important in the LS LDM.
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Table 1. Benchmark data for two-class problems

Data Inputs | Train | Test | Sets
Banana 2 400 | 4,900 | 100
Breast cancer | 9 200 77 1100
Diabetes 8 468 300 | 100
Flare-solar 9 666 400 | 100
German 20 700 300 | 100
Heart 13 170 100 | 100
Image 18 1,300 | 1,010 | 20
Ringnorm 20 400 | 7,000 | 100
Splice 60 1,000 | 2,175 | 20
Thyroid 5 140 75 | 100
Titanic 3 150 | 2,051 | 100
Twonorm 20 400 | 7,000 | 100
Waveform 21 400 | 4,600 | 100

The ~ values for the three classifiers are very similar and so are the C values
for the LS and L1 SVMs.

In the following we show the distributions of C, C, and v values for the
german data, in which C' = 0 is least frequently selected for the LS LDM.

Table 3 shows the C' value distributions for the german data. The distribu-
tions for the LS LDM by line search and by grid search are very similar. The
values of C smaller than or equal to 1 are selected 93 times and 90 times for the
LS LDM (1) and LS LDM (g), respectively. Therefore, C' does not affect much
to the generalization ability. The distributions for the LS SVM and L1 SVM are
similar and although the value of 1 is frequently selected, the larger values are
also selected. This means that the value of C affect directly on the generalization
ability.

Table 4 shows the distributions of Cy, values for the ULDM and LS LDM
(g). The both distributions are similar. The distribution for the LS LDM (1) is
the same as that for the ULDM.

Table 5 lists the v value distributions for the german data. The v values larger
than 20 are not selected for the four classifiers. The distributions of the ULDM
(LS LDM (1)) and LS LDM (g) are similar although smaller values are selected
for the ULDM (LS LDM (1)). The distributions of the LS SVM and L1 SVM are
similar and tend to gather towards smaller values than those of the ULDM (LS
LDM (1)) and LS LDM (g).

Table 6 shows the average accuracies and their standard deviations of the
five classifiers with RBF kernels. Among the five classifiers the best average
accuracy is shown in bold and the worst average accuracy is underlined. The
“Average” row shows the average accuracy of the 13 average accuracies and
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Table 2. Most-frequently-selected parameter values for the two-class problems. The
numeral in the parentheses shows the number that C # 0 is selected.

Data ULDM |LSLDM (1) |LSLDM (g) | LS SVM |L1 SVM
Cm, Cm, v (C) Cm,7(C) | C,y C,y
Banana 104, 50 10*, 50 (1) 10*, 100 (1) [10,50 |1,20
B. cancer |10, 0.01 |10, 0.01 (17) |10, 10 (30) |1, 5 1,05
Diabetes | 100, 5 100, 5 (10) 100, 5 (22) |1,0.5 | 500, 0.1
Flare-solar | 10, 0.01 10, 0.01 (0) 10, 1 (0) 10, 0.01 |50, 0.01
German |100, 10  |100, 10 (31) |100, 10 (38) |1, 0.1 1,01
Heart 100, 0.01 | 100, 0.01 (0) |10%*, 0.5 (1) |10, 0.01 |100, 0.01
Image 108, 15 108, 15 (1) 108,20 (1) |50,50 |50, 100
Ringnorm |10, 50 10, 50 (0) 10, 100 (0) |0.1,50 |1,50
Splice 10%,10 | 10%, 10 (0) 10%,10 (0) |10, 10 |10, 10
Thyroid |10, 100 |10, 100 (0) |10, 200 (6) |1, 100 |50, 5
Titanic 10*, 0.01 |10% 0.01 (0) |10, 1 (3) 10, 0.01 |50, 0.01
Twonorm | 1000, 0.01 | 1000, 0.01 (0) | 100, 5 (1) |50, 0.01 |1, 0.01
Waveform |100, 50 | 100, 50 (10) | 100, 50 (21) |1, 20 1,15

Table 3. Distribution of C values for the german data

C |LSLDM (1) LS LDM (g) LS SVM | L1 SVM
0.0 |69 62 — —

01 |11 11 0 0
113 17 42 32

10 | 3 4 11 9

50 | 2 2 14 20

100 | 1 2

500 | 0 1

1000 0 0

2000 1 1 12 16

the two numerals in the parentheses show the numbers of the best and worst
accuracies in the order. We performed Welch’s t test with the confidence intervals
of 95%. The “W/T/L” row shows the results; W, T, and L denote the numbers
that the ULDM shows statistically better than, the same as, and worse than the
LS LDM (1), LS LDM (g), LS SVM, and L1 SVM, respectively. Symbols “+”
and “—” in the L1 SVM column show that the ULDM is statistically better and
worse than the L1 SVM, respectively.

Ignore the difference of 0.01 for the average accuracies and the standard
deviations. Then the results of the ULDM and those of the LS LDM (1) are
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Table 4. Distribution of Cy, values for the german data

C. |ULDM |LS LDM (g)
01| 7 5
1 |44 50
10 |18 21
100 | 12 13
10| 6 5
10t 2 4
108 5 2
108 6 0

Table 5. Distribution of 7 values for the german data

~ value | ULDM | LS LDM (g) LS SVM |L1 SVM
0.01 11 0 10 12
0.1 2 6 23 24
0.5 9 8 16 16
1 8 9 11 13
5 23 26 22 15
10 27 30 12 8
15 9 10 5 8
20 11 11 1 4
50 0 0
100 0 0
200 0 0

different only for the german problem. Whereas for the ULDM and LS LDM
(g), only the ringnorm problem gives the same results.

From the table, from the standpoint of the average accuracy, the ULDM and
LS LDM (1) performed best and the LS SVM, the worst. But from the standpoint
of statistical analysis the ULDM is statistically comparable with the remaining
four classifiers.

Therefore, because the LS LDM frequently reduces to the ULDM and the
ULDM is comparable with the LS LDM, the LS LDM can be replaced with the
ULDM.

Table 7 shows the average CPU time per data set for calculating the accu-
racies. The last row shows the numbers that each classifier shows best/worst
execution time. In average, the LS SVM is the fastest and the LS LDM (g)
the slowest because of the slow model selection by grid search of three hyper-
parameters. Because the ULDM and LS SVM are trained by solving the sets
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Table 6. Accuracy comparison of the two-class problems for RBF kernels

Data ULDM LS LDM (1) LS LDM (g) | LS SVM L1 SVM
Banana 89.13+0.69 |89.134+0.69 | 89.16+£0.59 |89.17+0.66 | 89.17+0.72
B. cancer |73.734+4.34 | 73.73+4.35 | 73.73+4.48 | 73.13+4.68 | 73.03+4.51
Diabetes |76.52+1.95|76.52+1.95 | 76.324+2.00 |76.194+2.00 |76.29+1.70
Flare-solar | 66.33+2.02 | 66.33+£2.02 |66.18+1.94 |66.25+1.98 | ~66.99+2.12
German 76.14+£2.30 | 76.10+2.30 |76.25+2.17 | 76.10£2.10 | 75.95+2.24
Heart 82.61+3.61 | 82.61+3.61 |82.33+3.77 |82.494+3.60 | 82.8243.37
Image 97.16+0.68 |97.17£0.68 | 97.23£0.53 |97.52+0.54 | 97.16+0.41
Ringnorm |98.164+0.35 |98.164+0.35 |98.174+0.34 |98.19+0.33|98.14+0.35
Splice 89.134+0.60 | 89.13+0.60 | 89.17+0.55 |88.984+0.70 | 88.89+0.91
Thyroid 95.2842.28 |95.28+2.28 |95.254+2.42 | 95.084+2.55 | 95.35+2.44
Titanic 77.45+0.89 | 77.45+0.89 | 77.48+0.87 | 77.394+0.83 |77.39+0.74
Twonorm |97.434+0.25 | 97.43+£0.25 | 97.37+0.28 |97.434+0.27 | 97.384+0.26
Waveform | 90.1940.52 | 90.1940.53 | 90.2240.51 |90.05+0.59 | 789.7640.66
W/T/L — 0/13/0 0/13/0 0/13/0 1/11/1
Average | 85.33 (3/2) 85.33 (3/1) 85.30 (5/3) | 85.23 (4/3) |85.26 (4/7)
Table 7. Execution time comparison of the two-class problems (in seconds)

Data ULDM | LS LDM(]) | LS LDM(g) | LS SVM | L1 SVM

Banana 28.13 30.67 249.08 12.03 4.92

B. cancer |2.91 3.17 25.83 1.69 7.08

Diabetes |44.13 48.63 428.30 20.3 22.96

Flare-solar | 223.96 | 249.05 2067.59 67.28 218.67

German 383.45 |431.55 3387.80 98.72 776.53

Heart 1.66 1.87 15.04 1.12 1.75

Image 4813.18 | 5419.68 46138.67 1826.86 | 56.7

Ringnorm | 26.68 29.42 237.83 13.15 12.57

Splice 1919.64 | 1986.73 15747.32 740.76 | 30.71

Thyroid 0.96 1.06 8.68 0.69 0.33

Titanic 1.20 1.33 10.93 0.75 21.25

Twonorm | 27.81 30.83 271.14 13.33 10.46

Waveform | 26.64 29.96 246.24 13.64 35.61

B/W 0/0 0/0 0/12 7/0 6/1

of linear equations with the equal number of variables, slower training by the
ULDM is due to more complex calculation in setting the coefficients of the linear
equations. Because the matrix size is the number of training data plus one and



52 S. Abe

because the numbers of training data are smaller than 1000 except for the image
and splice data sets, the execution time is relatively short.

The L1 SVM is trained by iterative method. Therefore the training speed
depends on the parameter values and for the titanic data, training of the L1
SVM is the slowest. For the ULDM, LS LDM, and LS SVM, the execution time
depends on the number of training data not on the parameter values.

5 Conclusions

The unconstrained large margin distribution machine (ULDM) maximizes the
margin mean and minimizes the margin variance without constraints.

In this paper, we investigated the effect of the constraints to the ULDM. To
do this, we derived the ULDM as a special case of the least squares (LS) LDM,
which is the least squares version of the LDM. If the hyperparameter associated
with the constraints is set to be zero, the LS LDM reduces to the ULDM. In
computer experiments, we carried out model selection of the LS LDM including
the zero value of the hyperparameter as a candidate value. For the two-class
problems with 100 or 20 data set pairs, in most cases, the LS LDM reduced
to the ULDM and if not, there was no statistical difference of generalization
abilities. According to the results, the effect of the equality constraints to the
generalization ability of the LS LDM is considered to be small and the ULDM
can be used instead of the LS LDM.
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Abstract. Deep Learning Library (DLL) is a library for machine learn-
ing with deep neural networks that focuses on speed. It supports feed-
forward neural networks such as fully-connected Artificial Neural Net-
works (ANNs) and Convolutional Neural Networks (CNNs). Our main
motivation for this work was to propose and evaluate novel software engi-
neering strategies with potential to accelerate runtime for training and
inference‘. Such strategies are mostly independent of the underlying deep
learning algorithms. On three different datasets and for four different
neural network models, we compared DLL to five popular deep learning
libraries. Experimentally, it is shown that the proposed library is system-
atically and significantly faster on CPU and GPU. In terms of classifica-
tion performance, similar accuracies as the other libraries are reported.

1 Introduction

In recent years, neural networks have regained a large deal of attention with
deep learning approaches. Such approaches rely on the use of bigger and deeper
networks, typically by using larger input dimensions to incorporate more context
and by increasing the number of layers to extract information at different levels
of granularity. The success of deep learning can be attributed mainly to three
factors. First, there is the advent of big data, meaning the availability of larger
quantities of training data. Second, new training strategies have been devel-
oped, such as unsupervised pre-training that allows deep networks to initialize
well and also to learn efficient feature extractors on large sets of unlabelled data.
Finally, better and faster hardware has helped dealing with the training of such
networks. Deep systems are currently improving the state-of-the-art in many
domains. Successful deep learning applications include near-human performance
at recognizing objects in images [27], generating detailed image descriptions [13],
adding colors to grayscale images [3] or generating highly-realistic images [7].
Moreover, the availability of free and easy-to-use libraries, as well as the avail-
ability of detailed implementation examples on public datasets, have contributed
to the widespread use of deep learning technologies.

From a practical point of view, an ideal deep learning library would be easy
to use, would offer fast training with good precision and would be versatile
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with many configuration options. Reaching all these qualities is difficult as some
are contradictory. For this reason, we may observe large differences among the
available libraries.

In this work, we report on the development of a deep learning library where
we have clearly opted to focus on efficient computation, targeting specific net-
work models and algorithm configurations. While we are aware of these limi-
tations, we believe that the different optimizations we have implemented may
be of interest to the scientific community. Our library, Deep Learning Library
(DLL), is freely available, with source code!. This library can be used to train
standard Artificial Neural Networks (ANNs) and Convolutional Neural Networks
(CNNs) [18], as well as Restricted Boltzmann Machine (RBM) [26] and Convo-
lutional RBM (CRBM) [20].

While speedups are also observed on the GPU, the proposed library has
been especially optimized for speed on Central Processing Unit (CPU). Although
GPUs are beginning to be the de-facto standard for training deep networks, they
are not always available and some deployments are still targeting existing CPU
implementations. Moreover, inference is generally performed on CPU once the
network has been trained. Therefore, we believe that it remains important to be
able to both train neural networks in reasonable time and achieve fast inference
on CPUs. In this work, we also report successful optimizations on GPU, but we
have to note that advanced parallelization capabilities of GPU where already
well used [28], especially for convolutional networks [16].

Further to our speedup contributions, a special contribution of this paper is
a comprehensive evaluation against several important state of the art libraries.
The evaluation is carried on four models and three data sets. Comparisons are
performed in terms of computation time on both CPU and GPU. This shows
that state of the art libraries have still some large margin of optimization.

The rest of this paper is organized as follows. The DLL library is described
in details in Sect. 2. The evaluation is presented in Sect. 3. Section 4 is presenting
the results of the experiments on MNIST, Sect.5 on CIFAR-10 and Sect.6 on
ImageNet. Finally, conclusions are drawn in Sect. 7.

2 DLL: Deep Learning Library

Deep Learning Library (DLL) is a Machine Learning library originally focused
on RBM and CRBM support. It was developed and used in the context of several
research work [29-32]. It also has support for various neural network layers and
backpropagation techniques. It is written in C++ and its main interface is C++
(example in Sect.2.2). The library can also be used by describing the task in a
simple descriptor language, to make it easier for researchers.

The library supports conventional neural network. As such, ANNs and CNNs
can be trained. Max Pooling and Average Pooling layers are also supported for
CNNs. These networks can be trained with mini-batch gradient descent. The

! URL https://github.com/wichtounet /dll.
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basic learning options such as momentum and weight decay are supported. The
library also support advanced techniques such as Dropout [10] and Batch Nor-
malization [11]. Finally, optimizers with adaptive learning rates such as Ada-
grad [6], Adadelta [33] and Adam [14] are also integrated. The library also sup-
ports Auto-Encoders [2] and Convolutional Auto-Encoders [21].

Also, the library has complete support for the RBM model [26]. The model
can be trained using Contrastive Divergence (CD) [9]. The implementation was
designed following the model from [8]. It also supports Deep Belief Network
(DBN), pretrained layer by layer and then fine-tuned using gradient descent. The
RBM supports a wide range of visible and hidden unit types, such as binary,
Gaussian and Rectified Linear Unit (ReLU) [23]. Support for CRBM is also
integrated, following the two models from [20].

The DLL library is available online?, free of charge, under the terms of the
MIT open source license. Details of the project as well as some tutorials are
available on the home page.

2.1 Performance

The focus of the library is runtime performance, for training and for inference.
The implementation uses several techniques to optimize as much as possible
the runtime performance for training and inference. First, all the computations
are performed using single-precision floating point numbers. This leads to a
better data locality and an increased potential for vectorization. On GPU, it
would even be possible to use half-precision, but modern processors do not have
native capabilities for such computations. Another simple optimization is that
all the computations are performed on a batch rather than on one sample at the
time. This has the advantage of leveraging the necessary operations to higher
level computations. Since this is also generally advantageous for the quality of
the training, this is currently the most common way to train a neural network.
The forward activation of a dense layer for a mini-batch can be computed
with a single matrix-matrix multiplication [31]. This is also possible for the
backward pass, by transposing the weight matrix. Finally, the gradients for the
dense layer can also be computed using one matrix-matrix multiplication. Thus,
such a network mainly needs a good implementation of this operation to be fast.
The Basic Linear Algebra Subprograms (BLAS) interface contains a set of
small and highly-optimized kernels for matrix and vector computation [17].
When using an efficient BLAS library, the matrix-matrix multiplication oper-
ation can be very efficient. Moreover, using a parallel BLAS library also leads to
significantly increased performance for large layers. Moreover, although BLAS
libraries are highly optimized for very large matrices, they are not as fast as
possible for small matrices. Therefore, we automatically detect such cases and
use custom vectorized kernels for small matrix multiplications.
Optimization is more complicated for CNNs. Indeed, the dense layers only
account for a small portion of the training time. Convolutional layers use two
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forms of convolution. A valid convolution for the forward pass, which shrinks the
representation and a full convolution for the backward pass to expand it. Every
image batch is convolved with K kernels. It is possible to rearrange an image
into columns so that a matrix-matrix multiplication can be used to compute
the K valid convolutions of the image at once [24,31]. This proved to be very
efficient for large images or large kernels. When images or kernels are small,
it is not efficient since the rearranging of the input matrix is a slow operation.
Therefore, in these cases, we observed that it is more interesting to perform a real
convolution using an highly-optimized implementation. First, several floating
point operations are computed during the same CPU cycle, using SSE and AVX,
a technique known as Single Instruction Multiple Data (SIMD). Then, to ensure
the maximum throughput, the matrices are padded so that the last dimension is
a multiple of the vector size. Specialized kernels for the most used kernel sizes,
such as 3x 3 and 5 x 5, are also used. Finally, most of the convolutions can
be performed in parallel since there are no dependencies between them. This
proved significantly faster than the reduction to a matrix-matrix multiplication
in several configurations.

There are several possible implementations for the full convolution. First,
it can be expressed in terms of another operation, the Fast Fourier Transform
(FFT) [22]. For this, the input image and the kernel are padded to the size of the
output. Then, their transforms are computed, in parallel. The Hadamard prod-
uct of the input image with the transform of the kernel is computed. The inverse
transform of this product is the full convolution. Computing several convolu-
tions of the same image with different kernels is more efficient since the image
transform is only computed once. In our experiments, we observed that such
implementation is very efficient for large inputs and large kernels, but it is not
as interesting for small configurations. With very small kernels, it is more efficient
to pad the input and the kernels and perform a valid convolution. Indeed, a full
convolution is equivalent to a valid convolution with some amount of padding.
When the necessary padding is small enough, it becomes significantly faster than
performing the FFTs. The last option is to use an optimized implementation of
the full convolution. However, due to the large number of border cases, this
would only be faster than the implementation as a valid convolution for large
dimensions, in which case the reduction to FFT would be faster.

Since there is no one-size-fits-all implementation for all configurations, heuris-
tics are used to select the most suited implementations. These heuristics are
based on the size of the convolution kernels and the size of the batch.

Although most of the time is contained inside the previously mentioned oper-
ations, it is still important to optimize the other operations such as activation
functions and gradient computations. In our implementation, these operations
are vectorized and parallelized to maximize the processor utilization.

Fortunately, when optimizing for GPU, most of the routines are already
implemented in highly specialized libraries. DLL uses NVIDIA libraries in order
to optimize most kernels. NVIDIA CUBLAS is used for the matrix-matrix mul-
tiplications and a few other linear algebra operations and NVIDIA CUDNN [4]
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is used for the machine learning operations such as convolutions, activation func-
tions and gradients computation. For other operations, CUDA kernels have been
written to ensure that most of the time is spent on the GPU. When optimiz-
ing for GPU, it is most important to avoid copies between the CPU and GPU.
Moreover, most of the kernels are launched asynchronously, without device syn-
chronization. This significantly reduces the overhead of CUDA kernel calls.

2.2 Example

Figure 1 shows the code necessary to train a three-layer fully-connected network
on the MNIST data set with the DLL library. The code starts by loading the
MNIST data set in memory. Then, the network is declared layer by layer. After
that, the network training parameters are set and the training is started. Finally,
the accuracy on the test set is computed.

using namespace dll;
auto dataset = make_mnist_dataset(batch_size <100>{}, scale_pre <255>{});

using network_-type = network.desc<
network_layers <
dense_layer <28 = 28, 500, sigmoid >,
dense_layer <500, 250, sigmoid >,
dense-layer <250, 10, softmax>
>
, updater<updater_type : : MOMENTUM>
, batch_size <100>
>::network_t;

auto net = std::make_unique<network_type >();
net—>learning._-rate = 0.1;
net —>momentum = 0.9;

net—>display ();
net—>fine_-tune (dataset.train (), 50);
net—>evaluate (dataset.test ());

Fig. 1. Example to train and evaluate a dense network on the MNIST data set.

3 Experimental Evaluation

We compared our library against popular libraries on four experiments. The time
to train each model is compared for each library, on CPU and on GPU. Each
experiment was run five times. And for each library, the best time is kept as the
final measure. There is no significant different between the different runs. Their
accuracy was also computed. It was shown that all the tested libraries were all
exhibiting comparable accuracy when trained with the same parameters. For
lack of space, these results are not shown here.
The following reference libraries have been selected:

1. Caffe [12]: A high-level Machine Learning library, focusing on speed and
expression, developed in C++ and used through a text descriptor language.
Caffe 1.0 was installed from the sources with GPU and MKL support.
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2. TensorFlow [1]: A general low-level library, allowing expressing a data flow
graph to perform numerical computation. The core of the system is written
in C4++, but the features are used in Python. Tensorflow 1.3.1 was installed
from the sources with CUDA, CUDNN and MKL support.

3. Keras®: A high-level Machine Learning library, providing a frontend for Ten-
sorflow and Theano, written in Python. It provides a large number of high-
level models, easing the development of Machine Learning models. The ver-
sion 2.0.8 was installed using the official package with Tensorflow 1.3.1.

4. Torch [5]: Torch is another low-level Machine Learning library, one of the
earliest, started in 2002. It is used through a Lua front-end. Although it is
a low-level library, it also contains high-level modules for Machine Learning.
It was installed from the sources, from Git commit 3e9el41 with CUDA and
MKL support.

5. DeepLearning4J*: DeepLearning4J is a deep learning library for Java, writ-
ten in Java, C and C++. It has a very large set of features and focuses on
distributed computing. The version 0.9.1 was used, from Maven.

The libraries have been selected based on their popularity and also to have a
broad range of programming languages. DLL is used directly from the sources,
with the latest version available at this time (Git commit 2f3c62c).

We are underlying here that the goal of these experiments is not to reach
state of the art performance on the tested data sets. The models are kept simple
to allow comparison with a wider range of libraries. Moreover, the networks
are not always trained for as many epochs as they would be, if achieving high
accuracy was the goal. Finally and very importantly, we are not aware of the full
details of all the libraries. We did our best to have similar network architecture
and training parameters, but it could be that some implementation details lead
to slightly different training, explaining time differences.

All the results presented in this chapter have been computed on a Gentoo
Linux machine, on an Intel® Core™ i7-2600, running at 3.4 GHz (CPU fre-
quency scaling has been disabled for the purpose of these tests). Both SSE and
AVX vectorization extensions were enabled on the machine. BLAS operations
are executed with the Intel® Math Kernel Library (MKL), in parallel mode. The
GPU used is a NVIDIA Geforce® GTX 960 card. CUDA 8.0.4.4 and CUDNN
5.0.5 are used. The source code used for these experiments is available online®.

All the experiments are trained using mini-batch gradient descent. The last
layer of each network is always a softmax layer. The loss is a softmax cross
entropy loss.

4 MNIST

The first experiment is performed on the MNIST data set [19]. It is a digit
recognition task. The data set is made of 60’000 28 x 28 grayscale images for

3 https://github.com/fchollet /keras.
* http://deeplearning4j.org.
5 https://github.com/wichtounet /frameworks.
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training and 10’000 images for testing. It is a very well-known data set and has
been repeatedly used with most of the existing Machine Learning algorithms.
Although it is considered an easy task, it remains an excellent problem for com-
paring libraries since most of them use it as example and have code available.

4.1 Fully-Connected Neural Network

The first tested network is a fully-connected three-layer ANN with 500 units in
the first layer, 250 in the second layer and 10 final output units for classification.
The first two layers are using the sigmoid function. The network is trained with
mini-batches of 100 images, for 50 epochs, with a learning rate of 0.1 and a
momentum of 0.9. The training accuracy is computed after each epoch and the
test accuracy is computed after the end of the complete training. As an example,
the code using the DLL library is presented in Fig. 1.
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— ) Oo Caffe
- 600 00 TensorFlow
= 0o Torch
£ 400 " < (] ] Keras
& S & I B DeepLearning4J
|
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Fig. 2. Training time performance of the libraries for an ANN, on MNIST

Figure 2 presents the performance of each of the libraries. In CPU mode, DLL
outperforms all the other libraries, being around 40% faster than TensorFlow and
Keras, 4.5 times faster than DeepLearning4J and 5.5 times faster than Torch
and Caffe. On GPU, DLL is the fastest library, closely followed by Caffe. DLL is
about 40% faster than TensorFlow and twice faster than Keras. DeepLearning4J
and Torch are respectively 2.5 and 5 times slower than DLL.

4.2 Convolutional Neural Network

The second network, for the same task, is a small CNN with six layers. The
first layer is a convolutional layer using 8 5 x 5 kernels and followed by a max
pooling layer with a 2 x 2 kernel. The third and fourth layers are using the same
configuration. The last layers are fully-connected, the first with 150 units and
the last with 10 units for classification. The two convolutional layers and the
first fully-connected layer use a sigmoid activation function. The full network is
trained in the same manner as the first network.
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Fig. 3. Training time performance of the libraries for a CNN, on MNIST
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Figure3 presents the results obtained on this experiment. Again, DLL is
the fastest library on CPU, by a significant margin, three times faster than
TensorFlow and almost four times faster than Keras. DLL is more than 8 times
faster than the slowest library, DeepLearning4J. This shows the effects of the
in-depth CPU optimization of the convolutions. On GPU, TensorFlow and DLL
are the fastest libraries, about 30% faster than Keras and significantly faster
than Caffe (4 times), Torch (6.5 times) and DeepLearning4J (9 times).

5 CIFAR-10

The second data set that is tested is CIFAR-10 [15], a data set for object recog-
nition, consisting of 50’000 images for training and 10’000 for testing, in 10
different classes. The data set is composed of colour images of 32 x 32 pixels.

A larger CNN is used for this task. The first layer is convolutional with 12
5 x 5 kernels, followed by a 2 x 2 max pooling layer. They are followed by another
convolutional layer with 24 3 x 3 kernels and a 2 x 2 max pooling layer. A dense
layer with 64 hidden units is then used, followed by a softmax layer with 10
output units. All the layers but the last one are using ReLUs. The network is
trained similarly to the previous networks, with a learning rate of 0.001.

In Fig.4, the training times for this task are presented. The speedups are
less significant than for the previous CNN. Nevertheless, DLL still manages
to be the fastest library on CPU. It is about twice faster than TensorFlow,
Keras, DeepLearning4J and Torch and about three times faster than Caffe. On
GPU, DLL is also the fastest library on this experiment, about 30% faster than
TensorFlow and 40% faster than Keras. It is three times faster than Caffe and
about 4.5 times faster than Torch and ten times faster than DeepLearning4.J.
This network is significantly larger than in the MNIST experiment. This seems to
indicate that most libraries are more optimized for larger networks. This shows
that GPU performance is better when a lot of data is available.
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Fig. 4. Training time performance of the libraries on the CIFAR-10 task
6 ImageNet

The last experiment is performed on ImageNet, a large data set for image classifi-
cation. We consider the sub part of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 [25], there are 50’000 validation images, 100’000 test
images, around 1.2 million training images and 1000 categories. All the images
have been resized to 256 x 256 images.

The entire data set cannot be kept in memory. Therefore, the images are
loaded from the disk for each epoch. For this experiment, only Caffe provides
an official, up-to-date, code for this data set. The DeepLearning4J reader was
based on existing official reader for structures similar to ImageNet. For Keras,
TensorFlow and Torch, a simple data reader has been written with the image
loading tools available in each library.

The network is significantly larger than the previous networks. It is made
of five convolutional layers, with 16 3 x 3 kernels for the first two layers and
32 3 x 3 kernels for the next three layers. Each of these layers is followed by a
ReLU activation function and a 2 x 2 max pooling layer. All the convolutional
layers are using zero-padding so that their output is the same size as their input
The last two layers are a dense layer with 2048 hidden units, with a ReLU
function and a dense layer with 1000 outputs. The training is different than for
the other data sets. The full network is only trained for five epochs with each
library. The networks are trained using a batch size of 128. However, Torch and
DeepLearning4J models were trained with a batch size of 64, respectively 16,
samples. Indeed, both of these libraries needed more than 12GB of RAM to
train with a batch size of 128 images. This may lead to some small degradation
of the performance for those two libraries.

For the sake of comparison, the average time to train one batch of samples
is used as results. For Torch and DeepLearning4J, the results are the times for
several batches, to make up for 128 samples. These results are presented in Fig. 5.
DLL shows to be again the fastest library on CPU for training this large model,
35% faster than Keras, about 45% faster than TensorFlow and twice faster than
Caffe. Torch is already more than 3 times slower than DLL and DeepLearning4J
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Fig. 5. Training time performance of the libraries, on ImageNet. The time is the average
time necessary for the training of one batch of 128 elements.

around 6 times slower. On GPU, DLL is, also, the fastest library. Comparisons
with Keras and TensorFlow show that most of the difference comes from the poor
performance of reading the ImageNet data from the Python code. Once this is
taken into account, the three libraries have comparable performance. DLL is
more than twice faster than Caffe and almost four times faster than Torch and
almost 10 times faster than DeepLearning4J.

7 Conclusion and Future Work

For all the experiments and the different neural networks models that were
tested, the DLL library has shown to be the fastest gradient descent based
library for training the model when using CPU and GPU. For each test, the
accuracies of the models trained with DLL are similar to the models trained by
the other five Machine Learning libraries.

The speedups provided by the library on CPU mode are especially important
for convolutional layers for which advanced optimization was performed. The
library was especially optimized for small convolutions, but is still able to bring
significant speedups for large images such as the images from the ImageNet data
set. Moreover, while some libraries are mostly optimized for the convolutional
and fully-connected parts of the computation, every part of the training in the
DLL library was tuned. However, since DLL is written in C++, programs using
it need to be compiled. This may make it more complicated for researchers to use.
Finally, while the language itself is very common about performance software
developers, it is not very common for machine learning researchers. Therefore,
there is more of a barrier for use compared to libraries using more common
languages for machine learning.

A few DLL routines are not optimized enough for GPU, such as Dropout
and Batch Normalization. Future work could also include better support for
Recurrent Neural Networks (RNNs), which would be a great advantage for the
library. Finally, the library has currently been optimized only on few machines
and especially consumer grade processors and graphics cards. It would be greatly
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beneficial to take advantage of more threads or advanced vectorization capabili-
ties such as those provided by the latest Tntel® Xeon processors or more recent
and more powerful NVIDIA graphics cards.
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Abstract. Supervised learning algorithms restrict the training of clas-
sification models to the classes of interest. Other related classes are typ-
ically neglected in this process and are not involved in the final decision
rule. Nevertheless, the analysis of these foreign samples and their labels
might provide additional information on the classes of interest. By reveal-
ing common patterns in foreign classification tasks it might lead to the
identification of structures suitable for the original classes. This princi-
ple is used in the field of transfer learning. In this work, we investigate
the use of foreign classes for the feature selection process of binary clas-
sifiers. While the final classification model is trained according to the
traditional supervised learning scheme, its feature signature is designed
for separating a pair of foreign classes. We systematically analyse these
classifiers in 10 x 10 cross-validation experiments on microarray datasets
with multiple diagnostic classes. For each evaluated classification model,
we observed foreign feature combinations that outperformed at least 90%
of those feature sets designed for the original diagnostic classes on at least
88.9% of all datasets.

