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Preface

This volume contains the papers presented at the 8th IAPR TC3 workshop on Artificial
Neural Networks for Pattern Recognition (ANNPR 2018), held at the Università di
Siena, Siena, Italy, during September 19–21, 2018. ANNPR 2018 follows the success
of the ANNPR workshops of 2003 (Florence), 2006 (Ulm), 2008 (Paris), 2010 (Cairo),
2012 (Trento), 2014 (Montreal), and 2016 (Ulm). The series of ANNPR workshops has
served as a major forum for international researchers and practitioners from the com-
munities of pattern recognition and machine learning based on artificial neural
networks.

From the 35 manuscripts submitted, the Program Committee of the ANNPR 2018
workshop selected 29 papers for the scientific program, organized in regular oral
presentations and one poster session. The workshop was enriched by three IAPR
invited sessions: What’s Wrong with Computer Vision? given by Prof. Marco Gori,
Università di Siena, Italy; Deep Learning in the Wild presented by Prof. Thilo
Stadelmann, ZHAW Datalab & School of Engineering, Winterthur, Switzerland; and
an invited talk given by Prof. Marcello Pellilio, Università Cà Foscari, Venice, Italy

The workshop would not have been possible without the help of many people and
organizations. First of all, we are grateful to all the authors who submitted their con-
tributions to the workshop. We thank the members of the Program Committee and the
many additional reviewers for performing the difficult task of selecting the best papers
from a large number of high-quality submissions. We hope that readers of this volume
may enjoy it and get inspired from its contributions. ANNPR 2018 was supported by
the International Association for Pattern Recognition (IAPR), by the IAPR Technical
Committee on Neural Networks and Computational Intelligence (TC3), and by the
DIISM of the University of Siena, Italy. Finally, we wish to express our gratitude to
Springer for publishing our workshop proceedings within their LNCS/LNAI series.

July 2018 Luca Pancioni
Friedhelm Schwenker

Edmondo Trentin
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What’s Wrong with Computer Vision?

Marco Gori(B)

Department of Information Engineering and Mathematics,
University of Siena, Siena, Italy

marcoxgori@gmail.com

http://sailab.diism.unisi.it/people/marco-gori/

Abstract. By and large, the remarkable progress in visual object recog-
nition in the last few years is attributed to the availability of huge labelled
data paired with strong and suitable computational resources. This has
opened the doors to the massive use of deep learning which has led to
remarkable improvements on common benchmarks. While subscribing
this view, in this paper we claim that the time has come to begin work-
ing towards a deeper understanding of visual computational processes,
that instead of being regarded as applications of general purpose machine
learning algorithms, are likely to require appropriate learning schemes.
The major claim is that while facing nowadays object recognition prob-
lems we have been working a problem that is significantly more difficult
than the one offered by nature. This is due to learning algorithms that
are working on images while neglecting the crucial role of frame temporal
coherence. We address the limitations and discuss how the evolution of
the tradition of image recognition towards visual recognition might give
rise to remarkable advances in the field of computer vision.

Keywords: Computer vision · Object recognition · Machine learning
Motion invariance

1 Introduction

While the emphasis on a general theory of vision was already the main objective
at the dawn of the discipline [13], it has evolved without a systematic exploration
of foundations in machine learning. When the target is moved to unrestricted
visual environments and the emphasis is shifted from huge labelled databases to
a human-like protocol of interaction, we need to go beyond the current peaceful
interlude that we are experimenting in vision and machine learning. A funda-
mental question a good theory is expected to answer is why children can learn
to recognize objects and actions from a few supervised examples, whereas nowa-
days supervised learning approaches strive to achieve this task. In particular,
why are they so thirsty for supervised examples? Interestingly, this fundamental
difference seems to be deeply rooted in the different communication protocol at
the basis of the acquisition of visual skills in children and machines.

c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-319-99978-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99978-4_1&domain=pdf


4 M. Gori

So far, the semantic labeling of pixels of a given video stream has been
mostly carried out at frame level. This seems to be the natural outcome of well-
established pattern recognition methods working on images, which have given
rise to nowadays emphasis on collecting big labelled image databases (e.g. [4])
with the purpose of devising and testing challenging machine learning algo-
rithms. While this framework is the one in which most of nowadays state of
the art object recognition approaches have been developing, we argue that there
are strong arguments to start exploring the more natural visual interaction that
animals experiment in their own environment.

This suggests to process video instead of image collection, that naturally
leads to a paradigm-shift in the associated processes of learning to see. The idea
of shifting to video is very much related to the growing interest of learning in the
wild that has been explored in the last few years1. The learning processes that
take place in this kind of environments has a different nature with respect to
those that are typically considered in machine learning. Learning convolutional
nets on ImageNet typically consists of updating the weights from the processing
of temporally unrelated images, whereas a video carries out information where we
pass from one frame to the previous one by smooth changes. While ImageNet is
a collection of unrelated images, a video supports information only when motion
is involved. In presence of fixed images that last for awhile, the corresponding
stream of equal frames basically supports only the information of a single image.
As a consequence, it is clear that visual environments diffuse information only
when motion is involved. There is no transition from one image to the next one—
like in ImageNet—but, as time goes by, the information is only carried out by
motion, which modifies one frame to the next one according to the optical flow.
Once we deeply capture this fundamental features of visual environment, we
early realize that we need a different theory of machine learning that naturally
processes streams that cannot be regarded just as collection of independent
images anymore.

A crucial problem that was recognized by Poggio and Anselmi [15] is the need
to incorporate visual invariances into deep nets that go beyond simple translation
invariance that is currently characterizing convolutional networks. They propose
an elegant mathematical framework on visual invariance and enlightened some
intriguing neurobiological connections. Overall, the ambition of extracting dis-
tinctive features from vision poses a challenging task. While we are typically
concerned with feature extraction that is independent of classic geometric trans-
formation, it looks like we are still missing the fantastic human skill of capturing
distinctive features to recognize ironed and rumpled shirts! There is no apparent
difficulty to recognize shirts by keeping the recognition coherence in case we roll
up the sleeves, or we simply curl them up into a ball for the laundry basket.
Of course, there are neither rigid transformations, like translations and rotation,
nor scale maps that transforms an ironed shirt into the same shirt thrown into
the laundry basket. Is there any natural invariance?

1 See. e.g. https://sites.google.com/site/wildml2017icml/.

https://sites.google.com/site/wildml2017icml/
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In this paper, we claim that motion invariance is in fact the only one that
we need. Translation and scale invariance, that have been the subject of many
studies, are in fact examples of invariances that can be fully gained whenever we
develop the ability to detect features that are invariant under motion. If my inch
moves closer and closer to my eyes then any of its representing features that
is motion invariant will also be scale invariant. The finger will become bigger
and bigger as it approaches my face, but it is still my inch! Clearly, translation,
rotation, and complex deformation invariances derive from motion invariance.
Humans life always experiments motion, so as the gained visual invariances natu-
rally arise from motion invariance. Animals with foveal eyes also move quickly the
focus of attention when looking at fixed objects, which means that they continu-
ally experiment motion. Hence, also in case of fixed images, conjugate, vergence,
saccadic, smooth pursuit, and vestibulo-ocular movements lead to acquire visual
information from relative motion. We claim that the production of such a contin-
uous visual stream naturally drives feature extraction, since the corresponding
convolutional filters are expected not to change during motion. The enforcement
of this consistency condition creates a mine of visual data during animal life.
Interestingly, the same can happen for machines. Of course, we need to com-
pute the optical flow at pixel level so as to enforce the consistency of all the
extracted features. Early studies on this problem [8], along with recent related
improvements (see e.g. [2]) suggests to determine the velocity field by enforcing
brightness invariance. As the optical flow is gained, it is used to enforce motion
consistency on the visual features. Interestingly, the theory we propose is quite
related to the variational approach that is used to determine the optical flow
in [8]. It is worth mentioning that an effective visual system must also develop
features that do not follow motion invariance. These kind of features can be con-
veniently combined with those that are discussed in this paper with the purpose
of carrying out high level visual tasks. Early studies driven by these ideas are
reported in [6], where the authors propose the extraction of visual features as
a constraint satisfaction problem, mostly based on information-based principles
and early ideas on motion invariance.

In this paper we mostly deal with an in-depth discussion of the principles
that one should follow to construct a sound theory of vision that, later on, can
likely be also applied to computer vision. In addition, we discuss some of the
reasons of the limitations of current approaches, where perceptual and linguistic
tasks interwound with vision are not properly covered. This issue is enlighten by
proposing a hierarchy of cognitive tasks connected to vision that contributes to
shed light on the intriguing connection between gaining perceptual and linguistic
skills. The discussion suggests that most problems of computer vision are likely
to be posed according to the historical evolution of the applications more than on
a formal analysis of the underlying computational processes. While this choice
has been proven to be successful in many real-world cases, stressing this research
guideline might lead, on the long run, to wrong directions.
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2 Top Ten Questions a Theory on Vision Should Address

The extraction of informative and robust cues from visual scenes has been
attracting more and more interest in computer vision. For many years, scien-
tists and engineers have contributed to the construction of solutions to extract
visual features, that are mostly based on clever heuristics (see e.g. [12]). How-
ever, the remarkable achievements of the last few years have been mostly based
on the accumulation of huge visual collections enriched by crowdsourcing. It has
created labels to carry out massive supervised learning in deep convolutional
networks, that has given rise to very effective internal representations of visual
features. The have been successfully used in an impressive number of application
(see e.g. [10,17]).

In this paper, we argue that while stressing this issue we have been facing
artificial problems that, from a pure computational point of view, are likely to
be significantly more complex than natural visual tasks that are daily faced
by animals. In humans, the emergence of cognition from visual environments
is interwound with language. This often leads to attack the interplay between
visual and linguistic skills by simple models that, like for supervised learning,
strongly rely on linguistic attachment. However, when observing the spectacular
skills of the eagle that catches the pray, one promptly realizes that for an in-
depth understanding of vision, that likely yields also an impact in computer
implementation, one should begin with a neat separation with language! This
paper is mostly motivated by the curiosity of addressing a number of questions
that arise when looking at natural visual processes [3]. While they come from
natural observation, they are mostly regarded as general issues strongly rooted
in information-based principles, that we conjecture are of primary importance
also in computer vision.

Q1 How can animals conquer visual skills without requiring “intensive supervi-
sion”?
Recent remarkable achievements in computer vision are mostly based on
tons of supervised examples—of the order of millions! This does not explain
how can animals conquer visual skills with scarse “supervision” from the
environment. Hence, there is plenty of evidence and motivations for invoking
a theory of truly unsupervised learning capable of explaining the process
of extraction of features from visual data collections. While the need for
theories of unsupervised learning in computer vision has been advocated in
a number of papers (see e.g. [7,11,16,19]), so far, the powerful representa-
tions that arise from supervised learning, because of many recent successful
applications, seem to attract much more interest. While information-based
principles could themselves suffice to construct visual features, the absence
of any feedback from the environment make those methods quite limited
with respect to supervised learning. Interestingly, the claim of this paper is
that motion invariance offers a huge amount of free supervisions from the
visual environment, thus explaining the reason why humans do not need
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the massive supervision process that is dominating feature extraction in
convolutional neural networks.

Q2 How can animals gradually conquer visual skills in a visual environments?
Animals, including primates, not only receive a scarse supervision, but they
also conquer visual skills by living in their own visual environment. This
is gradually achieved without needing to separate learning from test envi-
ronments. At any stage of their evolution, it looks like they acquire the
skills that are required to face the current tasks. On the opposite, most
approaches to computer vision do not really grasp the notion of time. The
typical ideas behind on-line learning do not necessarily capture the natu-
ral temporal structure of the visual tasks. Time plays a crucial role in any
cognitive process. One might believe that this is restricted to human life,
but more careful analyses lead us to conclude that the temporal dimension
plays a crucial role in the well-positioning of most challenging cognitive
tasks, regardless of whether they are faced by humans or machines. Inter-
estingly, while many people struggle for the acquisition of huge labeled
databases, the truly incorporation of time leads to a paradigm shift in the
interpretation of the learning and test environment. In a sense, such a dis-
tinction ceases to apply, and we can regard unrestricted visual collections
as the information accumulated during all the agent life, that can likely
surpass any attempt to collect image collection. The theory proposed in
this paper is framed in the context of agent life characterized by the ordi-
nary notion of time, which emerges in all its facets. We are not concerned
with huge visual data repositories, but merely with the agent life in its own
visual environments.

Q3 Can animals see in a world of shuffled frames?
One might figure out what human life could have been in a world of visual
information with shuffled frames. Could children really acquire visual skills
in such an artificial world, which is the one we are presenting to machines?
Notice that in a world of shuffled frames, a video requires order of mag-
nitude more information for its storing than the corresponding temporally
coherent visual stream. This is a serious warning that is typically neglected;
any recognition process is remarkably more difficult when shuffling frames,
which clearly indicates the importance of keeping the spatiotemporal struc-
ture that is offered by nature. This calls for the formulation of a new theory
of learning capable of capturing spatiotemporal structures. Basically, we
need to abandon the safe model of restricting computer vision to the pro-
cessing of images. The reason for formulating a theory of learning on video
instead of on images is not only rooted in the curiosity of grasping the com-
putational mechanisms that take place in nature. It looks like that, while
ignoring the crucial role of temporal coherence, the formulation of most of
nowadays current computer vision tasks leads to tackle a problem that is
remarkably more difficult than the one nature has prepared for humans!
We conjecture that animals could not see in a world of shuffled frames,
which indicates that such an artificial formulation might led to a very hard
problem. In a sense, the very good results that we already can experiment
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nowadays are quite surprising, but they are mostly due to the stress of the
computational power. The theory proposed in this paper relies of the choice
of capturing temporal structures in natural visual environments, which is
claimed to simplify dramatically the problem at hand, and to give rise to
lighter computation.

Q4 How can humans attach semantic labels at pixel level?
Humans provide scene interpretation thanks to linguistic descriptions. This
requires a deep integration of visual and linguistic skills, that are required to
come up with compact, yet effective visual descriptions. However, amongst
these high level visual skills, it is worth mentioning that humans can attach
semantic labels to a single pixel in the retina. While this decision process
is inherently interwound with a certain degree of ambiguity, it is remark-
ably effective. The linguistic attributes that are extracted are related to the
context of the pixel that is taken into account for label attachment, while
the ambiguity is mostly a linguistic more than a visual issue. The theory
proposed in this paper addresses directly this visual skill since the labels are
extracted for a given pixel at different levels of abstraction. Unlike classic
convolutional networks, there is no pooling; the connection between the sin-
gle pixels and their corresponding features is kept also when the extracted
features involve high degree of abstraction, that is due to the processing
over large contexts. The focus on single pixels allows us to go beyond object
segmentation based sliding windows, which somewhat reverses the pool-
ing process. Instead of dealing with object proposals [21], we focus on the
attachment of symbols at single pixels in the retina. The bottom line is that
human-like linguistic descriptions of visual scenes is gained on top of pixel-
based feature descriptions that, as a byproduct, must allow us to perform
semantic labeling. Interestingly, there is more; as it will be shown in the
following, there are in fact computational issues that lead us to promote the
idea of carrying our the feature extraction process while focussing attention
on salient pixels.

Q5 Why are there two mainstream different systems in the visual cortex (ven-
tral and dorsal mainstream)?
It has been pointed out that the visual cortex of humans and other pri-
mates is composed of two main information pathways that are referred to
as the ventral stream and dorsal stream [5]. The traditional distinction
distinguishes the ventral “what” and the dorsal “where/how” visual path-
ways, so as the ventral stream is devoted to perceptual analysis of the visual
input, such as object recognition, whereas the dorsal stream is concerned
with providing motion ability in the interaction with the environment. The
enforcement of motion invariance is clearly conceived for extracting features
that are useful for object recognition to assolve the “what” task. Of course,
neurons with built-in motion invariance are not adeguate to make spatial
estimations. A good model for learning of the convolutional need to access
to velocity estimation, which is consistent with neuroanatomical evidence.

Q6 Why is the ventral mainstream organized according to a hierarchical archi-
tecture with receptive fields?
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Beginning from early studies by Hubel and Wiesel [9], neuroscientists have
gradually gained evidence of that the visual cortex presents a hierarchical
structure and that the neurons process the visual information on the basis
of inputs restricted to receptive field. Is there a reason why this solution has
been developed? We can promptly realize that, even though the neurons
are restricted to compute over receptive fields, deep structures easily con-
quer the possibility of taking large contexts into account for their decision.
Is this biological solution driven by computational laws of vision? In [3],
the authors provide evidence of the fact that receptive fields do favor the
acquisition of motion invariance which, as already stated, is the fundamen-
tal invariance of vision. Since hierarchical architectures is the natural solu-
tion for developing more abstract representations by using receptive fields,
it turns out that motion invariance is in fact at the basis of the biological
structure of the visual cortex. The computation at different layers yields
features with progressive degree of abstraction, so as higher computational
processes are expected to use all the information extracted in the layers.

Q7 Why do animals focus attention?
The retina of animals with well-developed visual system is organized in
such a way that there are very high resolution receptors in a restricted
area, whereas lower resolution receptors are present in the rest of the retina.
Why is this convenient? One can easily argue that any action typically takes
place in a relatively small zone in front of the animals, which suggests that
the evolution has led to develop high resolution in a limited portion of the
retina. On the other hand, this leads to the detriment of the peripheral
vision, that is also very important. In addition, this could apply for the
dorsal system whose neurons are expected to provide information that is
useful to support movement and actions in the visual environment. The
ventral mainstream, with neurons involved in the “what” function does
not seem to benefit from foveal eyes. From the theory proposed in this
paper, the need of foveal retinas is strongly supported for achieving efficient
computation for the construction of visual features. However, it will be
argued that the most important reason for focussing attention is that of
dramatically simplifying the computation and limit the ambiguities that
come from the need to sustaining a parallel computation over each frame.

Q8 Why do foveal animals perform eye movements?
Human eyes make jerky saccadic movements during ordinary visual acqui-
sition. One reason for these movements is that the fovea provides high-
resolution in portions of about 1, 2 degrees. Because of such a small high
resolution portions, the overall sensing of a scene does require intensive
movements of the fovea. Hence, the foveal movements do represent a good
alternative to eyes with uniformly high resolution retina. On the other
hand, the preference of the solution of foveal eyes with saccadic movements
is arguable, since while a uniformly high resolution retina is more complex
to achieve than foveal retina, saccadic movements are less important. The
information-based theory presented in this paper makes it possible to con-
clude that foveal retina with saccadic movements is in fact a solution that
is computationally sustainable and very effective.
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Q9 Why does it take 8–12 months for newborns to achieve adult visual acuity?
There are surprising results that come from developmental psychology on
what a newborn see. Charles Darwin came up with the following remark:

It was surprising how slowly he acquired the power of following with
his eyes an object if swinging at all rapidly; for he could not do this
well when seven and a half months old.