1 Introduction

The design of classification models for molecular diagnostics is mainly influenced
by the interest in identifying molecular characteristics or even molecular causes
of disease. Starting from high-dimensional profiles, feature selection is a main
ingredient in this process [9,23]. Selecting (primary) measurements instead of
generating (secondary) feature representations, these methods allow a direct
interpretation of a classification model regarding the individual molecules [24].
Although feature selection cannot guarantee an improved accuracy, it directs a
classification model to a small set of candidate markers that might be used as
potential drug targets [14].

Feature selection is not only of interest for traditional dichotomous classifi-
cation. It can also be used for characterising the landscape of larger collections
of diagnostic classes [19]. It might be used to reveal similarities and differences
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between individual classes and combinations thereof. In previous work, we anal-
ysed feature selection in the context of multi-class fusion architectures for binary
base classifiers [18]. One interesting observation of this study was that certain
multi-class feature selection strategies mimic the feature signature of one of their
binary base classifiers. High overlaps or even complete overlaps were observed.
Designed for a particular two-class classification task, signatures excluded most
of the features selected for other class combinations. Nevertheless, the corre-
sponding multi-class architectures achieved accuracies comparable to those of
other more heterogeneous feature selection strategies, leading to the hypoth-
esis that the feature selections of these base classifiers are informative for the
remaining class combinations but were not selected due to other more prominent
features.

In this work, we further investigate this phenomenon. Focusing on the under-
lying binary base classifiers, we now systematically analyse the direct influence of
foreign feature selections on the classification accuracy. As we utilize foreign sam-
ples for the training of the classification models, our setup might be categorized
as transfer learning [21] or learning with semantic domain knowledge [16,27].
Related concepts can also be found in learning schemes for partially labeled
datasets [5,15,17].

2 Methods

The manuscript will be based on the following notation. An object x will be
represented as a n-dimensional vector of measurements (x(l), e ,x("))T eXC
R™. Tt is assumed that each object can be categorised into one of |Y| classes
y € Y. A decision function or classifier is a function

c: X — ). (1)

A classifier will be called binary if || = 2 otherwise it will be called multi-class
classifier.

In classical supervised learning, an untrained classifier ¢ € C is adapted to
its classification task via a training set of labeled samples of the output classes
T = {(xi, yl)}g‘l, y; € Y. The symbol C denotes a concept or function class and
describes the structural properties of the chosen type of classifier. The notation
T, will be used to denote a training set of samples of class y. Other samples, such
as unlabeled instances (semi-supervised learning) or labeled samples of foreign
classes T,/, y' ¢ Y are typically ignored.

Especially in high-dimensional settings, the training of a classifier can incor-
porate an internal feature selection process which discards a set of input features
from the final decision process. Formally this process can be characterised as a
function

f:CxT -T={ieN"|a<n, i <ip,l <ip<n}, (2)

which maps to the space of sorted and repetition-free index vectors Z. An element
of T, a feature signature (i(V), ... 7i("))T =i € Z, provides the indices of the
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7 < n remaining features. The final classification of a sample x will only take
into account a reduced feature representation x() = (xi(l), e 7a:(i(ﬁ)))T.

In this work, we will focus on the Threshold Number of Misclassifications
(TNoM) feature selection criterion [1]. The TNoM is a univariate filter criterion
that ranks the individual features according to the error rate of an optimal single
threshold classifier. A number of selected features 7 is chosen a priori. The TNoM
is an independent preprocessing step before starting the training algorithm of

the original classifier.

2.1 Learning from Context Classes

Based on our observations for feature selecting multi-class classifiers [18], we
extend the standard supervised learning scenario in the following way. Let again
Y denote the set of output classes of a trained classifier. We assume that the
classification problem is embedded in a larger context in which additional classes
Y C ) exist. Similar to the standard multi-class scenario, we assume all classes
to be pairwise disjoint Vy,;,y; € V' : y; # y;. The training set of the over-
all learning procedure is allowed to be comprised of samples of all available
classes T = {(x;, yi)}g‘l, y; € V. Note that in contrast to learning approaches
for partially labeled data the learning algorithm receives the class labels of all
instances here. In general, these additional samples allow to screen for discrimi-
native patterns of the context classes, which might also be suitable for the current
classification task. The patterns detected in this process might be hidden in the
original classes due to other more prominent patterns or due to a too low amount
of available samples. During the prediction phase of the trained classifier only
the original classes in ) are considered.

In this work, we apply the idea of context classes for the selection process
of features selecting two-class classifiers. The original classes of the two-class
problem y, and y, will be indicated as subscript of the trained classification
model )

o] B — (Y} (3)

The classifier learns on 7, U 7,, and will be used to predict classes y, and yp.
It operates on a reduced feature signature of n features provided by the initial
feature selection process

f[yc,yd] : %c U 7;/(1 - Nﬁ' (4)

The feature selection criterion is based on the evaluation of two arbitrarily cho-
sen but fixed classes y.,yq € V'. The training set of the corresponding binary
classifier is finally given by

Tores = {<0.y9) | (9) € T, UTyp = Sl - )

We call the resulting feature selection original (OFS) if {ya, ys} = {¥e, ya} and
foreign (FFS) otherwise.
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2.2 Foreign Class Combinations

Assuming a symmetric feature selection strategy (fiy. y.] = fya.y.]), this scheme

can be applied to construct W classifiers for a fixed pair of output classes

Yo and y, of a dataset with |)| classes. They can be organised according to the
number of classes participating in both the classification and the feature selec-
tion process (Table 1). A complete overlap leads to the original class combination.
The corresponding OFS is clearly related to the original classification task. If
both processes share one common class, the FFS can be seen as an alternative
characterisation of this class. Nevertheless, its relevance for the original classi-
fication task can not be guaranteed. The same is true for completely disjunct
class labels.

Table 1. Number of foreign feature combinations for a fixed pair of classes ya,yp € ).
In this context, the symbols y., ya denote foreign classes ye,ya € YV \ {Ya, Y} -

Ya Ye
Yo | (1) original class combination | (|| — 2) characterizations of y;

X=2)(¥|=3)
2

ya | (|| — 2) characterisations of y, ( ) foreign class combinations

The tradeoff of foreign class characterisations and completely foreign class
combination depends on the total number of classes |Y|. For datasets comprising
a small number of classes (2 < |Y| < 6), classes y, and y, are included in the
majority of the foreign class combinations. An equilibrium is reached at |Y| = 7.
For larger number of classes (|| > 7), the number of foreign class combinations
is dominated by totally foreign class combinations.

3 Experiments

We evaluated FFS in classification experiments with linear Support Vector
Machines [28] (SVM, cost = 1), Random Forests [4] (RF, trees = 500) and
k-Nearest Neighbor classifiers [7] (k-NN, k& = 3). All experiments are designed
as 10 x 10 cross-validation (10 x 10 CV) experiments [11]. That is the origi-
nal multi-class dataset S is splitted into ten folds of approximately equal size.
Nine of these folds are combined to a training set for the two-class classifiers.
The tenth fold is used to evaluate the performance the trained classifier. The
training set is reduced to the samples of those classes which are needed for the
feature selection process and the training of the subsequent classification model.
The test set is reduced to the samples of the output classes of the final two-class
classification problem. Training and evaluation of a feature selecting classifier is
repeated for each possible split of the folds. The performance of the classification
model is characterised by its empirical accuracy over all test folds. The cross-
validation procedure is performed for ten permutations of the initial dataset. All
experiments are performed in the TunePareto-Framework [20].
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W two-class classification

YIYI-1)
2

For each multi-class dataset with || classes,

tasks are analysed. The corresponding classifiers are again coupled to
different feature selections. Sticking to our previous multi-class analysis, exper-
iments are conducted for # € {25,50}. A pair of classification algorithm and
number of features will be called a test setting in the following. For a fixed pair
of output classes y, and y,, the classifiers that utilise a foreign feature selection
(FFS) are compared to following reference classifiers:

1. Baseline (BL): For baseline comparisons, we utilise the accuracies of constant
predictors that predict the class label of the majority class

max(|Sy, |, [Sy,|)

BL — , 6
Sl 15 (6)

where Sy denotes the set of all available samples of class y.

2. Random Feature Selection (RFS): Classifiers that are based on sets of 7 ran-
domly chosen features. Similar to the trained feature signatures, the random
signatures are changed in each training phase of the 10 x 10 CV.

3. Original Feature Selection (OFS): Classifiers that utilise feature sets trained
for the original class combination f,, ,,1-

4. No Feature Selection (NoFS): Classifiers that operate on the original n-
dimensional feature set.

3.1 Datasets

Our analysis is based on 9 multi-class datasets which comprise multiple entities
(m > 59, |Y| > 4) of a common biomedical context. An overview on the anal-
ysed datasets is given in Table 2. All datasets are gene expression profiles from

Table 2. Datasets used. The number of classes |)|, features n, samples m and samples
per class m; are reported.

Id: description V| |n m mi, ..., My

dy: Leukemia [10] 18 |54613 | 12096 40,36, 58, 48, 28, 351, 38, 37, 40, 237,
122,448, 76, 13, 206, 74, 70, 174

54613 = 174 18,15,21,26, 18, 21,23, 26,6

54613 | 1777 | 366,85, 343,264, 130, 225, 280, 41, 43
22215 | 381 |49,47,20,54, 13,186, 12

22215 92 23,32,11,8,6,12

22215 | 140 40,11, 17,20, 52

8740 | 59 11,12,12,12,12

54613 | 173 43,48, 43,49

54613 | 145 | 30,34, 36,45

d2: Cancer cell lines [22]

ds: Cancer cell lines [3]

d4: Colorectal cancer [25]

ds: Renal cell cancer [12]

ds: Liposarcoma [§]
d7: Alcohol [13]

ds: Brain tissue [2]
dy: Colon tumors [26]

ks ooy | o ©
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microarray experiments (n > 8740). That is each individual feature represents
the concentration level of a particular mRNA molecule of the analyzed biological
sample. The feature representation can therefore be seen as a set of homogeneous
primary measurements and does not contain any secondary derived features.

4 Results

The results of the 10 x 10 CV experiments are shown in Fig. 1. Each histogram
summarizes the experiments of a particular classification algorithm. In each test
setting, at least 81.57% (3-NN) of all FF'S classifiers outperformed the BL classi-
fiers on 90% of all foreign class combinations. In general, the comparisons against
RFS classifiers are harder than the theoretical baseline. Most FF'S classifiers out-
perform RFS classifiers only in a subset of classification experiments. For 7 = 50
features, first FF'S classifiers appear that show an inferior performance on all for-
eign class combinations. Nevertheless, in all test settings at least 39.25% (RF)

3-NN RF SVM

06{ « n=25 1
051 m n=50

0.4
2 03

02

1

8_0 ,,,,,,, c-[i]: ,,,,,,, D.[h]: ,,,,,,, D-[h:l:
06

05
04
Z o3

0o)] - momcmoa[HDE o aamdd - o a A

0.6
0.5

0.3

0.2 |
“igdidmadiode Uleodlndadld- ID.E"E'[![E[IDEI[]D.

0.6
0.5

OFS

0.4

2 I

= 03 —

=)

o 8 %ﬁ

0.1

o_om[][.[][l[.[lﬂ:- mAddelddn = 1 'l T
c55555550688 ©5o5o0G5505688 ©°5E5558558538
2888 838R&888¢2 28838338838 ¢ 2883 838R383¢2

S g o g o S o gog
LD oKD IR IR

Fig. 1. Evaluation of foreign feature selection (FFS). The overall figure organizes row-
wise the comparisons of FFSs to reference feature selection strategies. From the top to
the bottom the comparisons against the baseline classifier (BL), the random feature
selection (RFS), the original feature selection (OFS) or the classifier without feature
selection (NoFS) are shown. The columns give the results for the analysed base classi-
fiers 3-NN, RF and SVM. The y axis of each histogram provides the percentage of all
FFSs that outperformed the reference feature selection.



72 L. Lausser et al.

>

e =
T : =
" Eoll Lo
@ H H
9 s e
= H
& =
=
92}
n
<
=
o "y |
v
(13
n
=}
Qo
=
=
[S]
[
=1
=
0
0
<
=
o
v
ds
0
=}
Q
=
=l
o]
[
5
0
0
<
=
o
v
dg (lg

»
»

feature selections

RFS

feature selections

FFS

feature selections

OFS

oy

abs. correlation

-
=

BEs=

‘N

[} -4

=]

=

00 02 04 06 08 1.0

dy dp dg dg ds dg dy dg do di dy dy dy ds dg dy dg do di dy d3 dy ds dg dy dg do

Fig. 2. Comparison of foreign feature signatures (FFS) and original feature sets (OFS)
on the experiments with 7 = 25 features. Panel A shows heatmaps for each dataset.
Each column corresponds to the feature set of a particular class combination. It is com-
pared to the OFS classifiers of all other class combinations. The color of a each patch
indicates the number of classification algorithms for which FFS has outperformed the
OF'S (white: none, black: all). Panel B gives the mean absolute Spearman correlations
between the selected features and the labels of the classification task.



Selecting Features from Foreign Classes 73

>

H i
2} H = i
=] glmsass FHA
Rel HH G
= n
Q "
= H
‘0 H
7 H
e H
o H
H ds
o2}
o
ke
e
I
<o
=
95}
n
8
[}
dg
w0
]
3
=
IS
Q
=]
)
w0
e
(S}
v
dy
feature selections feature selections feature selections
B OFS FFS RFS
o
- -
C o | oM . s ==
= o R D
< i ;-
o @ Q Lo @ ﬁ
- o ' = -
= . ' T
s\ ‘
<} : ' =
g« L e = e Er
Fc% o . =g = =
o - - L
o
dy dp d3 dy ds dg d7 dg do dy dp d3 dy ds dg d7 dg dg d; dy dg dy ds dg dy dg dg

Fig. 3. Comparison of foreign feature signatures (FFS) and original feature sets (OFS)
of the experiments with n = 50 features. Panel A shows heatmaps for each dataset.
Each column corresponds to the feature set of a particular class combination. It is com-
pared to the OFS classifiers of all other class combinations. The color of a each patch
indicates the number of classification algorithms for which FFS has outperformed the
OF'S (white: none, black: all). Panel B gives the mean absolute Spearman correlations
between the selected features and the labels of the classification task.
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of all FFS classifiers show higher accuracies than 90% of the corresponding RFS
classifiers.

Specialised for the individual classification tasks, OFS classifiers are likely to
achieve higher accuracies than RFS classifiers. As a consequence OFS classifiers
outperform FFS classifiers more frequently. That said FFS classifiers exist that
show higher accuracies in multiple classification tasks (Figs.2A and 3A). For
all test settings at least 9.56% (RF) of all FFS classifiers outperformed 90%
of the corresponding OFS classifiers. Similar results can be observed for the
comparisons against NoF'S classifiers. At least 3.41% (SVM) of all FF'S classifiers
win the comparisons against the NoFS classifiers of 90% of the foreign class
combinations.

We additionally analysed the median absolute Spearman correlation between
the selected features and the class labels. Figures 2B and 3B report the results
for n = 25 and n = 50 respectively. In mean over all classification tasks, the
average absolute Spearman correlation of OFS ranges from 40.53% (dy, 1 = 25)
to 86.66% (d7, n = 25 and 50) among the datasets. For FFS these values are
in the interval of 25.61% (d3, 7 = 25) and 59.93% (d7, 1 = 25). For RFS they
range from 14.63% (ds, 7 = 25) to 30.60% (ds, 7 = 25). In dataset-wise Wilcoxon
Rank-Sum tests 16 of 18 between OFS and FFS are reported to be significant
(p < 0.05, Bonferroni correction for 18 tests). The corresponding tests between
FFS and RFS are significant in 18 of 18 cases (p < 0.05, Bonferroni correction
for 18 tests).

5 Discussion and Conclusion

In this work, we investigated the possibility of utilising information extracted
from foreign classes for improving the accuracy of a particular classification
task. Samples of these classes were screened for discriminative feature signatures
and determined the input variables of the learning algorithm for the original
classification task. The external classes were chosen from the context of the
original classification task.

Although a large majority of the analysed class combinations led to a
decreased performance in comparison to the original feature sets, it is inter-
esting to see that foreign feature combinations exist that outperform almost all
original feature sets. For 8 of 9 analysed multi-class scenarios, foreign feature
combinations exist that outperformed more than 90% of the original feature
combinations. Depending on the classifier, foreign feature combinations outper-
formed random feature combinations in at least 73.43% of all cases and surpassed
the minimal baseline accuracy in at least 95.55% of all cases.

In our experiments, we analysed datasets of technically homogeneous feature
representations. All profiles solely comprise measurements of individual gene
expression levels which were recorded according to the same technical princi-
pals. In particular, these profiles do not comprise secondary derived features
that provide the same information as the primary measurements. The benefit
of a feature set can therefore not be attributed to its technical superiority over
different feature types.
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The phenomenon might partially be explained by an overfitting or over-
searching of the original feature sets. Showing a high mean correlation to their
own class labels, the original feature selections can suffer from a declined vari-
ability and do not provide enough diverse information [6]. Nevertheless, this is
no simple explanation for high accuracies achieved by the foreign feature sets.
One could be that most of the data sets are from oncology and good feature
sets capture basic processes in cancer development. A minimal prerequisite of a
successful transfer is that a foreign feature signature allows an accurate discrim-
ination of the original classification task. The classifiers trained on this signature
are not required to be related to each other. This especially implies that they
are allowed to operate on different subspaces or subsets of features. The task of
identifying a feature set, where each member is informative for all classification
tasks, therefore, might be facilitated by the task of collecting individual features
that are informative for particular class combinations.

That said, the selected foreign features must also be informative for their own
class combination. A successfully transferred foreign feature set must, therefore,
be informative for at least two class combinations. A close relationship between
both tasks probably increases the chance for this event. Our experiments are
based on publicly available multi-class datasets that comprise distinct diagnos-
tic classes of a common biomedical context. All classes are pairwise mutually
exclusive. Individual samples can therefore not be informative for two or more
classes. The context information we utilised must be seen as external semantic
domain knowledge. It is not guaranteed that this is reflected in feature space.
Other experimental setups like multi-label experiments, in which samples can
receive multiple labels in parallel, might allow alternative context definitions.
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Abstract. Target propagation in deep neural networks aims at improv-
ing the learning process by determining target outputs for the hidden
layers of the network. To date, this has been accomplished via gradient-
descent or relying on autoassociative networks applied top-to-bottom in
order to synthesize targets at any given layer from the targets available
at the adjacent upper layer. This paper proposes a different, error-driven
approach, where a regular feed-forward neural net is trained to estimate
the relation between the targets at layer ¢ and those at layer ¢ — 1 given
the error observed at layer ¢. The resulting algorithm is then combined
with a pre-training phase based on backpropagation, realizing a proficu-
ous “refinement” strategy. Results on the MNIST database validate the
feasibility of the approach.

Keywords: Target propagation + Deep learning
Deep neural network - Refinement learning

1 Introduction

The impressive results attained nowadays in a number of AI applications of neu-
ral networks stem mostly from using deep architectures with proper deep learning
techniques [10]. Looking under the hood, deep learning still heavily relies (explic-
itly or implicitly) on the traditional backpropagation (BP) algorithm [18]. While
BP works outstandingly on networks having a limited number of hidden layers,
several weaknesses of the algorithm emerge when dealing with significantly deep
architectures. In particular, due to the non-linearity of the activation functions
associated to the units in the hidden layers, the backpropagated gradients tend
to vanish in the lower layers of the network, hence hindering the corresponding
learning process [8]. Besides its numerical problems, BP is also known to lack
any plausible biological interpretation [16].

To overcome these difficulties, researchers proposed improved learning strate-
gies, such as pre-training of the lower layers via auto-encoders [1], the use of rec-
tifier activation functions [9], and the dropout technique [21] to avoid neurons
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co-adaptation. Amongst these and other potential solutions to the aforemen-
tioned difficulties, target propagation has been arousing interest in the last few
years [2,5,16], albeit it still remains an under-investigated research area. Orig-
inally proposed in [3,4] within the broader framework of learning the form of
the activation functions, the idea underlying target propagation goes as follows.
While in BP the delta values §; to be backpropagated are related to the partial
derivatives of the global loss function w.r.t. the layer-specific parameters of the
network, in target propagation the real target outputs (naturally defined at the
output layer in regular supervised learning) are propagated downward through
the network, from the topmost to the bottommost layers. In so doing, each layer
gets explicit target output vectors that, in turn, define layer-specific loss func-
tions that can be minimized locally (on a layer by layer basis) without any need
to involve explicitly the partial derivatives of the overall loss function defined at
the whole network level. Therefore, the learning process gets rid altogether of
the troublesome numerical problems determined by repeatedly backpropagating
partial derivatives from top to bottom.

To this end, [16] proposed an approach called difference target propagation
(DTP) that relies on autoencoders. DTP is aimed at realizing a straight map-
ping y,_1 = ¢(y¢) from the targets y, at layer £ to the expected! targets y,_ 1
at layer £ — 1. As shown by [16], the technique is effective (it improves over
regular gradient-descent in the experiments carried out on the MNIST dataset),
although the accuracy yielded by DTP does not compare favorably with the
state-of-the-art methods (mostly based on convolutional networks). Moreover,
DTP offers the advantages of being readily applied to stochastic and discrete
neural nets. The approach is loosely related to the algorithm proposed by [12],
where a layer-specific neural network is used to estimate the gradients of the
global loss function w.r.t. the weights of the corresponding layer (instead of the
target outputs).

Differently from DTP, the core of the present approach is that the backward
mapping from layer £ to £ — 1 shall be learnt by a regular feed-forward neural
network as an explicit function ¢(.) of the actual error e, observed at layer ¢
(namely, the signed difference between the target and actual outputs at £), that
is yo—1 = @(¥e,€¢). In so doing, after training has been completed, the image of
©(¥e,0) is an estimated “optimal” value of y,_1 that is expected to result in a
null error e = 0 when propagated forward (i.e., from ¢ — 1 to ¢) through the
original network. It is seen that learning ¢(.) requires that at least a significant
fraction of the training samples result in small errors (such that e, ~ 0). This is
the reason why the proposed technique can hardly be expected to be a suitable
replacement for the established learning algorithms altogether, but it rather
results in an effective refinement method for improving significantly the models
realized by pre-trained deep neural networks. The proposed approach is different

! The term “expected” is herein used according to its statistical notion, since such
a ¢(.) is not strictly a function, but it may be reduced to a proper function if we
interpret the images in the codomain of ¢(.) as the expected values of y,_1 given y,.
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from that introduced in [3,4], as well, since the latter relies on gradient-descent
(or, the pseudo-inverse method) and, above all, it does not involve e;.

The error-driven target propagation algorithm is introduced formally in
Sect. 2. Section 2.1 presents the details for realizing target propagation via an
inversion network used to learn ¢(.). Section2.2 hands out the formal pro-
cedure for refining pre-trained deep networks relying on the proposed target
propagation scheme. Experimental results obtained on the MNIST dataset are
presented in Sect. 3, showing that the refinement strategy allows for accuracies
that are at least in line with the established results yielded by regular (i.e.,
non-convolutional) deep networks, relying on much less complex models (i.e.,
using much fewer free parameters). Finally, preliminary conclusions are drawn
in Sect. 4.

2 Error-Driven Target Propagation: Formalization of the
Algorithms

Let us consider a deep neural network dnet having [ layers. When dnet is fed with
an input vector x, the i-th layer of dnet (fori = 1,...,[, while i = 0 represents the
input layer which is not counted) is characterized by a state h; € R%, where d; is
the number of units in layer ¢, h; = o(W;h;—; + b;), and hy = x as usual. The
quantity W; represents the weights matrix associated to layer i, W; € R%*di-1
b; € R% denotes the corresponding bias vector, and o(.) represents the vector of
the element-wise outcomes of the neuron-specific activation functions. The usual
logistic sigmoid activation function is used in the present research. Consider a
supervised training dataset D = {(x;,¥,)[j = 1,...,k}. Given a generic input
pattern x; € R™ and the corresponding target output y; € R™ drawn from D,
the state hg € R™ of the input layer of dnet is then defined as hy = x;, while the
target state h; € R™ of the output layer is h, = y;- Relying on this notation, it
is seen that the function f;(.) realized by the generic i-th layer in dnet can be
written as

fi(hi—1) = c(Wih;_1 + b;)

Therefore, the mapping F; : R® — R% realized by the i bottommost layers of
dnet over current input x; can be expressed as the composition of ¢ layer-specific
functions as follows:

Fi(x;) = fifi—1--(f1(x5)))

Eventually, the function realized by dnet (that is an Flayer network) is F(x;).
Bearing in mind the definition of D, the goal of training dnet is having Fj(x;) ~
y; for j = 1,... k. This is achieved by minimizing a point-wise loss function
measured at the output layer. In this paper such a loss is the usual squared error
L(x;;0) = (Fi(x;) — ¥;)* where 6 represents the overall set of the parameters
of dnet. In the traditional supervised learning framework the targets are defined
only at the output layer. Nevertheless, while no explicit “loss” functions are
associated to the hidden layers, the backpropagation (BP) algorithm allows the
update of the hidden layers weights by back-propagating the gradients of the
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top-level loss £(.). To the contrary, target propagation consists in propagating
the topmost layer targets y; to lower layers, in order to obtain explicit target
states for the hidden units of the network, as well. Eventually, standard gradient-
descent with no BP is applied in order to learn the layer-specific parameters as a
function of the corresponding targets. In this research, at the core of the target
propagation algorithm there is another, subsidiary network called the inversion
net. Its nature and its application to target propagation are handed out in the
following section.

2.1 The Inversion Net

Let us assume that the target value h; is known for a certain layer i (e.g. for the
output layer, in the first place). The inversion net is then expected to estimate
the targets h;_; for the preceding layer, that is layer ¢ — 1. In this research the
inversion net is a standard feed-forward neural network having a much smaller
number of parameters than dnet has, e.g. having a single hidden layer. In prin-
ciple, as in [16], the inversion net could be trained such that it learns to realize
a function g;() : R% — R%-1 defined as

gi(h;) =h;_,

where h;_; represents the estimated target at layer ¢ —1. Let us assume that such
inversion nets were trained properly to realize g;(.) for ¢ =1, ..., 1. Then, layer-
specific targets could be defined according to the following recursive procedure.
First of all (basis of the recursion), if the layer ¢ is the output layer, i.e. i = [,
then h; = ¥ and ¢;(y) = hy_1. Then (recursive step) the target outputs for the
subsequent layers (I — 1,...,1) are obtained by applying g;(.) to the estimated
targets available at the adjacent upper (i.e., i-th) layer.

The actual error-driven training procedure for the inversion net proposed
herein modifies this basic framework in the following manner. Given the generic
layer i for which we want to learn the inversion function g;(.), let us define
a layer-specific dataset D; = {(X;)j,y;7j)|j = 1,...,k} where, omitting the
pattern-specific index j for notational convenience, the generic input pattern
is x| = (h,,e;) given by the concatenation of the target value at layer i (either
known, if ¢ = I, or pre-computed from the upper layers if ¢ < ) and the corre-
sponding layer-specific signed error e; = h; — h;. Herein h; is the actual state
of layer i of dnet upon forward propagation of its input, such that x; € R?*%.
In turn, ¥’ is defined to be the state of the (i — 1)-th layer of dnet, namely
¥ = h;_1. Once the supervised dataset D; has been built this way, the inversion
net can be trained using standard BP with an early-stopping criterion. We say
that this scheme is error-driven, meaning that the inversion net learns a target-
estimation mapping which relies on the knowledge of the errors e; stemming
from the forward-propagation process in dnet.

Once training of the inversion net is completed, the proper target-propagation
step (from layer 4 to layer ¢ — 1) can be accomplished as follows. The inver-
sion network is fed with the vector (fli,ei) where we let e; = 0 in order to
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get gi(h;) = hj_y ~ fi_l(fli). In so doing, the inversion net generates layer-
specific targets that, once propagated forward by dnet, are expected to result in
a null error, as sought. The resulting training procedure is formalized in Algo-
rithms 1 and 2 in the form of pseudo-code. The algorithms assume the avail-
ability of two procedures, namely: feedForward(net,x), realizing the forward
propagation of an input pattern x through a generic neural network net; and,
backpropagation(net, D) that implements the training of the network net via BP
from the generic supervised training set D.

In practice, in order to reduce the bias intrinsic to the training algorithm,
target propagation is accomplished relying on a modified strategy, as in the
difference target propagation scheme [16], accounting for the bias that the layer-
specific inversion nets g;(.) are likely to introduce in estimating the corresponding

target outputs h;_;. To this end we let
h; 1 =h; 1 + g;(h;,0) — g;(h;,0) (1)

The rationale behind this equation is the following. First of all, g;(.) can be
applied to invert the actual state h; of dnet instead of the target state h;.
Ideally, if the mapping realized by the inversion net were perfect, we would have
9i(h;,0) = h;_;. To the contrary, since g;(.) is the noisy outcome of an empirical
learning procedure, in practice g;(h;,0) # h;_; holds, i.e. an offset is observed
whose magnitude is given by |g;(h;,0) — h;_1|. Equation (1) exploits this offset
as a bias corrector when applying g;(.) to the computation of h;_1, as well.
Note that whenever g;(h;,0) = h;_; (unbiased inversion net) then the equation
reduces to h;_; = gi(fli, 0), as before. The details of the present bias-correction
strategy are handed out in [16].

Algorithm 1. Training of the inversion net

Procedure train_inv_net(invNet;, dnet, D, i, h;)

Input: initialized inversion net invNet; with 2 X d; input units and d;_1 output units, deep
network dnet, training set D = {(x;,¥;)|7 = 1,...,k}, layer i, targets h; at layer i

Output: The trained inversion net invNet; for layer i, capable of computing h;_; from h;
1: D, =0

2: for j =1to k do

3: feedForward(dnet, x;)

4 e,-’j — hi7j — hi,j

5. X;,j «— (hi,]’,ei’j)

6:  yi;<hi1;

T D; =D; U{(x] ;,¥; )}

8: end for

9: invNet; = backpropagation(invNet;, D;)
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Algorithm 2. Target propagation

Procedure tgt_prop(invNet, i, k, hi1,..., hix)

Input: The inversion net invNet;, layer ¢, number of patterns k, targets to be propa-
gated flu forj=1....)k

Output: The propagated targets fli—1,1, ey fli,lyk

1: for j =1to k do

2 €, = 0

3: X = (ﬁi,j,ei,j)
4 hi 1, = feedForward(invNet;, x; ;)
5: end for

Algorithm 3. Deep learning with refinement based on target propagation
Procedure network_refinement(dnet, D)

Input: deep network dnet, supervised training set D = {(x;,¥;)lj =1,...,k}
Output: the refined network dnet

1: for j =1to k do

2: fori=1to1do

3: if i = [ then

4: hi’j = }A/j

5: end if

6: hi,j = Fi(X]‘)

7. hi—l,]’ = Fi_l(Xj)

8: end for

9: end for

10: for i =1 to 2 do

11: Initialize Network(invNet;)
12: inuNet; = train_inv_net(invNet;, dnet, D, i, h;)
13: {fli—1717 ey fli—l,k’} = tgt,prop(im)Neti, Z'7 k, 1:17;,1, ey fllyk)
14: end for

15: for j =1 to k do

16: hoﬁj = Xj

17: layer_backprop(ho ;, hi ;)

18: fori=2to !l do

19: h¢_1,]' = Fi_l(Xj) R
20: layer_backprop(h;—1,;, h; ;)
21: end for
22: end for

2.2 Refinement of Deep Learning via Target Propagation

The algorithms presented in the previous section form the basis for building a
refinement technique for pre-trained deep networks. The overall approach goes
as follows. In a first phase the deep network is trained via BP, as usual. In a
second phase, targets are propagated downward through the layers, as in Algo-
rithms 1 and 2, and the network is trained layer-wise accordingly. This phase is
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called “refinement”. Algorithm 2 provides a detailed description of this refine-
ment strategy in terms of pseudo-code. The algorithm invokes a routine Ini-
tialize_Network(.) used for initializing a generic feed-forward neural net with
random parameters before the actual training takes place. Finally, the routine
layer_backprop(h,_, ;, flz ;) realizes the adaptation of the weights between layers
i—1and ¢ (for ¢ = 1,...,1) via online gradient-descent. This application of
gradient-descent uses h;_; ; as its input, and fl” as the corresponding target
output. It is seen that extensions of the procedure to batch gradient-descent
and/or multi-epochs training are straightforward by working out the skeleton of
pseudo-code offered by Algorithm 3.

3 Experiments

Experiments were conducted on the popular MNIST dataset? [14]. We used
all the 70,000 MNIST patterns, representing pixel-based images of handwritten
digits (10 classes overall) having a dimensionality equal to 784. A 10-fold cross-
validation strategy was applied, where for each fold as much as 80% of the data
were used for training, 10% for validation/model selection, and 10% for test. The
most significant results on MNIST published so far, obtained with a variety of
different approaches, are listed in [15]. Variants on the theme of convolutional
neural nets are known to yield the highest accuracies to date [6,23], as expected
given the visual nature of the dataset. Our aim here is to exploit MNIST as a
significant and difficult learning task suitable to assess the effectiveness of the
present approach, and to compare the proposed algorithms to established non-
convolutional feed-forward networks and target propagation methods previously
applied to MNIST [16,20].

The topology of each layer and the hyperparameters were selected via grid
search. Gradient-based training of the main network dnet (the classifier) relied
on the root mean square propagation (RMSProp) variant of BP [22], while for
the inversion net and the layer-wise refinement of dnet upon target propaga-
tion (routine layer_backprop(.) in Algorithm 3) the Adam variant of stochas-
tic BP [13] turned out to be best. Besides a 784-dimensional input layer with
linear activation functions and a class-wise 10-dimensional output layer with
softmax activations, dnet had 3 hidden layers having 140, 120, and 100 neurons,
respectively. Logistic sigmoid activation functions were used in the hidden layers.
Connection weights and bias values for the sigmoids were initialized at random
from a uniform distribution over the range (—0.5,0.5). RMSProp was applied
for a maximum of 10* steps with early stopping (based on the generalization
error not improving over the last 2000 steps), using a mini-batch size of 128
and a learning rate set to 0.01. As for the inversion nets, the dimensionality of
the input and output layers were fixed according to the topology of the specific,
adjacent layers in dnet between which the output targets had to be propagated
(the input layer of InvNet had linear activation functions, while its output layer

2 Available at http://yann.lecun.com/exdb/mnist /.
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used logistic sigmoids), as explained in the previous section. A single hidden
layer of 200 sigmoid units was used. The Adam optimizer was applied for a
maximum of 1000 steps with early stopping, using a mini-batch size of 128 and
a learning rate set to 0.001. Finally, the adaptation of the layer-specific weights
in dnet upon propagation of the corresponding targets via the trained InvNet
(procedure layer backprop(.) in Algorithm 3) relied on the Adam optimizer,
as well, with mini-batch size of 32 and learning rate set to 0.001.

Table 1 presents the average accuracies (£ the corresponding standard devi-
ations) on the 10-fold crossvalidation for dnet trained with RMSProp, with the
bare target propagation, and with the refinement algorithm, respectively, eval-
uated on the training and the test sets. It is seen that the target propagation
scheme required a proper BP-based initialization in order to achieve significant
accuracies. in fact, In terms of learning capabilities (evaluated on the train-
ing sets), target propagation applied to the pre-trained dnet according to the
refinement strategy yielded a relative 32.75% average error rate reduction over
RMSProp, along with a much more stable behavior (the standard deviation was
reduced as much as 42%). The statistical significance of the improvement evalu-
ated via Welch’s t-test (in order to account for the different variances of the two
populations) results in a confidence level that is > 99.75%. In terms of gener-
alization capabilities (evaluated on the test sets), when applying the refinement
strategy a significant relative 8.20% error rate reduction over RMSProp was
observed on average, preserving the same stability of the performance (in fact,
the difference between the standard deviations yielded by the two approaches is
neglectable, namely 0.002%). Welch’s t-test assessed a statistical significance of
the gap between the results yielded by the two algorithms which is even higher
than before (due to the much smaller variance of the RMSProp results), that is
a confidence level > 99.9%.

Table 1. Accuracies on the MNIST 10-class classification task (avg. & std. dev. on a
10-fold crossvalidation).

Algorithm Training Test

RMSProp 99.48 £ 0.13 1 98.12 + 0.05
Target propagation | 87.30 £ 0.29 | 86.64 £ 0.27
Refinement 99.65 + 0.08 | 98.27 £ 0.06

Table2 offers a comparison among MNIST classifiers based on non-
convolutional feed-forward deep neural networks using no augmentation of the
training set (see [7,17] for established results obtained using augmentation).
The comparison involves the error rate as observed on the test set (average +
standard deviation on the 10-fold crossvalidation, whenever available) and the
number of free (i.e., adaptive) parameters in the model, that is an index of the
model complexity. The proposed technique (target propagation with refinement)
is compared with the approach by [20], that is a 2-hidden layer network with
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Table 2. Comparison between the proposed algorithm and the established approaches,
in terms of error rate and number of adaptive parameters.

Algorithm | Test error | #Parameters
Refinement | 1.73 & 0.06 | 3.04 x 10°
[16] 1,94 5.36 x 10°
[20] 1,6 1.28 x 10°
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Fig. 1. Learning and generalization curves for dnet.

800 units per layer (resulting in a very complex machine), and by [16], that is
a 7 hidden layer network having 240 neurons per layer. It is seen that the error
rate achieved by the proposed refinement algorithm is in the middle between its
competitors, but the complexity of the machine is dramatically smaller. A rela-
tive 11.02% error rate reduction is yielded by the present refinement approach
over the difference target propagation algorithm, while a relative 7.25% reduc-
tion is still offered by [20] (credited by [11] of being the best performance yielded
by a “regular” feed-forward net) over the present refinement procedure, at the
expense of the number of adaptive parameters, which is one order of magnitude
higher. Figure 1 presents the learning and generalization curves (mean squared
error on training and validation sets, respectively) obtained running regular BP
learning of dnet in one of the 10-folds of the present experiment. For graphical
convenience, the plot is limited to the first 5000 steps (no evident changes in
behavior were observed during the following steps). Note that the loss used to
plot the learning curve was evaluated, from step to step, on the corresponding
training mini-batch only, while the generalization curve was always evaluated
on the whole validation set. This is the reason why the learning curve fluctu-
ates locally, while the generalization curve is much smoother. The curves are
compared with those corresponding to the refinement via target propagation,
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Fig. 2. Learning and generalization curves of the procedure layer_backprop(.) applied
to the three hidden layers of dnet.

Loss

layer_backprop(): output - learning and generalization curves

0.10 A

0.08

0.06

0.04 A

0.02 A

----- Training
—— Validation

1000 2000 3000 4000 5000
Steps

Fig. 3. Learning and generalization curves of the procedure layer_backprop(.) applied
to the output layer of dnet.

namely Figs.2 and 3. The former plots the learning and generalization curves
of the layer-specific gradient-descent adaptation of the weights in the 1st, 2nd,
and 3rd hidden layers of dnet, respectively, by means of the application of the
procedure layer backprop(.) to the target propagated via the inversion net.
Similarly, Fig. 3 shows the curves for layer_backprop(.) applied to the weights
in the topmost layer of dnet. Although eventually one is interested in solving
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the original learning problem, it is seen that the layer-specific sub-problems are
actually difficult high-dimensional learning problems, which may just not admit
any sound single-layered solution. This explains the observed difficulties met by
gradient-descent in minimizing the corresponding layer-specific loss functions.

4 Conclusions

Target propagation emerges as a viable approach to learning and refinement
of deep neural networks, tackling the vanishing-gradient issues stemming from
application of plain BP to deep architectures. Albeit preliminary, the empiri-
cal evidence stresses that the proposed refinement strategy yields classification
accuracies that are in line with the state-of-the-art algorithms for training feed-
forward networks. The error rate reduction observed over the bare BP-based deep
learning was shown to be statistically significant according to Welch’s t-tests.
The experiments presented in the paper revolved around a 5-layer architecture,
yet our efforts are currently focusing on deeper networks. Consequently, also
the application of inversion nets featuring more than one hidden layers is under
investigation. The training set for the inversion net can be enriched, as well, by
synthetically generating layer-specific input-output pairs obtained from the orig-
inal ones with the addition of random noise, resulting in different examples of the
signed errors e; used to drive the learning of the target-propagation relationship.
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Abstract. This paper faces the problem of extracting knowledge from
raw text. We present a deep architecture in the framework of Learning
from Constraints [5] that is trained to identify mentions to entities and
relations belonging to a given ontology. Each input word is encoded into
two latent representations with different coverage of the local context,
that are exploited to predict the type of entity and of relation to which
the word belongs. Our model combines an entropy-based regularizer and
a set of First-Order Logic formulas that bridge the predictions on entity
and relation types accordingly to the ontology structure. As a result, the
system generates symbolic descriptions of the raw text that are inter-
pretable and well-suited to attach human-level knowledge. We evaluate
the model on a dataset composed of sentences about simple facts, that
we make publicly available. The proposed system can efficiently learn to
discover mentions with very few human supervisions and that the rela-
tion to knowledge in the form of logic constraints improves the quality
of the system predictions.

Keywords: Information Extraction : Learning from Constraints
Deep Learning - Symbolic knowledge representation

1 Introduction

Information Extraction (IE) is one of the most important fields in Natural Lan-
guage Processing (NLP), and it is about extracting structured knowledge from
unstructured text [17]. IE encompasses a large variety of sub-problems, and, for

J. Morvan—Word done while at CogniTalk, Nantes, France.

© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAT 11081, pp. 90-101, 2018.
https://doi.org/10.1007/978-3-319-99978-4_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99978-4_7&domain=pdf

Deep Learning and Symbolic Processing for Extracting Knowledge from Text 91

the purpose of this work, we mostly consider Named Entity Recognition (NER)
and Relation Extraction (RE).

The goal of NER systems is to detect and classify proper nouns according to
a predefined set of entity types, such as “Person”, “Organization”, “Location”,
and others. Many NER systems [10, 18] rely on handcrafted features and external
knowledge, such as gazetteers or capitalization information. On one hand, they
can help in spotting named entities, but, on the other hand, these techniques
are usually tied to the considered task. Differently, Collobert et al. [4] deeply
studied a neural model requiring only minor feature engineering. Their model
was applied to several NLP problems, such as part-of-speech tagging, chunking,
semantic role labeling, NER, and language modeling. More recent approaches
make a wide use of recurrent neural networks (mostly LSTMs [6]), such as the
one of Lample et al. [8], Chiu and Nichols [2] exploited similar networks, but
character-level features are detected by convolutional nets, also used in [20].

Relation Extraction addresses the problem of finding and categorizing rela-
tions between entities in a given text document. This problem is even harder than
NER, since relations are expressed in much more ambiguous ways than entity
names. There is also a big issue related to RE, that is the lack of large collec-
tions of high quality labeled data. Relations can be implicit, they can have fuzzy
boundaries, and they can also be constituted of non-contiguous words. Labeling
can be hard even for humans, and it can be strongly inconsistent among dif-
ferent supervisors. Some approaches rely only on unsupervised models [16,19],
segmenting the word sequences (“mentions”) bounded by two defined entities.
Mintz et al. [13] proposed an alternative paradigm, the so called “distant supervi-
sion”, that is a simple form of weak supervision. Intuitively, the distant approach
is founded on the idea that sentences containing the same pair of entities are
likely to express the same relation. Entities are taken from Freebase!, and the
considered relations are the ones that link the entity pair in the knowledge base.
Miwa and Bansal [15] presented an end-to-end solution to extract both relations
and entities from sentences. Their approach is based on stacked bidirectional
tree structured LSTMs, where entities are extracted first, then relations are pre-
dicted.

This review shows that Deep Learning achieved serious improvements in NLP
and IE-related applications. The renewed interest in recurrent neural networks
and the introduction of distributed representations of words and sentences [1,4,
12] allowed researchers to construct several systems that can be trained end-to-
end, removing the costly efforts in feature engineering. However, these methods
require large amounts of data to work properly, that in most of the cases need to
be labeled. Supervisions are expensive, and, in the specific case of IE, researchers
tend to focus on precise sub-tasks that are well studied and defined. Some of them
(e.g. NER and RE) share several aspects, and addressing those problems jointly
can be fruitful.

This work faces the problem of linking text portions to a given ontology with
a known schema that is composed of entity and relation types. NER and RE can

! https://developers.google.com/freebase/.
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be seen as special instances of the considered setting. The problems of recogniz-
ing and segmenting mentions to both entity and relation types are treated in a
uniform way, reformulating them as problems of making predictions on a word
given its context. While predicting the entity type of the mention to which the
word belongs usually requires just a local context, spotting the relation type in
which the word is involved needs a larger context. Following this intuition, we
propose the idea that every word in the sentence can be considered from two
different perspectives that we refer to as “narrow” and “broad” views. We pro-
pose a deep architecture that develops two latent representations of each word,
associated to the just mentioned views. A predictor of entity types is attached
to the former representation, whereas a relation type prediction operates on
the latter. Our architecture is an instance of the generic framework of Learning
from Constraints [5], where the unifying notion of “constraint” is used to inject
knowledge coming from supervised and unsupervised data as well. In particular,
an entropy-based index (that resembles the mutual information from the input
views to the predictors) is maximized over all the data that is read by the system
(labeled or not), while First-Order Logic (FOL) formulas are used to bridge pre-
dictions of entity and relation types. Formulas are converted into constraints by
means of T-Norms. Linking the predictions on the two views allows the system
to mutually improve their quality, differently from those models that treat them
independently. When tested on a collection of sentences about factual knowl-
edge, our model achieves good performances without requiring a large number
of supervisions. This becomes more evident when logic constraints are intro-
duced between the two views. We notice that this approach allows us to build
neural models that provide an interpretable description of the unstructured raw
text, by means of the FOL formalism. This interpretability, that is usually miss-
ing in neural architectures, offers a suitable basis to easily introduce additional
information provided by an external supervisor. As a matter of fact, having a
human-in-the-loop is known to be a crucial element in those models that learn
and expand their internal knowledge bases in a life-long-learning setting [14].

This paper is organized as follows. Section 2 describes the proposed architec-
ture and the logic constraints. Section 3 reports our experimental results, while
Sect. 4 concludes the paper.

2 Model

We are given a data collection D composed of b utterances. Every utterance
u € D consists of |u| words indicated with wj, Vj =1,...,|u|. We are also given
an ontology O, composed of k, entity types and k; relation types. Relations
involve pairs of entities of pre-defined types, as sketched in Fig. 1. For each word
w;, the goal of our model is to learn to predict what is the entity type associated
to word w;, and what is the relation type to which w; participates. For example,
in the sentence Paris is the capital of France, the system should predict that
Paris is an entity of type “city”, that France is an entity of type “country”,
and that each word of the sentence is associated to the relation type “capitalof”,
where all the mentioned types belong to the given ontology.
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Fig. 1. Ontology. Nodes are entity types, while edges are relation types.

We follow the idea of developing two latent representations of w;, that we refer
to as “narrow” and “broad” views, respectively. We indicate such representations
as xl(-n) e X and xgb) e X where X xX(®) are the generic spaces to which
they belong, and n,b stand for “narrow” and “broad”. Determining the entity
type of w; can be usually done by considering a local view around it, and that
is what xl(-n) encodes. Finding the relation type of w; usually requires to have a
wider view around w;, since mentions to relations involve larger spans of text,
that is the rationale behind representation xgb).

We consider a fixed-size vocabulary of words V, so that each w; is a 1-hot
representation of size V|, and those w; that are not covered by V are marked
with a generic symbol unk. Computing each xl(f) (being it narrow or broad) is the
outcome of two main computational stages. The first stage consists in projecting
the target symbol w; into a latent (distributed) representation e; € R?, where d
is the dimensionality of the embedding space. The embeddings of our vocabulary

{e;, i=1,...,|V|}, are stored (column-wise) into W C RIVI*? 5o that
€; = le . (1)

The second stage consists in fusing the distributed representations of the target

word itself and of the other words around it, thus generating a:g') by means of

a Bidirectional Recurrent Neural Network (Bi-RNN). In detail, the Bi-RNN is
composed by two RNNs that process two sequences of word embeddings,

SN
S =€1,€2,...,6€4

—
S 26‘u|,€|u|,1,...,ei .

Both sequences terminate in the position of the target word, but S™ starts from
the beginning of the sentence, while S~ starts from the end. Hidden states of
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the RNNs at the end of the sequences are concatenated, generating 1‘5) We use
Long Short Term Memories (LSTMs) to implement each RNN,

2 = [LSTM("_’)(S_‘), LSTMW)(S*)]

2 = [LSTM(IH)(SH), LSTMW)(SH)} .
The global architecture is depicted in Fig.2. While the embeddings {e;}, are
shared by the “narrow” and “broad” paths, the Bidirectional RNNs are inde-
pendently developed in the two views. We implement the broad path of Fig. 2
(right side) by stacking multiple layers of Bidirectional RNNs. The last layer will
embrace a larger context (due to the compositional effects of the stacking pro-
cess), and it will model a higher-level/coarser representation of the input word.
We notice that, in general, the broad representation could embrace multiple
sentences, or even paragraphs.

f(ﬂ)(xitn;) f(b)(xilb))
xi™ xi®

(e1,€2,.-,€1u1)

WE

)

4

U = (W1,W2,..,Wiy|)

Fig. 2. Architecture of the proposed model. The utterance u is converted in a sequence
of embeddings ei ..., e, feeding two bidirectional LSTMs, that compute two repre-
sentations (IE")7 xz(b)) of each word w;, also referred to as “narrow” and “broad” views
(left and right paths, respectively, where the right path usually includes multiple layers
of LSTMs). The predictor (MLP) on the “narrow” view outputs the entity type to

which w; belong, while the MLP on the “broad” view is about the relation type of w;.

For each word w;, we make predictions on the entity/relation types of the
ontology O that are more compatible with w;. In particular, we introduce two
set of functions that model the classifiers of each entity/relation type of O,

FO =) — [0,1)k (2)
FO =[x (o, 1) (3)
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where (" are about entities and f®) are about relations, and every component
of vectors f(™ and f(*) is in the range [0,1]. Both £ and f® are multilayer
perceptrons having k,, and k; output units with sigmoidal activations, as can be
observed in the upper portions of the architecture in Fig. 2.

2.1 Semantic Features

Since predictors in (2) and (3) are associated to interpretable entity/relation
types of the ontology O, we will also refer to them as “semantic features”.

We expect semantic features to be learned from data by enforcing a com-
bination of several constraints (they are enforced in a soft manner, so they are
implemented as penalty functions to be minimized - we keep using the generic
term “constraint” when referring to them). Each constraint guides the learning
process accordingly to a specific principle that we describe in what follows. The
objective function of our problem is Z, and we seek for those f(™, f(®) for which
Z is minimal,

(n) £(b) (n) p(b)
f(gu?(b)Z(f SO = (glﬁb)ﬂ%ﬂ[i N+CL)+un+o (£, 7). (4)

where R(f) is a regularization term (implemented with the classical weight decay
approach). The term C(f, £) is the traditional cross-entropy loss, commonly used
in supervised learning, that enforces a supervision constraint on those words that
have been supervised by an expert, collected (together with the supervision) in L.
Not all the words are supervised, and in the experiments we will also evaluate the
case in which no-supervisions are provided at all. The term U(f), is a constraint
inspired by the idea of maximizing the mutual information from the space of
word representations to the space of semantic features [11],

b |u&\

Z X;P (Zsi), +P(ma><f(xs,) 0n)| + Ay - G(f). (5)

s=1

where s is the index of a sentence in D, while i is the word index. In detail, U(f) is
a sum of two contributions: the one in square brackets enforces the development
of only a small number of features on each word/sentence, while G(f) ensures
an unbiased development of the features over all the dataset D. The sets 0,,, 0},
collect some customizable positive scalars (U(f) in Eq. (4) is applied to narrow
and broad features independently, so we have two independent pairs of 6,,6}),
while A, is a tuneable weight > 0. In detail, if H(v) = — Z‘kv:ll vg log vy, is the
Shannon entropy, we have

|us|

a() Z| S|Zf (6)

v

P(v,0={\ Ao,y =X -H@) + X [ > v =7 - (7)
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The term G(f) is minimized when all the semantic features are activated uni-
formly over all D, on average. The loss P is minimized when the activations
provided as its first argument are “close” to 1-hot vectors, that means that we
want a few-strongly-activated elements. Notice that the term P is used twice
in (5). Its first instance applies to the activations of semantic features on each
“word”. The second instance is about the activations of semantic features on
each “sentence” (pooled with the max operator). As a matter of fact, P con-
straints our model to develop a few, well activated features on each word, and
a few well activated features on each sentence. Both the terms G and P involve
the entropy function H, that is meaningful when its input is a probability distri-
bution. For this reason, the squared term in P introduces a competition among
the provided activations, that are enforced to sum to . If v = 1 we have a
probability distribution, while if v > 1 (but still small) we have a sort of relaxed
implementation of the probabilistic relationships. This makes the system more
tolerant to multiple activations on the same input, that, from the practical point
of view, turns out to be desirable. The last term of (4), ®(f™), f®)) is a con-
straint coming from First-Order Logic (FOL), that introduces a link between
the two views on the data, with the goal of improving the quality of both the
categories of semantic features.

2.2 Logic Constraints

Narrow and broad semantic features are related to each other due to their link
in the ontology O. Consider, for example, an ontology composed of entity types
“city”, “country”, and of the relation type “capitalof”. In the following sentence,
Paris is the capital of France, we can associate the entity type “city” to Paris,
the type “country” to France and the relation type “capitalof” to each word of
the sentence (since they all contribute to such relation). Our system is expected
to give strong activation to the features indicate below (for the purpose of this
description, we make explicit the entity/relation type to which each feature is
associated),

(v)
fcapitalof

Paris is the capital of France.
— ——

(n) (n)
fcity fcount'r'y

We can clearly grasp that whenever the narrow features fc(;% and fc(zmry

are active together in a sentence, it is very likely that the sentence involves the
b)

apitalof
ersa'. Since the functions f model the activation of predicates of the ontology

O, we can implement this relationship by means of FOL formulas, such as

relation “being a capital of”, i.e., that fé should be active too, and vicev-

! In general, this could be ambiguous, since multiple relations could be associated to
a city and a country. We solve this problem by introducing a special narrow feature
for each broad function (to simplify the presentation, we avoid going into further
details).
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f(n) A £ @f(b) 1 (8)

city country capitalof *

We repeat this process for each relation in O, getting multiple formulas,
that are then translated into real-valued constraints ¢,.(f(™, f(*)) by means of
T-Norms, as studied in [5]. For each T-Norm, there exists a unique function
= called residuum, satisfying certain properties which is the natural transla-
tion of the logic implication. In this work, we considered the residuum of the
Lukasiewicz T-Norm. Lukasiewicz logic presents good properties such as the
involutive negation. However, translating a large chain of A operations with such
T-Norm requires a strong activation of all the involved components because the
sum of n features should be greater than n— 1. This could be sometimes a strong
requirement to satisfy. Hence, we converted the A operator using the Godel T-
Norm, which instead defines such operator as the minimum among the whole
predicates,

fl/\fg/\.../\fn:min(fl,fg,...,fn). (9)

Departing from the provided example, in the ontology O we have a large
number of relations and, for each of them, we can build a FOL formula as (8),
and translate it into a real-valued penalty function. Summing up all the penalties,
we get

ky
@(f(n), f(b)) — - Z¢r(f(")7f(b))7 (10)
r=1

where \; > 0 is a customizable scalar. We remark that whenever the activations
of the premises and of the conclusions of (8) are both small (i.e., false), the
corresponding constraints are automatically satisfied. The actual contribution of
each ¢, (f™, f(®)) becomes significant whenever there is disagreement between
the semantic features computed on the broad and narrow sides.

2.3 Segmentation

In Eq. (8) we did not make explicit the arguments on which semantic features
operate. While semantic features are designed to make predictions on single
words, the FOL constraints can involve longer portions of text, uniformly referred
to as “segments” (the previous example involved two single-word segments for
narrow features - Paris; France - but, in general, we can have longer segments).
In order to evaluate the FOL constraints we need to segment the input sentence
and compute segment-level activations of the semantic features.

Segmentation is performed as follows: for each word, we mark as “active”
only the narrow features whose activation score is beyond a decision threshold
(assumed to be 0.5). If multiple nearby words share the same active feature, we
collapse them into a single segment. This procedure generates multiple segmen-
tation hypotheses for each narrow feature. We prune the hypotheses by keeping
only the segment with the strongest activation (we kept also a second hypoth-
esis for those narrow features involved twice in the same relation). In the case
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of broad features, for simplicity, we assume that there is only a single segment
that cover the whole sentence. Finally, segment-level activations are computed
by averaging the word-level scores. An example of segment activation/selection
procedure is illustrated in Table 1 (the first entity is badly segmented).

Table 1. Segment generation/selection. Shaded elements are above the activation
threshold (0.5), whereas bordered rectangles indicates the segments we select.

| Paris is  the capital of France | Avg Score | Activated |

1095 07102 014 0 03 0.83 v
£ ey |05 065 005 0 01 09 0.9 v
£ atoy | 035 107 0.9 [08 08 0.1 0.6 v

3 Experiments

We manually created (and made public) a dataset? D with sentences that are
word-by-word linked to a given ontology. The dataset is a collection of 1000
sentences, where 700 are used to train our model and 300 are used as test set.
Each sentence is constituted by a triple structured as entity!-relation-entity2.
Our ontology is composed of 11 entity types, and 23 relation types, whose orga-
nization is exactly the one that we have already shown in Fig. 1, where nodes are
entity types and links are relation types. We kept data simple; sentences have
no co-references, quite explicit relation expressions, and the vocabulary V cov-
ers almost all the words. We intentionally introduced some noise in the labeling
process, to make the task more challenging.

Word embeddings W were initialized (and kept fixed) with the ones from
[3], that are vectors with 50 components. The sizes of recurrent network states
(500) and the hidden layers of multilayer perceptron blocks have been chosen by
cross-validation. In the case of broad features we have two layers of recurrence.
The narrow and broad MLP-based predictors have a single layer with 1200 and
800 hidden units, respectively. Our cost function was optimized with ADAM [7],
using mini-batches of size 32 (sentences), and we also introduced some gradient
noise and gradient clipping.

The objective function in Eq.4 requires the tuning of several hyper-
parameters. However, the values of the parameter y in the sets 6, and 6} can be
defined exploiting prior knowledge on the sentence structure (recall that we have
two independent pairs (6,,0y) for broad and narrow features). Broad features
are supposed to be 1-hot in each word, and the active broad feature should be
the same in the whole sentence. Thus, we set v = 1 in both 6, and 6,. Likewise,
we expect only one narrow feature per word, which means v = 1 in the case of
0., but here the number of features per sentence is set to v = 3 in the case of
01,. The remaining hyper-parameters were tuned by cross-validation.

2 http://sailab.diism.unisi.it /onto-sentences-dataset/.
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Experiments are evaluated with different scores. A common metric used in
Information Extraction is the F} score, but it can be only applied with labeled
data, so it is not possible to measure entropy-based constraints when enforced in
a completely unsupervised framework. In such situations we evaluate the mutual
information between the semantic features and the ground truth. In particular,
we adopted the Normalized Mutual Information (NMI) [9].

We consider a sparsely supervised setting and we compare our model against
two simplified instances of it: one is trained only using constraints on the super-
vised examples, i.e. without entropy-based and logic constraints, another one
exploits also entropy-based constraints but not logic formulas. We varied the
number of labeled sentences in the training set ranging from only 1 supervised
sentence per relation type, to a fully labeled case (“all”). Additionally, one of
the models is also trained without considering any supervised data at all.

Figure 3 reports our results. First, we focus on the scores obtained in the
case in which supervised constraints are not exploited. Since we are in a fully
unsupervised case, we do not introduce logic constraints, so that only one plot
is meaningful (green line, first dot of the plot). This is due to the fact that in
the unsupervised case we do not have access to the symbolic elements of the
ontology that are associated to the semantic features. The NMI scores in the
narrow and broad cases (Fig.3 (a, c¢)) show that although entropy constraints
produce a significant score in the case of broad features, the result on narrow
features are not encouraging. As a matter of fact, words in the borders of two
entity types are sources of errors. In the case of broad features, since we output
a prediction on the whole sentence, this issue is not present.

When supervised examples are introduced, Fig. 3 (a) shows that even only one
supervised sentence per formula remarkably improves the NMI score of narrow
features. Interestingly, the unsupervised case, despite its low performances, is still
better than using a single supervision. Differently, broad features are less affected
by the introduction of the first supervised example (Fig.3 (c)), since they were
already showing good performances in the fully unsupervised case. Performances
of semi-supervised models (both in the case of entropy and entropy + logic) are
significantly better than the model trained only with supervisions (NMI and F1,
Fig.3 (a, b, ¢, d)). More generally, the entropy-based terms are crucial whenever
the number of supervised data is limited. Only when we go beyond 10 supervised
sentences per formula (& one third of the training set) the supervised case gets
closer to the semi-supervised entropy-based case, but still does not reach the case
in which logic formulas are added. Introducing logic formulas almost constantly
gives improvements over the entropy-only case, confirming that bridging the
predictions on broad and narrow views is important to allow a positive transfer
of information between the two views.
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Fig. 3. Comparison of the quality of semantic features on narrow (a), (b) and broad
(c), (d) views in the case of different models (test set). While (a), (c) are about the
NMI score, (b), (d) report the F1 measure. The entropy-based constraints (green curve,
NMI only, (a), (c)) are also evaluated in the unsupervised case (the yellow line repeats
this result over all the graph, as reference). (Color figure online)

4 Conclusions

We presented a deep architecture in the framework of Learning from Constraints
[5], that was designed to extract and identify mentions to entity and relation
types belonging to a given ontology. Thanks to the introduction of two latent
representations (views) of the input data, we implemented entity and relation
detectors in a uniform way, differently from several existing systems. Our results
have shown that introducing ontology-related information, represented as First-
Order Logic formulas, helps the system to improve the quality of its predictions.

Our model must be extended to larger scale data and evaluated in less con-
trolled environments. We plan to investigate more challenging settings, following
the idea of life-long learning, and departing from the usual batch-mode approach
toward a framework where there is an online interaction with humans. This is
made possible by the interpretable representations of the raw text that are gen-
erated by our model.
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Abstract. Lifelong learning aims to develop machine learning systems
that can learn new tasks while preserving the performance on previous
learned tasks. In this paper we present a method to overcome catas-
trophic forgetting on convolutional neural networks, that learns new
tasks and preserves the performance on old tasks without accessing the
data of the original model, by selective network augmentation (SeNA-
CNN). The experiment results showed that SeNA-CNN, in some scenar-
ios, outperforms the state-of-art Learning without Forgetting algorithm.
Results also showed that in some situations it is better to use SeNA-CNN
instead of training a neural network using isolated learning.