At the end of the seventies, this early remark was given a technically sound
basis [20]. In the paper, three techniques,—optokinetic nystagmus (OKN),
preferential looking (PL), and the visually evoked potential (VEP)—were
used to assess visual acuity in infants between birth and 6 months of age.
More recently, the survey by Braddick and Atkinson [14] provides an in-
depth discussion on the state of the art in the field. It is clearly stated that
for newborns to gain adult visual acuity, depending on the specific visual
test, several months are required. Is the development of adult visual acuity
a biological issue or does it come from higher level computational laws?

Q10 Causality and Non Rapid Eye Movements (NREM) sleep phases
Computer vision is mostly based on huge training sets of images, whereas
humans use video streams for learning visual skills. Notice that because of
the alternation of the biological rhythm of sleep, humans somewhat process
collections of visual streams pasted with relaxing segments composed of
“null” video signal. This happens mostly during NREM phases of sleep, in
which also eye movements and connection with visual memory are nearly
absent. Interestingly, the Rapid Eye Movements (REM) phase is, on the
opposite, similar to ordinary visual processing, the only difference being
that the construction of visual features during the dream is based on the
visual internal memory representations [18]. As a matter of fact, the process
of learning the filters experiments an alternation of visual information with
the reset of the signal. A good theory of learning visual features should
provide evidence to claim that such a relaxation coming from the reset
of the signal nicely fits the purpose of optimizing an overall optimization
index based on the previously stated principles. In particular, in [3], the
authors point out that periodic resetting of the visual information favors the
optimization under causality requirements. Hence, the role of eye movement
and of sleep seem to be important for the optimal development of visual
features.

3 Hierarchical Description of Visual Tasks

In this section we discuss visual tasks and their intriguing connection with lan-
guage. This analysis is motivated by the evidence provided in nature of excellent
visual skills that arise regardless of language. At the light of the following anal-
ysis, one should consider to start go beyond the tradition of computer vision
of emphasizing classification tasks. Visual perception drives different functional
tasks in animals, so as the human intersection with language must properly be
analyzed.
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Let T = [t0, t1] be the temporal domain and let X ⊂ R
2 be the retina. We

consider the video domain D := T × X so as

v : D → R
d : (t, x) → [v1(t, x), . . . , vd(t, x)]′

is the video signal on D . In the classic case of RGB coding, we have d = 3.
Throughout the paper, v(D) denotes any video, while we use V to denote the
universal set of videos, where any video belongs to. Likewise, v(t,X ) denotes the
frame at t and I denotes the universal set of images with values v(t, x) ∈ R

d.
Clearly, we have v(D) ∈ V . Now, humans are capable of providing sophisticated
linguistic representations from video v(D) ∈ V , which involve both local and
global features. Clearly, abstract descriptions of a visual scene do require con-
siderable linguistic skills, which emerge also at local level when specific words
can also be attached to any pixel of a given visual frame. Basically, humans are
capable of providing a linguistic description of v(D) that goes well beyond object
classification. The amount of visual information is typically so huge that for an
appropriate cognitive transcription at linguistic level to take place one cannot
rely on classification, but must necessarily involve the compositional structure
of language. This kind of difficulty clearly emerges when trying to provide a lin-
guistic description to blind people, a task which is quite difficult also for humans.

3.1 Pixel-Wise and Abstract Visual Interpretations

One of the most challenging issues in vision is human ability to jump easily from
pixel-wise to recognition processes and more abstract visual interpretations that
involve frames as well as portions of a video. When focussing attention on a
certain pixel in a picture, humans can easily make a list of “consistent objects”
that reflects the visual information around that pixel. Interestingly, that process
takes place by automatically adapting a sort of “virtual window” used for the
decision. This results in the typical detection of objects with dimension which is
growing as that virtual window gets larger and larger. More structured objects
detected at a given pixel are clearly described by more categories than simple
primitive objects, but, for humans, the resulting pixel-wise process is surpris-
ingly well-posed from a pure cognitive point of view. However, such a pixel-wise
process seems to emerge upon request; apparently, humans do not carry out
such a massive computation over all the retina. In addition, there are abstract
visual skills that are unlikely to be attacked by pixel-wise computation. Humans
provide visual interpretations that goes beyond the truly visual pattern (see e.g.
Kanizsa’s illusions). This happens because of the focus of attention, which some-
how locates the object to be processed. As the focus is on the pixel f(t), the
corresponding object can be given an abstract geometrical interpretation by its
shape expressed in term of its contour. While pixel-based processes are based on
all the visual information of the retina associated with a given pixel, shape-based
recognition emerges when recognizing objects on the basis of their contour, once
we focus attention of a point of the object.

Pixel-wise processes can only lead to the emergence of decisions on objects,
which is fact a static concept. It cannot allow us to draw conclusions on actions,
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whose understanding does require to involve portions of video. However, like for
objects, the detection of the “contour of actions” yields a very useful abstraction.
The notion object affordance has a strict connection with that of action. We carry
out many object recognition processes on the basis of actions in which they are
involved, so as objects are detected because of their role in the scene. In other
words, the affordance involves the functional role of objects, which is used for
the emergence of abstract categories.

3.2 The Interwound Story of Vision and Language

In the previous section, we have discussed pixel-wise versus abstract computa-
tional processes aimed at generating labels to be attached to objects and actions.
We can think of two different alphabets Σp and Σs which refer to words related
to pixel-wise and shape-based recognition processes, respectively. For instance,
while terms like eye, mouth, and face are typical elements of Σp, their geomet-
rical description is based on terms in Σs. So we say that the face has an oval
shape, where oval is a typical elements of Σs.

Overall, a visual agent performs cognitive tasks by working on Σa = Σp ∨Σs.
It is important to point out that Σa is only the alphabet of primitive terms,
since when dealing with structured objects and actions, visual agents play with
concepts described by additional terms

Basically, the extraction of semantics from video requires linguistic descrip-
tions, even at local level, where one is asked to select words from the alphabet
ω ∈ Σs. Here we regard any word ω as a symbol with attached semantics, like
in the case of any natural language.

The most abstract task that humans are capable to face is that of constructing
a function χ

0
as follows

χ
0

: V → L0 : v(D) → χ
0
(v(D)), (1)

where L0 ⊂ Σ�
s is a type zero language in Chomsky’s hierarchy. This embraces

any linguistic report from visual scenes, like, for instance, movie review. In addi-
tion to the ability of extracting information from visual sources, a remarkable
specific problem in the construction of χ

0
is that of properly handing the tem-

poral flow of the frames and to provide a semantic representation of the movie
actions. Clearly, a movie review does not only require the ability of extract-
ing a visual representation, but also to properly understand the actions so as
to produce a corresponding descriptions. While cats and eagles are commonly
regarded as animals with very good visual skills, they cannot produce movie
reports. Basically, the sentence χ

0
(v(D)) ∈ Σ�

s is expected to be taken from a
language L0 of highest level in Chomsky classification, which is denoted by L0.

Another fundamental visual task is that of query answer, that can be regarded
as

χ
0

: V × L0 → L0 : v(D) → χ
0
(v(D)), (2)
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Table 1. Hierarchical structure of semantic labeling.

A simplified version and more realistic formulation of semantic labeling, when
actions are not the target, is the one in which

χ
1

: I → L0 : (v(t,X )) → χ
1
(v(t,X )). (3)

This tasks still requires L0 for linguistic description, but only spatial knowledge
Ks is needed, since, unlike the previous case, there is no temporal processing
required (Table 1).

A dramatic drop of complexity arises when asking the agent to provide visual
skills on v(t,X ) while focussing attention to (t, x). This is described by

χ
2

: D × I → Σs : (t, x, v(t,X )) → χ
2
(t, x, v(t,D)), (4)

Basically, while the decision is based on u(t, x) = (t, x, v(t,X )) ∈ U , which
represents quite an unusual granule of information with respect to what is typ-
ically processed in machine learning and pattern recognition, this time there is
no linguistic description, since we only expected the agent to return a list of
symbols of Σs. This simplifies dramatically the overall problem, thus contribut-
ing to decoupling visual and semantic processes. It is worth mentioning that the
dramatic reduction of complexity in the semantic processes is paired with the
emergence of focus of attention, namely with decisions based on u(t, x) ∈ U . In
principle, one can expect semantic labeling of (t, x) by means of a single ω ∈ Σs,
but in some cases dozens of words might be associated with u(t, x). While the
linguistic structure degenerates, we are still in presence of a compositional struc-
ture, so as the agent might generate remarkable lengthy sentences of pertinent
words Σ�

s .

3.3 When Vision Collapses to Classification

An additional simplification on the semantic level arises when considering that
the process of generating the words ω ∈ Σ� can be thought of as a compositional
process based on a set Σd of “dummy symbols”, so as

χ
3

: D × I → Σd : (t, x, v(t,X )) → χ
3
(t, x, v(t,D)), (5)
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Basically, the transition from χ
2
(·) to χ

3
(·) involves a further definitive lin-

guistic simplification, which restricts the symbolic description from Σ�
s to Σd.

In so doing, all the complexity is now on the visual side, which requires deci-
sions based on u(t, x), so as we are finally in front of a classification problem.
This description of visual tasks makes it clear that in order to conquer abstract
computer vision skills, any agent does require to address both issues of input
representation and linguistic descriptions. We claim that any systematic app-
roach to vision cannot avoid to face the issue of decoupling the classification of
visual features, with symbols in Σd, and the appropriate linguistic description.

Let us analyze the problems connected with the construction of χ
0

and χ
1
,

which both operate on global input representation, thus disregarding any focus
of attention mechanism. The complexity can be promptly appreciated also in
the simplest task χ

1
. Clearly, it cannot be regarded as a classification since the

agent is expected to provide truly linguistic descriptions. On top of that, when
dealing with unrestricted visual environments, the interpretation of v(t,X ) is
trapped into the chicken-egg dilemma on whether classification of objects or
segmentation must take place first. This is due to the absence of any focus of
attention, which necessarily leads to holistic mechanisms of information extrac-
tion. Unfortunately, while holistic mechanisms are required at a certain level of
abstraction, the direct process of v(t,X ) do not offer the right source for their
activation. Basically, there is no decoupling between the visual source and its
linguistic description.

Interestingly, this decoupling takes place when separating χ
3
(·) with respect

to the others. The development of abstract levels of description can follow the
chaining process

U
χ

3−→ Σd

χ
2−→ Σ�

s

χ
1−→ (Σ�

s ,L0,Ks)
χ

0−→ (Σ�
s ,L0,Ks,Kt), (6)

where χ
3
(·) is the only one which deals with the visual signal. All the other

functions involve symbolic processes at different levels of abstraction. From one
side, χ

3
(·) exploits the focus of attention on (t, x) ∈ D to better process the visual

information, and, from the other side, it gets rid of any linguistic structure by
relying on the classification of dummy symbols.

4 Conclusions

By and large, there is a lot of excitement around computer vision that is definitely
motivated by the successful results obtained in the last few years by deep learn-
ing. While recognizing the fundamental progress gained under this new wave
of connectionist models, this paper claims that the bullish sentiment behind
these achievements might not be fully motivated and that the time has come to
address a number of fundamental questions that, once properly addressed, could
dramatically improve nowadays technology. The discussion is stimulated by the
remark that the construction of learning theories of vision properly conceived for
intelligent agents working on video instead of large image collections simplifies
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any visual task. In particular, the paper promotes the principle of developing
visual features invariant under motion, which is claimed to be the only signifi-
cant invariance that is required to gain the “what” function typical of the ventral
mainstream.

References

1. Anderson, J.A., Rosenfeld, E. (eds.): Neurocomputing: Foundations of Research.
MIT Press, Cambridge (1988)

2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31
(2011)

3. Betti, A., Gori, M.: Convolutional networks in visual environments. Arxiv preprint
arXiv:1801.07110v1 (2018)

4. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. InL CVPR 2009 (2009)

5. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action.
Trends Neurosci. 15(1), 20–25 (1992)

6. Gori, M., Lippi, M., Maggini, M., Melacci, S.: Semantic video labeling by develop-
mental visual agents. Comput. Vis. Image Underst. 146, 9–26 (2016)

7. Goroshin, R., Brun, J., Tompson, J., Eigen, D., LeCun, Y.: Unsupervised learning
of spatiotemporally coherent metrics. In: 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 4086–4093
(2015)

8. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–
203 (1981)

9. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction, and functional
architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates Inc., (2012)

11. Lee, H., Gross, R., Ranganat, R., Ng, A.Y.: Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. In: Proceedings of
the 26th Annual International Conference on Machine Learning, ICML 2009, pp.
609–616. ACM. New York (2009)

12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

13. Marr, D.: Vision. Freeman, San Francisco (1982). Partially reprinted in [1]
14. Braddick, O., Atkinson, J.: Development of human visual function. Vis. Res. 51,

1588–1609 (2011)
15. Poggio, T.A., Anselmi, F.: Visual Cortex and Deep Networks: Learning Invariant

Representations, 1st edn. The MIT Press, Cambridge (2016)
16. Ranzato, M., Huang, F.J., Boureau, Y.-L., LeCun, Y.: Unsupervised learning

of invariant feature hierarchies with applications to object recognition. In: 2007
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2007), 18–23 June 2007, Minneapolis, Minnesota, USA (2007)

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556 (2014)

http://arxiv.org/abs/1801.07110v1


16 M. Gori

18. Andrillon, T.N., Yuval, N., Cirelli, C., Tononi, G., Itzhak, F.: Single-neuron activity
and eye movements during human REM sleep and awake vision. Nature (2014)

19. Tavanaei, A., Masquelier, T., Maida, A.S.: Acquisition of visual features through
probabilistic spike-timing-dependent plasticity. CoRR, abs/1606.01102 (2016)

20. Dobson, V., Teller, D.Y.: Visual acuity in human infants: a review and comparison
of behavioral and electrophysiological studies. Vis. Res. 18, 1469–1483 (1978)

21. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In:
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10602-1 26

https://doi.org/10.1007/978-3-319-10602-1_26
https://doi.org/10.1007/978-3-319-10602-1_26


Deep Learning in the Wild

Thilo Stadelmann1(B), Mohammadreza Amirian1,2, Ismail Arabaci3,
Marek Arnold1,3, Gilbert François Duivesteijn4, Ismail Elezi1,5,
Melanie Geiger1,6, Stefan Lörwald7, Benjamin Bruno Meier3,

Katharina Rombach1, and Lukas Tuggener1,8

1 ZHAW Datalab & School of Engineering, Winterthur, Switzerland
stdm@zhaw.ch

2 Institute of Neural Information Processing, Ulm University, Ulm, Germany
3 ARGUS DATA INSIGHTS Schweiz AG, Zürich, Switzerland
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Abstract. Deep learning with neural networks is applied by an increas-
ing number of people outside of classic research environments, due to
the vast success of the methodology on a wide range of machine per-
ception tasks. While this interest is fueled by beautiful success stories,
practical work in deep learning on novel tasks without existing baselines
remains challenging. This paper explores the specific challenges arising
in the realm of real world tasks, based on case studies from research &
development in conjunction with industry, and extracts lessons learned
from them. It thus fills a gap between the publication of latest algorith-
mic and methodical developments, and the usually omitted nitty-gritty
of how to make them work. Specifically, we give insight into deep learn-
ing projects on face matching, print media monitoring, industrial quality
control, music scanning, strategy game playing, and automated machine
learning, thereby providing best practices for deep learning in practice.

Keywords: Data availability · Deployment
Loss & reward shaping · Real world tasks

1 Introduction

Measured for example by the interest and participation of industry at the annual
NIPS conference1, it is save to say that deep learning [49] has successfully tran-
sitioned from pure research to application [32]. Major research challenges still
exist, e.g. in the areas of model interpretability [39] and robustness [1], or gen-
eral understanding [53] and stability [25,67] of the learning process, to name

1 See https://medium.com/syncedreview/a-statistical-tour-of-nips-2017-438201fb6c8a.
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a few. Yet, and in addition, another challenge is quickly becoming relevant: in
the light of more than 180 deep learning publications per day in the last year2,
the growing number of deep learning engineers as well as prospective researchers
in the field need to get educated on best practices and what works and what
doesn’t “in the wild”. This information is usually underrepresented in publica-
tions of a field that is very competitive and thus striving above all for novelty
and benchmark-beating results [38]. Adding to this fact, with a notable exception
[20], the field lacks authoritative and detailed textbooks by leading representa-
tives. Learners are thus left with preprints [37,57], cookbooks [44], code3 and
older gems [28,29,58] to find much needed practical advice.

In this paper, we contribute to closing this gap between cutting edge research
and application in the wild by presenting case-based best practices. Based on a
number of successful industry-academic research & development collaborations,
we report what specifically enabled success in each case alongside open chal-
lenges. The presented findings (a) come from real-world and business case-backed
use cases beyond purely academic competitions; (b) go deliberately beyond what
is usually reported in our research papers in terms of tips & tricks, thus com-
plementing them by the stories behind the scenes; (c) include also what didn’t
work despite contrary intuition; and (d) have been selected to be transferable as
lessons learned to other use cases and application domains. The intended effect
is twofold: more successful applications, and increased applied research in the
areas of the remaining challenges.

We organize the main part of this paper by case studies to tell the story
behind each undertaking. Per case, we briefly introduce the application as well
as the specific (research) challenge behind it; sketch the solution (referring details
to elsewhere, as the final model architecture etc. is not the focus of this work);
highlight what measures beyond textbook knowledge and published results where
necessary to arrive at the solution; and show, wherever possible, examples of
the arising difficulties to exemplify the challenges. Section 2 introduces a face
matching application and the amount of surrounding models needed to make
it practically applicable. Likewise, Sect. 3 describes the additional amount of
work to deploy a state-of-the-art machine learning system into the wider IT
system landscape of an automated print media monitoring application. Section 4
discusses interpretability and class imbalance issues when applying deep learning
for images-based industrial quality control. In Sect. 5, measures to cope with the
instability of the training process of a complex model architecture for large-scale
optical music recognition are presented, and the class imbalance problem has a
second appearance. Section 6 reports on practical ways for deep reinforcement
learning in complex strategy game play with huge action and state spaces in
non-stationary environments. Finally, Sect. 7 presents first results on comparing
practical automated machine learning systems with the scientific state of the
art, hinting at the use of simple baseline experiments. Section 8 summarizes the
lessons learned and gives an outlook on future work on deep learning in practice.

2 Google scholar counts > 68, 000 articles for the year 2017 as of June 11, 2018.
3 See e.g. https://modelzoo.co/.

https://modelzoo.co/
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2 Face Matching

Designing, training and testing deep learning models for application in face recog-
nition comes with all the well known challenges like choosing the architecture,
setting hyperparameters, creating a representative training/dev/test dataset,
preventing bias or overfitting of the trained model, and more. Anyway, very good
results have been reported in the literature [9,42,50]. Although the challenges in
lab conditions are not to be taken lightly, a new set of difficulties emerges when
deploying these models in a real product. Specifically, during development, it is
known what to expect as input in the controlled environment. When the models
are integrated in a product that is used “in the wild”, however, all kinds of input
can reach the system, making it hard to maintain a consistent and reliable pre-
diction. In this section, we report on approaches to deal with related challenges
in developing an actual face-ID verification product.

Fig. 1. Schematic representation of a face matching application with ID detection,
anti-spoofing and image quality assessment. For any pair of input images (selfie and ID
document), the output is the match probability and type of ID document, if no anomaly
or attack has been detected. Note that all boxes contain at least one or several deep
learning (DL) models with many different (convolutional) architectures.

Although the core functionality of such a product is to quantify the match
between a person’s face and the photo on the given ID, more functionality is
needed to make the system perform its task well, most of it hidden from the
user. Thus, in addition to the actual face matching module, the final system
contains at least the following machine learnable modules (see Fig. 1):

Image orientation detection When a user takes a photo of the ID on a flat
surface using a mobile phone, in many cases the image orientation is random.
A deep learning method is applied to predict the orientation angle, used to
rotate the image in the correct orientation.
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Image quality assessment consists of an ensemble of analytical functions and
deep learning models to test if the photo quality is sufficient for a reliable
match. It also guides the user to improve the picture taking process in case
of bad quality.

User action prediction uses deep learning to predict the action performed by
the user to guide the system’s workflow, e.g. making a selfie, presenting an
ID or if the user is doing something wrong during the sequence.

Anti-Spoofing is an essential module that uses various methods to detect if
a person is showing his “real” face or tries to fool the system with a photo,
video or mask. It consists of an ensemble of deep learning models.

For a commercial face-ID product, the anti-spoofing module is both most cru-
cial for success, and technically most challenging; thus, the following discussion
will focus on anti-spoofing in practice. Face matching and recognition systems
are vulnerable to spoofing attacks made by non-real faces, because they are not
per se able to detect whether or not a face is “live” or “not-live”, given only
a single image as input in the worst case. If control over this input is out of
the system’s reach e.g. for product management reasons, it is then easy to fool
the face matching system by showing a photo of a face from screen or print on
paper, a video or even a mask. To guard against such spoofing, a secure system
needs to be able to do liveness detection. We’d like to highlight the methods we
use for this task, in order to show the additional complexity of applying face
recognition in a production environment over lab conditions.

Fig. 2. Samples from the CASIA dataset [66], where photo 1, 2, and 3 on the left hand
side show a real face, photo 4 shows a replay attack from a digital screen, and photos
5 and 6 show replay attacks from print.

One of the key features of spoofed images is that they usually can be detected
because of degraded image quality: when taking a photo of a photo, the qual-
ity deteriorates. However, with high quality cameras in modern mobile phones,
looking at image quality only is not sufficient in the real world. How then can a
spoof detector be designed that approves a real face from a low quality grainy
underexposed photo taken by an old 640 × 480 web cam, and rejects a replay
attack using a photo from a retina display in front of a 4K video camera (compare
Fig. 2)?

Most of the many spoofing detection methods proposed in the literature
use hand crafted features, followed by shallow learning techniques, e.g. SVM
[18,30,34]. These techniques mainly focus on texture differences between real
and spoofed images, differences in color space [7], Fourier spectra [30], or optical
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flow maps [6]. In more recent work, deep learning methods have been introduced
[3,31,63,64]. Most methods have in common that they attempt to be a one-size-
fits-all solution, classifying all incoming cases with one method. This might be
facilitated by the available datasets: to develop and evaluate anti-spoofing tools,
amongst others CASIA [66], MSU-USSA [43], and the Replay Attack Database
[12] exist. Although these datasets are challenging, they turn out to be too easy
compared to the input in a production environment.

The main differences between real cases and training examples from these
benchmark databases are that the latter ones have been created with a low vari-
ety of hardware devices and only use few different locations and light conditions.
Moreover, the quality of images throughout the training sets is quite consistent,
which does not reflect real input. In contrast, the images that the system receives
“in the wild” have the most wide range of possible used hardware and environ-
mental conditions, making the anticipation of new cases difficult. Designing a
single system that can classify all such cases with high accuracy seems therefore
unrealistic.

We thus create an ensemble of experts, forming a final verdict from 3 inde-
pendent predictions: the first method consists of 2 patch-based CNNs, one for
low resolution images, the other one for high resolution images. They operate on
fixed-size tiles from the unscaled input image using a sliding window. This tech-
nique proves to be effective for low and high quality input. The second method
uses over 20 image quality measures as features combined with a classifier. This
method is still very effective when the input quality is low. The third method
uses a RNN with LSTM cells to conduct a joint prediction over multiple frames
(if available). It is effective in discriminating micro movements of a real face
against (simple) translations and rotations of a fake face, e.g. from a photo on
paper or screen. All methods return a real vs. fake probability. The outputs of
all 3 methods are fed as input features to the final decision tree classifier. This
ensemble of deep learning models is experimentally determined to be much more
accurate than using any known method individually.

Note that as attackers are inventive and come up with new ways to fool the
system quickly, it is important to update the models with new data quickly and
regularly.

3 Print Media Monitoring

Content-based print media monitoring serves the task of delivering cropped digi-
tal articles from printed newspapers to customers based on their pre-formulated
information need (e.g., articles about their own coverage in the media). For
this form of article-based information retrieval, it is necessary to segment tens
of thousands of newspaper pages into articles daily. We successfully developed
neural network-based models to learn how to segment pages into their consti-
tuting articles and described their details elsewhere [35,57] (see example results
in Fig. 3a–b). In this section, we present challenges faced and learnings gained
from integrating a respective model into a production environment with strict
performance and reliability requirements.
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(a) (b) (c)

Fig. 3. Good (a) and bad (b) segmentations (blue lines denote crop marks) for realistic
pages, depending on the freedom in the layout. Image (c) shows a non-article page that
is excluded from automatic segmentation. (Color figure online)

Exclusion of Non-article Pages. A common problem in print segmentation
are special pages that contain content that doesn’t represent articles in the com-
mon sense, for example classified ads, reader’s letters, TV program, share prices,
or sports results (see Fig. 3c). Segmentation rules for such pages can be compli-
cated, subjective, and provide little value for general use cases. We thus utilize
a random forest-based classifier on handcrafted features to detect such content
and avoid feeding respective pages to the general segmentation system to save
compute time.

Model Management. One advantage of an existing manual segmentation
pipeline is the abundance of high quality, labeled training data being produced
daily. To utilize this constant flow of data, we have started implementing an
online learning system [52] where results of the automatic segmentation can be
corrected within the regular workflow of the segmentation process and fed back
to the system as training data.

After training, an important business decision is the final configuration of a
model, e.g. determining a good threshold for cuts to weigh between precision and
recall, or the decision on how many different models should be used for the pro-
duction system. We determined experimentally that it is more effective to train
different models for different publishers: the same publisher often uses a similar
layout even for different newspapers and magazines, while differences between
publishers are considerable. To simplify the management of these different mod-
els, they are decoupled from the code. This is helpful for rapid development and
experimentation.

Technological Integration. For smooth development and operation of the neu-
ral network application we have chosen to use a containerized microservices archi-
tecture [14] utilizing Docker [62] and RabbitMQ [26]. This decoupled architecture
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Fig. 4. Architecture of the overall pipeline: the actual model is encapsulated in the
“FCNN-based article segmentation” block. Several other systems are required to war-
rant full functionality: (a) the Proxy is responsible to control data input and output
from the segmentation model; (b) RabbitMQ controls the workflow as a message bro-
ker; (c) MongoDB stores all segmentation results and metrics; (d) the Lectorate UI
visualizes results for human assessment and is used to create training data.

(see Fig. 4) brings several benefits especially for machine learning applications:
(a) a separation of concerns between research, ops and engineering tasks; (b)
decoupling of models/data from code, allowing for rapid experimentation and
high flexibility when deploying the individual components of the system. This
is further improved by a modern devops pipeline consisting of continuous inte-
gration (CI), continuous deployment (CD), and automated testing; (c) infras-
tructure flexibility, as the entire pipeline can be deployed to an on-premise data
center or in the cloud with little effort. Furthermore, the use of Nvidia-docker
[62] allows to utilize GPU-computing easily on any infrastructure; (d) precise
controlling and monitoring of every component in the system is made easy by
data streams that enable the injection and extraction of data such as streaming
event arguments, log files, and metrics at any stage of the pipeline; and (e) easy
scaling of the various components to fit different use cases (e.g. training, testing,
experimenting, production). Every scenario requires a certain configuration of
the system for optimal performance and resource utilization.

4 Visual Quality Control

Manual inspection of medical products for in-body use like balloon catheters
is time-consuming, tiring and thus error-prone. A semi-automatic solution with
high precision is thus sought. In this section, we present a case study of deep
learning for visual quality control of industrial products. While this seems to
be a standard use case for a CNN-based approach, the task differs in several
interesting respects from standard image classification settings:
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Fig. 5. Balloon catheter images taken under different optical conditions, exposing (left
to right) high reflections, low defect visibility, strong artifacts, and a good setup.

Data collection and labeling are one the most critical issues in most practi-
cal applications. Detectable defects in our case appear as small anomalies on
the surface of transparent balloon catheters, such as scratches, inclusions or
bubbles. Recognizing such defects on a thin, transparent and reflecting plastic
surface is visually challenging even for expert operators that sometimes refer to
a microscope to manually identify the defects. Thus, approx. 50% of a 2-year
project duration was used on finding and verifying the optimal optical settings
for image acquisition. Figure 5 depicts the results of different optical configura-
tions for such photo shootings. Finally, operators have to be trained to produce
consistent labels usable for a machine learning system. In our experience, the
labeling quality rises if all involved parties have a basic understanding of the
methods. This helps considerably to avoid errors like e.g. only to label a defect
on the first image of a series of shots while rotating a balloon: while this is
perfectly reasonable from a human perspective (once spotted, the human eas-
ily tracks the defect while the balloon moves), it is a no-go for the episodic
application of a CNN.

Network and training design for practical applications experiences chal-
lenges such as class imbalance, small data regimes, and use case-specific learning
targets apart from standard classification settings, making non-standard loss
functions necessary (see also Sect. 5). For instance, in the current application,
we are looking for relatively small defects on technical images. Therefore, archi-
tectures proposed for large-scale natural image classification such as AlexNet
[27], GoogLeNet [59], ResNet [24] and modern variants are not necessarily suc-
cessful, and respective architectures have to be adapted to learn the relevant
task. Potential solutions for the class imbalance problem are for example:

– Down-sampling the majority class
– Up-sampling the minority class via image augmentation [13]
– Using pre-trained networks and applying transfer learning [41]
– Increasing the weight of the minority class in the optimization loss [8]
– Generating synthetic data for the minority class using SMOTE [11] or GANs

[21]

Selecting a suitable data augmentation approach according for the task is a
necessity for its success. For instance, in the present case, axial scratches are
more important than radial ones, as they can lead to a tearing of the balloon
and its subsequent potentially lethal remaining in a patient’s body. Thus, using
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Negative

Positive

Fig. 6. Visualizing VGG19 feature responses: the first row contains two negative exam-
ples (healthy patient) and the second row positives (containing anomalies). All depicted
samples are correctly classified.

90◦ rotation for data augmentation could be fatal. Information like this is only
gained in close collaboration with domain experts.

Interpretability of models received considerable attention recently, spurring
hopes both of users for transparent decisions, and of experts for “debugging”
the learning process. The latter might lead for instance to improved learning
from few labeled examples through semantic understanding of the middle layers
and intermediate representations in a network. Figure 6 illustrates some human-
interpretable representations of the inner workings of a CNN on the recently
published MUsculoskeletal RAdiographs (MURA) dataset [45] that we use here
as a proxy for the balloon dataset. We used guided-backpropagation [56] and
a standard VGG19 network [55] to visualize the feature responses, i.e. the part
of the X-ray image on which the network focuses for its decision on “defect”
(e.g., broken bone, foreign object) or “ok” (natural and healthy body part).
It can be seen that the network mostly decides based on joints and detected
defects, strengthening trust in its usefulness. We described elsewhere [2] that
this visualization can be extended to an automatic defense against adversarial
attacks [21] on deployed neural networks by thresholding the local spatial entropy
[10] of the feature response. As Fig. 7 depicts, the focus of a model under attack
widens considerably, suggesting that it “doesn’t know where to look” anymore.

5 Music Scanning

Optical music recognition (OMR) [46] is the process of translating an image of a
page of sheet music into a machine-readable structured format like MusicXML.
Existing products exhibit a symbol recognition error rate that is an order of
magnitude too high for automatic transcription under professional standards,
but don’t leverage deep learning computer vision capabilities yet. In this section,
we therefore report on the implementation of a deep learning approach to detect
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Fig. 7. Input, feature response and local spatial entropy for clean and adversarial
images, respectively. We used VGG19 to estimate predictions and the fast gradient
sign attack (FGSM) method [21] to compute the adversarial perturbation.

and classify all musical symbols on a full page of written music in one go, and
integrate our model into the open source system Audiveris4 for the semantic
reconstruction of the music. This enables products like digital music stands based
on active sheets, as most of todays music is stored in image-based PDF files or
on paper.

We highlight four typical issues when applying deep learning techniques to
practical OMR: (a) the absence of a comprehensive dataset; (b) the extreme class
imbalance present in written music with respect to symbols; (c) the issues of
state-of-the-art object detectors with music notation (many tiny and compound
symbols on large images); and (d) the transfer from synthetic data to real world
examples.

Synthesizing Training Data. The notorious data hunger of deep learning has
lead to a strong dependence of results on large, well annotated datasets, such
as ImageNet [48] or PASCAL VOC [16]. For music object recognition, no such
dataset has been readily available. Since labeling data by hand is no feasible
option, we put a one-year effort in synthesizing realistic (i.e., semantically and
syntactically correct music notation) data and the corresponding labeling from
renderings of publicly available MusicXML files and recently open sourced the
resulting DeepScores dataset [60].

Dealing with Imbalanced Data. While typical academic training datasets
are nicely balanced [16,48], this is rarely the case in datasets sourced from real
4 See http://audiveris.org.

http://audiveris.org
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Fig. 8. Symbol classes in DeepScores with their relative frequencies (red) in the dataset.
(Color figure online)

world tasks. Music notation (and therefore DeepScores) shows an extreme class
imbalance (see Fig. 8). For example, the most common class (note head black)
contains more than 55% of the symbols in the entire dataset, and the top 10
classes contain more than 85% of the symbols. At the other extreme, there is a
class which is present only once in the entire dataset, making its detection by
pattern recognition methods nearly impossible (a “black swan” is no pattern).
However, symbols that are rare are often of high importance in the specific pieces
of music where they appear, so simply ignoring the rare symbols in the training
data is not an option. A common way to address such imbalance is the use of a
weighted loss function, as described in Sect. 4.

This is not enough in our case: first, the imbalance is so extreme that naively
reweighing loss components leads to numerical instability; second, the signal of
these rare symbols is so sparse that it will get lost in the noise of the stochastic
gradient descent method [61], as many symbols will only be present in a tiny
fraction of the mini batches. Our current answer to this problem is data syn-
thesis [37], using a three-fold approach to synthesize image patches with rare
symbols (cp. Fig. 8): (a) we locate rare symbols which are present at least 300
times in the dataset, and crop the parts containing those symbols including their
local context (other symbols, staff lines etc.); (b) for rarer symbols, we locate
a semantically similar but more common symbol in the dataset (based on some
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Fig. 9. Schematic of the Deep Watershed Detector model with three distinct output
heads. N and M are the height and width of the input image, #classes denotes the
number of symbols and #energy levels is a hyperparameter of the system.

expert-devised notion of symbol similarity), replace this common symbol with
the rare symbol and add the resulting page to the dataset. This way, synthesized
sheets still have semantic sense, and the network can learn from syntactically
correct context symbols. We then crop patches around the rare symbols similar
to the previous approach; (c) for rare symbols without similar common symbols,
we automatically “compose” music containing those symbols.

Then, during training, we augment each input page in a mini batch with 12
randomly selected synthesized crops of rare symbols (of size 130× 80 pixels) by
putting them in the margins at the top of the page. This way, that the neural
network (on expectation) does not need to wait for more than 10 iterations to
see every class which is present in the dataset. Preliminary results show improve-
ment, though more investigation is needed: overfitting on extreme rare symbols
is still likely, and questions remain regarding how to integrate the concept of
patches (in the margins) with the idea of a full page classifier that considers all
context.

Enabling and Stabilizing Training. We initially used state-of-the-art object
detection models like Faster R-CNN [47] to attempt detection and classification
of musical symbols on DeepScores. These algorithms are designed to work well on
the prevalent datasets that are characterized by containing low-resolution images
with a few big objects. In contrast, DeepScores consists of high resolution musical
sheets containing hundreds of very small objects, amounting to a very different
problem [60]. This disconnect lead to very poor out-of-the-box performance of
said systems.

Region proposal-based systems scale badly with the number of objects
present on a given image, by design. Hence, we designed the Deep Watershed
Detector as an entirely new object detection system based on the deep water-
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Fig. 10. Top: part of a synthesized image from DeepScores; middle: the same part,
printed on old paper and photographed using a cell phone; bottom: the same image,
automatically retrofitted (based on the dark green lines) to the original image coordi-
nates for ground truth matching (ground truth overlayed in neon green boxes). (Color
figure online)

shed transform [4] and described it in detail elsewhere [61]. It detects raw musical
symbols (e.g., not a compound note, but note head, stem and flag individually)
in their context with a full sheet music page as input. As depicted in Fig. 9,
the underlying neural network architecture has three output heads on the last
layer, each pertaining to a separate (pixel wise) task: (a) predicting the under-
lying symbol’s class; (b) predicting the energy level (i.e., the degree of belonging
of a given pixel location to an object center, also called “objectness”); and (c)
predicting the bounding box of the object.