Keywords: Lifelong learning - Catastrophic forgetting
Convolutional neural networks + Supervised learning

1 Introduction

Deep learning is a sub-field of machine learning which uses several learning
algorithms to solve real-world tasks as image recognition, facial detection, sig-
nal processing, on supervised, unsupervised and reinforcement learning using
feature representations at successively higher, more abstract layers. Even with
the growth and success of deep learning on many applications, some issues still
remain unsolved. One of these issues is the catastrophic forgetting problem [8].
This issue can be seen as an handicap to develop truly intelligent systems.
Catastrophic forgetting arises when a neural network is not capable of
preserving the past learned task when learning a new task. There are some
approaches that benefit from previously learned information to improve perfor-
mance of learning new information, for example fine-tuning [7] where the param-
eters of the old tasks are adjusted for adapting to a new task and, as was shown
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in [3], this method implies forgetting the old task while learning the new task.
Other approach well known is feature extraction [6] where the parameters of the
old network are unchanged and the parameters of the outputs of one or more
layers are used to extract features for the new task. There is also a paradigm
called joint train [4] where parameters of old and new tasks are jointly trained
to minimize the loss in all tasks.

There are already some methods built to overcome the problem of catas-
trophic forgetting [9,11,13]. But even with these and other approaches, the prob-
lem of catastrophic forgetting is still a big challenge for the Artificial Intelligence
(AI) community and according to [18] is now appropriate to the AT community
to move toward algorithms that are capable of learning multiple problems over
time.

In this paper we present a new method that is capable of preserving the
previous learned task while learning a new tasks without requiring a training set
with previous tasks data. This is achieved by selective network augmentation,
where new nodes are added to an existing neural network trained on an original
problem, to deal with the new tasks.

SeNA-CNN is similar to progressive neural networks proposed in [16] and in
the next section we present the main differences between the two methods.

This paper is structured as follows: Sect. 2 presents related works on exist-
ing techniques to overcome the problem of catastrophic forgetting in neural
networks. In Sect.3 we describe SeNA-CNN and some implementation details.
Section 4 presents the experiments and results of SeNA-CNN and on Sect.5 we
present the conclusions.

2 Related Work

The problem of catastrophic forgetting is a big issue in machine learning and
artificial intelligence if the goal is to build a system that learns through time,
and is able to deal with more than a single problem. According to [12], without
this capability we will not be able to build truly intelligent systems, we can only
create models that solve isolated problems in a specific domain. There are some
recent works that tried to overcome this problem, e.g., domain adaptation that
uses the knowledge learned to solve one task and transfers it to help learning
another, but those two tasks have to be related. This approach was used in [10]
to avoid the problem of catastrophic forgetting. They used two properties to
reduce the problem of catastrophic forgetting. The first properties was to keep
the decision boundary unchanged and the second was that the feature extractor
from the source data by the target network should be present in a position close
to the features extracted from the source data by the source network. As was
shown in the experiments, by keeping the decision boundaries unchanged new
classes can not be learned and it is a drawback of this approach because it
can only deal with related tasks, with the same number of classes, while in our
approach, we are able to deal with unrelated problems with different number of
classes.
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The Learning without Forgetting (LwF) algorithm proposed in [11] adds
nodes to an existing network for a new task only in the fully connected layers and
this approach demonstrated to preserve the performance on old tasks without
accessing training data for the old tasks. We compare SeNA-CNN with LwF
algorithm. The main difference is that instead of adding nodes in fully connected
layers, we add convolutional and fully connected layers of the new tasks to an
existing model and SeNA-CNN has a better capability of learning new problems
than LwF because we train a series of convolutional and fully connected layers
while LwF only trains the added nodes in the fully connected layer and hence,
depends on the original task’s learned feature extractors to represent the data
from all problems to be learned.

Progressive Neural Networks (PNN), proposed in [16], also addressed the
problem of catastrophic forgetting via lateral connection to a previous learned
network. The main difference to SeNA-CNN is that the experiment was in rein-
forcement learning while our proposal is designed to work with supervised learn-
ing for image classification problems. This approach, as SeNA-CNN begins with
one column, a CNN trained on a single problem. When adding new tasks param-
eters from the previous task are frozen and new columns are added and initialised
from scratch. Another difference between PNN and SeNA-CNN, is that SeNA-
CNN use the two first convolutional layers of the original model trained on iso-
lated learning and by doing that SeNA-CNN can learn the new tasks faster than
if all the layers had to be trained from scratch, while PNN adds an entire column
each time that new tasks come and the new column is randomly initialised. In
the experimental section [16] they demonstrated the proposed method with 2,
3 and 4 columns architecture on Atari Game and 3D maze game. For future
work, as in our approach, the authors aims to solve the problem of adding the
capability to automatically choose at which task a label belongs because during
the experiment it was necessary on test time to choose which task to use for
inference.

3 Proposed Method

Our proposal is a method that is able to preserve the performance on old tasks
while learning new tasks, without seeing again the training data for old tasks,
as is necessary in [11], using selective network augmentation.

A model that is capable of learning two or more tasks has several advantages
against that which only learns one task. First is that the previous learned task
can help better and faster learning the new task. Second, the model that learns
multiple tasks may result in more universal knowledge and it can be used as a
key to learn new task domains [17].

Initially a network is instantiated with L layers with hidden layers h; and
parameters #,, with random initialization. The network is then trained until con-
vergence. Figure 1(a) presents the original model for old task trained on isolated
learning, Fig. 1(b) is our proposed model with two tasks. In Fig. 1(b) the blue
colour represents the old task network and the orange corresponds to the new
added nodes for the new task.
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When a new tasks is going to be learned instead of adding nodes only in fully
connected layers as is done in [11], we add layers for the new task Typically the
added layers contain a structure similar to the network that we trained on iso-
lated learning. We consider the option of not adding the first two layers, because
the neurons in those layers find several simple structures, such as oriented edges
as demonstrated in [15]. The remaining layers seem to be devoted to more com-
plex objects, and hence, are more specific to each problem, and that is why we
choose to create these new layers. It also resembles the idea of mini-columns in
the brain [14]. We add those layers and train them initialized with weights of
old tasks, keeping the old task layers frozen.

When switching to a third task, we freeze the two previous learned tasks and
only train the new added layers. This process can be generalized to any number
of tasks that we wish to learn.

1 Convl Conv2 Conv3 Conva Fc1 Q2
1
— — — L, _, Model response
1 on old task
1

(a) Original model for old task trained on isolated learning.
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(b) Proposed model: adds new layers for the second task.

Fig. 1. Original and our model used in the experiment process to avoid the catastrophic
forgetting by selective network augmentation. The blue coloured boxes correspond to
the old task and the orange coloured correspond to the added layers. (Color figure
online)

4 Experiments

We compared our method with the algorithm LwF proposed in [11].

Our experiments evaluate if the proposed method can effectively avoid the
catastrophic forgetting problem. We conducted our experiments using three well
known datasets namely CIFAR10 [2], CIFAR100 [2] and SVHN2. Table 1 shows
information on each dataset, and the number of images on training and test sets.
CIFAR10 AND CIFARI100 are very similar. CIFAR10 has 10 classes and these
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Table 1. Number of images for train and test sets.

Data set | CIFAR10 | CIFAR100 | SVHN2
Train 50000 50000 73257
Test 10000 10000 26032

III76I|S!liIIl
EREAVE A

Fig. 2. Example images of the datasets used on the experiments. First row images
corresponds to CIFAR10, second corresponds to SVHN2 and the last one are from
CIFARI100 dataset.

are subset of the 100 classes of CIFAR100. SVHN2 corresponds to street house
numbers and has 11 classes (Fig. 2).

Figure 3 shows the procedure used to test the ability of both models (SeNA-
CNN and LwF) to overcome catastrophic forgetting. Both models use the previ-
ous model trained on isolated learning. We add the new tasks and then evaluate
the performance on the old tasks for each method.

4.1 Network Architecture

The neural network used on isolated learning was a standard network architec-
ture with 4 convolutional layers, the first one is the input, 6 activation layers
(one of them is the softmax), 2 maxpooling layers, 3 dropout layers, a flatten
layer and 2 dense layers. For new tasks the architecture was almost the same.
The difference was that for the new tasks we did not add the first two convoluti-
nal layers, we used the first two layers of the model trained on isolated. Figure 4
shows the proposed approach when the three branches corresponding to each
task are connected. This is a functional model and overall this model had 8 con-
volutinal layers, 6 fully-connected layers, 11 ReLLUs activation layers, 4 pooling
layers and 7 dropout layers. The model receives tensor input and this input is
propagated to all branches and each branch produce an output. To choose the
branch to predict at test time, we set all other tasks, images and targets values
to zero and only show to the model the images and targets we want to predict. So
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Neural network trained on isolated learning
(old tasks, table 2)

Test again on old
tasks (table 4)

Test again on old
tasks (table 4)

Fig. 3. Procedure used to test both evaluated models to overcome catastrophic forget-
ting.

far this process is done by hand and we consider for future work the automatic
choice of which task to predict.

Input images are RGB and have 32 x 32 pixels. The first convolution layer
has filters with dimensions 32 x 32 while the other two convolution layers have
filters with 64 x 64. We used the keras API [5] running on tensorflow [1].

4.2 Training Methodology

Our main goal is to evaluate if the proposed model learns new tasks while pre-
serving the performance on old tasks. During training we followed the same prac-
tice as [11], the main difference is that we first freeze all layers of the original
model and only train the added nodes. Then we train all weights for convergence
using back-propagation with SGD algorithm with dropout enabled. All the net-
works had the same architecture, and the learning rate was set to 0.01, weight
decay of 1le — 6 and momentum 0.9. All networks use the same train, validation
and test split for a given seed number. Table 2 shows the performance and exe-
cution time of each network after 12 training epochs. We run each experiment
ten times and present results corresponding to the mean and standard deviation
of these 10 repetitions. We run our experiments using a GeForce GTX TITAN
X with 12 GiB.

4.3 Isolated Learning

We started by training 3 networks, one for each of the 3 data sets. Results of
the experiment are shown in Table2 where for each network we present the
mean performance, its standard deviation and the execution time for train and
test. These networks will be used both for SeNA-CNN and LwF in the next
experiments.
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Fig. 4. Procedure used at test time for the three tasks. This is the stage when we
combine the three tasks.
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Table 2. Network performance on isolated learning and execution time for train and
test sets.

Train Test Baseline [%] | Execution time [s]
CIFAR10 |CIFAR10 |74.10+0.70 |312
CIFARI100 | CIFAR100 | 51.44 + 0.40 | 423
SVHN?2 SVHN2 92.27 £0.80 | 438

4.4 Adding New Tasks to the Models

As Fig. 3 shows, we used the networks trained on isolated learning to implement
our method by adding layers of the new tasks in such way that the model can
learn a new task without forgetting the original one. Table3 presents the per-
formance of the proposed method when adding new tasks and compares it with
the baseline [11]. These results correspond to the performance of our model and
LwF when using a model trained on cifar10 for isolated learning and we added
to the model as new tasks svhn2 and cifar100. This process was repeated for the
other two tasks.

Results shows that SeNA-CNN outperformed LwF algorithm almost in all
scenarios, showing that selectively adding layers to an existing model can pre-
serve the performance on the old tasks when learning a new one, also is not
necessary to train again the previous model and the new task learned will not
interfere on the previous learned one. Overall SeNA-CNN outperformed LwF
algorithm in 2/3 of the experiments showing the effectiveness of the proposed
method to learn new tasks.

We also evaluated if, when adding a new task, the knowledge previous learned
was not overwritten. As shown in Fig. 3 we tested if the model was able to pre-
serve the previous learned task. Table 4 presents the results of these experiments.
The second and third columns represent results of cifarl0 as old task using the
others two as new tasks. Similar setups are presented in the remaining columns.
Results shows that our method outperformed LwF when remembering the
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Table 3. SeNA-CNN and LwF test accuracy (and standard deviation) on new tasks.

old New LwF SeNA-CNN
CIFARI0 |SVHN2 | 84.02(0.47) 82.27(0.38)
CIFAR10 | CIFARI100|53.10(0.55) | 55.67(0.52)
CIFAR100 | CIFARI10 |75.23(0.53) | 75.69(0.52)
CIFAR100 SVHN2 | 86.49(0.39) | 90.04(0.38)
SVHN2 | CIFARIO |66.42(0.62) | 67.27(0.58)
SVHN2 | CIFAR100 | 49.05(0.63) 47.15(0.45)

previous learned tasks in all cases, and once again. We also verified that in some
scenarios such as cifar100—cifar10 (for both methods), cifarl00 performance
increased compared to isolated learning, and it suggests using both proposed
models instead of training from a random weights initialization, without inter-
action with other problems. These results are understandable since cifarl0 and
cifar100 are very similar and the two layers shared during the train of the new
tasks increased the performance. Results show that by applying our method it
is possible to overcome the problem of catastrophic forgetting when new tasks
are added to the model.

Table 4. SeNA-CNN and LwF test accuracy (and standard deviation) showing that
our method does not forget old tasks after learning the new ones and outperforms the
LwF method in all cases.

New old LwF SeNA-CNN
CIFAR10 |SVHN2 | 87.96(0.75) 89.84(0.68)
CIFAR10 | CIFARI100 | 52.39(0.43) 53.34(0.58)
CIFAR100 CIFARI10 | 69.37(0.65) 70.59(0.59)
CIFAR100 SVHN2 | 89.01(0.39) 89.53(0.57)
SVHN2 | CIFARIO |65.80(0.47) 67.83(0.59)
SVHN2 | CIFARI100 | 48.11(0.41) 49.40(0.72)

4.5 Three Tasks Scenario

To demonstrate that SeNA-CNN is able to deal with several different problems,
we experiment by learning three tasks. In this case we used the three datasets
previously presented and we combine them two by two as old and one as new
task. In Tableb we presents results when adding a new task to a model that
had already learned two tasks. From this scenario clearly in all cases SeNA-
CNN outperformed LwF when learning a new task, and also the performance
for cifar100 continue increasing for both methods and consolidating what we
previously said.
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Table 5. Three tasks SeNA-CNN and LwF test accuracy (and standard deviation) on
new tasks.

old New LwF SeNA-CNN
SVHN2, CIFARI0 | CIFARI100 | 46.96(0.29)  47.15(0.48)
CIFAR10, CIFAR100 SVHN2 | 87.21(0.30)  87.87(0.50)
CIFAR100, SVHN2 | CIFARI10 | 74.71(0.50) 75.69(0.14)
CIFAR10, SVHN2 | CIFAR100 | 54.24(0.37) | 54.87(0.63)
SVHN2, CIFAR100 | CIFARIO |65.99(0.47) 66.00(0.48)
CIFAR100, CIFAR10 SVHN2 | 87.68(0.43) 89.08(0.37)

In this scenario we also evaluated the ability to preserve the performance of
the two old learned tasks. Table6 present results of both methods when they
have to recall the old tasks. Comparing results, both algorithms typically had
the same percentage of performance, meaning that in some scenarios SeNA-CNN
performed better than LwF and vice-versa. Once again these results shows the
ability to overcome the catastrophic forgetting problem in convolutional neural
networks by selectively network augmentation.

Table 6. Three tasks SeNA-CNN and LwF test accuracy (and standard deviation) on
old tasks.

New old LwF SeNA-CNN

CIFAR100 | SVHN2, CIFARIO0 | 89.23(0.70), 75.14(0.14) | 89.01(0.44), 76.81(0.64)
SVHN2 | CIFAR10, CIFAR100 | 73.99(0.12), 56.78(0.37) | 71.11(0.37), 56.20(0.58)
CIFARIO | CIFAR100, SVHN2 | 52.41(0.26), 87.10(0.22) | 49.14(0.58), 89.17(0.57)
CIFARI00 | CIFAR10, SVHN2 | 74.28(0.25), 90.04(0.39) | 75.58(0.52), 88.07(0.94)
CIFARI0 |SVHN2, CIFARIO0 | 90.13(0.59), 48.11(0.27) | 90.19(0.64), 46.96(0.51)
SVHN2 | CIFAR100, CIFARIO | 47.20(0.40), 74.95(0.43) | 47.87(0.63), 75.24(0.39)

5 Conclusion

In this paper we presented a new method, SeNA-CNN to avoid the problem
of catastrophic forgetting by selective network augmentation and the proposed
method demonstrated to preserve the previous learned tasks without accessing
the old task’s data after the original training had been done. We demonstrated
the effectiveness of SeNA-CNN to avoid catastrophic forgetting for image clas-
sification by running it on three different datasets and compared it with the
baseline LwF algorithm.

It has the advantage of being able to learn better new tasks than LwF since
we train a series of convolutional and fully connected layers for each new task,
whereas LwF only adds nodes to the fully connected layers and hence, depends
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on the original task’s learned feature extractors to represent the data from all
problems to be learned.

We also showed that in some scenarios SeNA-CNN and LWF increases the

performance when compared to isolated training for classification problems with
some similarity. This is understandable since by reusing partial information from
previous tasks, we are somehow doing fine-tuning on the new task.

As future work we consider adapting SeNA-CNN for on-line learning and

make it automatically choose which task is to be classified.
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Abstract. We study the quantification of uncertainty of Convolutional
Neural Networks (CNNs) based on gradient metrics. Unlike the classical
softmax entropy, such metrics gather information from all layers of the
CNN. We show for the EMNIST digits data set that for several such
metrics we achieve the same meta classification accuracy — i.e. the task
of classifying predictions as correct or incorrect without knowing the
actual label — as for entropy thresholding. We apply meta classification
to unknown concepts (out-of-distribution samples) — EMNIST /Omniglot
letters, CIFAR10 and noise — and demonstrate that meta classification
rates for unknown concepts can be increased when using entropy together
with several gradient based metrics as input quantities for a meta clas-
sifier. Meta classifiers only trained on the uncertainty metrics of known
concepts, i.e. EMNIST digits, usually do not perform equally well for all
unknown concepts. If we however allow the meta classifier to be trained
on uncertainty metrics for some out-of-distribution samples, meta clas-
sification for concepts remote from EMNIST digits (then termed known
unknowns) can be improved considerably.

Keywords: Deep learning - Uncertainty quantification
Meta classification

1 Introduction

In recent years deep learning has outperformed other classes of predictive models
in many applications. In some of these, e.g. autonomous driving or diagnostics
in medicine, the reliability of a prediction is of highest interest. In classification
tasks, the thresholding on the highest softmax probability or thresholding on the
entropy of the classification distributions (softmax output) are commonly used
metrics to quantify classification uncertainty of neural networks, see e.g. [11].
However, misclassification is oftentimes not detected by these metrics and it is
also well known that these metrics can be fooled easily. Many works demon-
strated how an input can be designed to fool a neural network such that it
incorrectly classifies the input with high confidence (termed adversarial exam-
ples, see e.g. [9,13,18,19]). This underlines the need for measures of uncertainty.
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A basic statistical study of the performance of softmax probability thresh-
olding on several datasets was developed in [11]. This work also assigns proper
out-of-distribution candidate datasets to many common datasets. For instance
a network trained on MNIST is applied to images of handwritten letters, scaled
gray scale images from CIFARI10, and different types of noise. This represents a
baseline for comparisons.

Using classical approaches from uncertainty quantification for modeling input
uncertainty and/or model uncertainty, the detection rate of misclassifications
can be improved. Using the baseline in [11], an approach named ODIN, which is
based on input uncertainty, was published in [15]. This approach shows improved
results compared to pure softmax probability thresholding. Uncertainty in the
weights of a neural network can be modeled using Bayesian neural networks. A
practically feasible approximation to Bayesian neural networks was introduced
in [8], known as Monte-Carlo dropout, which also improves over classical softmax
probability thresholding.

Since the softmax removes one dimension from its input by normalization,
some works also perform outlier detection on the softmax input (the penultimate
layer) and outperform softmax probability thresholding as well, see [2].

In this work we propose a different approach to measure uncertainty of a neu-
ral network based on gradient information. Technically, we compute the gradient
of the negative log-likelihood of a single sample during inference where the class
argument in the log-likelihood is the predicted class. We then extract compressed
representations of the gradients, e.g., the norm of a gradient for a chosen layer.
E.g., a large norm of the gradient is interpreted as a sign that, if the prediction
would be true, major re-learning would be necessary for the CNN. We interpret
this ‘re-learning-stress’ as uncertainty and study the performance of different
gradient metrics used in two meta classification tasks: separating correct and
incorrect predictions and detecting in- and out-of-distribution samples.

The closest approaches to ours are probably [2,11] as they also establish a self
evaluation procedure for neural networks. However they only incorporate (non-
gradient) metrics for particular layers close to the networks output while we con-
sider gradient metrics extracted from all the layers. Just as [2,11] our approach
does not make use of input or model uncertainty. However these approaches, as
well as our approach, are somewhat orthogonal to classical uncertainty quantifi-
cation and should be potentially combinable with input uncertainty and model
uncertainty, as used in [8,15], respectively.

The remainder of this work is structured as follows: First, in Sect. 2 we intro-
duce (gradient) metrics, the concept of meta classification and threshold indepen-
dent performance measures for meta classification, AUROC and AUPR, that are
used in the experiments. In Sect.3 we introduce the network architecture and
the experiment setup containing the choice of data sets. We use EMNIST [6]
digits as a known concept on which the CNN is trained and EMNIST letters,
CIFARI10 images as well as different types of noise as unknown/unlearned con-
cepts. Then we statistically investigate the separation performance of our metrics
for correct vs. incorrect classifications provided by CNNs. This is followed by a
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performance study for the detection of in- and out-of-distribution samples (detec-
tion of unlearned concepts) in Sect. 4. Therefore we also combine available met-
rics for training and comparing different meta classifiers. In this section meta
classifiers are trained only using known concepts, i.e., EMNIST digits. After-
wards, in Sect. 5, we insert unlearned concepts (which therefore become known
unknowns) into the training of the meta classifiers. While the softmax base-
line achieves an AUROC value of 95.83% our approach gains 0.81% in terms of
AUROC and even more in terms of AUPR values.

2 Entropy, Softmax Baseline and Gradient Metrics

Given an input z € R", weights w € RP and class labels y € C = {1,...,q},
we denote the output of a neural network by f(y|z,w) € [0,1]. The entropy of
the estimated class distribution conditioned on the input (also called Shannon
information, [16])

E(z,w) =

Zf ylz, w)log(f (ylz, w)), (1)

log

is a well known dispersion measure and widely used for quantifying classification
uncertainty of neural networks. In the following we will use the term entropy
in the sense explained above. Note that this should not be confused with the
entropy underlying the (not estimated and joint) statistical distribution of inputs
and labels. The softmax baseline proposed by [11] is calculated as

S(w,w) = max f(ylz, w). (2)

Using the maximum a posteriori principle (MAP), the predicted class is defined
by

§(z,w) := argmax f(y|z, w) (3)
yel

according to the Bayes decision rule [3], or as one hot encoded label §(z,w) €

{0,1}7 with
X L g(z,w)=k
gk, w) = (4)
0, else

for k = 1,...,q. Given an input sample z* with one hot label 3¢, predicted
class label §* (from Eq. (4)) and a loss function L = L(f(y|z%, w),y’), we can
calculate the gradient of the loss function with respect to the weights V,,L =
VwL(f(y|zt, w),§%). In our experiments we use the gradient of the negative log-
likelihood at the predicted class label, which means

L= L(f(yla',w),§") = = gylog (f(ylz',w)) = —log (f(gla’,w)).  (5)
yeC

We apply the following metrics to this gradient:
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— Absolute norm (||V,Ll1)
— Euclidean norm (||V,L]|2)
— Minimum (min (V,,L))

— Maximum (max (VL))

— Mean (mean (V,,L))

— Skewness (skew (V,, L))

— Kurtosis (kurt (VL))

These metrics can either be applied layerwise by restricting the gradient to
those weights belonging to a single layer in the neural network or to the whole
gradient on all layers.

The metrics can be sampled over the input X and conditioned to the event
of either correct or incorrect classification. Let T'(w) and F'(w) denote the sub-
set of correctly and incorrectly classified samples for the network f(y|z,w),
respectively. Given a metric M (e.g. the entropy F or any gradient based
one), the two conditioned distributions M (X, w)|p(,) and M (X, w)|pq,) are
further investigated. For a threshold ¢, we measure P(M (X, w) < t|T(w)) and
P(M(X,w) > t|F(w)) by sampling X. If both probabilities are high, ¢ gives a
good separation between correctly and incorrectly classified samples. This con-
cept can be transfered to the detection of out-of-distribution samples by defining
these as incorrectly classified. We term this procedure (classifying M (X, w) < ¢
vs. M(X,w) > t) meta classification.

Since there are many possible ways to compute thresholds ¢, we compute
our results threshold independent by using Area Under the Receiver Operating
Curve (AUROC) and Area Under the Precision Recall curve (AUPR). For any
chosen threshold t we define

TP = #{correctly predicted positive cases},
TN = #{correctly predicted negative cases},
F P = #{incorrectly predicted positive cases},
FN = #{incorrectly predicted negative cases}.

and can compute the quantities

TP o
R=TPR= TP+ FN (True positive rate or Recall),
Fp o
FPR = FPLTN (False positive rate),
TP .
= m (PI'GCISIOH).

When dealing with threshold dependent classification techniques, one calculates
TPR (R), FPR and P for many different thresholds in the value range of the
variable. The AUROC is the area under the receiver operating curve, which has
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the FPR as ordinate and the TPR as abscissa. The AUPR is the area under the
precision recall curve, which has the recall as the ordinate and the precision as
abscissa. For more information on these performance measures see [7].

The AUPR is in general more informative for datasets with a strong imbal-
ance in positive and negative cases and is sensitive to which class is defined as the
positive case. Because of that we are computing the AUPR-In and AUPR-Out,
for which the definition of a positive case is reversed. In addition the values of
one variable are multiplied by —1 to switch between AUPR-In and AUPR-Out
as in [11].

3 Meta Classification — A Benchmark Between Maximum
Softmax Probability and Gradient Metrics

We perform all our statistical experiments on the EMNIST data set [6], which
contains 28 x 28 gray scale images of 280000 handwritten digits (0-9) and
411302 handwritten letters (a—z, A-Z). We train the CNNs only on the digits,
in order to test their behavior on untrained concepts. We split the EMNIST data
set (after a random permutation) as follows:

— 60,000 digits (0-9) for training

— 20,000 digits (0-9) for validation

200,000 digits (0-9) for testing

— 20,000 letters (a—z, A-Z) as untrained concepts

Additionally we included the CIFARI10 library [12], shrinked and converted to
gray scale, as well as 20,000 images generated from random uniform noise. All
concepts can be seen in Fig. 1.

T 6540|940 3131711123 |6 |2]21207
B/ < <ZCE¥NI/C /7 dlS o 7 TimD)
o i Al

S
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Fig. 1. Different concepts used for our statistical experiments

The architecture of the CNNs consists of three convolutional (conv) layers
with 16 filters of size 3 x 3 each, with a stride of 1, as well as a dense layer with
a 10-way softmax output. Each of the first two conv layers are equipped with
leaky ReLU activations

x, x>0

LeakyReLU (z) = {O lz. <0 (6)
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and followed by 2 x 2 max pooling. We employ L? regularization with a regu-
larization parameter of 10~3. Additionally, dropout [17] is applied after the first
and third conv layer. The dropout rate is 33%.

The models are trained using stochastic gradient descent with a batch size
of 256, momentum of 0.9 and categorical cross entropy as cost function. The
initial learning rate is 0.1 and is reduced by a factor of 10 every time the average
validation accuracy stagnates, until a lower limit for the learning rate of 0.001 is
reached. All models were trained and evaluated using Keras [5] with Tensorflow
backend [1]. Note, that the parameters where chosen from experience and not
tuned to any extent. The goal is not to achieve a high accuracy, but to detect
the uncertainty of a neural network reliably.

noise o noise N noise L
CIFAR10 — CIFAR10 — CIFAR10| — —
letters ——‘ letters —’ letters -0—
wrong E—— \;4;7; wrong 771*&7—7; wrong ﬁjﬁ*—
correct —_— correct —_— — correct| —— —_—
Entropy Euclidean Norm Minimum

Fig. 2. Empirical distribution for entropy, euclidean norm and minimum applied to
correctly predicted and incorrectly predicted digits from the test data (green and red)
of one CNN. Further distributions are generated from EMNIST samples with unlearned
letters (blue), CIFAR10 images (gray) and uniform noise images (purple). (Color figure
online)

In this section, we study the performance of gradient metrics, the softmax
baseline and the entropy in terms of AUROC and AUPR for EMNIST test data,
thus considering the error and success prediction problem, formulated in [11].
First of all we demonstrate that gradient metrics are indeed able to provide good
separations. Results for the entropy, euclidean norm and minimum are shown
in Fig.2 (green and red). Note that we have left out the mean, skewness and
kurtosis metric, as their violin plots showed, that they are not suitable for a
threshold meta classifier.

In what follows we define EMNISTc as the set containing all correctly clas-
sified samples of the EMNIST test set and EMNISTw as the set containing all
incorrectly classified ones. From now on we resample the data splitting and use
ensembles of CNNs. More precisely, the random splitting of the 280,000 digit
images in training, validation and test data is repeated 10 times and we train
one CNN for each splitting. In this way we train 10 CNNs that differ with respect
to initial weights, training, validation and test data. We then repeat the above
meta classification for each of the CNNs. With this non parametric bootstrap, we
try to get as close as possible to a true sampling of the statistical law underlying
the EMNIST ensemble of data and obtain results with statistic validity.
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Table 1. AUROC, AUPR-In (EMNISTCc as positive case) and AUPR-Out (EMNISTc
as negative case) values for the threshold classification on the softmax baseline, entropy
as well as selected gradient metrics. All values are in percentage and averaged over 10
differently initialized CNNs with distinct splittings of the training data. Values in
brackets are the standard deviation of the mean in percentage. To get the standard
deviation within the sample, multiply by v/10.

Metric EMNISTc/ |EMNISTc/ |EMNISTc/ | EMNISTc/
EMNISTw | EMNIST CIFARI10 uniform
letters noise
AUROC
Softmax baseline | 97.82 (0.03) | 87.62 (0.20) |99.13 (0.11) | 92.95 (1.86)
Entropy 97.74 (0.04) | 88.44 (0.21) 99.24 (0.03) 93.52 (1.83)
Absolute norm 97.77 (0.03) |87.22 (0.16) |98.19 (0.03) | 90.66 (1.96)
Euclidean norm 97.78 (0.03) |87.27 (0.17) |98.38 (0.02) |91.05 (1.92)
Minimum 97.78 (0.03) | 87.30 (0.20) | 98.40 (0.03) | 90.50 (2.16)
Maximum 97.70 (0.03) | 86.92 (0.20) | 98.31 (0.04) | 87.05 (2.70)
Standard deviation | 97.78 (0.03) | 87.26 (0.17) | 98.38 (0.02) | 90.98 (1.93)
AUPR-In
Softmax baseline | 99.97 (0.00) | 98.39 (0.03) |99.98 (0.00) | 99.31 (0.19)
Entropy 99.97 (0.00) | 98.38 (0.04) | 99.95 (0.00)  99.36 (0.19)
Absolute norm | 99.97 (0.00) | 98.42 (0.02)  99.89 (0.00) | 99.07 (0.21)
Euclidean norm | 99.97 (0.00) | 98.42 (0.02) | 99.90 (0.00) | 99.11 (0.21)
Minimum 99.97 (0.00) | 95.20 (5.40) | 99.90 (0.00) | 99.05 (0.23)
Maximum 99.97 (0.00) | 95.03 (5.65) | 99.89 (0.00) | 98.67 (0.31)
Standard deviation | 99.97 (0.00) | 95.04 (5. 70) 99.90 (0.00) | 99.11 (0.21)
AUPR-Ou

Softmax baseline |39.96 (0.57) |59.04 (0.37) | 77.10 (1.90) | 40.10 (4.87)
Entropy 95.56 (0.05) | 60.36 (0.42) 91.27 (0.39) 42.46 (5.38)
Absolute norm | 95.28 (0.06) | 58.39 (0.37) | 66.62 (0.35) | 33.08 (3.58)
Euclidean norm | 95.30 (0.06) | 58.27 (0.38) | 70.81 (0.52) | 34.03 (3.68)
Minimum 95.36 (0.05) | 58.76 (0.42) | 72.72 (0.36) | 33.00 (3.83)
Maximum 95.32 (0.06) |55.01 (0.41) | 74.59 (0.71) | 26.84 (3.02)
Standard deviation | 95.30 (0.06) |58.26 (0.38) | 70.75 (0.52) | 33.88 (3.66)

Table 1 shows that the softmax baseline as well as some selected gradient
metrics exhibit comparable performance on the test set in the error and success
prediction task. Column one corresponds to the empirical distributions depicted
in Fig. 2 for 200,000 test images.