Initially, the training was unstable, and we observed that the network did not
learn well if it was directly trained on the combined weighted loss. Therefore,
we now train the network on each of the three tasks separately. We further
observed that while the network gets trained on the bounding box prediction and
classification, the energy level predictions get worse. To avoid this, the network
is fine-tuned only for the energy level loss after being trained on all three tasks.
Finally, the network is retrained on the combined task (the sum of all three losses,
normalized by their respective running means) for a few thousand iterations,
giving excellent results on common symbols.

Generalizing to Real-World Data. The basic assumption in machine learn-
ing for training and test data to stem from the same distribution is often violated
in field applications. In the present case, domain adaptation is crucial: our train-
ing set consists of synthetic sheets created by LilyPond scripts [60], while the
final product will work on scans or photographs of printed sheet music. These
test pictures can have a wide variety of impairments, such as bad printer quality,
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torn or stained paper etc. While some work has been published on the topic of
domain transfer [19], the results are non-satisfactory. The core idea to address
this problem here is transfer learning [65]: the neural network shall learn the
core task of the full complexity of music notation from the synthetic dataset
(symbols in context due to full page input), and use a much smaller dataset to
adapt to the real world distributions of lighting, printing and defect.

We construct this post-training dataset by carefully choosing several hundred
representative musical sheets, printing them with different types of printers on
different types of paper, and finally scanning or photographing them. We then
use the BFMatcher function from OpenCV to align these images with the original
musical sheets to use all the ground truth annotation of the original musical sheet
for the real-world images (see Fig. 10). This way, we get annotated real-looking
images “for free” that have much closer statistics to real-world images than
images from DeepScores. With careful tuning of the hyperparameters (especially
the regularization coefficient), we get promising - but not perfect - results during
the inference stage.

6 Game Playing

In this case study, deep reinforcement learning (DRL) is applied to an agent
in a multi-player business simulation video game with steadily increasing com-
plexity, comparable to StarCraft or SimCity. The agent is expected to compete
with human players in this environment, i.e. to continuously adapt its strategy
to challenge evolving opponents. Thus, the agent is required to mimic somewhat
general intelligent behavior by transferring knowledge to an increasingly com-
plex environment and adapting its behavior and strategies in a non-stationary,
multi-agent environment with large action and state spaces. DRL is a general
paradigm, theoretically able to learn any complex task in (almost) any environ-
ment. In this section, we share our experiences with applying DRL to the above
described competitive environment. Specifically, the performance of a value-
based algorithm using Deep Q-Networks (DQN) [36] is compared to a policy
gradient method called PPO [51].

Dealing with Competitive Environments. In recent years, astounding
results have been achieved by applying DRL in gaming environments. Examples
are Atari games [36] and AlphaGo [54], where agents learn human or superhuman
performance purely from scratch. In both examples, the environments are either
stationary or, if an evolving opponent is present, it did not act simultaneously in
the environment; instead, actions were taken in turns. In our environment, multi-
ple evolving players act simultaneously, making changes to the environment that
can not be explained solely based on changes in the agent’s own policy. Thus, the
environment is perceived as non-stationary from the agent’s perspective, result-
ing in stability issues in RL [33]. Another source of complexity in our setting
is a huge action and state space (see below). In our experiments, we observed
that DQN got problems learning successful control policies as soon as the envi-
ronment became more complex in this respect, even without non-stationarity
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Fig. 11. Heuristic encoding of actions to prevent combinatorial explosion.

induced by opponents. On the other hand, PPO’s performance is generally less
sensitive to increasing state and action spaces. The impact of non-stationarity
to these algorithms is subject of ongoing work.

Reward Shaping. An obvious rewarding choice is the current score of the game
(or its gain). Yet, in the given environment, scoring and thus any reward based
on it is sparse, since it is dependent on a long sequence of correct actions on
the operational, tactical and strategic level. As any rollout of the agent without
scoring is not contributing to any gain in knowledge, the learning curve is flat
initially. To avoid this initial phase of no information gain, intermediate rewards
are given to individual actions, leading to faster learning progress in both DQN
and PPO.

Additionally, it is not sufficient for the agent to find a control policy eventu-
ally, but it is crucial to find a good policy quickly, as training times are anyhow
very long. Usually, comparable agents for learning complex behaviors in com-
petitive environments are trained using self-play [5], i.e., the agents are always
trained with “equally good” competitors to be able to succeed eventually. In our
setting, self play is not a straightforward first option, for several reasons: first, to
jump-start learning, it is easier in our setting to play without an opponent first
and only learn the art of competition later when a stable ability to act is reached;
second, different from other settings, our agents should be entertaining to human
opponents, not necessarily winning. It is thus not desirable to learn completely
new strategies that are successful yet frustrating to human opponents. There-
fore, we will investigate self-play only after stable initializations from (scripted)
human opponents on different levels.

Complex State and Action Spaces. Taking the screen frame (i.e., pixels) as
input to the control policy is not applicable in our case. First, the policy’s input
needs to be independent of rendering and thus of hardware, game settings, game
version etc. Furthermore, a current frame does not satisfy the Markov property,
since attributes like “I own item x” are not necessarily visible in it. Instead,
some attributes need to be concluded from past experiences. Thus, the state
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space needs to be encoded into sufficient features, a task we approach with
manual pre-engineering.

Next, a post-engineering approach helps in decreasing the learning time in
case of DQN by removing unnecessary actions from consideration as follows:
in principal, RL algorithms explore any theoretically possible state-action pair
in the environment, i.e., any mathematically possible decision in the Markov
Decision Process (MDP). In our environment, the available actions are dependent
on the currently available in-game resources of the player, i.e., on the current
state. Thus, exploring currently impossible regions in the action space is not
efficient and is thus prevented by a post-engineered decision logic built to block
these actions from being selected. This reduces the size of the action space per
time stamp considerably. These rules where crucial in producing first satisfying
learning results in our environment using DQN in a stationary setting of the
game. However, when training the agent with PPO, hand-engineered rules where
not necessary for proper learning.

The major problem however is the huge action and state space, as it leads
to ever longer training times and thus long development cycles. It results from
the fact that one single action in our environment might consist of a sequence of
sub-decisions. Think e.g. of an action called “attack” in the game of StarCraft,
answering the question of WHAT to do (see Fig. 11). It is incompletely defined
as long as it does not state WHICH opponent is to be attack using WHICH unit.
In other words, each action itself requires a number of different decisions, chosen
from different subcategories. To avoid the combinatorial explosion of all possible
completely defined actions, we perform another post-processing on the resource
management: WHICH unit to choose on WHICH type of enemy, for example, is
hard-coded into heuristic rules.

This case study is work in progress, but what becomes evident already is
that the combination of the complexity of the task (i.e., acting simultaneously
on the operational, tactical and strategic level with exponentially increasing
time horizons, as well as a huge state and action space) and the non-stationary
environment prevent successful end-to-end learning as in “Pong from pixels”5.
Rather, it takes manual pre- and post-engineering to arrive at a first agent that
learns, and it does so better with policy-based rather than DQN-based algo-
rithms. A next step will explore an explicitly hierarchical learner to cope with
the combinatorial explosion of the action space on the three time scales (opera-
tional/tactical/strategic) without using hard-coded rules, but instead factorizing
the action space into subcategories.

7 Automated Machine Learning

One of the challenging tasks in applying machine learning successfully is to select
a suitable algorithm and set of hyperparameters for a given dataset. Recent
research in automated machine learning [17,40] and respective academic chal-
lenges [22] accurately aimed at finding a solution to this problem for sets of
5 Compare http://karpathy.github.io/2016/05/31/rl/.

http://karpathy.github.io/2016/05/31/rl/
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practically relevant use cases. The respective Combined Algorithm Selection
and Hyperparameter (CASH) optimization problem is defined as finding the
best algorithm A∗ and set of hyperparameters λ∗ with respect to an arbitrary
cross-validation loss L as follows:

A∗, λ∗ = argmin
A∈A ,λ∈ΛA

1
K

K∑

i=1

L (Aλ,D
(i)
train,D

(i)
valid)

where A is a set of algorithms, ΛA the set of hyperparameters per algorithm
A (together they form the hypothesis space), K is the number of cross valida-
tion folds and D are datasets. In this section, we compare two methods from
the scientific state-of-the-art (one uses Bayesian optimization, the other genetic
programming) with a commercial automated machine learning prototype based
on random search.

Scientific State-of-the-Art. Auto-sklearn [17] is the most successful auto-
mated machine learning framework in past competitions [23]. The algorithm
starts with extracting meta-features from the given dataset and finds models
which perform well on similar datasets (according to the meta-features) in a
fixed pool of stored successful machine learning endeavors. Auto-sklearn then
performs meta-learning by initializing a set of model candidates with the model
and hyperparameter choices of k nearest neighbors in dataset space; subse-
quently, it optimizes their hyperparameters and feature preprocessing pipeline
using Bayesian optimization. Finally, an ensemble of the optimized models is
build using a greedy search. On the other side, Tree-based Pipeline Optimiza-
tion Tool (TPOT) [40] is toolbox based on genetic programming. The algorithm
starts with random initial configurations including feature preprocessing, feature
selection and a supervised classifier. At every step, the top 20% best models are
retained and randomly modified to generate offspring. The offspring competes
with the parent, and winning models proceed to the next iteration of the algo-
rithm.

Commercial Prototype. The Data Science Machine (DSM) is currently used
inhouse for data science projects by a business partner. It uses random sam-
pling of the solution space for optimization. Machine learning algorithms in
this system are leveraged from Microsoft Azure, scikit-learn and can be user-
enhanced. DSM can be deployed in the cloud, on-premise, as well as standalone.
The pipeline of DSM includes data preparation, feature reduction, automatic
model optimization, evaluation and final ensemble creation. The question is: can
it prevail against much more sophisticated systems even at this early stage of
development?

Evaluation is performed using the protocol of the AutoML challenge [22] for
comparability, confined to a subset of ten datasets that is processable for the
current DSM prototype (i.e., non-sparse, non-big). It spans the tasks of regres-
sion, binary and multi-class classification. For applicability, we constrain the
time budget of the searches by the required time for DSM to train 100 models
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Table 1. Comparison of different automated machine learning algorithms.

Dataset Task Metric Auto-Sklearn TPOT DSM

Validation Test Validation Test Validation Test

Cadata Regression Coefficient of

determination

0.7913 0.7801 0.8245 0.8017 0.7078 0.7119

Christine Binary

classification

Balanced accuracy

score

0.7380 0.7405 0.7435 0.7454 0.7362 0.7146

Digits Multiclass

classification

Balanced accuracy

score

0.9560 0.9556 0.9500 0.9458 0.8900 0.8751

Fabert Multiclass

classification

Accuracy score 0.7245 0.7193 0.7172 0.7006 0.7112 0.6942

Helena Multiclass

classification

Balanced accuracy

score

0.3404 0.3434 0.2654 0.2667 0.2085 0.2103

Jasmine Binary

classification

Balanced accuracy

score

0.7987 0.8348 0.8188 0.8281 0.8020 0.8371

Madeline Binary

classification

Balanced accuracy

score

0.8917 0.8769 0.8885 0.8620 0.7707 0.7686

Philippine Binary

classification

Balanced accuracy

score

0.7787 0.7486 0.7839 0.7646 0.7581 0.7406

Sylvine Binary

classification

Balanced accuracy

score

0.9414 0.9454 0.9512 0.9493 0.9414 0.9233

Volkert Multiclass

classification

Accuracy score 0.7174 0.7101 0.6429 0.6327 0.5220 0.5153

Average performance 0.7678 0.7654 0.7586 0.7497 0.7048 0.6991

using random algorithm selection. A performance comparison is given in Table 1,
suggesting that Bayesian optimization and genetic programming are superior to
random search. However, random parameter search lead to reasonably good mod-
els and useful results as well (also in commercial practice). This suggests room
for improvement in actual meta-learning.

8 Conclusions

Does deep learning work in the wild, in business and industry? In the light of the
presented case studies, a better questions is: what does it take to make it work?
Apparently, the challenges are different compared to academic competitions:
instead of a given task and known (but still arbitrarily challenging) environment,
given by data and evaluation metric, real-world applications are characterized
by (a) data quality and quantity issues; and (b) unprecedented (thus: unclear)
learning targets. This reflects the different nature of the problems: competitions
provide a controlled but unexplored environment to facilitate the discovery of
new methods; real-world tasks on the other hand build on the knowledge of a zoo
of methods (network architectures, training methods) to solve a specific, yet still
unspecified (in formal terms) task, thereby enhancing the method zoo in return
in case of success. The following lessons learned can be drawn from our six case
studies (section numbers given in parentheses refer to respective details):

Data acquisition usually needs much more time than expected Sect. 4, yet is the
basis for all subsequent success Sect. 5. Class imbalance and covariate shift
are usual Sects. 2, 4, 5.
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Understanding of what has been learned and how decisions emerge help both
the user and the developer of neural networks to build trust and improve
quality Sects. 4, 5. Operators and business owners need a basic understanding
of used methods to produce usable ground truth and provide relevant subject
matter expertise Sect. 4.

Deployment should include online learning Sect. 3 and might involve the
buildup of up to dozens of other machine learning models Sects. 2, 3 to flank
the original core part.

Loss/reward shaping is usually necessary to enable learning of very complex
target functions in the first place Sects. 5, 6. This includes encoding expert
knowledge manually into the model architecture or training setup Sects. 4,
6, and handling special cases separately Sect. 3 using some automatic pre-
classification.

Simple baselines do a good job in determining the feasibility as well as the
potential of the task at hand when final datasets or novel methods are not
yet seen Sects. 4, 7. Increasing the complexity of methods and (toy-)tasks in
small increments helps monitoring progress, which is important to effectively
debug failure cases Sect. 6.

Specialized models for identifiable sub-problems increase the accuracy in pro-
duction systems over all-in-one solutions Sects. 2, 3, and ensembles of experts
help where no single method reaches adequate performance Sect. 2.

Best practices are straightforward to extract on the general level (“plan
enough resources for data acquisition”), yet quickly get very specific when broken
down to technicalities (“prefer policy-based RL given that . . . ”). An overarching
scheme seems to be that the challenges in real-world tasks need similar amounts
of creativity and knowledge to get solved as fundamental research tasks, suggest-
ing they need similar development methodologies on top of proper engineering
and business planning.

We identified specific areas for future applied research: (a) anti-spoofing for
face verification; (b) the class imbalance problem in OMR; and (c) the slow
learning and poor performance of RL agents in non-stationary environments
with large action and state spaces. The latter is partially addressed by new
challenges like Dota 26, Pommerman or VizDoom7, but for example doesn’t
address hierarchical actions. Generally, future work should include (d) making
deep learning more sample efficient to cope with smaller training sets (e.g. by
one-shot learning, data or label generation [15], or architecture learning); (e)
finding suitable architectures and loss designs to cope with the complexity of
real-world tasks; and (f) improving the stability of training and robustness of
predictions along with (d) the interpretability of neural nets.
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Abstract. Unconstrained large margin distribution machines (ULDMs)
maximize the margin mean and minimize the margin variance without
constraints. In this paper, we first reformulate ULDMs as a special case of
least squares (LS) LDMs, which are a least squares version of LDMs. By
setting a hyperparameter to control the trade-off between the generaliza-
tion ability and the training error to zero, LS LDMs reduce to ULDMs. In
the computer experiments, we include the zero value of the hyperparame-
ter as a candidate value for model selection. According to the experiments
using two-class problems, in most cases LS LDMs reduce to ULDMs and
their generalization abilities are comparable. Therefore, ULDMs are suffi-
cient to realize high generalization abilities without equality constraints.

1 Introduction

In a classification problem, margins between data and the separating hyperplane
play an important role. Here, margin is defined as the distance between a data
point and the separating hyperplane and it is nonnegative when correctly clas-
sified, and negative, when misclassified. In the support vector machine (SVM)
[1,2], the minimum margin is maximized.

Because the SVM does not assume a specific data distribution, the obtained
separating hyperplane is optimal under the assumption that the data obey an
unknown but fixed distribution. Therefore, if prior knowledge is available, it can
improve the generalization ability.

The central idea of SVMs, maximizing the minimum margin, has been
applied to improving generalization performance of other classifiers. However,
for AdaBoost, instead of the minimum margin, directly controlling the margin
distribution has been known to improve the generalization ability [3,4].

Among several classifiers to control the margin distribution [5–12], in [6],
the margin mean for the training data is maximized without constraints. This
approach is extended in [11]: the bias and slope of the separating hyperplanes
are optimized and then equality constraints are introduced. This introduction
results in the least squares SVM. According to the computer experiments, with-
out equality constraints, the generalization ability is inferior to that of the SVM.
c© Springer Nature Switzerland AG 2018
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In [9,10], in addition to maximizing the margin mean, the margin variance is
minimized and the classifier is called large margin distribution machine (LDM).
The advantage of the LDM is that the generalization ability is better than or
comparable to that of the SVM, but one of the disadvantages is that two hyper-
parameters are added to the SVM. This will lengthen model selection. To solve
this problem, in [12], an unconstrained LDM (ULDM) is developed, where the
number of hyperparameters is the same as that of the SVM.

In this paper, we reformulate the ULDM as a special case of the least squares
LDM (LS LDM). As in [12], we formulate the LS LDM as maximizing the margin
mean and minimizing the margin variance, in addition to minimizing the square
norm of the coefficient vector of the hyperplane and the square sum of slack
variables. As in the LS SVM, we impose the equality constraints for training
data. Because the hyperparameters are necessary for the square sum of slack
variables and the margin variance, one hyperparameter is added to the LS SVM.
Eliminating the square sum of slack variables in the objective function and the
equality constraints, we obtain the ULDM.

By computer experiments we perform model selection of the LS LDM includ-
ing the parameter value of zero for the slack variables, which results in the
ULDM. Checking the number that the parameter value of zero is taken, we judge
whether the equality constraints are necessary for improving the generalization
ability.

In Sect. 2, we summarize the LS SVM. And in Sect. 3, we explain the LDM
and then discuss its variants: the LS LDM and ULDM. In Sect. 4, we evaluate
the effect of equality constraints to the ULDM using two-class problems.

2 Least Squares Support Vector Machines

Let the decision function in the feature space be

f(x) = w�φ(x) + b, (1)

where φ(x) maps the m-dimensional input vector x into the l-dimensional feature
space, w is the l-dimensional coefficient vector, � denotes the transpose of a
vector, and b is the bias term.