In a next step we aggregate entropy and all gradient based metrics (eval-
uated on the gradient of each layer in the CNN) in a more sophisticated
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classification technique. Therefore we choose a variety of regularized and unreg-
ularized logistic regression techniques, namely a Generalized Linear Model
(GLM) equipped with the logit link function, the Least Absolute Shrinkage
and Selection Operator (LASSO) with a L' regularization term and a regular-
ization parameter \; = 1, the ridge regression with a L? regularization term and
a regularization parameter of Ay = 1 and finally the Elastic net with one half L*
and one half L? regularization, which means A\; = Ay = 0.5. For details about
these methods, cf. [10].

To include a non linear classifier we train a feed forward NN with one hidden
layer containing 15 rectified linear units (ReLUs) with L? weight decay of 1073
and 2-way softmax output. The neural network is trained in the same fashion as
the CNNs with stochastic gradient descent. Both groups of classifiers are trained
on the EMNIST validation set. Results for the logistic regression techniques can
be seen in Table 2 (column one) and those for the neural network in Table 3 (first
row of each evaluation metric). For comparison we also include the entropy and
softmax baseline in each table. The regression techniques perform equally well
or better compared to the softmax baseline. This is however not true for the NN.
For the logistic regression types including more features from early layers did not
improve the performance, the neural network however showed improved results.
This means the additional information in those layers can only be utilized by a
non linear classifier.

4 Recognition of Unlearned Concepts

A (C)NN, being a statistical classifier, classifies inside the prescribed label space.
In this section, we empirically test the hypothesis that test samples out of the
label space will be all misclassified, however at a statistically different level of
entropy or gradient metric, respectively. We test this hypothesis for three cases:
First we feed the CNN with images from the EMNIST letter set and determine
the entropy as well as the values for all gradient metrics for each of it. Secondly
we follow the same procedure, however the inputs are gray scale CIFAR10 images
coarsened to 28 x 28 pixels. Finally, we use uncorrelated noise that is uniformly
distributed in the gray scales with the same resolution. Roughly speaking, we test
empirical distributions for unlearned data that is close to the learned concept as
in the case of EMNIST letters, data that represents a somewhat remote concept
as in the case of CIFAR10 or, as in the case of noise, do not represent any concept
at all.

We are classifying the output of a CNN on such input as incorrect label, this
way we solve the in- and out-of-distribution detection problem from [11], but
are still detecting misclassifications in the prescribed label space. The empirical
distributions of unlearned concepts can be seen in Fig.2. As we can observe,
the distributions for incorrectly classified samples are in a statistical sense sig-
nificantly different from those for correctly classified ones. The gradient metrics
however are not able to separate the noise samples very well, but also result-
ing in an overall good separation of the other concepts, as for the entropy. The
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threshold classification evaluation metrics can be seen in Table 1. For the logistic
regression results in Table 2 one can see that the GLM is inferior to the other
methods. Regression techniques with a regularization term like LASSO, Ridge
and Elastic net are performing best. We get similar AUROC values as for the
threshold classification with single metrics, but can improve between 5% and
14.08% over the softmax baseline in terms of AUPR-Out values for unknown
concepts, showing a better generalization.

Table 2. Average AUROC, AUPR-In and AUPR-Out values for different regression
types trained on the validation set and all metric features including the entropy but
excluding the softmax baseline. The values are averaged over 10 CNNs and displayed
in percentage. The values in brackets are the standard deviations of the mean in per-
centage. To get the standard deviation within the sample, multiply by +/10.

Metric/Regression| EMNISTc/ |EMNISTc/ |EMNISTc/ | EMNISTc/
technique EMNISTw | EMNIST CIFARI10 uniform
letters noise
AUROC
Softmax baseline | 97.82 (0.03) | 87.62 (0.20) |99.13 (0.11) |92.95 (1.86)
Entropy 97.74 (0.04) | 88.44 (0.21) | 99.42 (0.10)  93.52 (1.83)
GLM 94.76 (0.70) | 85.94 (0.46) | 80.26 (5.46)  89.41 (2.90)
LASSO 97.75 (0.03) | 89.34 (0.17)  99.23 (0.03) | 93.86 (1.04)
Ridge 97.59 (0.03) | 88.63 (0.11) |98.93 (0.02) 94.08 (0.67)
Elastic net 97.79 (0.06) | 89.27 (0.24) | 98.82 (0.06) | 93.47 (0.67)
AUPR-In
Softmax baseline | 99.97 (0.00) | 98.39 (0.03) | 99.98 (0.00) |99.31 (0.19)
Entropy 99.97 (0.00) | 98.38 (0.04) |99.99 (0.00) 99.36 (0.19)
GLM 99.81 (0.05) | 96.80 (0.21) | 95.51 (1.15) | 97.81 (0.84)
LASSO 99.97 (0.00) | 98.30 (0.06) | 99.95 (0.00) | 99.33 (0.12)
Ridge 99.97 (0.00) | 97.86 (0.04) | 99.93 (0.00) | 99.36 (0.08)
Elastic net 99.97 (0.00) | 98.26 (0.09) | 99.92 (0.00) | 99.29 (0.08)
AUPR-Out
Softmax baseline |39.96 (0.57) |59.04 (0.37) | 77.10 (1.90) |40.10 (4.87)
Entropy 95.56 (0.05) | 60.36 (0.42) | 86.07 (1.76) | 42.46 (5.38)
GLM 31.27 (0.79) |57.72 (0.74) | 62.90 (6.77) | 46.43 (5.24)
LASSO 36.27 (0.32) | 64.04 (0.26)  91.18 (0.44) 48.38 (3.12)
Ridge 38.17 (0.34) | 61.92 (0.18) | 82.95 (0.61) | 47.30 (2.20)
Elastic net 38.71 (0.65) | 63.43 (0.62) | 79.56 (1.76) | 45.03 (1.92)
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5 Meta Classification with Known Unknowns

In the previous section we trained the meta classifier on the training or validation
data only. This means it has no knowledge of entropy or metric distributions
for unlearned concepts, hence we followed a puristic approach treating out of
distribution cases as unknown unknowns. The classification accuracy could be
improved, by extending the training set of the meta classifier with the entropy
and gradient metric values of a few unlearned concepts and labeling them as
false, i.e., incorrectly predicted. As in the previous sections we then train meta
classifiers on the metrics. For this we use the same data sets as [11], namely the
omniglot handwritten characters set [14], the notMNIST dataset [4] consisting
of letters from different fonts, the CIFAR10 dataset [12] coarsened and converted
to gray scale as well as normal and uniform noise. In order to investigate the
influence of unknown concepts in the training set of the meta classifier, we used
the LASSO regression and the NN introduced in Sect. 3 and supplied them with
different training sets, consisting of

— EMNIST validation set

— EMNIST validation set and 200 uniform noise images

EMNIST validation set, 200 uniform noise images and 200 CIFAR10 images

— EMNIST validation set, 200 uniform noise images, 200 CIFAR10 images and
200 omniglot images

We are omitting the results for the LASSO here, since they are inferior to
those of the NN. Including known unknowns into the training set, the NN has
far better performance on the unknown concepts, even though the amount of
additional training data is small. Noteworthily the validation set together with
only 200 uniform noise images increases the results on the AUPR-Out values for
all unknown concepts already significantly by 13.74%, even comparable to using
all concepts. Together with the fact, that noise is virtually available at no cost, it
is a very promising candidate for improving the generalization of the meta classi-
fier without the need of generating labels for more datasets. The in-distribution
detection rate of correct and wrong predictions is also increased when using
additional training concepts, making it only beneficial to include noise into the
training set of the meta classifier. Our experiments show however that normal
noise does not have such a high influence on the performance as uniform noise
and is even decreasing the in-distribution meta classification performance. All
in all we reach a 3.48% higher performance on the out of distribution examples
compared to the softmax baseline in AUPR-Out and 0.81% in AUROC, whereas
the increase in AUPR-In is marginal (0.12%).
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Table 3. AUROC, AUPR-In (EMNISTCc is positive case) and AUPR-Out (EMNISTc
is negative case) values for a NN meta classifier. “All” contains omniglot, not MNIST,
CIFAR10, normal noise and uniform noise. We used 200 samples of each concept that
was additionally included into the training set. The supplied features are all gradient
based metrics as well as the entropy. The displayed values are averages over 5 differently
initialized NN meta classifiers for each of the 10 CNNs trained on the EMNIST dataset.
All values are in percentage and the values in brackets are the standard deviations of
the mean in percentage. To get the mean within the sample multiply by +/10.

Wrong Entropy Softmax Training set for the neural network meta classifier
datasets baseline [11] [ENINIST | EMNIST | EMNIST EMNIST valida-
validation validation 4+ | validation + tion 4+ uniform
uniform uniform noise + CIFAR10 +
noise noise + CIFAR10 | omniglot
AUROC
EMNISTw 97.74 (0.02) |97.84 (0.02) |94.59 (0.17) | 96.51 (0.08) |96.69 (0.08) 96.68 (0.07)
Omniglot 98.05 (0.03) | 97.84 (0.03) |94.38 (0.15)|97.29 (0.12) | 97.44 (0.10) 97.84 (0.06)
notMNIST | 95.41 (0.15) | 95.24 (0.15) |85.90 (0.49) | 93.22 (0.46) | 94.49 (0.28) 94.86 (0.22)
CIFAR10 99.24 (0.03) |99.03 (0.04) |81.19 (1.40)|96.27 (0.63) | 99.12 (0.03) 99.09 (0.03)
Normal noise |94.36 (0.54) |94.49 (0.50) |56.09 (1.56) 98.37 (0.08)|98.34 (0.09) 98.17 (0.10)
Uniform noise | 94.31 (0.84) | 93.87 (0.85) |86.77 (1.16)|94.22 (0.54) |93.87 (0.71) 94.42 (0.70)
All 96.04 (0.19) |95.83 (0.19) |80.55 (0.49) | 95.49 (0.29) | 96.36 (0.19) 96.64 (0.16)
AUPR-In
EMNISTw | 99.97 (0.02) |99.97 (0.02) |99.89 (0.17)|99.95 (0.08) | 99.96 (0.08) 99.96 (0.07)
Omniglot 99.84 (0.03) | 99.82 (0.03) |99.04 (0.15)|99.73 (0.12) | 99.75 (0.10) 99.80 (0.06)
notMNIST 99.45 (0.15) |99.43 (0.15) |95.86 (0.49) | 98.83 (0.46) |99.19 (0.28) 99.29 (0.22)
CIFAR10 99.95 (0.03) |99.94 (0.04) |95.47 (1.40)|99.41 (0.63) | 99.94 (0.03) 99.93 (0.03)
Normal noise |99.59 (0.54) |99.60 (0.50) |92.72 (1.56)|99.89 (0.08) |99.89 (0.09) 99.88 (0.10)
Uniform noise | 99.65 (0.84) |99.62 (0.85) |98.05 (1.16)|99.56 (0.54) |99.53 (0.71) 99.57 (0.70)
All 98.66 (0.19) |98.59 (0.19) |84.98 (0.49)|97.72 (0.29) | 98.53 (0.19) 98.71 (0.16)
AUPR-Out

EMNISTw 35.83 (0.30) | 39.94 (0.32) |32.95 (0.28) | 36.02 (0.39) |35.98 (0.42) 35.33 (0.40)
Omniglot 83.48 (0.21) | 80.45 (0.22) |74.17 (0.38)|80.36 (0.71) | 81.46 (0.60) 83.40 (0.39)
notMNIST | 74.86 (0.38) |14.59 (0.06) |64.57 (0.42)|71.53 (0.79) | 74.91 (0.61) 75.13 (0.49)
CIFAR10 91.27 (0.39) | 87.38 (0.46) |54.45 (1.17)|73.93 (2.39) | 90.84 (0.55) 89.82 (0.64)
Normal noise |54.98 (2.16) |57.32 (1.79) |18.57 (0.76)|68.73 (1.73) | 67.89 (1.77) 65.12 (1.74)
Uniform noise | 37.97 (2.50) |36.63 (2.23) |56.66 (1.90) | 58.56 (2.70) | 56.59 (2.82) 59.53 (2.94)
All 89.17 (0.40) | 88.07 (0.39) |75.64 (0.48)|89.38 (0.47) |91.23 (0.35) 91.55 (0.32)

6 Conclusion and Outlook

We introduced a new set of metrics that measures the uncertainty of deep CNNs.
These metrics have a comparable performance with the widely used entropy and
maximum softmax probability to meta-classify whether a certain classification
proposed by the underlying CNN is presumably correct or incorrect. Here the
performance is measured by AUROC, AUPR-In and AUPR-~Out. Entropy and
softmax probability perform equally well or slightly better than any single mem-
ber of the new gradient based metrics for the detection of unknown concepts
like EMNIST letters, gray scale converted CIFAR10 images and uniform noise
where simple thresholding criteria are applied. But still, our new metrics allow
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contributions of different layers and weights to the total uncertainty. Combining
the gradient metrics together with entropy in a more complex meta classifier
increases the ability to identify out-of-distribution examples, so that in some
cases these meta classifiers outperform the baseline. Additional calibration by
including a few samples of unknown concepts increases the performance signifi-
cantly. Uniform noise proved to raise the overall performance, without the need
of more labels. Overall the results for the classification of correct or incorrect
predictions increased when the meta classifier was supplied with more distinct
concepts in the training set. It seems that the higher number of uncertainty met-
rics helps to better hedge the correctly classified samples from the variety of out
of sample classes, which would be difficult, if only one metric is available. Note
that this increase in meta classification is particularly valuable, if one does not
want to deteriorate the classification performance of the underlying classifier by
additional classes for the known unknowns.

As future work we want to evaluate the performance and robustness of such
gradient metrics on different tasks in pattern recognition. Further features could
be generated by applying the metrics to activations rather than gradients. One
could also investigate the possibility of generating artificial samples, labeled as
incorrect, for the training set of the meta classifier in order to further improve
the results.
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Abstract. We propose a novel end-to-end neural network architecture
that, once trained, directly outputs a probabilistic clustering of a batch
of input examples in one pass. It estimates a distribution over the num-
ber of clusters k, and for each 1 < k < kmax, a distribution over
the individual cluster assignment for each data point. The network is
trained in advance in a supervised fashion on separate data to learn
grouping by any perceptual similarity criterion based on pairwise labels
(same/different group). It can then be applied to different data contain-
ing different groups. We demonstrate promising performance on high-
dimensional data like images (COIL-100) and speech (TIMIT). We call
this “learning to cluster” and show its conceptual difference to deep met-
ric learning, semi-supervise clustering and other related approaches while
having the advantage of performing learnable clustering fully end-to-end.

Keywords: Perceptual grouping - Learning to cluster
Speech & image clustering

1 Introduction

Consider the illustrative task of grouping images of cats and dogs by perceived
similarity: depending on the intention of the user behind the task, the similarity
could be defined by animal type (foreground object), environmental nativeness
(background landscape, cp. Fig.1) etc. This is characteristic of clustering per-
ceptual, high-dimensional data like images [15] or sound [24]: a user typically has
some similarity criterion in mind when thinking about naturally arising groups
(e.g., pictures by holiday destination, or persons appearing; songs by mood, or
use of solo instrument). As defining such a similarity for every case is difficult,
it is desirable to learn it. At the same time, the learned model will in many
cases not be a classifier—the task will not be solved by classification—since the
number and specific type of groups present at application time are not known
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in advance (e.g., speakers in TV recordings; persons in front of a surveillance
camera; object types in the picture gallery of a large web shop).

Grouping objects with machine learning is usually approached with cluster-
ing algorithms [16]. Typical ones like K-means [25], EM [14], hierarchical clus-
tering [29] with chosen distance measure, or DBSCAN [8] each have a specific
inductive bias towards certain similarity structures present in the data (e.g.,
K-means: Euclidean distance from a central point; DBSCAN: common point
density). Hence, to be applicable to above-mentioned tasks, they need high-level
features that already encode the aspired similarity measure. This may be solved
by learning salient embeddings [28] with a deep metric learning approach [12],
followed by an off-line clustering phase using one of the above-mentioned algo-
rithm.

However, it is desirable to combine these distinct phases (learning salient
features, and subsequent clustering) into an end-to-end approach that can be
trained globally [19]: it has the advantage of each phase being perfectly adjusted
to the other by optimizing a global criterion, and removes the need of man-
ually fitting parts of the pipeline. Numerous examples have demonstrated the
success of neural networks for end-to-end approaches on such diverse tasks as
speech recognition [2], robot control [21], scene text recognition [34], or music
transcription [35].

Fig. 1. Images of cats (top) and dogs (bottom) in urban (left) and natural (right)
environments.

In this paper, we present a conceptually novel approach that we call “learning
to cluster” in the above-mentioned sense of grouping high-dimensional data by
some perceptually motivated similarity criterion. For this purpose, we define
a novel neural network architecture with the following properties: (a) during
training, it receives pairs of similar or dissimilar examples to learn the intended
similarity function implicitly or explicitly; (b) during application, it is able to
group objects of groups never encountered before; (c) it is trained end-to-end in
a supervised way to produce a tailor-made clustering model and (d) is applied
like a clustering algorithm to find both the number of clusters as well as the
cluster membership of test-time objects in a fully probabilistic way.

Our approach builds upon ideas from deep metric embedding, namely to learn
an embedding of the data into a representational space that allows for specific
perceptual similarity evaluation via simple distance computation on feature vec-
tors. However, it goes beyond this by adding the actual clustering step—grouping



128 B. B. Meier et al.

by similarity—directly to the same model, making it trainable end-to-end. Our
approach is also different from semi-supervised clustering [4], which uses labels
for some of the data points in the inference phase to guide the creation of groups.
In contrast, our method uses absolutely no labels during inference, and more-
over doesn’t expect to have seen any of the groups it encounters during infer-
ence already during training (cp. Fig.2). Its training stage may be compared
to creating K-means, DBSCAN etc. in the first place: it creates a specific clus-
tering model, applicable to data with certain similarity structure, and once cre-
ated/trained, the model performs “unsupervised learning” in the sense of finding
groups. Finally, our approach differs from traditional cluster analysis [16] in how
the clustering algorithm is applied: instead of looking for patterns in the data in
an unbiased and exploratory way, as is typically the case in unsupervised learn-
ing, our approach is geared towards the use case where users know perceptually
what they are looking for, and can make this explicit using examples. We then
learn appropriate features and the similarity function simultaneously, taking full
advantage of end-to-end learning.
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Fig. 2. Training vs. testing: cluster types encountered during application/inference
are never seen in training. Exemplary outputs (right-hand side) contain a partition
for each k (1-3 here) and a corresponding probability (best highlighted blue). (Color
figure online)

Our main contribution in this paper is the creation of a neural network archi-
tecture that learns to group data, i.e., that outputs the same “label” for “similar”
objects regardless of (a) it has ever seen this group before; (b) regardless of the
actual value of the label (it is hence not a “class”); and (c) regardless of the num-
ber of groups it will encounter during a single application run, up to a predefined
maximum. This is novel in its concept and generality (i.e., learn to cluster pre-
viously unseen groups end-to-end for arbitrary, high-dimensional input without
any optimization on test data). Due to this novelty in approach, we focus here on
the general idea and experimental demonstration of the principal workings, and
leave comprehensive hyperparameter studies and optimizations for future work.
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In Sect. 2, we compare our approach to related work, before presenting the model
and training procedure in detail in Sect. 3. We evaluate our approach on different
datasets in Sect. 4, showing promising performance and a high degree of gener-
ality for data types ranging from 2D points to audio snippets and images, and
discuss these results with conclusions for future work in Sect. 5.

2 Related Work

Learning to cluster based on neural networks has been approached mostly as
a supervised learning problem to extract embeddings for a subsequent off-line
clustering phase. The core of all deep metric embedding models is the choice
of the loss function. Motivated by the fact that the softmax-cross entropy loss
function has been designed as a classification loss and is not suitable for the
clustering problem per se, Chopra et al. [7] developed a “Siamese” architecture,
where the loss function is optimized in a way to generate similar features for
objects belonging to the same class, and dissimilar features for objects belong-
ing to different classes. A closely related loss function called “triplet loss” has
been used by Schroff et al. [32] to get state-of-the-art accuracy in face detec-
tion. The main difference from the Siamese architecture is that in the latter
case, the network sees same and different class objects with every example. It is
then optimized to jointly learn their feature representation. A problem of both
approaches is that they are typically difficult to train compared to a standard
cross entropy loss.

Song et al. [37] developed an algorithm for taking full advantage of all the
information available in training batches. They later refined the work [36] by
proposing a new metric learning scheme based on structured prediction, which is
designed to optimize a clustering quality metric (normalized mutual information
[27]). Even better results were achieved by Wong et al. [38], where the authors
proposed a novel angular loss, and achieved state-of-the-art results on the chal-
lenging real-world datasets Stanford Cars [17] and Caltech Birds [5]. On the
other hand, Lukic et al. [23] showed that for certain problems, a carefully chosen
deep neural network can simply be trained with softmax-cross entropy loss and
still achieve state-of-the-art performance in challenging problems like speaker
clustering. Alternatively, Wu et al. [26] showed that state-of-the-art results can
be achieved simply by using a traditional margin loss function and being careful
on how sampling is performed during the creation of mini-batches.

On the other hand, attempts have been made recently that are more similar
to ours in spirit, using deep neural networks only and performing clustering
end-to-end [1]. They are trained in a fully unsupervised fashion, hence solve a
different task then the one we motivated above (that is inspired by speaker- or
image clustering based on some human notion of similarity). Perhaps first to
group objects together in an unsupervised deep learning based manner where Le
et al. [18], detecting high-level concepts like cats or humans. Xie et al. [40] used
an autoencoder architecture to do clustering, but experimental evaluated it only
simplistic datasets like MNIST. CNN-based approaches followed, e.g. by Yang
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et al. [42], where clustering and feature representation are optimized together.
Greff et al. [10] performed perceptual grouping (of pixels within an image into
the objects constituting the complete image, hence a different task than ours)
fully unsupervised using a neural expectation maximization algorithm. Our work
differs from above-mentioned works in several respects: it has no assumption on
the type of data, and solves the different task of grouping whole input objects.
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Fig. 3. Our complete model, consisting of (a) the embedding network, (b) cluster-
ing network (including an optional metric learning part, see Sect.3.3), (c) cluster-
assignment network and (d) cluster-count estimating network.

3 A Model for End-to-End Clustering of Arbitrary Data

Our method learns to cluster end-to-end purely ab initio, without the need to
explicitly specify a notion of similarity, only providing the information whether
two examples belong together. It uses as input n > 2 examples x;, where n
may be different during training and application and constitutes the number of
objects that can be clustered at a time, i.e. the maximum number of objects in a
partition. The network’s output is two-fold: a probability distribution P(k) over
the cluster count 1 < k < kpayx; and probability distributions P(- | x;, k) over
all possible cluster indexes for each input example x; and for each k.

3.1 Network Architecture

The network architecture (see Fig.3) allows the flexible use of different input
types, e.g. images, audio or 2D points. An input z; is first processed by an
embedding network (a) that produces a lower-dimensional representation z; =
z(x;). The dimension of z; may vary depending on the data type. For example,
2D points do not require any embedding network. A fully connected layer (FC)
with LeakyReLU activation at the beginning of the clustering network (b) is
then used to bring all embeddings to the same size. This approach allows to use
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the identical subnetworks (b)—(d) and only change the subnet (a) for any data
type. The goal of the subnet (b) is to compare each input z(x;) with all other
z(xj;), in order to learn an abstract grouping which is then concretized into
an estimation of the number of clusters (subnet (d)) and a cluster assignment
(subnet (c)).

To be able to process a non-fixed number of examples n as input, we use
a recurrent neural network. Specifically, we use stacked residual bi-directional
LSTM-layers (RBDLSTM), which are similar to the cells described in [39] and
visualized in Fig.4. The residual connections allow a much more effective gra-
dient flow during training [11] and avoid vanishing gradients. Additionally, the
network can learn to use or bypass certain layers using the residual connections,
thus reducing the architectural decision on the number of recurrent layers to the
simpler one of finding a reasonable upper bound.

Fig. 4. RBDLSTM-layer: A BDLSTM with residual connections (dashed lines). The
variables x; and y; are named independently from the notation in Fig. 3.

The first of overall two outputs is modeled by the cluster assignment net-
work (c). It contains a softmax-layer to produce P(¢ | x;, k), which assigns a
cluster index ¢ to each input z;, given k clusters (i.e., we get a distribution
over possible cluster assignments for each input and every possible number of
clusters). The second output, produced by the cluster-count estimating network
(d), is built from another BDLSTM-layer. Due to the bi-directionality of the
network, we concatenate its first and the last output vector into a fully con-
nected layer of twice as many units using again LeakyReLUs. The subsequent
softmax-activation finally models the distribution P(k) for 1 < k < kpax. The
next subsection shows how this neural network learns to approximate these two
complicated probability distributions [20] purely from pairwise constraints on
data that is completely separate from any dataset to be clustered. No labels for
clustering are needed.



132 B. B. Meier et al.

3.2 Training and Loss

In order to define a suitable loss-function, we first define an approximation
(assuming independence) of the probability that z; and z; are assigned to the
same cluster for a given k as

ZPEIIZ, P(C] ), k).

By marginalizing over k, we obtain P;;, the probability that z; and z; belong
to the same cluster:

kmax

k
ZJ_ZP ZPNJ:,, Pl |z, k).
k=1 =1

Let y;; = 1 if @; and «; are from the same cluster (e.g., have the same group
label) and 0 otherwise. The loss component for cluster assignments, Lc,, is then
given by the weighted binary cross entropy as

Lea = MTEI) Z (p1yij log(Pij) + @2(1 — yij) log(1 — Pij))
1<J

with weights 1 and @s. The idea behind the weighting is to account for the
imbalance in the data due to there being more dissimilar than similar pairs
(x;, ;) as the number of clusters in the mini batch exceeds 2. Hence, the weight-
ing is computed using 1 = ¢/1 — ¢ and @3 = ¢,/p, with ¢ being the expected
value of y;; (i.e., the a priori probability of any two samples in a mini batch com-
ing from the same cluster), and ¢ a normalization factor so that ¢1 4+ @2 = 2. The
value ¢ is computed over all possible cluster counts for a fixed input example
count n, as during training, the cluster count is randomly chosen for each mini
batch according to a uniform distribution. The weighting of the cross entropy
given by ¢ is then used to make sure that the network does not converge to
a sub-optimal and trivial minimum. Intuitively, we thus account for permuta-
tions in the sequence of examples by checking rather for pairwise correctness
(probability of same/different cluster) than specific indices.

The second loss term, L., penalizes a wrong number of clusters and is given
by the categorical cross entropy of P(k) for the true number of clusters & in the
current mini batch:

Lo = _IOg(P(k>)

The complete loss is given by Lot = Lcc + ALcs. During training, we prepare
each mini batch with N sets of n input examples, each set with k = 1... knax
clusters chosen uniformly. Note that this training procedure requires only the
knowledge of y;; and is thus also possible for weakly labeled data. All input
examples are randomly shuffled for training and testing to avoid that the network
learns a bias w.r.t. the input order. To demonstrate that the network really learns
an intra-class distance and not just classifies objects of a fixed set of classes, it is
applied on totally different clusters at evaluation time than seen during training.
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3.3 Implicit vs. Explicit Distance Learning

To elucidate the importance and validity of the implicit learning of distances in
our subnetwork (b), we also provide a modified version of our network architec-
ture for comparison, in which the calculation of the distances is done explicitly.
Therefore, we add an extra component to the network before the RBDLSTM
layers, as can be seen in Fig.3: the optional metric learning block receives the
fixed-size embeddings from the fully connected layer after the embedding net-
work (a) as input and outputs the pairwise distances of the data points. The
recurrent layers in block (b) then subsequently cluster the data points based on
this pairwise distance information [3,6] provided by the metric learning block.

We construct a novel metric learning block inspired by the work of Xing et al.
[41]. In contrast to their work, we optimize it end-to-end with backpropagation.
This has been proposed in [33] for classification alone; we do it here for a clus-
tering task, for the whole covariance matrix, and jointly with the rest of our
network. We construct the non-symmetric, non-negative dissimilarity measure
d? between two data points z; and x; as

&% (i, 25) = (2 — 25) " Az — ;)

and let the neural network training optimize A through L. without intermedi-
ate losses. The matrix A as used in d% can be thought of as a trainable distance
metric. In every training step, it is projected into the space of positive semidef-
inite matrices.

4 Experimental Results

To assess the quality of our model, we perform clustering on three different
datasets: for a proof of concept, we test on a set of generated 2D points with a
high variety of shapes, coming from different distributions. For speaker cluster-
ing, we use the TIMIT [9] corpus, a dataset of studio-quality speech recordings
frequently used for pure speaker clustering in related work. For image clustering,
we test on the COIL-100 [30] dataset, a collection of different isolated objects in
various orientations. To compare to related work, we measure the performance
with the standard evaluation scores misclassification rate (MR) [22] and normal-
ized mutual information (NMI) [27]. Architecturally, we choose m = 14 BDL-
STM layers and 288 units in the FC layer of subnetwork (b), 128 units for the
BDLSTM in subnetwork (d), and o = 0.3 for all LeakyReLUs in the experiments
below. All hyperparameters where chosen based on preliminary experiments to
achieve reasonable performance, but not tested nor tweaked extensively. The
code and further material and experiments are available online!.

We set kmax = 5 and A = 5 for all experiments. For the 2D point data, we use
n = 72 inputs and a batch-size of N = 200 (We used the batch size of N = 50
for metric learning with 2D points). For TIMIT, the network input consists of

! See https://github.com/kutoga/learning2cluster.
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n = 20 audio snippets with a length of 1.28 s, encoded as mel-spectrograms with
128 x 128 pixels (identical to [24]). For COIL-100, we use n = 20 inputs with
a dimension of 128 x 128 x 3. For TIMIT and COIL-100, a simple CNN with
3 conv/max-pooling layers is used as subnetwork (a). For TIMIT, we use 430
of the 630 available speakers for training (and 100 of the remaining ones each
for validation and evaluation). For COIL-100, we train on 80 of the 100 classes
(10 for validation, 10 for evaluation). For all runs, we optimize using Adadelta
[43] with a learning rate of 5.0. Example clusterings are shown in Fig. 5. For all
configurations, the used hardware set the limit on parameter values: we used the
maximum possible batch size and values for n and kp.x that allow reasonable
training times. However, values of n > 1000 where tested and lead to a large
decrease in model accuracy. This is a major issue for future work.

Fig. 5. Clustering results for (a) 2D point data, (b) COIL-100 objects, and (c) faces
from FaceScrub (for illustrative purposes). The color of points/colored borders of
images depict true cluster membership. (Color figure online)

Table 1. NMI € [0,1] and MR € [0, 1] averaged over 300 evaluations of a trained
network. We abbreviate our “learning to cluster” method as “L2C”.

2D points (self generated) | TIMIT COIL-100

MR | NMI MR |NMI |MR | NMI
L2C (=our method) 0.004 | 0.993 0.060 | 0.928 |0.116 | 0.867
L2C + Euclidean 0.177 | 0.730 0.093 | 0.883 | 0.123 | 0.884
L2C + Mahalanobis 0.185 | 0.725 0.104 | 0.882 | 0.093 | 0.890
L2C + Metric Learning 0.165 | 0.740 0.101 | 0.880 | 0.100 | 0.880
Random cluster assignment | 0.485 | 0.232 0.435|0.346 | 0.435 | 0.346
Baselines (related work) k-Means: MR = 0.178, | [24]: MR = 0 | [42]: NMI = 0.985

NMI = 0.796

DBSCAN: MR = 0.265,

NMI = 0.676

The results on 2D data as presented in Fig. 5a demonstrate that our method
is able to learn specific and diverse characteristics of intuitive groupings. This is
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superior to any single traditional method, which only detects a certain class of
cluster structure (e.g., defined by distance from a central point). Although [24]
reach moderately better scores for the speaker clustering task and [42] reach a
superior NMI for COIL-100, our method finds reasonable clusterings, is more
flexible through end-to-end training and is not tuned to a specific kind of data.
Hence, we assume, backed by the additional experiments to be found online, that
our model works well also for other data types and datasets, given a suitable
embedding network. Table 1 gives the numerical results for said datasets in the
row called “L2C” without using the explicit metric learning block. Extensive
preliminary experiments on other public datasets like e.g. FaceScrub [31] confirm
these results: learning to cluster reaches promising performance while not yet
being on par with tailor-made state-of-the-art approaches.

We compare the performance of our implicit distance metric learning method
to versions enhanced by different explicit schemes for pairwise similarity com-
putation prior to clustering. Specifically, three implementations of the optional
metric learning block in subnetwork (b) are evaluated: using a fixed diagonal
matrix A (resembling the Euclidean distance), training a diagonal A (resem-
bling Mahalanobis distance), and learning the entire coefficients of the distance
matrix A. Since we argue above that our approach combines implicit deep metric
embedding with clustering in an end-to-end architecture, one would not expect
that adding explicit metric computation changes the results by a large extend.
This assumption is largely confirmed by the results in the “L2C+...” rows in
Table 1: for COIL-100, Euclidean gives slightly worse, and the other two slightly
better results than L2C alone; for TIMIT, all results are worse but still rea-
sonable. We attribute the considerable performance drop on 2D points using all
three explicit schemes to the fact that in this case much more instances are to
be compared with each other (as each instance is smaller than e.g. an image, n
is larger). This might have needed further adaptations like e.g. larger batch sizes
(reduced here to N = 50 for computational reasons) and longer training times.

5 Discussion and Conclusions

We have presented a novel approach to learn neural models that directly output
a probabilistic clustering on previously unseen groups of data; this includes a
solution to the problem of outputting similar but unspecific “labels” for similar
objects of unseen “classes”. A trained model is able to cluster different data
types with promising results. This is a complete end-to-end approach to clus-
tering that learns both the relevant features and the “algorithm” by which to
produce the clustering itself. It outputs probabilities for cluster membership of
all inputs as well as the number of clusters in test data. The learning phase only
requires pairwise labels between examples from a separate training set, and no
explicit similarity measure needs to be provided. This is especially useful for high-
dimensional, perceptual data like images and audio, where similarity is usually
semantically defined by humans. Our experiments confirm that our algorithm is
able to implicitly learn a metric and directly use it for the included clustering.
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This is similar in spirit to the very recent work of Hsu et al. [13], but does not
need and optimization on the test (clustering) set and finds k autonomously. It
is a novel approach to learn to cluster, introducing a novel architecture and loss
design.

We observe that the clustering accuracy depends on the availability of a
large number of different classes during training. We attribute this to the fact
that the network needs to learn intra-class distances, a task inherently more
difficult than just to distinguish between objects of a fixed amount of classes
like in classification problems. We understand the presented work as an early
investigation into the new paradigm of learning to cluster by perceptual similar-
ity specified through examples. It is inspired by our work on speaker clustering
with deep neural networks, where we increasingly observe the need to go beyond
surrogate tasks for learning, training end-to-end specifically for clustering to
close a performance leak. While this works satisfactory for initial results, points
for improvement revolve around scaling the approach to practical applicability,
which foremost means to get rid of the dependency on n for the partition size.

The number n of input examples to assess simultaneously is very relevant
in practice: if an input data set has thousands of examples, incoherent single
clusterings of subsets of n points would be required to be merged to produce a
clustering of the whole dataset based on our model. As the (RBD) LSTM layers
responsible for assessing points simultaneously in principle have a long, but still
local (short-term) horizon, they are not apt to grasp similarities of thousands
of objects. Several ideas exist to change the architecture, including to replace
recurrent layers with temporal convolutions, or using our approach to seed some
sort of differentiable K-means or EM layer on top of it. Preliminary results on
this exist. Increasing n is a prerequisite to also increase the maximum number
of clusters k, as k < n. For practical applicability, k¥ needs to be increased by an
order of magnitude; we plan to do this in the future. This might open up novel
applications of our model in the area of transfer learning and domain adaptation.

Acknowledgements. We thank the anonymous reviewers for helpful feedback.
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Abstract. Multi-instance multi-label learning (MIML) is a framework
in machine learning in which each object is represented by multiple
instances and associated with multiple labels. This relatively new app-
roach has achieved success in various applications, particularly those
involving learning from complex objects. Because of the complexity of
MIML, the cost of data labeling increases drastically along with the
improvement of the model performance. In this paper, we introduce a
MIML active learning approach to reduce the labeling costs of MIML
data without compromising the model performance. Based on a query
strategy, we select and request from the Oracle the label set of the
most informative object. Our approach is formulated in a pool-based sce-
nario and uses MIML-kNN as the base classifier. This classifier for MIML
is based on the k-Nearest Neighbor algorithm and has achieved supe-
rior performance in different data domains. We proposed novel query
strategies and also implemented previously used query strategies for
MIML learning. Finally, we conducted an experimental evaluation on
various benchmark datasets. We demonstrate that these approaches can
achieve significantly improved results than without active selection for
all datasets on various evaluation criteria.

Keywords: Multi-instance - Multi-label - Active learning
k nearest neighbors - Partially supervised learning
Acoustic classification of birds - Text categorization

Scene classification

1 Introduction

In standard supervised learning, an object consists of a single instance, rep-
resented by a feature vector, and is associated with a single class label. This
framework is known as single-instance single-label (SISL) learning. The goal of
SISL learning is to train a classifier model which learns from training instances
how to assign a class label to any feature vector. However, in many real appli-
cations, such a learning framework is less convenient to model complex objects,
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which intrinsic representation is a collection of instances. Likewise, these com-
plex objects may also be associated simultaneously with multiple class labels.
For example, a scene image may comprise images of mountains, lakes, and trees,
and we may associate it with the labels Landscape and Summer at the same
time. If we extract a single instance to represent it, some useful information may
get lost. In another approach, we can segment the image into multiple regions
and extract one instance from each region of interest. Another example could
be in text categorization tasks where a document may be annotated with mul-
tiple labels. To fully exploit the content with multiple topics, it would be more
advantageous if we represent each paragraph with one instance. Zhou and Zhang
[22] introduced multi-instance multi-label (MIML) learning, where each object
is represented by a bag of multiple instances (feature vectors with fixed-length),
and each object is associated with a set of class labels. Several algorithms for
MIML have been proposed and achieved better performance in image and text
classification, in comparison to conventional methods adapted for MIML classifi-
cation. Other successful applications include genome protein function prediction
[18], gene expression patterns annotation [20], relationship extraction [15], video
understanding [19], classification of bird species [1,2], and predicting tags for
web pages [14].

In most cases of supervised learning, it is necessary to use large amounts of
training examples to obtain accurate models. Nevertheless, it is a typical situ-
ation that the costs of manually labeled data are expensive or time-consuming.
Active learning is an approach of a partially-supervised learning algorithm
[3,4,10] that reduces the required amount of training data without compro-
mising the model performance. This goal is accomplished by selecting the most
informative examples from the unlabeled examples and query their label from
an oracle (expert). Pool-based sampling is the most common scenario in active
learning in which queries are drawn from a static or closed pool of unlabeled
examples. Many active learning strategies have been proposed to estimate the
informativeness of unlabeled samples [13,17]. These query strategies are based
on different measures, e.g., uncertainty, expected error reduction and informa-
tion density. A comprehensive literature survey on query strategies is provided
by Settles [12].

For MIML datasets, the cost of labeled data depends on the maximum
amount of possible labels for a bag of instances. In some applications, MIML
provides a major advantage because it is easier or less costly to obtain labels at
the bag-level than at instance-level. Nevertheless, because of their multiplicity
in the input and output spaces, the required amount of training data to improve
the accuracy model increases dramatically. For this reason, it is of great interest
to implement active learning algorithms in a MIML framework. Currently, few
studies have proposed active learning methods for MIML. Retz and Schwenker
[9] use MIMLSVM [23] as the base classifier in which the MIML data is reduced to
a bag-level output vector. This representation is later used to formulate an active
learning strategy. Another proposed method uses MIMLFAST as base classifiers
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and the approach actively queries the most valuable information by exploiting
diversity and uncertainty in both the input and output spaces [5].

The efficiency of an active learning algorithm relies not only on the query
strategy design but also on the selection of the base classifier. Two of the most
commonly used classifiers are MIMLBOOST and MIMLSVM [22,23]. Nevertheless,
MiIMLBOOST can handle only small datasets and does not yield good perfor-
mance in general [6]. MIMLSVM reaches a satisfying classification accuracy for
text and image, but usually not for other types of data sets [1,6]. A better alter-
native is MIML-kNN[21] (Multi-Instance Multi-Label k-Nearest Neighbor) which
combines the well-known k-Nearest Neighbor technique with MIML. Given a
test example, MIML-ANN not only considers its x neighbors but also considers
its ' citers, i.e., examples that consider the test example within their s’ near-
est neighbors. The identification of neighbors and citers relies on the Hausdorff
distance which is an estimation of the distances between bags. One advantage of
using MIML-ANN with pool-based sampling is that the distance between all bags
(i.e., labeled and unlabeled bags) can be precomputed and stored for later use in
any model learning or prediction. Beside this, MIML-kNN classifiers have achieve
a superior performance than the MIMLSVM and MIMLBOOST for different types
of data such as text [11,21], image [21,22], and bio-acoustic data [1].

In this paper, we introduce an active multi-instance multi-label learning app-
roach within a pool-based scenario and use MIML-£NN as the base classifier. This
method aims to reduce the amount of training MIML data needed to achieve
the highest possible classification performance. This paper presents two major
contributions to active learning and MIML learning. First, we motivate and
introduce several new query strategies within the MIML framework. Later we
conduct an empirical study of our proposed active learning methods on a variety
of benchmark MIML data.

The remainder of this paper is organized as follows. Section2 describes in
detail the proposed approach. Section 3 describes the experiments and presents
their results, followed by conclusions in Sect. 4.

2 Method

2.1 MIML Framework

In a MIML framework, an example X consists of a bag of instances X = {x;}7",
where m is the number of instances and each instance x; = [z1,...,zp] is a D-
dimensional feature vector. The number of instances m can variate among bags.
In this framework, each bag X can be associated to one or more labels and
they are represented by a label set Y = {yi} where k € {1,...,K}. For our
purposes, Y is represented by a label indicator vector I =[I4, ..., Ix] where the
entry I, = 1 if yp € Y and I = 0 otherwise. Given a fully labeled training
set £ = {(X;,Y;)} ., the learning task in a MIML framework is to train a
classification model which is a function A : 2% — 2% that maps a set of instances
X e X toaset of labels Y € ).
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MIML algorithms such as MIMLSVM, MIMLRBF and MIML-KNN reduce the
MIML problem to a single-instance multi-label problem by associating each bag
X with a bag-level feature vector z (X) € RX which combines information from
the instances in the bag. Each algorithm uses different approaches to compute
a bag-level feature vector. Nevertheless all these methods heavily depend on the
use of some form of bag-level distance measure. The most common choice is
the Hausdorff distance Dy (X, X’). Retz and Schwenker [9] examined several
variations of this distance. For this paper we consider the maximum D7%",
median D74 and average D};Y Hausdorff distances defined as:

pmer (X X' = i / i ¢ 1
e (X, X) = o { e min, ), g i () | (1a)
1
Dyt (X, X') = = ( medi in d(x,x’), median min d (x, x’ 1b
0000 = 5 e iy ) gm0 ) (1)
1
DY (X, X") = min d(x,x’) + Z min d (x,x") (1c)
| X |+ X xeXXEX x’eX’XEX
where d (x,x") = ||x — x|| is the Euclidean distance between instances.

2.2 MIML-ENN

In the following we describe MIML-ANN algorithm [21]. Given an example bag
X and a training set £ = {(X;,Y])}, first we identify in the training bags
X = {X.}, the K nearest neighbors, and the «’ citers of X by employing the
Hausdorff metric Dj; (X, X’). This means that we have to identify the neighbors
set N, (X) and the citers set C.s (X). These sets are defined as follows

N, (X) = {A|A is one of X’sk nearest neighbors in X} (2a)
C (X) = {B]|X is one of B’sk’ nearest neighbors in X U{X}} (2b)

The citers bags are the bags that consider X to be one of their x’ nearest neigh-
bors. After the computation of Ny (X) and Cy (X), we defined a labeling counter
vector z (X) = [z1 (X),..., zx (X)] where the entry z; (X) is the number of bags
in Z(X) =N, (X)UCw (X) that include label y; in their label set. Using the
binary label vector I (X), z (X) is defined as

z(X)= ) I(X) (3)

X'eZ(X)

Later, the information contained in z(X) is used to obtain the predicted
label set Y associated to X by employing a prediction function f(X) =
[f1(X),..., fx (X)] such that

fu (X) = wi -2 (X) (4)

where w;— is the kth transposed column of the weight matric W = [wy, ..., Wgk].
The classification rule is that the label g belongs to the predicted label set
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Y(X) = {gr} only if fi(X) > 0. Hence, for the predicted indicator vector
i(X) = [fl, .. .,fK} the entry Iy = 1if fr(X) >0 and I = 0 otherwise. The
values of W are computed using a linear classification approach by minimizing
the following sum-of-squares error function

L K

Z (wi -2 (X)) — yi (Xl))2 (5)

=1 k=1

[\D\*—‘

This error minimization implies to solve the weight matrix W as in a least sum-
of-squares problem of the form (ZTZ) W = ZTY. In this case, the matrix W
is computed using a linear matrix inversion technique of singular value decom-
position.

2.3 Active Learning

In this part, we present the strategies of active learning for a multi-instance
multi-label data set using MIML-kNN as the base classifier. Initially we have a
set of labeled data £ = {(X;,Y;)} with L labeled bags and a set of unlabeled
data U = {X,} with U unlabeled bags. In an active learning scenario, usually
the amount of unlabeled data is much larger than the amount of labeled data,
i.e. U > L. The main task of an active learning algorithm is to select the most
informative bag X* according to some query strategy ¢ (X), which is a function
evaluated on each example X from the pool . In this work, the selection of the
bag X* is done according to

X* = argmax ¢ (X) (6)
Xeu

Algorithm 1 describes the pool-based active learning algorithm for training a
MIML-ENN model. One advantage of using MIML-ANN with pool-based sam-
pling, is that, the distance between all bags (i.e. labeled and unlabeled bags)
can be precomputed and stored for later use in any model learning or prediction
task. As in Algorithm 1, first we calculated the bag distance matriz D such that
d;j = Dy (X;, X;) for all bags X;, X;. Then from this matrix we can extract
the distance submatrix D, of the labeled bags and use it in the training of a
MIML-ANN model (see Eq.5). For classification of the bag X, we have to feed
the trained MIML-ANN model with the subtracted matrix Doysxy (see Eq.2).
In the following, we describe in detail the query strategies we proposed which
will be later compared in an empirical study.

Uncertainty Sampling (Unc). This approach is one of the most common
in SISL framework. Here a learner queries the instance that is most uncertain
how to label. For a muti-label problem we define the uncertainty as ¢ (X) =

(Y|X) where P(Y|X) is the bag posterior probability for the predicted
label set Y given the bag X. We calculate P(Y|X) as the probability given the
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Algorithm 1. Active kMIML
input:
L: Labeled data set {(X;,Y:)}
U: Unlabeled data set {X,}
K : Neighbors parameter
k': Citers parameter

output:

h : MIML-ANN model
1 begin
2 Calculate the distance matrix D using D (X;, X;) for all bags
Xi, Xj S {qu Xl}

3 | Train a MIML-ANN model h on £ using &, k" and Dz
4 repeat
5 Classify each bag X € U with trained MIML-ANN model h using

K,k ,D LU{X}

Calculate ¢ (X) for all X

Select the most informative bag X* with arg max ¢ (X)
Request the label set Y™ for X~

Remove X™* from U

10 Add (X*,Y*) to L

11 Train a MIML-kNN model on £ using &, s’ and Dz

© 0 N o

12 until stop criterion reached

combination of labels g founded in Y (X). For this we use a single-label posterior
probability P (§x]X) to estimate the uncertainty ¢ (X) as

o(X)=1- ] P@lX) (7)

??A-,Ef’

The MIML-ANN classifier output for the kth label is a prediction function f, (X).
This function outputs higher positive or lower negative values for very certain
positive or negative predictions respectively. Considering Eq. 4, this means that
when | f; (X)| > 0 the vectors w; and z are linearly codependent. For the most
uncertain label prediction then |fx (X)| ~ 0 which means that w; and z are
linearly independent. Based on this, we estimate P (g |X) using a normalization
on fi (X) using the Cauchy—Schwarz inequality as follows

. 1 w) -z (X)
PUX) =3 (nwz e )7+ 1) ®)

Diversity (Div). This method is based on the multi-label active learning
method proposed by Huang et al. [5,6]. This method considers that the most
informative bags are those where the number of predictions are inconsistent with
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the average of predicted labels in the training set. Using the indicator vector
I(X), ¢ (X) is formulated as follows

(9)

where

| LK
EZZIK‘ (10)

=1 k=1

Margin (Mrg). A high positive (or low negative) value of fi(X) means that
the model has a high certainty that X positively (or negatively) belongs to the
kth class. Meanwhile lower absolute values in f(X) indicate a high uncertainty.
This strategy chooses the bag which average output values are the nearest to
zero. This means

1 K
(X) = —?I;Mk (X)| (11)

Range (Rng). This method is similar to the margin query strategy. In this
case is considered that lower range of output values fi (X) indicates higher
uncertainty. This strategy is defined as

() = = (im0~ mjn i (X)) (12)

Percentile (Prc). This approach is related to ExtMidSelect used by Retz
und Schwenker [9]. This method measures the distance between the upper
and lower values of f(X) = [fi1,..., fx] delimited by the percentile value
F, (X) = percentile(f (X),p) at the percentage p = 100 (1 — pz) %, see Eq. 10.
The strategy is defined as

¢ (X) = —|F (X) = F (X)) (13)

where F; (X) and F| (X) are respectively the conditional means of the upper
and lower values, this means F; (X) = E[f(X)|fx > F,] and F| (X) =
Ef(X)[fx < Fpl.

Information Density (IDC & IDH). It has been suggested that uncertainty
based strategies for SISL are prone to querying outliers. To address this problem,
Settles et al. [13] proposed a strategy that favors uncertain samples nearest to
clusters of unlabeled samples. This strategy uses a similarity measure S (X) and
an uncertainty sampling ¢, (X) such that

¢ (X) = ¢u (X) - 5(X) (14)
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Table 1. Statistics on data sets used in experiments

Instances per bag Labels per bag
Dataset Bags Labels Inst. Feat. min max mean + std. min max mean + std.
Birds 548 13 10,232 38 2 43 87+79 1 5 2.1+1.0
Scene 2000 5 18000 15 9 9 9.0+00 1 3 1.2 +04
Reuters 2,000 7 7,119 243 2 26 3.6+27 1 3 1.2+ 04
CK+ 430 79 7,915 4391 4 66 184 +76 2 9 4.0+ 15
UnitPro(G.s.) 379 340 1,250 216 2 8 31+12 1 69 4.0+ 7.0

The uncertainty factor ¢, (X) is formulated as in Eq.7. We defined two types
of similarity measures. The first approach (IDC) is based on a cosine distance
using the formula

S/

X-X
(¢{0)] (X, X/) = == (15)
311
where X is a bag-level vector that is the mean of features over all instances
x; € X, thisis X = (l/m)zgn=1 x; where m = |X|. The similarity measure
based on cosine distance is defined as
1
S(X)=— > cos(X,X') (16)
U
X'el

The second approach (IDH) is based on the Hausdorff distance from Eq. 1. The
similarity measure is defined as

exp (Dy (X))
Z exp (Dy (X))

X'elUu

S(X)=1- (17)

where Dy (X) is the mean distance between the bag X and the unlabeled bags,
this is Dy (X) = (1/U) 25:1 Dy (X, X,,). In order to have comparable measures
we applied on Dy (X) a softmax averaging.

3 Experiments

We conduct a series of experiments to compare the performance of each of the
query strategies presented in this work. We employed five MIML benchmark
datasets including Birds [1,2], Reuters [11], Scene [22], CK+ [7,8] and Unit-
Pro(G.s.) [16,18]. A summary of the datasets is presented in Table1. All data
sets are publicly available and prepared as MIML datasets except for the CK+
dataset. We extracted this last one from the Cohn-Kanade dataset and the labels
correspond to action units categories. A bag represents an image sequence and
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Table 2. MIML-kANN parameters

Parameters Performance
Dataset Dy s & hil.| rl.] oe ] co.|l aa 1 ap. 1 ar.] afi]
Birds med 5 15[0.100 0.080 0.138 2.633 0.431 0.764 0.780 0.781
Scene med 1 9 ]0.171 0.182 0.340 0.975 0.463 0.620 0.575 0.597
Reuters max 5 17]0.037 0.031 0.078 0.355 0.820 0.895 0.910 0.903

CK+ maxr 43 19]0.034 0.124 0.198 28.14 0.163 0.757 0.544 0.633
UnitPro(G.s.) avg 43 11]0.025 0.356 0.653 175.9 0.267 0.237 0.297 0.263

we extracted appearance based (local binary patterns) and shape based (his-
togram of oriented gradients) features at each image. UnitPro(G.s.) dataset is
a complete proteome of the bacteria Geobacter sulfurreducens downloaded from
the UniProt databank [16].

For each dataset, we randomly sample 20% of bags as the test data, and the
rest as the unlabeled pool for active learning. Before the active learning tasks, 5%
of the unlabeled pool is randomly labeled to train an initial MIML-ANN model.
After each query, we train a MIML-ANN model with the extended labeled data
and we test the performance of this model on the test set. Additionally, we run an
experiment with a bag random sampling and use it as a reference. We run each
experiment until we label 50% of the original unlabeled pool. In the experiments,
a simulated Oracle provides the labels requested. We repeat the experiment
30 times for each of the datasets. The performance of the MIML-ANN models
using active learning was estimated with eight measures: hamming loss, ranking
loss, coverage, one error, average accuracy, average precision, average recall and
average fi-measure (see [1,22,23]). These measures are common performance
metrics for evaluation in MIML framework. Lower values for hamming loss,
ranking loss, coverage and one error imply a better performance and vice-versa
for the other four measures.

For each data set we tuned the number of neighbors x, the number of citers
k' and the type of Hausdorff distance Dy to obtain a maximum model perfor-
mance. We perform a cross-validation test over all combinations of (k,k’) €
{1,3,5,...,75}% with Dy € {Dpe* Dy?, Died}. For each combination we
tested 30 replicas with 20% and 80% of the data randomly selected as test-
ing and training set respectively. At last, we selected the parameters setting
that maximizes the average fi-measure. The results of the parameter tuning are
reported in Table 2.

The results of the performance experiments are shown in Table 3. The black
dot (e) indicates that the performance is significantly better than the bag random
sampling (Rnd). The white dot (o) indicates the opposite case. Regarding the
query strategy, we observe that among all datasets several strategies have supe-
rior performance than Rnd. The information density based approaches (IDD &
IDH) in UnitPro(G.s.) and Scene have significantly worse performance. In con-
trast, these strategies performed better using the CK+ and Birds dataset. The
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Table 3. Comparison of query strategies at 50% of data labeled. 7 (]) indicate that
higher (lower) values imply a better performance. e (o) indicate that the query strategy
is significantly better (worse) than a random bag sampling (Rnd) based on a paired
t-test at the 5% significance level (p < 0.05).

Rnd Unc Div Mrg Prc Rng IDC IDH
Birds
hl. | 0.116 0.111e 0.107e 0.097e 0.100e 0.101e 0.106e 0.116
rl. | 0.099 0.093e 0.089e 0.077e 0.077e 0.079e 0.086e 0.091e
o.e. | 0.188 0.183 0.173e 0.163e 0.157e 0.158e 0.178 0.189
co. | 2.889 2.804 2.752e 2.559e 2.552e¢ 2.584e 2.702e 2.761e
a.a. | 0.730 0.720 0.724 0.718 0.767e 0.768e 0.738 0.731
ap. T 0.821 0.826 0.835e 0.850e 0.852e¢ 0.848e 0.835e 0.822
ar. | 0.730 0.720 0.724 0.718 0.767e 0.768e 0.738 0.731
afi ] 0.773 0.769 0.775 0.778 0.807e 0.806e 0.783e 0.774
Scene
hl. | 0.196 0.2040 0.2000 0.187e 0.190e 0.191e 0.2050 0.2090
rd. | 0.210 0.2210 0.213 0.191e 0.193e 0.195e 0.2210 0.2260
o.e. | 0.380 0.3960 0.383 0.352¢ 0.362e 0.363e 0.3960 0.4040
co. | 1.100 1.1400 1.110 1.036e 1.039e 1.046e 1.1400 1.1600
a.a. | 0.493 0.492 0.496 0.4700 0.496 0.506e 0.487 0.494
a.p. | 0.754 0.7440 0.752 0.771e 0.767e 0.766e 0.7440 0.7390
ar. | 0.493 0.492 0.496 0.4700 0.496 0.506e 0.487 0.494
a.fi 1 0.596 0.592 0.597 0.5840 0.603 0.609e 0.588 0.592
Reuters
hl. | 0.045 0.042e 0.041e 0.0500 0.0480 0.0510 0.104 0.104
rd. | 0.039 0.035e 0.034e 0.0440 0.033e 0.039 0.121 0.121
o.e. | 0.100 0.087e 0.085e 0.1200 0.090e 0.1060 0.274 0.274
co. | 0.409 0.387e 0.381e 0.4360 0.374e 0.407 0.916 0.916
a.a. 0.872 0.901e 0.896e 0.8260 0.905¢ 0.883e 0.675 0.675
ap. | 0.934 0.941e 0.943e 0.9230 0.941e 0.931 0.816 0.816
a.r. | 0.872 0.901e 0.896e 0.8260 0.905¢ 0.883e 0.675 0.675
afil 0.902 0.921e 0.919e 0.8710 0.922¢ 0.906 0.738 0.738
CK+
hl. | 0.041 0.040 0.040 0.040 0.0430 0.0420 0.039e 0.040e
.| 0.163 0.152e 0.150e 0.157 0.157 0.157 0.146e 0.149e
o.e. | 0.270 0.246e 0.247e 0.268 0.264 0.263 0.250 0.240e
co. | 32.84 31.98 31.00e 32.19 32.31 32.08 30.54e 30.97e
a.a. | 0.492 0.514e 0.520e 0.514e 0.524e 0.526e 0.511e 0.500
ap. 1 0.599 0.615e 0.617e 0.609e 0.605 0.607 0.622e 0.622e
ar. | 0.492 0.514e 0.520e 0.514e 0.524e 0.526e 0.511e 0.500
a.fi 1 0.540 0.560e 0.564e 0.557e 0.561e 0.563e 0.561e 0.554e
UnitPro(G.s.)
hi. | 0.040 0.043 0.032e 0.027e 0.0640 0.0610 0.0760 0.0860
rl. | 0.503 0.496 0.494 0.498 0.501 0.514 0.5310 0.519
o.e. | 0.834 0.826 0.819 0.811e 0.824 0.828 0.8650 0.8660
co. | 196.9 192.3 192.5 187.6e 189.9e 192.6 212.50 201.7
a.a. | 0.180 0.202e 0.181 0.170 0.221e 0.202e 0.185 0.206e
a.p. 0.141 0.148 0.154 0.168e 0.158e 0.153 0.1010 0.1080
ar. | 0.180 0.202e 0.181 0.170 0.221e 0.202e 0.185 0.206e
afil 0.157 0.170 0.166 0.168 0.183e 0.173e 0.1290 0.1410

best performance among all datasets is achieved by the percentile strategy (Prc)
followed by margin (Mrg) and diversity (Div) strategies. Regarding the dataset,
in the Reuters and UnitPro(G.s.) dataset we observe in general a remarkable
performance of the strategies. In the Reuters dataset, uncertainty (Unc) and
diversity (Div) strategies are significantly better for all metrics.
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(a) Birds (b) Reuters (¢) UnitPro(G.s.)

Fig. 1. Example of query strategies performance based on the average fi-measure

0% 20%  s0% . s0% 10%  20%  30%  40%  50% 0%  20%  80%  40%  50%

07
Labeled data Labeled data Labeled data 4

(a) Birds (b) Reuters (¢) UnitPro(G.s.)

Fig. 2. Example of query strategies performance based on the hamming loss

Figures 1 and 2 shows the performance curves as the number of labeled data
increases until the stop criterion is reached (50% labeled). We show a selection
of the most representative curves based on the avg. fi-measure and hamming
loss metrics. We observe in Fig. 1b that the MIML-ANN model can reach its best
performance with much less labeled data (~25%) using uncertainty (Unc) or
percentile (Prc) query strategies. A similar situation can be observed in Fig.2c
where the MIML-ANN reaches nearly the lowest hamming loss at approx. 35% of
labeled data using the margin (Mrg) query strategy.

4 Conclusion

In this paper we proposed an active learning approach to reduce the labeling
cost of the MIML dataset using MIML-ANN as base classifier. We introduced
novel query strategies and also implemented previously used query strategies for
MIML learning. Finally, we conducted an experimental evaluation on various
benchmark datasets. We demonstrated that these approaches can achieve sig-
nificantly improved results than no active selection for all datasets on various
evaluation criteria.
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Abstract. Nonlinear multi-output regression problem is to construct a
predictive function which estimates an unknown smooth mapping from
g-dimensional inputs to m-dimensional outputs based on a training data
set consisting of given “input-output” pairs. In order to solve this prob-
lem, regression models based on stationary kernels are often used. How-
ever, such approaches are not efficient for functions with strongly varying
gradients. There exist some attempts to introduce non-stationary kernels
to account for possible non-regularities, although even the most efficient
one called Manifold Learning Regression (MLR), which estimates the
unknown function as well its Jacobian matrix, is too computationally
expensive. The main problem is that the MLR is based on a computa-
tionally intensive manifold learning technique. In this paper we propose
a modified version of the MLR with significantly less computational com-
plexity while preserving its accuracy.