Let the M training input-output pairs be {xi, yi} (i = 1, . . . ,M), where xi

are training inputs and yi are the associated labels and yi = 1 for Class 1 and
−1 for Class 2.

The margin of xi, δi, is defined as the distance from the separating hyperplane
f(x) = 0, and is given by

δi = yi f(xi)/‖w‖. (2)

If δ ‖w‖ = 1, where δ is the minimum margin among δi (i = 1, . . . , M),
maximizing δ is equivalent to minimizing ‖w‖. To make δi larger than or equal
to 1, xi need to satisfy yi f(xi) ≥ 1. Then allowing misclassification, the LS
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SVM is formulated in the primal form as follows:

minimize Q(w, b, ξ) =
1
2
w�w +

C

2

M∑

i=1

ξ2i (3)

subject to yi f(xi) = 1 − ξi for i = 1, . . . ,M, (4)

where Q(w, b, ξ) is the objective function, C is the margin parameter that con-
trols the trade-off between the training error and the generalization ability, ξi
are the slack variables for xi, and ξ = (ξ1, . . . , ξM )�. If we change ξ2i to ξi, and
C/2 to C in (3), and the equality constraints in (4) to inequality constraints, we
obtain the L1 SVM.

Solving the equation in (4) for ξi and substituting it to the objective function
in (3), we obtain the unconstrained optimization problem:

minimize Q(w, b) =
1
2
w�w +

C

2

M∑

i=1

(1 − yi f(xi))2. (5)

The solution of the LS SVM can be obtained by solving a set of linear equa-
tions and generalization performance is known to be comparable to the L1 SVM
[2], but unlike the L1 SVM, the solution is not sparse.

In the following we use the LS SVM to derive an LS LDM, which is a variant
of the LDM, and also use to compare performance of the ULDM.

3 Large Margin Distribution Machines and Their
Variants

In this section, first we briefly summarize the LDM. Then, we define the LS
LDM and ULDM in a way slightly different from [12].

3.1 Large Margin Distribution Machines

The LDM [9] maximizes the margin mean and minimizes the margin variance.
The margin mean δ̄ and margin variance δ̂ are given, respectively, by

δ̄ =
1
M

M∑

i=1

δi, (6)

δ̂ =
1
M

M∑

i=1

(
δi − δ̄

)2 =
1
M

M∑

i=1

δ2i − δ̄2. (7)

Here, instead of (2), we consider the margin as

δi = yi f(xi). (8)
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Similar to the L1 SVM, the LDM is formulated as follows:

minimize Q(w, b, ξ) =
1
2
w�w − λ1 δ̄ +

1
2

λ2 δ̂ + C

M∑

i=1

ξi (9)

subject to yi f(xi) ≥ 1 − ξi for i = 1, . . . ,M, (10)

where λ1 and λ2 are parameters to control maximization of the margin mean
and minimization of the margin variance, respectively. In the objective function,
the second and the third terms are added to the L1 SVM.

Because the LDM uses all the training data to calculate the margin mean and
the margin variance, the solution is dense. Furthermore, because four parameter
values (including one kernel parameter value), instead of two, need to be deter-
mined by model selection, model selection requires more time than the L1 SVM
does.

3.2 Least Squares Large Margin Distribution Machines

The LS LDM that maximizes the margin mean and minimizes the margin vari-
ance is given by replacing the slack sum in (9) with the square sum and the
inequality constraints in (10) with the equality constraints as follows:

minimize Q(w, b, ξ) =
1
2
w�w − λ1 δ̄ +

1
2

λ2 δ̂ +
C

2

M∑

i=1

ξ2i (11)

subject to yi f(xi) = 1 − ξi for i = 1, . . . ,M. (12)

Solving the equation in (12) for ξi and substituting it to the objective function
in (11) yield

minimize Q(w, b) =
1
2
w�w − λ1 δ̄ +

1
2

λ2 δ̂ +
C

2

M∑

i=1

(1 − yi f(xi))2

=
1
2
w�w − λ1 δ̄ +

1
2

λ2 δ̂ +
C

2

M∑

i=1

(δi − 1)2. (13)

In the above objective function, the last term, which is the variance of margins
around the minimum margin works similarly to the third term, which is the
variance of margin around the margin mean, δ̂.

Now substituting (6), (7), and (8) into the objective function of (13) and
deleting the constant term, we obtain

Q(w, b) =
1
2
w�w +

λ2

2M

(
1 +

M C

λ2

) M∑

i=1

f2(xi) − λ2

2

(
1
M

M∑

i=1

yi f(xi)

)2

−
(

λ1

M
+ C

) M∑

i=1

yi f(xi). (14)
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The first three terms in the above objective function are quadratic and the last
term is linear with respect to w and b. Therefore, the coefficient of the linear
term is a scaling factor of the decision function obtained by minimizing (14)
with respect to w and b. Dividing (14) by λ2 and eliminating the coefficient of
the last term, we obtain

Q(w, b) =
1

2Cm
w�w +

1 + Ce

2M

M∑

i=1

f2(xi)

−1
2

(
1
M

M∑

i=1

yi f(xi)

)2

−
M∑

i=1

yi f(xi). (15)

Here, Cm = λ2 and Ce = M C/λ2.
According to the above formulation of the LS LDM, the parameter λ1 in (13)

does not work for controlling the margin mean. Therefore, the three hyperpa-
rameters in (11) and (12) are reduced to two.

3.3 Unconstrained Large Margin Distribution Machines

Deleting the square sum of the slack variables in (11) and equality constraints
in (12), we consider the unconstrained LDM (ULDM) as follows:

minimize Q(w, b) =
1

2Cm
w�w − M δ̄ +

1
2
δ̂

=
1

2Cm
w�w +

1
2M

M∑

i=1

f2(xi) − 1
2

(
1
M

M∑

i=1

yi f(xi)

)2

−
M∑

i=1

yi f(xi). (16)

Here, we multiply δ̄ with M so that the coefficient of the linear term is 1.
Comparing (15) and (16), the ULDM is obtained by setting Ce = 0 (C = 0).
Because the LS LDM includes the ULDM, we derive the optimality condi-

tions for (15) in the empirical feature space [2]. Let {z1, . . . , zN} be a subset
of {x1, . . . ,xM}, where N ≤ M and let {φ(z1), . . . ,φ(zN )} span the empirical
feature space. Then the mapping function that maps the input space into the
empirical feature space is expressed by

h(x) = (K(x, z1), . . . ,K(x, zN ))�, (17)

where K(x, zj) = φ�(x)φ(zj). Then the decision function (1) is expressed by

f(x) = w�h(x) + b. (18)

For a linear kernel with m < N , to improve sparsity, we use the Euclidean
coordinates: z1 = {1, 0, . . . , 0}, · · · , zm = {0, · · · , 0, 1}, and use the identity
mapping: h(x) = x.



46 S. Abe

We derive the optimality condition of the LS LDM given by (15), using (18):

∂Q(w, b)
∂w

=
(

1
Cm

IN + (1 + Ce)K2 − Ky�
Ky

)
w

+
(
(1 + Ce)K̄� − ȳ Ky�)

b − Ky�
= 0, (19)

∂Q(w, b)
∂b

=
(
(1 + Ce) K̄ − ȳ Ky

)
w +

(
1 + Ce − ȳ2

)
b − ȳ = 0, (20)

where IN is the N × N unit matrix,

K2 =
1
M

M∑

i=1

K�
i Ki, K̄ =

1
M

M∑

i=1

Ki, Ky =
1
M

M∑

i=1

yiKi, ȳ =
1
M

M∑

i=1

yi,

Ki = (Ki1, . . . ,KiN ) = h�(xi),
Kij = K(xi, zj) for i = 1, . . . ,M, j = 1, . . . , N. (21)

In a matrix form, (19) and (20) are given by
(

1
Cm

IN + (1 + Ce)K2 − Ky�
Ky (1 + Ce) K̄� − ȳ Ky�

(1 + Ce) K̄ − ȳ Ky 1 + Ce − ȳ2

)(w
b

)

=

(
Ky�

ȳ

)
(22)

If C = 0, (22) reduces to the ULDM. The difference between (22) with C = 0
and the ULDM in [12] is that 1/Cm is used in (22) instead of Cm.

Because the coefficient matrix of (22) is positive definite, we can solve (22)
for w and b by the coordinate descent method [13] as well as by matrix inversion.

In model selection, we need to determine the values of Cm, C in Ce, and γ
in the kernel. To speed up model selection, as well as grid search of three values,
we consider line search: after determining the values of Cm and γ with C = 0
by grid search, we determine the C value fixing the values of Cm and γ with the
determined values.

4 Performance Evaluation

We compare performance of the ULDM with that of the LS LDM to clarify
whether the equality constraints in the LS LDM are necessary. We also compare
the ULDM with the LS SVM and the L1 SVM. Because of the space limitation,
we only use two-class problems.

4.1 Conditions for Experiment

Because the coefficient matrix of (22) is positive definite, (22) can be solved by
the coordinate descent method [9]. But to avoid the imprecise accuracy caused by
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the improper convergence, we train the ULDM and LS LDM by matrix inversion.
We also train the LS SVM given by (3) and (4) by matrix inversion. For the L1
SVM, we use SMO-NM [14], which fuses SMO (Sequential minimal optimization)
and NM (Newton’s method).

We use the radial basis function (RBF) kernels: K(x,x′) = exp(−γ||x −
x′||2/m), where m is the number of inputs for normalization and γ is used to
control a spread of a radius. We carry out model selection by fivefold cross-
validation. To speed up cross-validation for the LS LDM, which has three hyper-
parameters including γ for the RBF kernel, we use line search in addition to grid
search of the optimal values of C, Cm and γ. In line search, after determining
the values of Cm and γ by grid search, we determine the optimal value of C by
cross-validation. Therefore Cm and γ for the ULDM give the same values for the
LS LDM by line search.

We select the γ value from {0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 50, 100, 200}, for
the C value from {0.1, 1, 10, 50, 100, 500, 1000, 2000}, and for the Cm value
from {0.1, 1, 10, 100, 1000, 104, 106, 108}. In the LS LDM, we also include 0 as
a candidate of the C value. Then if 0 is selected, the LS LDM reduces to the
ULDM.

We measure the average CPU time per data set including model selection by
fivefold cross-validation, training a classifier, and classifying the test data by the
trained classifier. We used a personal computer with 3.4 GHz CPU and 16 GB
memory.

4.2 Results for Two-Class Problems

Table 1 lists the numbers of inputs, training data, test data, and data set pairs of
two-class problems [15]. Each data set pair consists of the training data set and
the test data set. Using the training data set, we determine parameter values
by cross-validation, train classifiers with the determined parameter values and
evaluate the performance using the test data set. Then we calculate the average
accuracy and the standard deviation for all the test data sets.

Table 2 lists the parameter values determined by cross-validation. In the first
row, (l) and (g) show that the three hyperparameters of the LS LDM are deter-
mined by linear search and grid search, respectively. Because each classification
problem consists of 100 or 20 training and test data pairs, we show the most
frequently selected parameter values. For the LS LDM, most selected value for
C is 0. Thus, in the table, we show the number that C �= 0 is selected in the
parentheses.

As we discussed before, the Cm and γ values for the ULDM and the LS
LDM (l) are the same. Therefore, if the number that C �= 0 is selected is 0, the
LS LDM (l) reduces to ULDM for all the training data sets. This happens for
seven problems. Except for the german problem, the C value of zero is selected
frequently. For the LS LDM (g) also, the C value of zero is frequently selected.
Therefore, LS LDM (g) reduces to ULDM frequently. These results indicate that
the equality constraints are not important in the LS LDM.
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Table 1. Benchmark data for two-class problems

Data Inputs Train Test Sets

Banana 2 400 4, 900 100

Breast cancer 9 200 77 100

Diabetes 8 468 300 100

Flare-solar 9 666 400 100

German 20 700 300 100

Heart 13 170 100 100

Image 18 1, 300 1, 010 20

Ringnorm 20 400 7, 000 100

Splice 60 1, 000 2, 175 20

Thyroid 5 140 75 100

Titanic 3 150 2, 051 100

Twonorm 20 400 7, 000 100

Waveform 21 400 4, 600 100

The γ values for the three classifiers are very similar and so are the C values
for the LS and L1 SVMs.

In the following we show the distributions of C, Ce, and γ values for the
german data, in which C = 0 is least frequently selected for the LS LDM.

Table 3 shows the C value distributions for the german data. The distribu-
tions for the LS LDM by line search and by grid search are very similar. The
values of C smaller than or equal to 1 are selected 93 times and 90 times for the
LS LDM (l) and LS LDM (g), respectively. Therefore, C does not affect much
to the generalization ability. The distributions for the LS SVM and L1 SVM are
similar and although the value of 1 is frequently selected, the larger values are
also selected. This means that the value of C affect directly on the generalization
ability.

Table 4 shows the distributions of Cm values for the ULDM and LS LDM
(g). The both distributions are similar. The distribution for the LS LDM (l) is
the same as that for the ULDM.

Table 5 lists the γ value distributions for the german data. The γ values larger
than 20 are not selected for the four classifiers. The distributions of the ULDM
(LS LDM (l)) and LS LDM (g) are similar although smaller values are selected
for the ULDM (LS LDM (l)). The distributions of the LS SVM and L1 SVM are
similar and tend to gather towards smaller values than those of the ULDM (LS
LDM (l)) and LS LDM (g).

Table 6 shows the average accuracies and their standard deviations of the
five classifiers with RBF kernels. Among the five classifiers the best average
accuracy is shown in bold and the worst average accuracy is underlined. The
“Average” row shows the average accuracy of the 13 average accuracies and
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Table 2. Most-frequently-selected parameter values for the two-class problems. The
numeral in the parentheses shows the number that C �= 0 is selected.

Data ULDM LS LDM (l) LS LDM (g) LS SVM L1 SVM

Cm, γ Cm, γ (C) Cm, γ (C) C, γ C, γ

Banana 104, 50 104, 50 (1) 104, 100 (1) 10, 50 1, 20

B. cancer 10, 0.01 10, 0.01 (17) 10, 10 (30) 1, 5 1, 0.5

Diabetes 100, 5 100, 5 (10) 100, 5 (22) 1, 0.5 500, 0.1

Flare-solar 10, 0.01 10, 0.01 (0) 10, 1 (0) 10, 0.01 50, 0.01

German 100, 10 100, 10 (31) 100, 10 (38) 1, 0.1 1, 0.1

Heart 100, 0.01 100, 0.01 (0) 104, 0.5 (1) 10, 0.01 100, 0.01

Image 108, 15 108, 15 (1) 108, 20 (1) 50, 50 50, 100

Ringnorm 10, 50 10, 50 (0) 10, 100 (0) 0.1, 50 1, 50

Splice 104, 10 104, 10 (0) 106, 10 (0) 10, 10 10, 10

Thyroid 10, 100 10, 100 (0) 10, 200 (6) 1, 100 50, 5

Titanic 104, 0.01 104, 0.01 (0) 10, 1 (3) 10, 0.01 50, 0.01

Twonorm 1000, 0.01 1000, 0.01 (0) 100, 5 (1) 50, 0.01 1, 0.01

Waveform 100, 50 100, 50 (10) 100, 50 (21) 1, 20 1, 15

Table 3. Distribution of C values for the german data

C LS LDM (l) LS LDM (g) LS SVM L1 SVM

0.0 69 62 — —

0.1 11 11 0 0

1 13 17 42 32

10 3 4 11 9

50 2 2 14 20

100 1 2 7 8

500 0 1 9 8

1000 0 0 5 7

2000 1 1 12 16

the two numerals in the parentheses show the numbers of the best and worst
accuracies in the order. We performed Welch’s t test with the confidence intervals
of 95%. The “W/T/L” row shows the results; W, T, and L denote the numbers
that the ULDM shows statistically better than, the same as, and worse than the
LS LDM (l), LS LDM (g), LS SVM, and L1 SVM, respectively. Symbols “+”
and “−” in the L1 SVM column show that the ULDM is statistically better and
worse than the L1 SVM, respectively.

Ignore the difference of 0.01 for the average accuracies and the standard
deviations. Then the results of the ULDM and those of the LS LDM (l) are



50 S. Abe

Table 4. Distribution of Cm values for the german data

Ce ULDM LS LDM (g)

0.1 7 5

1 44 50

10 18 21

100 12 13

103 6 5

104 2 4

106 5 2

108 6 0

Table 5. Distribution of γ values for the german data

γ value ULDM LS LDM (g) LS SVM L1 SVM

0.01 11 0 10 12

0.1 2 6 23 24

0.5 9 8 16 16

1 8 9 11 13

5 23 26 22 15

10 27 30 12 8

15 9 10 5 8

20 11 11 1 4

50 0 0 0 0

100 0 0 0 0

200 0 0 0 0

different only for the german problem. Whereas for the ULDM and LS LDM
(g), only the ringnorm problem gives the same results.

From the table, from the standpoint of the average accuracy, the ULDM and
LS LDM (l) performed best and the LS SVM, the worst. But from the standpoint
of statistical analysis the ULDM is statistically comparable with the remaining
four classifiers.

Therefore, because the LS LDM frequently reduces to the ULDM and the
ULDM is comparable with the LS LDM, the LS LDM can be replaced with the
ULDM.