Keywords: Nonlinear multi-output regression
Manifold learning regression - Non-stationary kernel

1 Introduction

1.1 Nonlinear Multi-output Regression

We formulate a nonlinear multi-output regression task [1-3]: let f be an unknown
smooth mapping from an input space X C R? to m-dimensional output space
R™. Given a training data set

Z(n):{Z’L:(XzaY’L:f(XZ))>7/:172>7n}7 (1)
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consisting of input-output pairs, the task is to construct the function y* =
f*(x) = £*(x|Z(,)) to predict the true output y = f(x) for an arbitrary Out-of-
Sample (OoS) input x € X with small predictive error |y* — y|. In engineering
applications f*(x) is usually used as a surrogate of some target function [4].
Most of optimization algorithms use gradient of the optimized function; in this
case, the regression method also should allow estimating m x g Jacobian matrix
J;(x) = V,f(x) of the mapping f(x) at an arbitrary input point x € X.

There exist various regression methods such as least squares (LS) techniques
(linear and nonlinear), artificial neural networks, kernel nonparametric regres-
sion, Gaussian process regression, kriging regression, etc. [1-3,5-16]. A classical
approach is based on Kernel Nonparametric Regression (KNR) [7]: we select the
kernel function K (x,x’) (see [17]) and construct the KNR~estimator

n n

frovnl(0) = oy D Kxx) -y K = Y Kex). ()

Jj=1 Jj=1

which minimizes (over y) the residual Z?:I K(x,x;) |y — yj|2.

The symmetric non-negative definite function K (x,x’) can be interpreted as
a covariance function of some random field y(x); thus, the unknown function
f(x) can be interpreted as a realization of the random field y(x) and K (x,x’) =
cov(f(x),f(x’)). If we consider only the first and second moments of this random
field, then without loss of generality we can assume that this field is Gaussian
and as a result obtain so-called Gaussian Process Regression [5,6,18,19].

One of the most popular kernel estimators is kriging, first developed by Krige
[20] and popularized by Sacks [21]. Kriging provides both global predictions and
their uncertainty. Kriging-based surrogate models are widely used in engineering
modeling and optimization [4,22-24].

Kriging regression combines both linear LS and KNR approaches: the devi-
ation of the unknown function f(x) from its LS estimator, constructed on basis
of some functional dictionary, is modeled by a zero mean Gaussian random field
with the covariance function K(x,x’). Thus we can estimate the deviation at
the point x using some filtration procedure and known deviations at the sam-
ple points {x;}. Usually stationary covariance functions K (x,x’) are used that
depend on their arguments x and x’ only through the difference (x — x’).

1.2 Learning with Non-stationary Kernels

Many methods use kernels that are stationary. However, as indicated e.g. in
[2,3,5,6], such methods have serious drawbacks in case of functions with strongly
varying gradients. Traditional kriging “is stationary in nature” and has low accu-
racy in case of functions with “non-stationary responses” (significant changes in
“smoothness”) [25,26]. Figure 1 illustrates this phenomenon by the Xiong func-
tion f(x) = sin(30(x — 0.9)%) - cos(2(x — 0.9)) + (x — 0.9)/2, x € [0,1], and its
kriging estimator with a stationary kernel [25]. Therefore, non-stationary kernels
with adaptive kernel width are used to estimate non-regular functions. There are
strategies for constructing the non-stationary kernels [26].
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Fig. 1. Example of Kriging prediction with a stationary covariance [25].

The interpretable nonlinear map approach from [27] uses the one-to-one
reparameterization function u = ¢(x) with the inverse x = ¥ (u) to map the
Input space X to U = ¢(X), such that the covariance function k(u,u’) =
K(p(u),v(u')) = cov(f(¢p(u)),f(y(u'))) becomes approximately stationary.
This approach was studied for years in geostatistics in case of relatively low
dimensions (¢ = 2,3), and the general case has been considered in [25] with
the reparameterization function ¢(x) = x¢ + f;éjll)) J ;5)(2)) f;((;) s(x)dx, where
x = (M 2@ . 2@) and s(x) is a density function, modelled by a linear
combination of some “dictionary” functions with optimized coefficients. A sim-
ple one-dimensional illustration of such map is provided in Fig. 2.

‘\/\/V.\yi‘)/ \/\/\/\y@/
g(x
> X | > X

Xy Xp Xo Xp Xp Xp X, X

B X
(a) Original space (b) New space

Fig. 2. A conceptual illustration of the nonlinear reparameterization function [25].

After such reparameterization, KNR~estimator (2) gxnyr(u) for the func-
tion g(u) = f(x(u)) with the stationary kernel k(u,u’) is constructed, and the
function £*(x) = gx nr(©(x)) is used as an estimator for f(x).

1.3 Manifold Learning Regression

A fundamentally different geometrical approach to KNR called Manifold Learn-
ing Regression (MLR) was proposed in [10,11]; MLR also constructs the repa-
rameterization function u = ¢(x) and estimates the Jacobian matrix J(x).
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MLR compares favourably with many conventional regression methods. In
Fig. 3 (see [10]) we depict the KNR-estimator fx yr (2) with a stationary kernel
and the MLR-estimator fy;rr for the Xiong function f(x). The input values in
the set Z,), n = 100 were uniformly randomly distributed on the interval [0, 1].

We see that the MLR method provides the essentially smoother estimate. The
mean squared errors MSE g nvr = 0.0024 and MSEj;1,g = 0.0014 were calculated
using the test sample with n = 1001 uniform grid points in the interval [0, 1].

06 06 06
04 04 04
02 02 0.2
0 o} o]
-0.2 -02 -0.2
0.4 04 -0.4
-0.6 -06 -06
-0. 0.8 ~ .
0 80 05 1 o 0.5 1 o 8() 05 1
(a) original function (b) sKNR-estimator (c) MLR-estimator

Fig. 3. Reconstruction of the Xiong function (a) by KNR with stationary kernel (b)
and MLR (c).

MLR is based on a Manifold Learning approach. Let us represent in the
input-output space RP, p = ¢ + m, the graph of the function f by the smooth
g-dimensional manifold (Regression Manifold, RM)

M(f)={Z=F(x) e R?: x € X C R’} C R?, (3)
embedded in the ambient space R?” and parameterized by the single chart
F:xeXCR!I—-Z=F(x)=(x,f(x)) € RP. (4)

Arbitrary function £* : X — R™ also determines the manifold M (f*) (substitute
f*(x) and F*(x) instead of f(x) and F(x) in (3) and (4)).

In order to apply MLR, we estimate RM M(f) using the training data Z,, (1)
by the Grassmann & Stiefel Eigenmaps (GSE) algorithm [28]. The constructed
estimator Mgsg = Mggs E(Z(n))7 being also a ¢-dimensional manifold embedded
in RP, provides small Hausdorff distance dgy(Mgsg, M(f)) between these man-
ifolds. In addition, the tangent spaces L(Z) to RM M(f) at the manifold points
Z € M(f) are estimated by the linear spaces Lgsp(Z) with “aligned” bases
smoothly depending on Z. GSE also constructs the low-dimensional parameter-
ization h(Z) of the manifold points Z and the recovery mapping g(h), which
accurately reconstructs Z from h(Z).

To get the estimator fyrrr(x) of the unknown function f, we solve the
equation M(fa;nr) = Mgsg. Using the estimator Lgsg(F(x)), we also con-
struct m X ¢ matrix Grr(x), which estimates the m x ¢ Jacobian matrix
Ji(x) = V,f(x) of f(x) at the arbitrary point x € X. Here as the reparam-
eterization function u = ¢(x) we use approximation of the unknown function
h(F(x)) (it depends on f(x), which is unknown at the OoS points x € X).
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1.4 Paper Contribution

The GSE algorithm contains several very computationally expensive steps such
as construction of the aligned bases in the estimated tangent spaces, the embed-
ding mapping and the recovery mappings, the reparameterization mapping, etc.
Although the incremental version of the GSE algorithm [29] reduces its com-
plexity, still it remains computationally expensive.

The paper proposes a new modified version of the MLR algorithm (mMLR)
with significantly less computational complexity. We developed a simplified ver-
sion of the MLR algorithm, which does not require computationally expensive
steps, listed above, so that we can construct the estimators (fyr (%), Grrrr(X))
while preserving the same accuracy. Then instead of using the KNR procedure
with a stationary kernel we developed its version with a non-stationary kernel,
which is defined on basis of the constructed MLR estimators.

Note that in this paper we consider the case when the input domain X C R¢
is a “full-dimensional” subset of R? (i.e., the intrinsic dimension of X is equal
to ¢) in contrast to [6,16], where X is a low-dimensional manifold in R?. In [30]
they reviewed approaches to the regression with manifold valued inputs.

The paper is organized as follows. Section2 describes some details of the
GSE/MLR algorithms; the proposed mMLR, algorithm is described in Sect. 3.

2 Manifold Learning Regression

2.1 Tangent Bundle Manifold Estimation Problem

The MLR algorithm is based on the solution of the Tangent bundle manifold
estimation problem [31,32]: estimate RM M(f) (3) from the dataset Z,) (1),
sampled from M(f). The manifold estimation problem is to construct:

— the embedding mapping h from RM M(f) to the g-dimensional Feature Space
(FS) Ty = h(M(f)), which provides low-dimensional parameterization (coor-
dinates) h(Z) of the manifold points Z € M(f),

— the recovery mapping g(¢) from FS T} to RP, which recovers the manifold
points Z = g(t) from their low-dimensional coordinates ¢t = h(Z),

such that the recovered value rj, 4(Z) = g(h(Z)) is close to the initial vector Z:

g(h(Z)) =~ Z, (5)

i.e. the recovery error 0y, 4(Z) = |rp, 4(Z)—Z| is small. These mappings determine
the ¢g-dimensional Recovered Regression manifold (RRM)

My, g =7h,g(M(f)) = {ry 4(Z) e RP : Z € M(f)}
={Z=g(t) eRP: te Ty =h(M(f)) C R}, (6)

which is embedded in the ambient space RP, covered by the single chart g,
and consists of all recovered values r, 4(Z) of the manifold points Z. Thanks
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to (5) we get proximity of the manifolds My, , =~ M(f), i.e. the Hausdorff dis-
tance dg (Myp, g, M(f)) between RM M(f) and RRM M, , (6) is small due the
inequality dp (Mp,g, M(f)) < supzene) On.g(Z).

The manifold proximity (5) at the OoS point Z € M(f) \ Z(,,) characterizes
the generalization ability of the solution (h,g) at the specific point Z. Good
generalization ability requires [32] that the pair (h, g) should provide the tangent
proximities Ly, 4(Z) ~ L(Z) between the tangent spaces L(Z) to RM M(f) at
points Z € M(f) and the tangent spaces Ly, 4(Z) = Span(J4(h(Z))) (spanned by
columns of the Jacobian matrix J4(t) of the mapping g at the point t = h(Z))
to RRM My, 4 at the recovered points rp, 4(Z) € My, 4. Note that the tangent
proximity is defined in terms of a chosen distance between these tangent spaces
considered as elements of the Grassmann manifold Grass(p, q), consisting of all
g-dimensional linear subspaces in RP.

The set of manifold points equipped with the tangent spaces at these points
is called the Tangent bundle of the manifold [33], and therefore we refer to
the manifold estimation problem with the tangent proximity requirement as
the Tangent bundle manifold learning problem [31]. The GSE algorithm, briefly
described in the next section, provides the solution to this problem.

2.2 Grassmann and Stiefel Eigenmaps Algorithm

The GSE algorithm consists of the three successively performed steps: tangent
manifold learning, manifold embedding, and manifold recovery.

Tangent Manifold Learning. We construct the sample-based p x ¢ matrices
H(Z) with columns {H®*)(Z) € R, 1 < k < ¢}, smoothly depending on Z, to
meet the relations Span(H(Z)) ~ L(Z) and VH“,)(Z)HU)(Z) = VH<_7>(Z)H(i)(Z)
(covariant differentiation is used here), 1 < i < j < g, for all points Z € M(f).

The latter condition provides that these columns are coordinate tangent fields
on RM M(f) and, thus, H(Z) is the Jacobian matrix of some mapping [33]. Thus
the mappings h and g are constructed in such a way that

J4(h(Z)) = H(Z). (7)

Using Principal Component Analysis (PCA), we estimate the tangent space L(Z)
at the sample point Z € Z,) [34] by the g-dimensional linear space Lpca(Z),
spanned by the eigenvectors of the local sample covariance matrix

SR = N K22 (2 -2 -0 ®
%, 2)
p j=1

corresponding to the g largest eigenvalues; here K,(Z) = Z;‘L:1 K,(Z,Z;) and
K,(Z,7') is a stationary kernel in R? (e.g., the indicator kernel I{|Z — Z'| < ¢}
or the heat kernel [35] K, . ,(Z,2') =I{|Z — Z'| < e} -exp{—p - |Z — Z'|?} with
the parameters € and p).

We construct the matrices H(Z) to meet the relations

Span(H(Z)) = Lpca(Z), (9)
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therefore, the required proximity Span(H(Z)) =~ L(Z) follows automatically from
the approximate equalities Lpca(Z) ~ L(Z), which are satisfied when RM M(f)
is “well sampled” and the parameter ¢ is small enough [36].

The principal components form the orthogonal basis in the linear space
Lpca(Z). Let us denote the p x ¢ matrix with the principal components as
columns by Qpca(Z). However, for different Z these bases are not agreed with
each other and can be very different even in neighboring points. While preserving
the requirements (9), the GSE algorithm constructs other bases in these linear
spaces, determined by the p x g matrices

Hese(Z) = Qrca(Z) - v(Z). (10)

Here g x ¢ nonsingular matrices v(Z) should provide smooth dependency of H(Z)
on Z and coordinateness of the tangent fields {H®*)(Z) € R?, 1 < k < ¢}.

At the sample points the matrices H; = Hgsg(Z;) (10) are constructed to
minimize the quadratic form szzl Ky(Zi,Z;) - |H; — H;||% under the coor-
dinateness constraint and certain normalizing condition, required to avoid a
degenerate solution; here || - || is the Frobenius matrix norm. The exact solu-
tion of this problem is obtained in the explicit form; at the OoS points Z, the
matrices Hgsp(Z) are constructed using certain interpolation procedure.

Manifold Embedding. After we construct the matrices Hggsg(Z) and assum-
ing that the conditions (5) and (9) are satisfied, we use the Taylor series expan-
sion of the mapping g(t), t = h(Z) to get the relation Z' — Z ~ Hgsp(Z) -
(h(Z') — h(Z)) for the neighboring points Z,Z’ € M(f). These relations, consid-
ered further as regression equations, allow constructing the embedding mapping
hGSE(Z) and FS Th = h(M(f))

Manifold Recovery. After we construct the matrices Hssg(Z) and the map-
ping hgsp, using known values {g(t;) ~ Z;} (5) and {J,(t;) = H;} (9),
t; = hase(Z;), we construct the mapping ggsg(t) and the estimator Ggsg(t)
for its covariance matrix Jg(t).

2.3 Manifold Learning Regression Algorithm

Zout
vector Z;, and the m-dimensional vector Z,,; and obtain the corresponding
partitions

tosi(#) = (o)) Qret) - ( §renn @),

gasn(l) = ( gcsE,in(t) ) , Gesnlt) = ( Gasp,in(t) ) (11)

8asE,out(t) GesE,out(t)

We split the p-dimensional vector Z = ( o ) , p = q+m, into the ¢-dimensional

of the p x ¢ matrices Hgsgp(Z) and Qpca(Z), the p-dimensional vector ggsg(t),
and the p x ¢ matrix Ggsg(t); note that the ¢ x ¢ matrix Ggsg,in(t) and the
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m x g matrix Ggsg,out(t) are the Jacobian matrices of the mappings gesg,in (t)
and gasEe,out(t), respectively.

It follows from the proximities (5), (9) and the partition (11) with Z = F(x)
(4) that

gase,in(hase(F(x))) = X, 8ase,out(hase(F(x))) =~ f(x), (12)

but the left part of the latter equation cannot be used for estimating the unknown
function f(x) since it depends on the function hgsg(F(x)), which in its turn
depends on the function f(x).

According to the MLR approach we construct the estimator ¢(x) for the
function hgsp(F(x)) as follows. We have two parameterizations of the manifold
points Z = F(x) € M(f): the “natural” parameterization by the input x € X and
the GSE-parameterization t = hggg(Z), which are linked by the unknown one-
to-one mapping t = p(x), whose values {p(x;) = t; = hgsr(Z;)} are known at
the sample inputs {x;}. The relations (5) and (12) imply that ggsg,in(¢(x)) =~ x
and Gasp,in(p(x)) - J,(x) ~ I,. Thus we get that J,(x) ~ Gggp 4 (9(X)); here
J,(x) is the Jacobian matrix of the mapping ¢(x). Therefore, the known matri-
ces {GE;;EW(@(XZ)) = Ga,ls‘Ezn(tl)} estimate the Jacobian matrices {J,(x;)}
at the sample inputs {x;}.

Based on the known values {(¢p(x;),J,(x;))}, ¢(x) is estimated at the arbi-
trary point x by pyrr(X) = ﬁ Z;'l:1 Kq(x,x5) - {t; + Gagﬂm S(x—x5)}
here K,(x,x’) is a stationary kernel in R? (like K, . ,, but defined in R?).

The relations (12) imply that Gage,out(p(%x)) - Jo(x) = J¢(x) and we get

farLr(X) = 8asE out (PrrLr(X)), (13)
Gurr(x) = Gaspou(Prmir(X)) - Gasp i (PrLr(X)) (14)

as the estimators for the unknown function f(x) and its Jacobian matrix J¢(x).

Note that the estimators (13), (14) require constructing the aligned bases
(matrices Hgsg(Z)), the embedding mapping hgsg(Z), the recovery mapping
gase(t) and the estimator Gggp/(t) for its Jacobian matrix, and the reparame-
terization mapping ¢arr(x). These GSE steps are computationally expensive,
even if the incremental version of GSE is used [29].

3 Modified Manifold Learning Regression

The proposed modified version of the MLR method consists of the following
parts: constructing both the PCA-approximations for the tangent spaces at the
sample points (as in case of the GSE algorithm) and the preliminary estimation of
f(x) for arbitrary inputs (Sect. 3.1), constructing both the PCA-approximations
Lpca(Z) at the OoS points Z = F(x) and the estimators Gprr(x) of the
Jacobian matrix Jy(x) for arbitrary inputs (Sect.3.2), constructing the non-
stationary kernels based on the preliminary MLR estimators and their usage
for construction of both the new adaptive PCA-approximations and the final
estimators (f,,pmLr(X), GrarLr(X)).
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3.1 Preliminary Estimation of Unknown Functions

We start from the standard PCA-approximations for the tangent spaces L(Z) at
the sample points.

Step 1. Given the training dataset Z,) (1), p x ¢ matrices Qpca(Z;) and
linear spaces Lpca(Z;) = Span(Qpca(Z;)), i = 1,2,...,n, are constructed as
in Sect. 2.2.

Let {Hgsp(Zi) = Qpca(Z;) - v(Z;)} (10) be the GSE-matrices, computed
after the estimation of the aligning matrices {v(Z;)}. It follows from (7) and
(9)—(11) that

Gease,in(hase(Z)) =Heaspin(Z) = Qpca,in(Z) - v(Z),
GeasEout(hase(Z)) =Haseout(Z) = Qprca,out(Z) - v(Z).

Thus the estimator Gpsrr(x) (14) at the sample inputs {x;} is equal to
Grrr(xi) = Hesg,out(Zi) HélgEm(Zz)
= Qpcaout(Zi)v(Zi)v  (Z:)Qpca,in(Z;) = QPCA,out(Zi)QEéA,m(Zi) (15)
and depends only on the PCA-matrices {Qpca(Z;)}, not on the matrices v(Z;).

Step 2. Compute the estimators {Gyrr(x;)} (15) for i =1,2,...,n.

After the Step 2 we obtain values Grrr(x;) of the Jacobian matrix of f(x)
at the sample inputs. Using the Taylor series expansion we get that f(x) ~
f(x')+J¢(x') - (x —x’) for the neighboring input points x,x" € X. We construct
the estimator £*(x) for f(x) at the arbitrary point x as a solution to the regression
problem with known Jacobian values at sample points [30] by minimizing the
residual 37| Ky(x,%;) - [y —y; — Gurr(x;) - (x —x;)[* over y.

Step 3. Compute the estimator £*(x) at the arbitrary input x € X

n

09 = g 20 Kl s+ Garnnls) (x =)
= Bnnl) + g S0 Kalxx) - Garen() - (x =) (16)
X4

Here fsxnr(x) = ﬁ > i Ky(x,%5) - y; is the KNR-estimator (2) with a
stationary kernel.

Note that the estimators f*(x) (16) and {GarLr(x:)} (15) coincide with the
MLR-estimators (13) and (14) but they have significantly lower computational
complexity.

3.2 Estimation of Jacobian Matrix at Arbitrary Point

The p x ¢ matrix Qpca(Z) and the tangent space Lpca(Z) at the OoS point
Z = F(x) are computed using the estimator £*(x) (16). Thus we can define
Furr(x) = (x,£5(x)) (4).
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Step 4. Compute the p x ¢ matrix Q pca(Z*) at the point Z* = F 1 r(x), such
that its columns are the eigenvectors of the matrix X'(Z*|K,,) (8) corresponding
to the ¢ largest eigenvalues.

The matrix Qpca(FaLr(x)) estimates the matrix Q poa(F(x)) at the arbi-
trary input x € X. Thus, the relation (14) results in the next step.

Step 5. Compute the preliminary estimator Gasrr(x) for J(x) at the arbitrary
input x € X

Gurr(x) = Qroaout(Fuir(x)) - Qpiaim (Fruir(x)). (17)

Then based on (17) we compute the preliminary estimators

Farpr(x) = Kl(x) > Ky(xx,) {3+ Garre(x) - (x = )}
=fixkNvr(X) + Gurr(X) - (X —XskNR) (18)

for f(x) at the arbitrary input x € X; here X;xknr = %@ Z?:l K, (x,%xj) - x;.
q

3.3 Estimation of Unknown Function at Arbitrary Point

The estimators fa;rr(x) (18) and Garrr(x) (17) use the stationary kernels
K,(x,x') in (18) and K,(Z,Z’) in X(Z*|K,) (7), respectively; here we introduce
their non-stationary analogues.

Let L = Span(Q) and L' = Span(Q’) be ¢-dimensional linear spaces in R?
whose orthonormal bases are the columns of the p x ¢ orthogonal matrices )
and @', respectively. Considering them as elements of the Grassmann manifold
Grass(p, q), let us denote by

dpo(L, L)) = {1 — Det?[QT - Q']}/? and Kpc(L,L') = Det?[Q - Q']

the Binet-Cauchy metric and the Binet-Cauchy kernel on the Grassmann mani-
fold, respectively [37,38]. Note that these quantities do not depend on a choice
of the orthonormal bases Q and Q’. Let us introduce another Grassmann kernel
depending on the threshold 7 as

Kg-(L,L') = {dpc(L, L") < 7} - Kpo(L,L).

The final mMLR estimators are constructed by modification of the Steps
1-5 above using the introduced non-stationary kernels. For Z,Z’ € Z,), we
introduce the non-stationary kernel

Kpmir(Z2,2') =Ky, ,(Z,Z') - K¢ +(Lpca(Z),Lpca(Z')). (19)

Step 6 (modified Step 1). The columns of the orthogonal p x ¢ matri-
ces Qmpca(Z;) at sample points consist of the eigenvectors of the matrices
Y(Z;|Kp mrr) (8) corresponding to its ¢ largest eigenvalues, i = 1,2,...,n.
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When calculating the covariance matrices X(Z;|K, prr) we use the non-
stationary kernels K, prr (19) at the sample points.

Step 7 (modified Step 2). Using (17) with the matrices {Qpca(Z;)} replaced
by the matrices {Qmpca(Z;)} we compute the modified m x ¢ matrices

{GmmrLr(x:)}.

Step 8 (modified Step 3). The value £**(x) at the arbitrary input x € X is
computed by (16) with the matrices {Gprr(x;)} replaced by the matrices

{Gmmrr(x:)}

Step 9 (modified Step 4). We compute the p x ¢ matrix Q. pca(Z) at the
point Z = Fp,pLr(x) = (%, £%(x)) with arbitrary input x € X. Columns of this
matrix are the eigenvectors of the matrix X(F,pr(x)| Kp mrr) (8) correspond-
ing to its g largest eigenvalues with the non-stationary kernel K, arr(Z,Z’)
(19), Z, yANS Z(n)

Let us denote Ly,poa(Fmamrr(X)) = Span(Qmpca(Fmmnr(x))). For the
arbitrary inputs x,x’ € X we introduce the non-stationary kernel

Kymir(x,X) = Ky e p(%,%X') K 7 (Linpoa(Fmamrr(X)), Lmpoa(F(x))). (20)

Step 10 (modified Step 5). We compute the final estimators G,arrr(x) for
J¢(x) at the arbitrary input x € X by the formula (17), where Qpca(Fymrr(x))
is replaced by Qmpcoa(Fmmrr(X)).

After that, we compute the final estimators f,,a/rr(x) for f(x) at the arbi-
trary input x € X by the formula (18) in which GLr(x) is replaced by
G r(x), the KNR-estimators fsx v r(x) and Xsx v g with the stationary ker-
nel K, are replaced by the KNR-estimators f,sxnr(x) and X,sxnr with the
non-stationary kernel K, prpr (20), respectively.

4 Conclusion

The initially proposed Manifold Learning Regression (MLR) method was based
on the GSE-solution to the Tangent Bundle Manifold Learning problem, which
is very computationally expensive. The paper proposes a modified version of the
MLR method, which does not require to use the most of GSE/MLR steps (such
as constructing the aligned bases at the estimated tangent spaces, the embedding
and the recovery mappings, the reparameterization mapping, etc.). As a result
the modified estimator has significantly smaller computational complexity while
preserving its accuracy.
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Abstract. Training classifiers using imbalanced data is a challenging
problem in many real-world recognition applications due in part to the
bias in performance that occur for: (1) classifiers that are often opti-
mized and compared using unsuitable performance measurements for
imbalance problems; (2) classifiers that are trained and tested on a fixed
imbalance level of data, which may differ from operational scenarios; (3)
cases where the preference of correct classification of classes is appli-
cation dependent. Specialized performance evaluation metrics and tools
are needed for problems that involve class imbalance, including scalar
metrics that assume a given operating condition (skew level and rela-
tive preference of classes), and global evaluation curves or metrics that
consider a range of operating conditions. We propose a global evalua-
tion space for the scalar F-measure metric that is analogous to the cost
curves for expected cost. In this space, a classifier is represented as a
curve that shows its performance over all of its decision thresholds and
a range of imbalance levels for the desired preference of true positive
rate to precision. Experiments with synthetic data show the benefits of
evaluating and comparing classifiers under different operating conditions
in the proposed F-measure space over ROC, precision-recall, and cost
spaces.
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1 Introduction

Evaluating performance is a critical step in classifier design and comparison.
Classification accuracy is the most widely used performance metric, also used as
the objective function of many state-of-the-art learning algorithms (e.g., support
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vector machines). However, when data from different classes are imbalanced, it
favours the correct classification of the majority classes at the expense of high
misclassification rates for the minority ones. This is an issue in many detection
problems where samples of the class of interest (“positive” or “target” class)
are heavily outnumbered by those of other (“negative” or “non-target”) classes.
The widely used ROC curve (which plots the true positive rate vs the false
positive rate for two-class classification problems), is not suitable for imbalanced
data either, since it is independent of the level of imbalance. The alternative
Precision-Recall (PR) curve is more suitable than ROC space, since precision
is sensitive to imbalance; however, the performance of a given classifier under
different imbalance levels corresponds to different PR curves, which makes it
difficult to evaluate and compare classifiers.

Alternatively, scalar performance metrics like the expected cost (EC) and the
F-measure (widely used in information retrieval) are typically employed when
data is imbalanced. Since they seek different trade-offs between positive and neg-
ative samples, the choice between them is application-dependent. EC allows to
indirectly address class imbalance by assigning different misclassification costs
to positive and negative samples. Two graphical techniques have recently been
proposed to easily visualize and compare classifier performance in terms of EC
under all possible operating conditions: cost curves (CC) [3] and Brier curves
(BC) [5]. The F-measure, recently analyzed by many researchers [2,12-14] is
defined as the weighted harmonic mean of precision and recall, and thus evalu-
ates classifier performance using a weight that controls the relative importance
of recall (i.e., the true positive rate) and precision, which is sensitive to class
imbalance. However, no performance visualization tool analogous to CC or BC
exists for the F-measure. One may use the PR space to this aim, but the iso-
metrics of the F-measure in PR space are hyperbolic [7,9], which does not allow
to easily evaluate classifiers under diverse operating conditions.

This paper introduces F-measure curves, a global visualization tool for the
F-measure analogous to CC. It consists in plotting the F-measure of a given clas-
sifier versus two parameters — the level of imbalance and the preference between
recall and precision — and allows to visualize and compare classifier performance
in class imbalance problems for different decision thresholds, under different
operating conditions. In this space, a crisp classifier corresponds to a curve that
shows its F-measure over all possible imbalance levels, for a desired level of pref-
erence between recall and precision. A soft classifier corresponds to the upper
envelope of such curves for all possible decision thresholds. This space allows
to compare classifiers more easily than in the PR space for a given operating
condition, analogously to CC or BC vs the ROC space. For a given preference
level between precision and recall, one classifier may outperform another over all
skew levels, or only for a specific range, which can be determined both analyti-
cally and empirically in the proposed space, as with the CC space. To clarify the
benefits of the proposed space, experiments are performed on synthetic data.
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2 Performance Metrics and Visualization Tools

In many real-world applications, the distribution of data is imbalanced [10];
correctly recognizing positive samples is the main requirement, while avoiding
excessive misclassification of negative samples can also be important. If applica-
tion requirements are given by misclassification costs, misclassification of positive
samples usually exhibits a higher cost, which “indirectly” addresses class imbal-
ance. Otherwise, assigning different “fictitious” costs to misclassifications of pos-
itive and negative samples can be an indirect means to achieve the same goal.
Several performance metrics have been proposed so far for applications involving
imbalanced classes [1,6,8,11,15]. This section provides a review of these metrics
in terms of their sensitivity to imbalance, focusing on global spaces that consider
different operating conditions and preference weights.

Scalar Performance Metrics. We focus on two-class problems, although some
metrics can also be applied in multi-class cases. Let P(+) and P(—) be the prior
probability of the positive and negative class, and A = © (*)/ P(+) the class skew.
From a given data set with n positive and n_ negative samples, P(+4) can be
estimated as ”*/(n++n_), and similarly for P(—), whereas A can be estimated
as "~ /pn, . As in [3], we focus on evaluating classifier performance as a function
of the prior of the positive class when the classifier is deployed, which can be
different than in the training and testing sets; accordingly, from now on we will
use P(+) (and P(—)) to denote the class prior during classifier deployment (use).
Since this value is unknown during classifier design, we will evaluate classifier
performance across all possible P(+) values.

Classifier performance on a given data set can be summarized by its con-
fusion matrix, in terms of the true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) counts. Let Ny and N_ the number
of samples classified as positive and negative, respectively. The corresponding
rates are defined as TPR = TP/ny, FNR = FN/ny, TNR = TN/n_ and
FPR=FP/n_.