Table 7 shows the average CPU time per data set for calculating the accu-
racies. The last row shows the numbers that each classifier shows best/worst
execution time. In average, the LS SVM is the fastest and the LS LDM (g)
the slowest because of the slow model selection by grid search of three hyper-
parameters. Because the ULDM and LS SVM are trained by solving the sets
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Table 6. Accuracy comparison of the two-class problems for RBF kernels

Data ULDM LS LDM (l) LS LDM (g) LS SVM L1 SVM

Banana 89.13±0.69 89.13±0.69 89.16±0.59 89.17±0.66 89.17±0.72

B. cancer 73.73±4.34 73.73±4.35 73.73±4.48 73.13±4.68 73.03±4.51

Diabetes 76.52±1.95 76.52±1.95 76.32±2.00 76.19±2.00 76.29±1.70

Flare-solar 66.33±2.02 66.33±2.02 66.18±1.94 66.25±1.98 −66.99±2.12

German 76.14±2.30 76.10±2.30 76.25±2.17 76.10±2.10 75.95±2.24

Heart 82.61±3.61 82.61±3.61 82.33±3.77 82.49±3.60 82.82±3.37

Image 97.16±0.68 97.17±0.68 97.23±0.53 97.52±0.54 97.16±0.41

Ringnorm 98.16±0.35 98.16±0.35 98.17±0.34 98.19±0.33 98.14±0.35

Splice 89.13±0.60 89.13±0.60 89.17±0.55 88.98±0.70 88.89±0.91

Thyroid 95.28±2.28 95.28±2.28 95.25±2.42 95.08±2.55 95.35±2.44

Titanic 77.45±0.89 77.45±0.89 77.48±0.87 77.39±0.83 77.39±0.74

Twonorm 97.43±0.25 97.43±0.25 97.37±0.28 97.43±0.27 97.38±0.26

Waveform 90.19±0.52 90.19±0.53 90.22±0.51 90.05±0.59 +89.76±0.66

W/T/L — 0/13/0 0/13/0 0/13/0 1/11/1

Average 85.33 (3/2) 85.33 (3/1) 85.30 (5/3) 85.23 (4/3) 85.26 (4/7)

Table 7. Execution time comparison of the two-class problems (in seconds)

Data ULDM LS LDM(l) LS LDM(g) LS SVM L1 SVM

Banana 28.13 30.67 249.08 12.03 4.92

B. cancer 2.91 3.17 25.83 1.69 7.08

Diabetes 44.13 48.63 428.30 20.3 22.96

Flare-solar 223.96 249.05 2067.59 67.28 218.67

German 383.45 431.55 3387.80 98.72 776.53

Heart 1.66 1.87 15.04 1.12 1.75

Image 4813.18 5419.68 46138.67 1826.86 56.7

Ringnorm 26.68 29.42 237.83 13.15 12.57

Splice 1919.64 1986.73 15747.32 740.76 30.71

Thyroid 0.96 1.06 8.68 0.69 0.33

Titanic 1.20 1.33 10.93 0.75 21.25

Twonorm 27.81 30.83 271.14 13.33 10.46

Waveform 26.64 29.96 246.24 13.64 35.61

B/W 0/0 0/0 0/12 7/0 6/1

of linear equations with the equal number of variables, slower training by the
ULDM is due to more complex calculation in setting the coefficients of the linear
equations. Because the matrix size is the number of training data plus one and
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because the numbers of training data are smaller than 1000 except for the image
and splice data sets, the execution time is relatively short.

The L1 SVM is trained by iterative method. Therefore the training speed
depends on the parameter values and for the titanic data, training of the L1
SVM is the slowest. For the ULDM, LS LDM, and LS SVM, the execution time
depends on the number of training data not on the parameter values.

5 Conclusions

The unconstrained large margin distribution machine (ULDM) maximizes the
margin mean and minimizes the margin variance without constraints.

In this paper, we investigated the effect of the constraints to the ULDM. To
do this, we derived the ULDM as a special case of the least squares (LS) LDM,
which is the least squares version of the LDM. If the hyperparameter associated
with the constraints is set to be zero, the LS LDM reduces to the ULDM. In
computer experiments, we carried out model selection of the LS LDM including
the zero value of the hyperparameter as a candidate value. For the two-class
problems with 100 or 20 data set pairs, in most cases, the LS LDM reduced
to the ULDM and if not, there was no statistical difference of generalization
abilities. According to the results, the effect of the equality constraints to the
generalization ability of the LS LDM is considered to be small and the ULDM
can be used instead of the LS LDM.
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Abstract. Deep Learning Library (DLL) is a library for machine learn-
ing with deep neural networks that focuses on speed. It supports feed-
forward neural networks such as fully-connected Artificial Neural Net-
works (ANNs) and Convolutional Neural Networks (CNNs). Our main
motivation for this work was to propose and evaluate novel software engi-
neering strategies with potential to accelerate runtime for training and
inference‘. Such strategies are mostly independent of the underlying deep
learning algorithms. On three different datasets and for four different
neural network models, we compared DLL to five popular deep learning
libraries. Experimentally, it is shown that the proposed library is system-
atically and significantly faster on CPU and GPU. In terms of classifica-
tion performance, similar accuracies as the other libraries are reported.

1 Introduction

In recent years, neural networks have regained a large deal of attention with
deep learning approaches. Such approaches rely on the use of bigger and deeper
networks, typically by using larger input dimensions to incorporate more context
and by increasing the number of layers to extract information at different levels
of granularity. The success of deep learning can be attributed mainly to three
factors. First, there is the advent of big data, meaning the availability of larger
quantities of training data. Second, new training strategies have been devel-
oped, such as unsupervised pre-training that allows deep networks to initialize
well and also to learn efficient feature extractors on large sets of unlabelled data.
Finally, better and faster hardware has helped dealing with the training of such
networks. Deep systems are currently improving the state-of-the-art in many
domains. Successful deep learning applications include near-human performance
at recognizing objects in images [27], generating detailed image descriptions [13],
adding colors to grayscale images [3] or generating highly-realistic images [7].
Moreover, the availability of free and easy-to-use libraries, as well as the avail-
ability of detailed implementation examples on public datasets, have contributed
to the widespread use of deep learning technologies.

From a practical point of view, an ideal deep learning library would be easy
to use, would offer fast training with good precision and would be versatile
c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 54–65, 2018.
https://doi.org/10.1007/978-3-319-99978-4_4
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with many configuration options. Reaching all these qualities is difficult as some
are contradictory. For this reason, we may observe large differences among the
available libraries.

In this work, we report on the development of a deep learning library where
we have clearly opted to focus on efficient computation, targeting specific net-
work models and algorithm configurations. While we are aware of these limi-
tations, we believe that the different optimizations we have implemented may
be of interest to the scientific community. Our library, Deep Learning Library
(DLL), is freely available, with source code1. This library can be used to train
standard Artificial Neural Networks (ANNs) and Convolutional Neural Networks
(CNNs) [18], as well as Restricted Boltzmann Machine (RBM) [26] and Convo-
lutional RBM (CRBM) [20].

While speedups are also observed on the GPU, the proposed library has
been especially optimized for speed on Central Processing Unit (CPU). Although
GPUs are beginning to be the de-facto standard for training deep networks, they
are not always available and some deployments are still targeting existing CPU
implementations. Moreover, inference is generally performed on CPU once the
network has been trained. Therefore, we believe that it remains important to be
able to both train neural networks in reasonable time and achieve fast inference
on CPUs. In this work, we also report successful optimizations on GPU, but we
have to note that advanced parallelization capabilities of GPU where already
well used [28], especially for convolutional networks [16].

Further to our speedup contributions, a special contribution of this paper is
a comprehensive evaluation against several important state of the art libraries.
The evaluation is carried on four models and three data sets. Comparisons are
performed in terms of computation time on both CPU and GPU. This shows
that state of the art libraries have still some large margin of optimization.

The rest of this paper is organized as follows. The DLL library is described
in details in Sect. 2. The evaluation is presented in Sect. 3. Section 4 is presenting
the results of the experiments on MNIST, Sect. 5 on CIFAR-10 and Sect. 6 on
ImageNet. Finally, conclusions are drawn in Sect. 7.

2 DLL: Deep Learning Library

Deep Learning Library (DLL) is a Machine Learning library originally focused
on RBM and CRBM support. It was developed and used in the context of several
research work [29–32]. It also has support for various neural network layers and
backpropagation techniques. It is written in C++ and its main interface is C++
(example in Sect. 2.2). The library can also be used by describing the task in a
simple descriptor language, to make it easier for researchers.

The library supports conventional neural network. As such, ANNs and CNNs
can be trained. Max Pooling and Average Pooling layers are also supported for
CNNs. These networks can be trained with mini-batch gradient descent. The

1 URL https://github.com/wichtounet/dll.

https://github.com/wichtounet/dll


56 B. Wicht et al.

basic learning options such as momentum and weight decay are supported. The
library also support advanced techniques such as Dropout [10] and Batch Nor-
malization [11]. Finally, optimizers with adaptive learning rates such as Ada-
grad [6], Adadelta [33] and Adam [14] are also integrated. The library also sup-
ports Auto-Encoders [2] and Convolutional Auto-Encoders [21].

Also, the library has complete support for the RBM model [26]. The model
can be trained using Contrastive Divergence (CD) [9]. The implementation was
designed following the model from [8]. It also supports Deep Belief Network
(DBN), pretrained layer by layer and then fine-tuned using gradient descent. The
RBM supports a wide range of visible and hidden unit types, such as binary,
Gaussian and Rectified Linear Unit (ReLU) [23]. Support for CRBM is also
integrated, following the two models from [20].

The DLL library is available online2, free of charge, under the terms of the
MIT open source license. Details of the project as well as some tutorials are
available on the home page.

2.1 Performance

The focus of the library is runtime performance, for training and for inference.
The implementation uses several techniques to optimize as much as possible

the runtime performance for training and inference. First, all the computations
are performed using single-precision floating point numbers. This leads to a
better data locality and an increased potential for vectorization. On GPU, it
would even be possible to use half-precision, but modern processors do not have
native capabilities for such computations. Another simple optimization is that
all the computations are performed on a batch rather than on one sample at the
time. This has the advantage of leveraging the necessary operations to higher
level computations. Since this is also generally advantageous for the quality of
the training, this is currently the most common way to train a neural network.

The forward activation of a dense layer for a mini-batch can be computed
with a single matrix-matrix multiplication [31]. This is also possible for the
backward pass, by transposing the weight matrix. Finally, the gradients for the
dense layer can also be computed using one matrix-matrix multiplication. Thus,
such a network mainly needs a good implementation of this operation to be fast.

The Basic Linear Algebra Subprograms (BLAS) interface contains a set of
small and highly-optimized kernels for matrix and vector computation [17].
When using an efficient BLAS library, the matrix-matrix multiplication oper-
ation can be very efficient. Moreover, using a parallel BLAS library also leads to
significantly increased performance for large layers. Moreover, although BLAS
libraries are highly optimized for very large matrices, they are not as fast as
possible for small matrices. Therefore, we automatically detect such cases and
use custom vectorized kernels for small matrix multiplications.

Optimization is more complicated for CNNs. Indeed, the dense layers only
account for a small portion of the training time. Convolutional layers use two

2 URL https://github.com/wichtounet/dll.

https://github.com/wichtounet/dll
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forms of convolution. A valid convolution for the forward pass, which shrinks the
representation and a full convolution for the backward pass to expand it. Every
image batch is convolved with K kernels. It is possible to rearrange an image
into columns so that a matrix-matrix multiplication can be used to compute
the K valid convolutions of the image at once [24,31]. This proved to be very
efficient for large images or large kernels. When images or kernels are small,
it is not efficient since the rearranging of the input matrix is a slow operation.
Therefore, in these cases, we observed that it is more interesting to perform a real
convolution using an highly-optimized implementation. First, several floating
point operations are computed during the same CPU cycle, using SSE and AVX,
a technique known as Single Instruction Multiple Data (SIMD). Then, to ensure
the maximum throughput, the matrices are padded so that the last dimension is
a multiple of the vector size. Specialized kernels for the most used kernel sizes,
such as 3 × 3 and 5× 5, are also used. Finally, most of the convolutions can
be performed in parallel since there are no dependencies between them. This
proved significantly faster than the reduction to a matrix-matrix multiplication
in several configurations.

There are several possible implementations for the full convolution. First,
it can be expressed in terms of another operation, the Fast Fourier Transform
(FFT) [22]. For this, the input image and the kernel are padded to the size of the
output. Then, their transforms are computed, in parallel. The Hadamard prod-
uct of the input image with the transform of the kernel is computed. The inverse
transform of this product is the full convolution. Computing several convolu-
tions of the same image with different kernels is more efficient since the image
transform is only computed once. In our experiments, we observed that such
implementation is very efficient for large inputs and large kernels, but it is not
as interesting for small configurations. With very small kernels, it is more efficient
to pad the input and the kernels and perform a valid convolution. Indeed, a full
convolution is equivalent to a valid convolution with some amount of padding.
When the necessary padding is small enough, it becomes significantly faster than
performing the FFTs. The last option is to use an optimized implementation of
the full convolution. However, due to the large number of border cases, this
would only be faster than the implementation as a valid convolution for large
dimensions, in which case the reduction to FFT would be faster.

Since there is no one-size-fits-all implementation for all configurations, heuris-
tics are used to select the most suited implementations. These heuristics are
based on the size of the convolution kernels and the size of the batch.

Although most of the time is contained inside the previously mentioned oper-
ations, it is still important to optimize the other operations such as activation
functions and gradient computations. In our implementation, these operations
are vectorized and parallelized to maximize the processor utilization.

Fortunately, when optimizing for GPU, most of the routines are already
implemented in highly specialized libraries. DLL uses NVIDIA libraries in order
to optimize most kernels. NVIDIA CUBLAS is used for the matrix-matrix mul-
tiplications and a few other linear algebra operations and NVIDIA CUDNN [4]
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is used for the machine learning operations such as convolutions, activation func-
tions and gradients computation. For other operations, CUDA kernels have been
written to ensure that most of the time is spent on the GPU. When optimiz-
ing for GPU, it is most important to avoid copies between the CPU and GPU.
Moreover, most of the kernels are launched asynchronously, without device syn-
chronization. This significantly reduces the overhead of CUDA kernel calls.

2.2 Example

Figure 1 shows the code necessary to train a three-layer fully-connected network
on the MNIST data set with the DLL library. The code starts by loading the
MNIST data set in memory. Then, the network is declared layer by layer. After
that, the network training parameters are set and the training is started. Finally,
the accuracy on the test set is computed.

using namespace d l l ;

auto dataset = make mnist dataset ( batch s i z e <100>{}, s c a l e p r e <255>{});

using network type = network desc<
network layers<

dense layer <28 ∗ 28 , 500 , sigmoid >,
dense layer <500, 250 , sigmoid >,
dense layer <250, 10 , softmax>

>
, updater<updater type : :MOMENTUM>
, ba t ch s i z e <100>

>:: network t ;

auto net = std : : make unique<network type >();

net−>l e a r n i n g r a t e = 0 . 1 ;
net−>momentum = 0 . 9 ;

net−>d i sp l ay ( ) ;
net−>f i n e t un e ( dataset . t r a i n ( ) , 5 0 ) ;
net−>eva luate ( dataset . t e s t ( ) ) ;

Fig. 1. Example to train and evaluate a dense network on the MNIST data set.

3 Experimental Evaluation

We compared our library against popular libraries on four experiments. The time
to train each model is compared for each library, on CPU and on GPU. Each
experiment was run five times. And for each library, the best time is kept as the
final measure. There is no significant different between the different runs. Their
accuracy was also computed. It was shown that all the tested libraries were all
exhibiting comparable accuracy when trained with the same parameters. For
lack of space, these results are not shown here.

The following reference libraries have been selected:

1. Caffe [12]: A high-level Machine Learning library, focusing on speed and
expression, developed in C++ and used through a text descriptor language.
Caffe 1.0 was installed from the sources with GPU and MKL support.
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2. TensorFlow [1]: A general low-level library, allowing expressing a data flow
graph to perform numerical computation. The core of the system is written
in C++, but the features are used in Python. Tensorflow 1.3.1 was installed
from the sources with CUDA, CUDNN and MKL support.

3. Keras3: A high-level Machine Learning library, providing a frontend for Ten-
sorflow and Theano, written in Python. It provides a large number of high-
level models, easing the development of Machine Learning models. The ver-
sion 2.0.8 was installed using the official package with Tensorflow 1.3.1.

4. Torch [5]: Torch is another low-level Machine Learning library, one of the
earliest, started in 2002. It is used through a Lua front-end. Although it is
a low-level library, it also contains high-level modules for Machine Learning.
It was installed from the sources, from Git commit 3e9e141 with CUDA and
MKL support.

5. DeepLearning4J4: DeepLearning4J is a deep learning library for Java, writ-
ten in Java, C and C++. It has a very large set of features and focuses on
distributed computing. The version 0.9.1 was used, from Maven.

The libraries have been selected based on their popularity and also to have a
broad range of programming languages. DLL is used directly from the sources,
with the latest version available at this time (Git commit 2f3c62c).

We are underlying here that the goal of these experiments is not to reach
state of the art performance on the tested data sets. The models are kept simple
to allow comparison with a wider range of libraries. Moreover, the networks
are not always trained for as many epochs as they would be, if achieving high
accuracy was the goal. Finally and very importantly, we are not aware of the full
details of all the libraries. We did our best to have similar network architecture
and training parameters, but it could be that some implementation details lead
to slightly different training, explaining time differences.

All the results presented in this chapter have been computed on a Gentoo
Linux machine, on an Intel R© Coretm i7-2600, running at 3.4 GHz (CPU fre-
quency scaling has been disabled for the purpose of these tests). Both SSE and
AVX vectorization extensions were enabled on the machine. BLAS operations
are executed with the Intel R© Math Kernel Library (MKL), in parallel mode. The
GPU used is a NVIDIA Geforce R© GTX 960 card. CUDA 8.0.4.4 and CUDNN
5.0.5 are used. The source code used for these experiments is available online5.

All the experiments are trained using mini-batch gradient descent. The last
layer of each network is always a softmax layer. The loss is a softmax cross
entropy loss.

4 MNIST

The first experiment is performed on the MNIST data set [19]. It is a digit
recognition task. The data set is made of 60’000 28 × 28 grayscale images for
3 https://github.com/fchollet/keras.
4 http://deeplearning4j.org.
5 https://github.com/wichtounet/frameworks.

https://github.com/fchollet/keras
http://deeplearning4j.org
https://github.com/wichtounet/frameworks
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training and 10’000 images for testing. It is a very well-known data set and has
been repeatedly used with most of the existing Machine Learning algorithms.
Although it is considered an easy task, it remains an excellent problem for com-
paring libraries since most of them use it as example and have code available.

4.1 Fully-Connected Neural Network

The first tested network is a fully-connected three-layer ANN with 500 units in
the first layer, 250 in the second layer and 10 final output units for classification.
The first two layers are using the sigmoid function. The network is trained with
mini-batches of 100 images, for 50 epochs, with a learning rate of 0.1 and a
momentum of 0.9. The training accuracy is computed after each epoch and the
test accuracy is computed after the end of the complete training. As an example,
the code using the DLL library is presented in Fig. 1.
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Fig. 2. Training time performance of the libraries for an ANN, on MNIST

Figure 2 presents the performance of each of the libraries. In CPU mode, DLL
outperforms all the other libraries, being around 40% faster than TensorFlow and
Keras, 4.5 times faster than DeepLearning4J and 5.5 times faster than Torch
and Caffe. On GPU, DLL is the fastest library, closely followed by Caffe. DLL is
about 40% faster than TensorFlow and twice faster than Keras. DeepLearning4J
and Torch are respectively 2.5 and 5 times slower than DLL.

4.2 Convolutional Neural Network

The second network, for the same task, is a small CNN with six layers. The
first layer is a convolutional layer using 8 5× 5 kernels and followed by a max
pooling layer with a 2× 2 kernel. The third and fourth layers are using the same
configuration. The last layers are fully-connected, the first with 150 units and
the last with 10 units for classification. The two convolutional layers and the
first fully-connected layer use a sigmoid activation function. The full network is
trained in the same manner as the first network.
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Fig. 3. Training time performance of the libraries for a CNN, on MNIST

Figure 3 presents the results obtained on this experiment. Again, DLL is
the fastest library on CPU, by a significant margin, three times faster than
TensorFlow and almost four times faster than Keras. DLL is more than 8 times
faster than the slowest library, DeepLearning4J. This shows the effects of the
in-depth CPU optimization of the convolutions. On GPU, TensorFlow and DLL
are the fastest libraries, about 30% faster than Keras and significantly faster
than Caffe (4 times), Torch (6.5 times) and DeepLearning4J (9 times).

5 CIFAR-10

The second data set that is tested is CIFAR-10 [15], a data set for object recog-
nition, consisting of 50’000 images for training and 10’000 for testing, in 10
different classes. The data set is composed of colour images of 32 × 32 pixels.

A larger CNN is used for this task. The first layer is convolutional with 12
5× 5 kernels, followed by a 2× 2 max pooling layer. They are followed by another
convolutional layer with 24 3× 3 kernels and a 2× 2 max pooling layer. A dense
layer with 64 hidden units is then used, followed by a softmax layer with 10
output units. All the layers but the last one are using ReLUs. The network is
trained similarly to the previous networks, with a learning rate of 0.001.

In Fig. 4, the training times for this task are presented. The speedups are
less significant than for the previous CNN. Nevertheless, DLL still manages
to be the fastest library on CPU. It is about twice faster than TensorFlow,
Keras, DeepLearning4J and Torch and about three times faster than Caffe. On
GPU, DLL is also the fastest library on this experiment, about 30% faster than
TensorFlow and 40% faster than Keras. It is three times faster than Caffe and
about 4.5 times faster than Torch and ten times faster than DeepLearning4J.
This network is significantly larger than in the MNIST experiment. This seems to
indicate that most libraries are more optimized for larger networks. This shows
that GPU performance is better when a lot of data is available.
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Fig. 4. Training time performance of the libraries on the CIFAR-10 task

6 ImageNet

The last experiment is performed on ImageNet, a large data set for image classifi-
cation. We consider the sub part of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 [25], there are 50’000 validation images, 100’000 test
images, around 1.2 million training images and 1000 categories. All the images
have been resized to 256 × 256 images.

The entire data set cannot be kept in memory. Therefore, the images are
loaded from the disk for each epoch. For this experiment, only Caffe provides
an official, up-to-date, code for this data set. The DeepLearning4J reader was
based on existing official reader for structures similar to ImageNet. For Keras,
TensorFlow and Torch, a simple data reader has been written with the image
loading tools available in each library.

The network is significantly larger than the previous networks. It is made
of five convolutional layers, with 16 3× 3 kernels for the first two layers and
32 3× 3 kernels for the next three layers. Each of these layers is followed by a
ReLU activation function and a 2× 2 max pooling layer. All the convolutional
layers are using zero-padding so that their output is the same size as their input
The last two layers are a dense layer with 2048 hidden units, with a ReLU
function and a dense layer with 1000 outputs. The training is different than for
the other data sets. The full network is only trained for five epochs with each
library. The networks are trained using a batch size of 128. However, Torch and
DeepLearning4J models were trained with a batch size of 64, respectively 16,
samples. Indeed, both of these libraries needed more than 12GB of RAM to
train with a batch size of 128 images. This may lead to some small degradation
of the performance for those two libraries.

For the sake of comparison, the average time to train one batch of samples
is used as results. For Torch and DeepLearning4J, the results are the times for
several batches, to make up for 128 samples. These results are presented in Fig. 5.
DLL shows to be again the fastest library on CPU for training this large model,
35% faster than Keras, about 45% faster than TensorFlow and twice faster than
Caffe. Torch is already more than 3 times slower than DLL and DeepLearning4J
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Fig. 5. Training time performance of the libraries, on ImageNet. The time is the average
time necessary for the training of one batch of 128 elements.

around 6 times slower. On GPU, DLL is, also, the fastest library. Comparisons
with Keras and TensorFlow show that most of the difference comes from the poor
performance of reading the ImageNet data from the Python code. Once this is
taken into account, the three libraries have comparable performance. DLL is
more than twice faster than Caffe and almost four times faster than Torch and
almost 10 times faster than DeepLearning4J.

7 Conclusion and Future Work

For all the experiments and the different neural networks models that were
tested, the DLL library has shown to be the fastest gradient descent based
library for training the model when using CPU and GPU. For each test, the
accuracies of the models trained with DLL are similar to the models trained by
the other five Machine Learning libraries.

The speedups provided by the library on CPU mode are especially important
for convolutional layers for which advanced optimization was performed. The
library was especially optimized for small convolutions, but is still able to bring
significant speedups for large images such as the images from the ImageNet data
set. Moreover, while some libraries are mostly optimized for the convolutional
and fully-connected parts of the computation, every part of the training in the
DLL library was tuned. However, since DLL is written in C++, programs using
it need to be compiled. This may make it more complicated for researchers to use.
Finally, while the language itself is very common about performance software
developers, it is not very common for machine learning researchers. Therefore,
there is more of a barrier for use compared to libraries using more common
languages for machine learning.

A few DLL routines are not optimized enough for GPU, such as Dropout
and Batch Normalization. Future work could also include better support for
Recurrent Neural Networks (RNNs), which would be a great advantage for the
library. Finally, the library has currently been optimized only on few machines
and especially consumer grade processors and graphics cards. It would be greatly
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beneficial to take advantage of more threads or advanced vectorization capabili-
ties such as those provided by the latest Intel R© Xeon processors or more recent
and more powerful NVIDIA graphics cards.
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Abstract. Supervised learning algorithms restrict the training of clas-
sification models to the classes of interest. Other related classes are typ-
ically neglected in this process and are not involved in the final decision
rule. Nevertheless, the analysis of these foreign samples and their labels
might provide additional information on the classes of interest. By reveal-
ing common patterns in foreign classification tasks it might lead to the
identification of structures suitable for the original classes. This princi-
ple is used in the field of transfer learning. In this work, we investigate
the use of foreign classes for the feature selection process of binary clas-
sifiers. While the final classification model is trained according to the
traditional supervised learning scheme, its feature signature is designed
for separating a pair of foreign classes. We systematically analyse these
classifiers in 10×10 cross-validation experiments on microarray datasets
with multiple diagnostic classes. For each evaluated classification model,
we observed foreign feature combinations that outperformed at least 90%
of those feature sets designed for the original diagnostic classes on at least
88.9% of all datasets.

1 Introduction

The design of classification models for molecular diagnostics is mainly influenced
by the interest in identifying molecular characteristics or even molecular causes
of disease. Starting from high-dimensional profiles, feature selection is a main
ingredient in this process [9,23]. Selecting (primary) measurements instead of
generating (secondary) feature representations, these methods allow a direct
interpretation of a classification model regarding the individual molecules [24].
Although feature selection cannot guarantee an improved accuracy, it directs a
classification model to a small set of candidate markers that might be used as
potential drug targets [14].

Feature selection is not only of interest for traditional dichotomous classifi-
cation. It can also be used for characterising the landscape of larger collections
of diagnostic classes [19]. It might be used to reveal similarities and differences
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between individual classes and combinations thereof. In previous work, we anal-
ysed feature selection in the context of multi-class fusion architectures for binary
base classifiers [18]. One interesting observation of this study was that certain
multi-class feature selection strategies mimic the feature signature of one of their
binary base classifiers. High overlaps or even complete overlaps were observed.
Designed for a particular two-class classification task, signatures excluded most
of the features selected for other class combinations. Nevertheless, the corre-
sponding multi-class architectures achieved accuracies comparable to those of
other more heterogeneous feature selection strategies, leading to the hypoth-
esis that the feature selections of these base classifiers are informative for the
remaining class combinations but were not selected due to other more prominent
features.

In this work, we further investigate this phenomenon. Focusing on the under-
lying binary base classifiers, we now systematically analyse the direct influence of
foreign feature selections on the classification accuracy. As we utilize foreign sam-
ples for the training of the classification models, our setup might be categorized
as transfer learning [21] or learning with semantic domain knowledge [16,27].
Related concepts can also be found in learning schemes for partially labeled
datasets [5,15,17].

2 Methods

The manuscript will be based on the following notation. An object x will be
represented as a n-dimensional vector of measurements (x(1), . . . , x(n))T ∈ X ⊆
R

n. It is assumed that each object can be categorised into one of |Y| classes
y ∈ Y. A decision function or classifier is a function

c : X −→ Y. (1)

A classifier will be called binary if |Y| = 2 otherwise it will be called multi-class
classifier.

In classical supervised learning, an untrained classifier c ∈ C is adapted to
its classification task via a training set of labeled samples of the output classes
T = {(xi, yi)}|T |

i=1, yi ∈ Y. The symbol C denotes a concept or function class and
describes the structural properties of the chosen type of classifier. The notation
Ty will be used to denote a training set of samples of class y. Other samples, such
as unlabeled instances (semi-supervised learning) or labeled samples of foreign
classes Ty′ , y′ �∈ Y are typically ignored.

Especially in high-dimensional settings, the training of a classifier can incor-
porate an internal feature selection process which discards a set of input features
from the final decision process. Formally this process can be characterised as a
function

f : C × T → I = {i ∈ N
n̂ | n̂ ≤ n, ik < ik+1, 1 ≤ ik ≤ n}, (2)

which maps to the space of sorted and repetition-free index vectors I. An element
of I, a feature signature (i(1), . . . , i(n̂))T = i ∈ I, provides the indices of the
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n̂ ≤ n remaining features. The final classification of a sample x will only take
into account a reduced feature representation x(i) = (xi(1) , . . . , x(i(n̂)))T .

In this work, we will focus on the Threshold Number of Misclassifications
(TNoM) feature selection criterion [1]. The TNoM is a univariate filter criterion
that ranks the individual features according to the error rate of an optimal single
threshold classifier. A number of selected features n̂ is chosen a priori. The TNoM
is an independent preprocessing step before starting the training algorithm of
the original classifier.

2.1 Learning from Context Classes

Based on our observations for feature selecting multi-class classifiers [18], we
extend the standard supervised learning scenario in the following way. Let again
Y denote the set of output classes of a trained classifier. We assume that the
classification problem is embedded in a larger context in which additional classes
Y ⊂ Y ′ exist. Similar to the standard multi-class scenario, we assume all classes
to be pairwise disjoint ∀ yi, yj ∈ Y ′ : yi �= yj . The training set of the over-
all learning procedure is allowed to be comprised of samples of all available
classes T = {(xi, yi)}|T |

i=1, yi ∈ Y ′. Note that in contrast to learning approaches
for partially labeled data the learning algorithm receives the class labels of all
instances here. In general, these additional samples allow to screen for discrimi-
native patterns of the context classes, which might also be suitable for the current
classification task. The patterns detected in this process might be hidden in the
original classes due to other more prominent patterns or due to a too low amount
of available samples. During the prediction phase of the trained classifier only
the original classes in Y are considered.

In this work, we apply the idea of context classes for the selection process
of features selecting two-class classifiers. The original classes of the two-class
problem ya and yb will be indicated as subscript of the trained classification
model

c[ya,yb] : Rn̂ −→ {ya, yb} . (3)

The classifier learns on Tya
∪ Tyb

and will be used to predict classes ya and yb.
It operates on a reduced feature signature of n̂ features provided by the initial
feature selection process

f[yc,yd] : Tyc
∪ Tyd

−→ N
n̂. (4)

The feature selection criterion is based on the evaluation of two arbitrarily cho-
sen but fixed classes yc, yd ∈ Y ′. The training set of the corresponding binary
classifier is finally given by

TFFS =
{

(x(i), y(i)) | (x, y) ∈ Tya
∪ Tyb

, i = f[yc,yd]

}
. (5)

We call the resulting feature selection original (OFS) if {ya, yb} = {yc, yd} and
foreign (FFS) otherwise.
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2.2 Foreign Class Combinations

Assuming a symmetric feature selection strategy (f[yc,yd] = f[yd,yc]), this scheme
can be applied to construct |Y|(|Y|−1)

2 classifiers for a fixed pair of output classes
ya and yb of a dataset with |Y| classes. They can be organised according to the
number of classes participating in both the classification and the feature selec-
tion process (Table 1). A complete overlap leads to the original class combination.
The corresponding OFS is clearly related to the original classification task. If
both processes share one common class, the FFS can be seen as an alternative
characterisation of this class. Nevertheless, its relevance for the original classi-
fication task can not be guaranteed. The same is true for completely disjunct
class labels.

Table 1. Number of foreign feature combinations for a fixed pair of classes ya, yb ∈ Y.
In this context, the symbols yc, yd denote foreign classes yc, yd ∈ Y \ {ya, yb} .

ya yc

yb (1) original class combination (|Y| − 2) characterizations of yb

yd (|Y| − 2) characterisations of ya
(

(|Y|−2)(|Y|−3)
2

)
foreign class combinations

The tradeoff of foreign class characterisations and completely foreign class
combination depends on the total number of classes |Y|. For datasets comprising
a small number of classes (2 < |Y| ≤ 6), classes ya and yb are included in the
majority of the foreign class combinations. An equilibrium is reached at |Y| = 7.
For larger number of classes (|Y| > 7), the number of foreign class combinations
is dominated by totally foreign class combinations.

3 Experiments

We evaluated FFS in classification experiments with linear Support Vector
Machines [28] (SVM, cost = 1), Random Forests [4] (RF, trees = 500) and
k-Nearest Neighbor classifiers [7] (k-NN, k = 3). All experiments are designed
as 10 × 10 cross-validation (10 × 10 CV) experiments [11]. That is the origi-
nal multi-class dataset S is splitted into ten folds of approximately equal size.
Nine of these folds are combined to a training set for the two-class classifiers.
The tenth fold is used to evaluate the performance the trained classifier. The
training set is reduced to the samples of those classes which are needed for the
feature selection process and the training of the subsequent classification model.
The test set is reduced to the samples of the output classes of the final two-class
classification problem. Training and evaluation of a feature selecting classifier is
repeated for each possible split of the folds. The performance of the classification
model is characterised by its empirical accuracy over all test folds. The cross-
validation procedure is performed for ten permutations of the initial dataset. All
experiments are performed in the TunePareto-Framework [20].
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For each multi-class dataset with |Y| classes, |Y|(|Y|−1)
2 two-class classification

tasks are analysed. The corresponding classifiers are again coupled to |Y|(|Y|−1)
2

different feature selections. Sticking to our previous multi-class analysis, exper-
iments are conducted for n̂ ∈ {25, 50}. A pair of classification algorithm and
number of features will be called a test setting in the following. For a fixed pair
of output classes ya and yb, the classifiers that utilise a foreign feature selection
(FFS) are compared to following reference classifiers:

1. Baseline (BL): For baseline comparisons, we utilise the accuracies of constant
predictors that predict the class label of the majority class

BL =
max(|Sya

|, |Syb
|)

|Sya
| + |Syb

| , (6)

where Sy denotes the set of all available samples of class y.

2. Random Feature Selection (RFS): Classifiers that are based on sets of n̂ ran-
domly chosen features. Similar to the trained feature signatures, the random
signatures are changed in each training phase of the 10 × 10 CV.

3. Original Feature Selection (OFS): Classifiers that utilise feature sets trained
for the original class combination f[ya,yb].

4. No Feature Selection (NoFS): Classifiers that operate on the original n-
dimensional feature set.

3.1 Datasets

Our analysis is based on 9 multi-class datasets which comprise multiple entities
(m ≥ 59, |Y| ≥ 4) of a common biomedical context. An overview on the anal-
ysed datasets is given in Table 2. All datasets are gene expression profiles from

Table 2. Datasets used. The number of classes |Y|, features n, samples m and samples
per class mi are reported.

Id: description |Y| n m m1, . . ., m|Y|

d1: Leukemia [10] 18 54613 12096 40, 36, 58, 48, 28, 351, 38, 37, 40, 237,
122, 448, 76, 13, 206, 74, 70, 174

d2: Cancer cell lines [22] 9 54613 174 18, 15, 21, 26, 18, 21, 23, 26, 6

d3: Cancer cell lines [3] 9 54613 1777 366, 85, 343, 264, 130, 225, 280, 41, 43

d4: Colorectal cancer [25] 7 22215 381 49, 47, 20, 54, 13, 186, 12

d5: Renal cell cancer [12] 6 22215 92 23, 32, 11, 8, 6, 12

d6: Liposarcoma [8] 5 22215 140 40, 11, 17, 20, 52

d7: Alcohol [13] 5 8740 59 11, 12, 12, 12, 12

d8: Brain tissue [2] 4 54613 173 43, 48, 43, 49

d9: Colon tumors [26] 4 54613 145 30, 34, 36, 45
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microarray experiments (n ≥ 8740). That is each individual feature represents
the concentration level of a particular mRNA molecule of the analyzed biological
sample. The feature representation can therefore be seen as a set of homogeneous
primary measurements and does not contain any secondary derived features.

4 Results

The results of the 10 × 10 CV experiments are shown in Fig. 1. Each histogram
summarizes the experiments of a particular classification algorithm. In each test
setting, at least 81.57% (3-NN) of all FFS classifiers outperformed the BL classi-
fiers on 90% of all foreign class combinations. In general, the comparisons against
RFS classifiers are harder than the theoretical baseline. Most FFS classifiers out-
perform RFS classifiers only in a subset of classification experiments. For n̂ = 50
features, first FFS classifiers appear that show an inferior performance on all for-
eign class combinations. Nevertheless, in all test settings at least 39.25% (RF)
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Fig. 1. Evaluation of foreign feature selection (FFS). The overall figure organizes row-
wise the comparisons of FFSs to reference feature selection strategies. From the top to
the bottom the comparisons against the baseline classifier (BL), the random feature
selection (RFS), the original feature selection (OFS) or the classifier without feature
selection (NoFS) are shown. The columns give the results for the analysed base classi-
fiers 3-NN, RF and SVM. The y axis of each histogram provides the percentage of all
FFSs that outperformed the reference feature selection.
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Fig. 2. Comparison of foreign feature signatures (FFS) and original feature sets (OFS)
on the experiments with n̂ = 25 features. Panel A shows heatmaps for each dataset.
Each column corresponds to the feature set of a particular class combination. It is com-
pared to the OFS classifiers of all other class combinations. The color of a each patch
indicates the number of classification algorithms for which FFS has outperformed the
OFS (white: none, black: all). Panel B gives the mean absolute Spearman correlations
between the selected features and the labels of the classification task.
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Fig. 3. Comparison of foreign feature signatures (FFS) and original feature sets (OFS)
of the experiments with n̂ = 50 features. Panel A shows heatmaps for each dataset.
Each column corresponds to the feature set of a particular class combination. It is com-
pared to the OFS classifiers of all other class combinations. The color of a each patch
indicates the number of classification algorithms for which FFS has outperformed the
OFS (white: none, black: all). Panel B gives the mean absolute Spearman correlations
between the selected features and the labels of the classification task.
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of all FFS classifiers show higher accuracies than 90% of the corresponding RFS
classifiers.