Several scalar metrics can be defined from the above rates. The widely used
error rate, defined as (F'P+ FN)/(ny +mn_), is biased towards the correct clas-
sification of the negative (majority) class, which is not suitable to imbalanced
data. When costs can be associated to classification outcomes (either correct or
incorrect), the expected cost (EC) is used; denoting as Crx and Crp the mis-
classification costs of positive and negative samples (usually the cost of correct
classifications is zero), EC is defined as:

EC =FNR - P(+) - Cpx + FPR - P(=) - Cpp (1)

When data is imbalanced, usually Cpnx > Cgp, which can also avoid the bias
of the error probability toward the negative class. Accordingly, by setting suit-
able fictitious costs, EC can also be used to deal with class imbalance even if
misclassification costs are not precisely known or difficult to define. However, as
Crn/Crp increases, minimizing EC increases TPR at the expense of increasing
FPR, which may be undesirable.
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In information retrieval applications the complementary metrics Precision
(Pr) and Recall (Re) are often used, instead: Re corresponds to TPR, whereas
Pr is defined as TP/(T'P + FP) or TP/N,. Pr depends on both TP and FP,
and drops severely when correct classification of positive class is attained at the
expense of a high fraction of misclassified negative samples, as can be seen by
rewriting Pr as:

%erQxZ—* TPR+ MFPR

n4 —

(2)

This is useful to reveal the effect of class imbalance, compared to EC.
Pr and Re can be combined into the F-measure scalar metric [16], defined as
their weighted harmonic mean:

1
Fh=—F—— 3
S ®)
where 0 < a < 1. By rewriting a as (1+p2)~1, B € [0, +o0), F, can be rewritten
as:
I (1+p*)Pr-Re (1+p%)TP )
P~ T B2Pr+Re  (1+p2)TP + FP + p2FN’
When a — 0, F, — Re, and when a — 1, F,, — Pr. Note that the sensitivity of
the F-measure to the positive and negative classes can be adjusted by tuning .
This measure can be preferable to EC for imbalanced data, since it weighs the
relative importance of TPR (i.e., Re) and Pr, rather than TPR and FPR.
Other metrics have been used, or specifically proposed, for class imbalance
problems, although they are currently less used than EC and the F-measure [6,8].

Global Fvaluation Curves. In many applications it is desirable for the classifier to
perform well over a wide range of operating conditions, i.e., the misclassification
costs or the relative importance between Pr and Re, and the class priors. Global
curves depict the trade-offs between different evaluation metrics under different
operating conditions, without reducing them to an incomplete scalar measure.

The ROC curve is widely used for two-class classifiers: it plots TPR vs FPR
as a function of the decision threshold. A classifier with a specific threshold cor-
responds to a point in ROC space; a potentially optimal classifier lies on the
ROC convex hull (ROCCH) of the available points, regardless of operating con-
ditions. The best thresholds correspond to the upper-left point, corresponding
to the higher TPR and the lower FPR (see Fig.4(a)). A drawback of the ROC
space is that it does not reflect the impact of imbalance, since TPR and FPR do
not depend on class priors [4]. The performance of a classifier for a given skew
level can be indirectly estimated in terms of EC, since in ROC space, each oper-
ating condition corresponds to a set of isoperformance lines with identical slope.
An optimal classifier for a given operating condition is found by intersecting the
ROCCH with the upper-left isoperformance line.



F-Measure Curves 169

When Pr and Re are used, their trade-off across different decision thresholds
can be evaluated by the precision-recall (PR) curve, which plots Pr vs Re. The
PR curve is sensitive to class imbalance, given its dependence on Pr. However,
different operating conditions (skew levels) lead to different PR curves, which
makes classifier comparison difficult. Moreover, differently from ROC space, the
convex hull of a set of points in PR space has no clear meaning [7]. If the F-
measure is used, its isometrics can be analytically obtained in PR space, analo-
gously to EC isometrics in ROC space; however they are hyperbolic [7,9], which
makes it difficult to visualize classifier performance over a range of decision
thresholds, skew levels, and preference of Pr to Re. In the case of EC this prob-
lem has been addressed by the CC visualization tool, described below, and by its
BC extension. Inspired by CC, we propose in Sect.3 an analogous visualization
tool for the F-measure.

Ezxpected Costs Visualization Tools. CCs [3] are used to visualize EC over a
range of misclassification costs and skew levels. More precisely, CCs visualize
the normalised EC (NEC), which is defined as EC divided by the maximum
possible value of EC; the latter value turns out to be P(+)Crx + P(—)Crp, and
NEC can be written as:

NEC = (FNR — FPR)PC(+) + FPR € [0, 1], (5)
where PC(+) is the “probability times cost” normalization term, which is defined

as: P(4) - Con
P(+) - Cpx + P(—)Crp

CCs are obtained by depicting NEC versus PC(+) on a [0, 1] x [0, 1] plot, which
is named “cost space”. Note that NEC = FPR, if PC(+) = 0, and NEC =
FNR = 1 — TPR, if PC(4+) = 1. The always positive and always negative
classifiers correspond to two lines connecting points (1,0) to (0,1), and (0,0) to
(1,1), respectively, in the cost space. The operating range of a classifier is the
set of operating points for which it dominates both these lines [3]. By defining:

PC(+) = € [0,1]. (6)

Crp

m=—————— where 0 <m<1 7
Crp + Crn @

m can be seens as weighing the importance of both classes, and Eq. (6) can be
rewritten as:

(1/m—1)-P(+)
(1/m—2)-P(+)+1

PC(+) = (8)
The CCs of two classifiers C; and C; may cross: in this case each classifier
outperforms the other for a certain range of operating points.

Interestingly, there is a point-line duality between CC and ROC space: a
point in ROC space is a line in cost space, and vice versa. The lower envelope of
cost lines corresponds to the ROCCH in ROC space. In cost space quantitatively
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evaluating classifier performance for given operating conditions does not require
geometric constructions as in ROC space, but only a quick visual inspection [3].
This helps users to easily compare classifiers to the trivial classifiers, to select
between them, or to measure their difference in performance [3].

BCs [5] are a variant of CCs — they visualize classifier performance assuming
that the classifier scores are estimates of the posterior class probabilities, without
requiring optimal decision threshold for a given operating condition.

No performance visualization tools analogous to CCs or BCs exist for the
F-measure: defining and investigating such a space is the subject of the next
section.

3 The F-Measure Space

We propose a visualization tool analogous to CC for evaluating and comparing
the F-measure of one or more classifiers under different operating conditions,
i.e., class priors and a. To this aim we rewrite the F-measure from Eq. (3) to
make the dependence on P(4) and o explicit:

TPR
Fa= o(TPR + A - FPR) + (1 — a) ©)

_ Y, TPR (10)
Yy +Yp1)FPR+ TPR — FPR — 1

In contrast to the EC of Eqs. (1) and (10) indicates that Fi, cannot be written as
a function of a single parameter. However, since our main focus is performance
evaluation under class imbalance, we consider the F-measure as a function of
P(+) only, for a fixed a value. Accordingly, we define the F-measure curve of a
classifier as the plot of F, as a function of P(+), for a given a.

F-Measure Curve of a Classifier. For a crisp classifier defined by given values
of TPR and FPR, the F-measure curve is obtained by simply plotting F; as
a function of P(+), for a given a, using Eq. (10). Equation (10) implies that,
when P(+) = 0, F, = 0, and when P(+) = 1, F, = TPR/(a(TPR - 1) + 1).
It is easy to see that, when TPR > FPR (which is always the case for a non-
trivial classifier), Fy is an increasing and concave function of P(+). For different
values of a one gets a family of curves. For a = 0 we have F, = TPR, and for
a = 1 we have F, = Pr. Thus, for any fixed a € (0,1), each curve starts at
F, =0 for P(+) =0, and ends in F, = Pr for P(+) = 1. By computing dF;/da
from Eq. (10), one also obtains that all curves (including the one for a = 0)
cross when P(+) = FPR/(FPR — TPR+ 1). Figurel shows an example for a
classifier with TPR = 0.8 and FPR = 0.15, and for five a values. CCs are also
shown for comparison.

Consider now changing the decision threshold for a given soft classifier and
a given o value. Whereas a point in ROC space corresponds to a line in cost
space, it corresponds to a (non-linear) curve in F-measure space. As the decision
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Fig. 1. Cost curves (left) and F-measure curves (right) for a given classifier with TPR
= 0.8 and FPR = 0.15, for different values of m and a. Note that for all values of P(+):
(1) for m =0, EC = 1 — TPR, (2) for m = 1, EC = FPR, (3) for a = 0, F, = TPR.

threshold changes, one obtains a curve in ROC space, a family of lines in cost
space, and a family of curves in F-measure space. More precisely, as the decision
threshold increases (assuming that higher classifier scores correspond to a higher
probability of the positive class), the ROC curve starts at TPR = 0 and FPR =
0, and proceeds towards TPR = 1 and FFPR = 1. For a given value of a, the
corresponding F-measure curves move away from the Y axis and get closer to
the diagonal line connecting the lower-left point P(4) = 0, F, = 0 to the upper-
right point P(+) = 1,F, = 1. An example is shown in Fig.2. For any given
operating condition (i.e., value of P(+)), only one decision threshold provides
the highest F,. Accordingly, the upper envelope of the curves that correspond
to the available pairs of (TPR, FPR) values shows the best performance of the
classifier with the most suitable decision threshold for each operating condition.

Comparing Classifiers in the F-Measure Space. Consider two classifiers with
given values of (I'PR;, FPR;) and (TPR;, FPR;), and a fixed value of a.
From Eq. (10) one obtains that, if FPR; < FPR; and TPR; < TPR;, or when
FPR; > FPR; and TPR; > TPR;, then the F-measure curves cross in a single
point characterized by:

FPR, - TPR, — FPR, - TPR,

Pi(+) = .11
B (1—1/,)(TPR, — TPR;) + FPR, - TPR; — FPR, - TPR, (11)

,j

It is also easy to analytically determine which of the classifiers outperform the
other for lower or higher P(+) values than P;(+). If the above conditions do
not hold, one of the classifiers dominates the other for all values of P(+) > 0;
the detailed conditions under which Fy > F! or Fj < F! are not reported here
for the sake of simplicity, but can be easily obtained as well. Examples of the
two cases above are shown in Fig. 3.

In general, given any set of crisp classifiers, the best one for any given P(+)

value can be analytically determined in terms of the corresponding TPR and
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Fig. 2. A soft classifier in ROC space (ROCCH), inverted PR space (for three values
of P(+)), cost space (m = 0.5) and F-measure space (o = 0.5), for six threshold
values Th; > Thy > ... > Thg corresponding to TPR; = 0,0.55,0.75,0.88,0.98, 1, and
FPR; = 0,0.08,0.15,0.28,0.5, 1. The upper envelope of the cost and F-measure curves
is shown as a thick, blue line. (Color figure online)

FPR values, and can be easily identified by the corresponding F-measure curve.
Similarly, the overall performance of two or more soft classifiers can be easily
compared by visually comparing the upper envelopes of their F-curves.

An example of the comparison of two soft classifiers, with six different thresh-
old values, is shown in Fig. 4, where C; is the same as in Fig.2. In ROC space,
the ROCCH of C; and Cs cross on a single point around F'PR = 0.3. The lower
envelopes of the corresponding CCs cross around PC(+4) = 0.7, and thus C;
and Cy perform the same for approximately 0.6 < PC(+) < 0.7, whereas C}
outperforms Cy for PC(+) < 0.6. When the F-measure is used, comparing C
and Cs for different skew levels in PR space is more difficult, instead, as shown
by the corresponding (inverted) PR curves. This task is much easier in the F-
measure space; in this example it can be seen that the upper envelopes of the
F-measure curves of C; and Cy cross: Cy outperforms C for P(4) < 0.4, they
perform the same for 0.4 < P(+) < 0.6, and C; outperforms Cy for P(+) > 0.6.
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Fig. 3. F-measure curves of two classifiers, for a« = 0.5. Left: (IT'"PR1, FPR1) =
(0.98,0.5), (T PR2, FPR2) = (0.93,0.6): C1 dominates C2. Right: (I'PR1, FPR:1) =
(0.55,0.08), (TPR2, FPR3) = (0.5,0.03): the two curves cross at the Py 5(+) value of
Eq. (11) shown in red. (Color figure online)

These example shows that comparing the F-measure of two (or more) classifiers
over all skew levels in F-measure space is as easy as comparing their EC in cost
space.

Selecting the Best Decision Threshold or the Best Classifier. ROC curves can
be used to set parameters like the optimal decision threshold, or to select the
best classifier, for a given operating condition. To this aim, when the EC is used
as the performance measure, the ROCCH of the classifier(s) is found and the
optimal classifier (or parameter value) is selected by intersecting the upper-left
EC iso-performance line corresponding to the given operating condition with the
ROCCH. This process is easier in cost space, where the operating condition is
shown on the X axis. Analogously, when the F-measure is used, this process is
easier in the F-measure space than in PR, space. For this purpose, the classifier(s)
can be evaluated during design on a validation set (or on different validation
sets with different imbalance levels, if the imbalance level during operation is
unknown); then, during operation, the imbalance level of the data is estimated
and the classification system is adapted based on its performance in cost or
F-measure space.

4 Synthetic Examples

We give an example of classifier performance evaluation and comparison in F-
measure space and, for reference, in ROC, PR, and cost spaces. In particular, we
show how the effect of class imbalance can be observed using these global visu-
alization tools. To this aim we generate a non-linear, 2D synthetic data set: the
negative class is uniformly distributed, and surrounds the normally distributed
positive class with mean py = (0.5,0.5) and standard deviation o4 = 0.33. The
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Fig. 4. Comparison between two soft classifiers (C; is the same as in Fig. 2) with six
threshold values in ROC space, inverted PR space, cost space (m = 0.5) and F-measure
space (a = 0.5). Note that in cost and F-measure spaces the lower and upper envelopes
of the curves corresponding to the six threshold values are shown, respectively.

class overlap is controlled by the minimum distance 8 = 0.15 of negative samples
to p4. We consider three classifiers: Naive Bayes (Cy), 5-NN (C3), and RBF-
SVM (C3). We draw 2000 samples from each class (M~ = M™ = 2000), and
use half of them for balanced training. To visualize classifier performance under
different operating conditions, we consider different imbalance levels for testing
(which simulates the classifier deployment phase). To this aim, we draw from
the remaining 2000 samples different testing data subsets of fixed size equal to
1000. The number of testing samples from both classes is chosen as follows: for
P(+) < 0.5, M, =500, M_ = AM,, where XA € {0.1,...,0.9} with a step of
0.05; for P(+) > 0.5, M_ = 500, M4 = AM_, with A chosen in the same way;
for P(+) = 0.5, My = M_ = 500.

The performance of the three crisp classifiers, using a decision threshold
of 0.5, is first compared in F-measure and cost spaces in Figs.5a and b, for
0.1 < P(+) < 0.9, a = 0.1,0.5,0.9, and m = 0.1,0.5,0.9. It can be seen that
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Fig. 5. Performance comparison among Naive Bayes (C1), 5-NN (C3) and RBF-SVM
(Cs) in different spaces.

some of the corresponding curves cross, depending on o and m: in this case
each classifier outperforms the other for a different range of values of PC(+) or
P(+); these ranges can be easily determined analytically. The performance of
the same, soft classifiers across different decision thresholds is then compared in
ROC and PR spaces for three values of P(+) = 0.1,0.5,0.9 (Figs. 5¢c and d), and,
for all possible values of P(4), in cost and F-measure spaces (Figs.5e and f).
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As expected, ROC space is not affected by the degree of class imbalance, i.e.,
by changes in P(+). In PR space each value of P(+) leads to a different curve
for a given classifier, instead, but visual comparison of the corresponding F-
measure is very difficult: indeed this would require to draw also the hyperbolic
iso-performance lines, and anyway only a small, finite number of both P(+)
and Fy values can be considered in this space, which does not allow a complete
comparison. In cost and F-measure spaces the performance of each classifier for
all possible values of P(+) is visualized by a single curve, instead, for a given
value of m (in cost space) or a (in F-measure space). In these spaces visual
comparison of the corresponding performance measure is very easy, and can
be carried out for all possible operating conditions (i.e., values P(+)). In this
example, from Figs.5e and f one can conclude that, in terms of both EC and
F-measure, C; and C3 perform nearly equally across all operating conditions.
Moreover, classifier Cy dominates both C; and Cj for all values of P(+); however
the amount by which Cy outperforms them is very small in terms of the F-
measure, when P(+) is higher than about 0.6, and in terms of EC, when P(+)
is around 0.7.

5 Conclusions

In this paper, we reviewed the main existing scalar and global measures and visu-
alization tools for classifier performance evaluation, focusing on class imbalance.
Then we proposed a new, specific visualization tool for the scalar F-measure,
which is widely used for class imbalance problems, filling a gap in the literature.

Similarly to cost curves, the proposed F-measure curves allow to easily eval-
uate and compare classifier performance, in terms of the F-measure, across all
possible operating conditions (levels of class imbalance) and values of the deci-
sion threshold, for a given preference weight between precision and recall. This
space can be used to select the best decision threshold for a soft classifier, and
the best soft classifier among a group, for a given operating condition. In ongoing
research, we are investigating how to use the F-measure space for the design of
classifier ensembles that are robust to imbalance, and to adapt learning algo-
rithms to class imbalance.
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Density estimation is fundamental to a number of (apparently unrelated) tasks.
Firs and foremost, it is at the core of the search for a statistical description of
populations represented in terms of a sample of data distributed according to an
unknown probability density function (pdf) [10]. Then, it is involved (possibly
only implicitly) in the estimation of the probabilistic quantities that are neces-
sary in order to apply Bayes decision rule for pattern classification, in particular
the class-conditional probabilities [10]. Other tasks include data compression
and model selection [11], coding [3], etc. Even the estimation of regression mod-
els may rely implicitly on density estimation, since it can be described as the
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estimation of a model p(y|x) that captures the statistical relationship between
an independent random vector x and the corresponding output vector y [4]. As
pointed out by Vapnik [28], density estimation is an intrinsically difficult prob-
lem, and it is still open nowadays. This latter fact is mostly due to the shortcom-
ings of established statistical approaches, either parametric or non-parametric
(the reader is referred to [25] for a list of the major drawbacks of the statistical
techniques), and by the technical difficulties that arise from attempting to use
artificial neural networks (ANNs) or machine learning for pdf estimation. Such
difficulties stem from: (1) the unsupervised nature of the learning task, (2) the
numerical instability problems entailed by pdfs, whose codomains may span the
interval [0, +00) in the general case, and (3) the requirement of mathematical
plausibility of the estimated model, i.e. the respect of the axioms of probability.
Furthermore, the use of maximum-likelihood (ML) training in ANNs tends to
result in the so-called “divergence problem”, observed first in the realm of hybrid
ANN /hidden Markov models [20]. It consists in the progressive divergence of the
value of the ANN connection weights as ML training proceeds, resulting in an
unbounded growth of the integral of the pseudo-pdf computed by the ANN. The
problem does not affect radial basis functions (RBF) networks whose hidden-
to-output weights were constrained to be positive and to sum to one, as in the
RBF /echo state machine for sequences proposed in [26], or in the RBF/graph
neural network presented in [6] for the estimation of generalized random graphs.
Unfortunately, the use of RBFs in the latter contexts is justified by its allow-
ing for a proper algorithmic hybridization with models devised specifically for
sequence/structure processing, but using RBFs as a stand-alone paradigm for
density estimation is of neglectable practical interest, since they end up realizing
plain Gaussian mixture models (GMM) estimated via ML.

In spite of these difficulties, several approaches to pdf estimation via ANNs
are found in the literature [23]. First of all, a ML technique is presented in
[13] where the “integral equals 17 requirement is satisfied numerically divid-
ing the output of a multilayer Perceptron (MLP) by the numerical integral of
the function the MLP computes. No algorithms for computing the numerical
integral over high-dimensional spaces are handed out in [13]. Nonetheless, this
approach is related to the technique presented in this paper, insofar that ML will
be exploited herein. Differently from [13], a multi-dimensional ad-hoc numeric
integration method will be used in the following, jointly with hard constraints,
over a mixture of ANNs. Other approaches found in the literature translated the
estimation of univariate pdfs to the (theoretically equivalent) estimation of the
corresponding cumulative distribution functions (cdf) [12,27]. Regular backprop-
agation (BP) is applied, relying on the empirical cdf of the data for generating
synthetic target outputs. After training the MLP model ¢(-) of the cdf, the pdf
can be recovered by applying differentiation to ¢(-). The idea is sound, since the
requirements that ¢(-) has to satisfy to be interpretable as a proper cdf (namely,
that it ranges between 0 and 1, and that it is monotonically non-decreasing)
appear to be more easily met than the corresponding constraints on pdf models
(that is, the unit integral). Unfortunately, there are drawbacks to the cdf-based
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approaches (see [25]). In particular, a good approximation of the cdf does not
necessarily translate into a similarly good estimate of its derivative. In fact, a
small squared error between ¢(-) and the target cdf does not mean that ¢(-) is free
from steep fluctuations that imply huge, rapidly changing values of its deriva-
tive. Negative values of 6‘2—(;) may occasionally occur, since a linear combination
of logistics is not necessarily monotonically increasing. Besides, cdf-based algo-
rithms naturally apply to univariate cases, whilst extension to multivariate pdfs
is far less realistic. The idea of generating empirical target outputs was applied
to non-parametric ANN-based pdf estimation in [22,24]. The former resorts to
the k,-Nearest Neighbor (k,-NN) technique [10] for generating unbiased pdf
estimates that are used to label the training set for a MLP. Like in the k,,-NN,
the resulting model is not a proper pdf (the axioms of probability are not sat-
isfied in the general case). On the other way around, the algorithm presented
in [22] uses a modified criterion function to be minimized via gradient descent
for pdf estimation via MLP. The criterion involves two terms: a loss between
the MLP output and a synthetically-generated non-parametric estimate of the
corresponding input pattern, and a loss between the integral of the function
computed by the MLP and its target (i.e., unity) value. Numerical integration
methods are used to compute the integral at hand and its derivatives w.r.t. the
MLP parameters within the gradient-descent via backpropagation. The ideas
behind such integration methods are exploited in this paper, as well.

A generalization of plain pdf estimation models stems from the adoption
of mixture densities, where the unknown pdf is rather modeled in terms of a
combination of any number of component densities [10]. GMMs are the most
popular instance of mixture densities [5]. Traditionally, mixture densities were
intended mostly as real-life extensions of the single-pdf parametric model, e.g.
along the following line: one Gaussian may not be capable to explain the whole
data distribution but K Gaussian pdfs might as well be, as long as K is large
enough. Nevertheless, there is much more than this to the very notion of mixture
density. In fact, different components are specialized to explain distinct latent
phenomena (e.g., stochastic processes) that underlie the overall data generation
process, each such phenomenon having different likelihood of occurrence w.r.t.
others at diverse regions of the feature space. This suites particularly those sit-
uations where the statistical population under analysis is composed of several
sub-populations, each having different distribution. Examples of practical rel-
evance include (among many others) the statistical study of heterogeneity in
meta-analysis [7], where samples drawn from disjoint populations (e.g., adults
and children, male and female subjects, etc.) are collectively collected and have to
be analyzed as a whole; the modeling of unsupervised or partially-supervised [17]
data samples in statistical pattern recognition [10], where each sub-population
corresponds to a class or category; the distribution of financial returns on the
stock market depending on latent phenomena such as a political crisis or a war
[8]; the assessment of projectile accuracy in the military science of ballistics
when shots at the same target come from multiple locations and/or from dif-
ferent munition types [18], etc. In general, the sub-populations in a mixture are
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unlikely to be individually distributed according to simple (e.g., Gaussian) pdfs,
therefore parametric models (e.g., GMMs) are seldom a good fit to these sce-
narios. In fact, let &;,...,6x be K disjoint states of nature (the outcomes of
a discrete, latent random variable =, each outcome corresponding to a specific
sub-population), and let p(x|¢;) be the pdf that explains the distribution of the
random observations x given the i-th state of the latent variable, fori =1,..., K.
At the whole population level the data will the distributed according to the mix-
ture p(x) = Zfil P(&)p(x|&;). Attempts to apply a GMM to model p(x) will not
necessarily result in a one-to-one relationship between the Gaussian components
in the GMM and the state-specific generative models p(x|;). In general, at the
very least, more than one Gaussian component will be needed to model p(x]¢;).
Although mixtures of mixture models offer increased modeling capabilities over
plain mixture models to this end, they turned out to be unpopular due to the
difficulties of estimation of their parameters [2].

Given the aforementioned relevance and difficulties of estimating pdfs in gen-
eral and mixture models in particular, and in the light of the above-named short-
comings of the established approaches, the paper contributes (for the first time)
a plausible solution in the form of a mixture model built on ANNs. The model,
presented in Sect. 2 and called neural mixture model (NMM), is a convex com-
bination of component densities estimated by component-specific MLPs. The
NMM is intrinsically non-parametric, since no prior assumptions on the form of
the underlying component densities is made [10]. In fact, due to the “universal-
ity” of MLPs [9], the model may approximate any (bounded and continuous)
multimodal multivariate pdf to any degree of precision!. Besides, due to the
learning and generalization capabilities of ANNs, the NMM can actually learn
a smooth and general form for the mixture at hand, overcoming the drawbacks
of the traditional non-parametric techniques, as well. A ML training algorithm
is devised, satisfying (at least numerically) a combination of hard and soft con-
straints required in order to guarantee a proper probabilistic interpretation of
the estimated model. The resulting machine can also be seen as a novel, special
case of mixture of experts [29] having a specific task, a ML-based unsupervised
training algorithm, and a particular probabilistic strategy for assigning credit
to its individual experts. A preliminary experimental evaluation is reported in
Sect. 3, while Sect. 4 draws some pro tempore conclusions.

2 Model and Estimation Algorithm

Let us consider an unlabeled training set 7 = {x1,...,X,} of n independent
random vectors (i.e., patterns) in a d-dimensional feature space, say R?. The
patterns are assumed to be identically distributed according to an unknown pdf
p(x). In order to estimate p(x) from 7 we introduce a neural mixture model
p(x|W) defined as

1 According to the meaning of “approximation” and under the conditions required in
order for (e.g.) Cybenko’s theorem to hold true [9].
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K
PW) = cipu(x|[W)) (1)
i=1

where W denotes the overall set of parameters in the NMM (that is
Cly. -y Cxy, Wi, ..., Wg). The mixing coefficients ¢; are such that ¢; € [0, 1] for
i1=1,...,K and Zfil ¢; = 1, and the generic i-th component density p;(x|W;)
is defined, in turn, as ( )

_ ei(x, Wi

BilxIWs) S pi(x, Wi)dx ®
where @;(x, W;) represents the function computed by a component-specific MLP
having adaptive parameters W;. We say that this MLP realizes the i-th neural
component of the NMM. A constraint on [ ¢;(x, W;)dx will be imposed shortly
to enure satisfaction of the axioms of probability. Clearly, each MLP in the NMM
has d input units and a single output unit, and it is expected to have one or
more hidden layers. Without loss of generality for all the present intents and
purposes, we assume that the patterns of interest are confined within a compact
S C R? (in practice, any data normalization technique may be applied in order
to guarantee that this assumption holds true) such that, in turn, S can be seen
as the definition domain of @;(x,W;) for all ¢« = 1,..., K. As a consequence,
numerical integration techniques can be used to compute [ ¢;(x, W;)dx and
the other integrals required shortly. In so doing, Eq. (2) reduces to p;(x|W;) =

i(x, Wi

Some precautions are to be taken in regard to the nature of the activation
function f;(.) used in the output layer of the i-th MLP. In fact, f;(.) shall be
capable of spanning a codomain that fits the general definition of pdf, that is (in
principle) any range in [0, 4o0c). Although this may be granted in several differ-
ent ways, herein we opt for a logistic sigmoid with component-specific adaptive
amplitude \; € R, namely f;(a;) = \;/(1 + exp(—a;)) as described in [19],
where a; represents the current activation value for the output unit of the i-th
neural component. Consequently, each MLP in the NMM can stretch its output
over any required component-specific interval [0, \;), which is not bounded a
priori but is rather learned (along with the other parameters in W;) so as to fit
the nature of the specific component density at hand. Other general advantages
entailed by the use of adaptive amplitudes are pointed out in [19].

The training algorithm is expected to revolve around a proper learning rule
for the mixture parameters W given the unlabeled sample 7, such that even-
tually p(x|W) results in a proper estimate of p(x). This requires pursuing two
purposes: (1) exploiting the information encapsulated in 7 to approximate the
unknown pdf; (2) preventing the MLPs in the NMM from developing spurious
solutions, by enforcing the constraints fs pix,W))dx =1foralli=1,... K.
To this end, a constrained stochastic gradient-ascent algorithm is devised that
aims at the maximization of the point-wise likelihood p(x;|W) of the NMM given
the current training pattern x;, to be applied iteratively for j = 1,...,n. This
is achieved by means of an on-line, differentiable criterion function C(.) defined
as
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CW, ;) = s W) — Z( - %(x,wndx)z 3)

that has to be maximized with respect to the NMM parameters W under the
(hard) constraints that ¢; € [0,1] for i =1,..., K and Zfil ¢; = 1. The second
term in the criterion, instead, is a “soft” constraint that enforces a unit integral
of p;(x, W;) over S for alli =1,..., K, as sought, resulting in fs p(x|W)dx ~ 1.
The hyper-parameter p € R™ controls the importance of the constraints, and it
is used in practical applications to tackle numerical issues. The gradient-ascent
learning rule Aw for a generic parameter w in the NMM is then defined as
Aw = 7780( ), where n € RT is the learning rate. Different calculations are
needed, according to the fact that w is either: (i) a mixing coefficient, say w = cg;
or (ii) a parameter (connection weight, bias, or adaptive amplitude) within any
of the neural component densities. In case (i), we first introduce K unconstrained
latent variables 7v1,...,vk, and we let

L = g(’}/k) (4)

K
> im15(n)
for k = 1,..., K, where ¢(z) = 1/(1 + e~ *). Each -y, is then treated as the
unknown parameter to be actually estimated instead of the corresponding cy.
In so doing, higher-likelihood mixing coefficients that satisfy the required con-

straints are implicitly obtained from application of the learning rule. The latter
takes the following form:

Ay = ' (5)

_ nazfil cipi(x;|Wi)
Ok

()
= Zx]W
”Zp | (z“U)
K

L S () (k)
—U{pk( J|Wk)2§<:1§(w) ; pi(x ]|W)[Zp<(w)] }
s" ()

- nz[ §( ) {pk(X]‘Wk) (XJ|W)}

Secondly, let us move to scenario (ii), that is where w is a parameter within
one of the neural components. In this case, taking the partial derivative of
C(W,x;) with respect to w requires calculating the derivatives of the first and
the second terms in the right-hand side of Eq. (3). In the following calculations
we assume that w belongs to the (generic) k-th neural component. For the first
term we have:
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where Leibniz rule was exploited in the last step of the calculations. Note that
Eq. (6) is a mathematical statement of the rationale behind the different impact
that current training pattern x; has on the learning process in distinct neural
components of the NMM. First, the amount of parameter change Aw is propor-
tional to the probabilistic “credit” ¢ of the component at hand. Second (and
foremost), the quantities within brackets in Eq. (6) depend on the value of the
k-th MLP output over x;, and on its derivative. If, at any time during the train-
ing, ¢x(.) does not change significantly in a neighborhood of x; (e.g. if x; lies in
a high-likelihood plateau or, vice versa, in a close-to-zero plateau of pg/(.)) then
the contribution of the first quantity within brackets is neglectable. Moreover,
if o1 (x;) =~ 0 then the second term within brackets turns out to be neglectable,
as well. To the contrary, the contribution of x; to the parameter adaptation of
k-th component network will be paramount if ¢g(.) returns high likelihood over
x; and significant variations in its surroundings.

At this point Leibniz rule is used again in the calculation of the derivative of
the second term in the right-hand side of Eq. (3), which can be written as

> {pzl_(j; (-] w(x,wndx)z} g
= 8% {g