Specialised for the individual classification tasks, OFS classifiers are likely to
achieve higher accuracies than RFS classifiers. As a consequence OFS classifiers
outperform FFS classifiers more frequently. That said FFS classifiers exist that
show higher accuracies in multiple classification tasks (Figs. 2A and 3A). For
all test settings at least 9.56% (RF) of all FFS classifiers outperformed 90%
of the corresponding OFS classifiers. Similar results can be observed for the
comparisons against NoFS classifiers. At least 3.41% (SVM) of all FFS classifiers
win the comparisons against the NoFS classifiers of 90% of the foreign class
combinations.

We additionally analysed the median absolute Spearman correlation between
the selected features and the class labels. Figures 2B and 3B report the results
for n̂ = 25 and n̂ = 50 respectively. In mean over all classification tasks, the
average absolute Spearman correlation of OFS ranges from 40.53% (d4, n̂ = 25)
to 86.66% (d7, n̂ = 25 and 50) among the datasets. For FFS these values are
in the interval of 25.61% (d3, n̂ = 25) and 59.93% (d7, n̂ = 25). For RFS they
range from 14.63% (d3, n̂ = 25) to 30.60% (d5, n̂ = 25). In dataset-wise Wilcoxon
Rank-Sum tests 16 of 18 between OFS and FFS are reported to be significant
(p ≤ 0.05, Bonferroni correction for 18 tests). The corresponding tests between
FFS and RFS are significant in 18 of 18 cases (p ≤ 0.05, Bonferroni correction
for 18 tests).

5 Discussion and Conclusion

In this work, we investigated the possibility of utilising information extracted
from foreign classes for improving the accuracy of a particular classification
task. Samples of these classes were screened for discriminative feature signatures
and determined the input variables of the learning algorithm for the original
classification task. The external classes were chosen from the context of the
original classification task.

Although a large majority of the analysed class combinations led to a
decreased performance in comparison to the original feature sets, it is inter-
esting to see that foreign feature combinations exist that outperform almost all
original feature sets. For 8 of 9 analysed multi-class scenarios, foreign feature
combinations exist that outperformed more than 90% of the original feature
combinations. Depending on the classifier, foreign feature combinations outper-
formed random feature combinations in at least 73.43% of all cases and surpassed
the minimal baseline accuracy in at least 95.55% of all cases.

In our experiments, we analysed datasets of technically homogeneous feature
representations. All profiles solely comprise measurements of individual gene
expression levels which were recorded according to the same technical princi-
pals. In particular, these profiles do not comprise secondary derived features
that provide the same information as the primary measurements. The benefit
of a feature set can therefore not be attributed to its technical superiority over
different feature types.
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The phenomenon might partially be explained by an overfitting or over-
searching of the original feature sets. Showing a high mean correlation to their
own class labels, the original feature selections can suffer from a declined vari-
ability and do not provide enough diverse information [6]. Nevertheless, this is
no simple explanation for high accuracies achieved by the foreign feature sets.
One could be that most of the data sets are from oncology and good feature
sets capture basic processes in cancer development. A minimal prerequisite of a
successful transfer is that a foreign feature signature allows an accurate discrim-
ination of the original classification task. The classifiers trained on this signature
are not required to be related to each other. This especially implies that they
are allowed to operate on different subspaces or subsets of features. The task of
identifying a feature set, where each member is informative for all classification
tasks, therefore, might be facilitated by the task of collecting individual features
that are informative for particular class combinations.

That said, the selected foreign features must also be informative for their own
class combination. A successfully transferred foreign feature set must, therefore,
be informative for at least two class combinations. A close relationship between
both tasks probably increases the chance for this event. Our experiments are
based on publicly available multi-class datasets that comprise distinct diagnos-
tic classes of a common biomedical context. All classes are pairwise mutually
exclusive. Individual samples can therefore not be informative for two or more
classes. The context information we utilised must be seen as external semantic
domain knowledge. It is not guaranteed that this is reflected in feature space.
Other experimental setups like multi-label experiments, in which samples can
receive multiple labels in parallel, might allow alternative context definitions.
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Abstract. Target propagation in deep neural networks aims at improv-
ing the learning process by determining target outputs for the hidden
layers of the network. To date, this has been accomplished via gradient-
descent or relying on autoassociative networks applied top-to-bottom in
order to synthesize targets at any given layer from the targets available
at the adjacent upper layer. This paper proposes a different, error-driven
approach, where a regular feed-forward neural net is trained to estimate
the relation between the targets at layer � and those at layer �− 1 given
the error observed at layer �. The resulting algorithm is then combined
with a pre-training phase based on backpropagation, realizing a proficu-
ous “refinement” strategy. Results on the MNIST database validate the
feasibility of the approach.

Keywords: Target propagation · Deep learning
Deep neural network · Refinement learning

1 Introduction

The impressive results attained nowadays in a number of AI applications of neu-
ral networks stem mostly from using deep architectures with proper deep learning
techniques [10]. Looking under the hood, deep learning still heavily relies (explic-
itly or implicitly) on the traditional backpropagation (BP) algorithm [18]. While
BP works outstandingly on networks having a limited number of hidden layers,
several weaknesses of the algorithm emerge when dealing with significantly deep
architectures. In particular, due to the non-linearity of the activation functions
associated to the units in the hidden layers, the backpropagated gradients tend
to vanish in the lower layers of the network, hence hindering the corresponding
learning process [8]. Besides its numerical problems, BP is also known to lack
any plausible biological interpretation [16].

To overcome these difficulties, researchers proposed improved learning strate-
gies, such as pre-training of the lower layers via auto-encoders [1], the use of rec-
tifier activation functions [9], and the dropout technique [21] to avoid neurons
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co-adaptation. Amongst these and other potential solutions to the aforemen-
tioned difficulties, target propagation has been arousing interest in the last few
years [2,5,16], albeit it still remains an under-investigated research area. Orig-
inally proposed in [3,4] within the broader framework of learning the form of
the activation functions, the idea underlying target propagation goes as follows.
While in BP the delta values δi to be backpropagated are related to the partial
derivatives of the global loss function w.r.t. the layer-specific parameters of the
network, in target propagation the real target outputs (naturally defined at the
output layer in regular supervised learning) are propagated downward through
the network, from the topmost to the bottommost layers. In so doing, each layer
gets explicit target output vectors that, in turn, define layer-specific loss func-
tions that can be minimized locally (on a layer by layer basis) without any need
to involve explicitly the partial derivatives of the overall loss function defined at
the whole network level. Therefore, the learning process gets rid altogether of
the troublesome numerical problems determined by repeatedly backpropagating
partial derivatives from top to bottom.

To this end, [16] proposed an approach called difference target propagation
(DTP) that relies on autoencoders. DTP is aimed at realizing a straight map-
ping ŷ�−1 = φ(ŷ�) from the targets ŷ� at layer � to the expected1 targets ŷ�−1

at layer � − 1. As shown by [16], the technique is effective (it improves over
regular gradient-descent in the experiments carried out on the MNIST dataset),
although the accuracy yielded by DTP does not compare favorably with the
state-of-the-art methods (mostly based on convolutional networks). Moreover,
DTP offers the advantages of being readily applied to stochastic and discrete
neural nets. The approach is loosely related to the algorithm proposed by [12],
where a layer-specific neural network is used to estimate the gradients of the
global loss function w.r.t. the weights of the corresponding layer (instead of the
target outputs).

Differently from DTP, the core of the present approach is that the backward
mapping from layer � to � − 1 shall be learnt by a regular feed-forward neural
network as an explicit function ϕ(.) of the actual error e� observed at layer �
(namely, the signed difference between the target and actual outputs at �), that
is ŷ�−1 = ϕ(ŷ�, e�). In so doing, after training has been completed, the image of
ϕ(ŷ�,0) is an estimated “optimal” value of ŷ�−1 that is expected to result in a
null error e� = 0 when propagated forward (i.e., from � − 1 to �) through the
original network. It is seen that learning ϕ(.) requires that at least a significant
fraction of the training samples result in small errors (such that e� � 0). This is
the reason why the proposed technique can hardly be expected to be a suitable
replacement for the established learning algorithms altogether, but it rather
results in an effective refinement method for improving significantly the models
realized by pre-trained deep neural networks. The proposed approach is different

1 The term “expected” is herein used according to its statistical notion, since such
a φ(.) is not strictly a function, but it may be reduced to a proper function if we
interpret the images in the codomain of φ(.) as the expected values of ŷ�−1 given ŷ�.
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from that introduced in [3,4], as well, since the latter relies on gradient-descent
(or, the pseudo-inverse method) and, above all, it does not involve e�.

The error-driven target propagation algorithm is introduced formally in
Sect. 2. Section 2.1 presents the details for realizing target propagation via an
inversion network used to learn ϕ(.). Section 2.2 hands out the formal pro-
cedure for refining pre-trained deep networks relying on the proposed target
propagation scheme. Experimental results obtained on the MNIST dataset are
presented in Sect. 3, showing that the refinement strategy allows for accuracies
that are at least in line with the established results yielded by regular (i.e.,
non-convolutional) deep networks, relying on much less complex models (i.e.,
using much fewer free parameters). Finally, preliminary conclusions are drawn
in Sect. 4.

2 Error-Driven Target Propagation: Formalization of the
Algorithms

Let us consider a deep neural network dnet having l layers. When dnet is fed with
an input vector x, the i-th layer of dnet (for i = 1, . . . , l, while i = 0 represents the
input layer which is not counted) is characterized by a state hi ∈ R

di , where di is
the number of units in layer i, hi = σ(Wihi−1 + bi), and h0 = x as usual. The
quantity Wi represents the weights matrix associated to layer i, Wi ∈ R

di×di−1 ,
bi ∈ R

di denotes the corresponding bias vector, and σ(.) represents the vector of
the element-wise outcomes of the neuron-specific activation functions. The usual
logistic sigmoid activation function is used in the present research. Consider a
supervised training dataset D = {(xj , ŷj)|j = 1, . . . , k}. Given a generic input
pattern xj ∈ R

n and the corresponding target output ŷj ∈ R
m drawn from D,

the state h0 ∈ R
n of the input layer of dnet is then defined as h0 = xj , while the

target state ĥl ∈ R
m of the output layer is ĥl = ŷj . Relying on this notation, it

is seen that the function fi(.) realized by the generic i-th layer in dnet can be
written as

fi(hi−1) = σ(Wihi−1 + bi)

Therefore, the mapping Fi : R
n → R

di realized by the i bottommost layers of
dnet over current input xj can be expressed as the composition of i layer-specific
functions as follows:

Fi(xj) = fi(fi−1...(f1(xj)))

Eventually, the function realized by dnet (that is an l-layer network) is Fl(xj).
Bearing in mind the definition of D, the goal of training dnet is having Fl(xj) �
ŷj for j = 1, . . . , k. This is achieved by minimizing a point-wise loss function
measured at the output layer. In this paper such a loss is the usual squared error
L(xj ; θ) = (Fl(xj) − ŷj)2 where θ represents the overall set of the parameters
of dnet. In the traditional supervised learning framework the targets are defined
only at the output layer. Nevertheless, while no explicit “loss” functions are
associated to the hidden layers, the backpropagation (BP) algorithm allows the
update of the hidden layers weights by back-propagating the gradients of the
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top-level loss L(.). To the contrary, target propagation consists in propagating
the topmost layer targets ŷj to lower layers, in order to obtain explicit target
states for the hidden units of the network, as well. Eventually, standard gradient-
descent with no BP is applied in order to learn the layer-specific parameters as a
function of the corresponding targets. In this research, at the core of the target
propagation algorithm there is another, subsidiary network called the inversion
net. Its nature and its application to target propagation are handed out in the
following section.

2.1 The Inversion Net

Let us assume that the target value ĥi is known for a certain layer i (e.g. for the
output layer, in the first place). The inversion net is then expected to estimate
the targets ĥi−1 for the preceding layer, that is layer i − 1. In this research the
inversion net is a standard feed-forward neural network having a much smaller
number of parameters than dnet has, e.g. having a single hidden layer. In prin-
ciple, as in [16], the inversion net could be trained such that it learns to realize
a function gi() : R

di → R
di−1 defined as

gi(ĥi) = ĥi−1

where ĥi−1 represents the estimated target at layer i−1. Let us assume that such
inversion nets were trained properly to realize gi(.) for i = l, . . . , 1. Then, layer-
specific targets could be defined according to the following recursive procedure.
First of all (basis of the recursion), if the layer i is the output layer, i.e. i = l,
then ĥi = ŷ and gl(ŷ) = ĥl−1. Then (recursive step) the target outputs for the
subsequent layers (l − 1, . . . , 1) are obtained by applying gi(.) to the estimated
targets available at the adjacent upper (i.e., i-th) layer.

The actual error-driven training procedure for the inversion net proposed
herein modifies this basic framework in the following manner. Given the generic
layer i for which we want to learn the inversion function gi(.), let us define
a layer-specific dataset Di = {(x′

i,j , ŷ
′
i,j)|j = 1, . . . , k} where, omitting the

pattern-specific index j for notational convenience, the generic input pattern
is x′

i = (ĥi, ei) given by the concatenation of the target value at layer i (either
known, if i = l, or pre-computed from the upper layers if i < l) and the corre-
sponding layer-specific signed error ei = hi − ĥi. Herein hi is the actual state
of layer i of dnet upon forward propagation of its input, such that x′

i ∈ R
2×di .

In turn, ŷ′
i is defined to be the state of the (i − 1)-th layer of dnet, namely

ŷ′
i = hi−1. Once the supervised dataset Di has been built this way, the inversion

net can be trained using standard BP with an early-stopping criterion. We say
that this scheme is error-driven, meaning that the inversion net learns a target-
estimation mapping which relies on the knowledge of the errors ei stemming
from the forward-propagation process in dnet.

Once training of the inversion net is completed, the proper target-propagation
step (from layer i to layer i − 1) can be accomplished as follows. The inver-
sion network is fed with the vector (ĥi, ei) where we let ei = 0 in order to
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get gi(ĥi) = ĥi−1 � f−1
i (ĥi). In so doing, the inversion net generates layer-

specific targets that, once propagated forward by dnet, are expected to result in
a null error, as sought. The resulting training procedure is formalized in Algo-
rithms 1 and 2 in the form of pseudo-code. The algorithms assume the avail-
ability of two procedures, namely: feedForward(net,x), realizing the forward
propagation of an input pattern x through a generic neural network net; and,
backpropagation(net,D) that implements the training of the network net via BP
from the generic supervised training set D.

In practice, in order to reduce the bias intrinsic to the training algorithm,
target propagation is accomplished relying on a modified strategy, as in the
difference target propagation scheme [16], accounting for the bias that the layer-
specific inversion nets gi(.) are likely to introduce in estimating the corresponding
target outputs ĥi−1. To this end we let

ĥi−1 = hi−1 + gi(ĥi,0) − gi(hi,0) (1)

The rationale behind this equation is the following. First of all, gi(.) can be
applied to invert the actual state hi of dnet instead of the target state ĥi.
Ideally, if the mapping realized by the inversion net were perfect, we would have
gi(hi,0) = hi−1. To the contrary, since gi(.) is the noisy outcome of an empirical
learning procedure, in practice gi(hi,0) �= hi−1 holds, i.e. an offset is observed
whose magnitude is given by |gi(hi,0) − hi−1|. Equation (1) exploits this offset
as a bias corrector when applying gi(.) to the computation of ĥi−1, as well.
Note that whenever gi(hi,0) = hi−1 (unbiased inversion net) then the equation
reduces to ĥi−1 = gi(ĥi,0), as before. The details of the present bias-correction
strategy are handed out in [16].

Algorithm 1. Training of the inversion net
Procedure train inv net(invNeti, dnet,D, i, ĥi)
Input: initialized inversion net invNeti with 2 × di input units and di−1 output units, deep
network dnet, training set D = {(xj , ŷj)|j = 1, . . . , k}, layer i, targets ĥi at layer i

Output: The trained inversion net invNeti for layer i, capable of computing ĥi−1 from ĥi

1: Di = ∅

2: for j = 1 to k do

3: feedForward(dnet,xj)

4: ei,j ← ĥi,j − hi,j

5: x′
i,j ← (ĥi,j , ei,j)

6: y′
i,j ← hi−1,j

7: Di = Di ∪ {(x′
i,j ,y

′
i,j)}

8: end for

9: invNeti = backpropagation(invNeti, Di)
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Algorithm 2. Target propagation
Procedure tgt prop(invNeti, i, k, ĥi,1, . . . , ĥi,k)
Input: The inversion net invNeti, layer i, number of patterns k, targets to be propa-
gated ĥi,j for j = 1. . . . , k
Output: The propagated targets ĥi−1,1, . . . , ĥi−1,k

1: for j = 1 to k do
2: ei,j = 0
3: x′

i,j = (ĥi,j , ei,j)

4: ĥi−1,j = feedForward(invNeti,x
′
i,j)

5: end for

Algorithm 3. Deep learning with refinement based on target propagation
Procedure network refinement(dnet,D)
Input: deep network dnet, supervised training set D = {(xj , ŷj)|j = 1, . . . , k}
Output: the refined network dnet

1: for j = 1 to k do
2: for i = l to 1 do
3: if i = l then
4: ĥi,j = ŷj

5: end if
6: hi,j = Fi(xj)
7: hi−1,j = Fi−1(xj)
8: end for
9: end for

10: for i = l to 2 do
11: Initialize Network(invNeti)
12: invNeti = train inv net(invNeti, dnet,D, i, ĥi)
13: {ĥi−1,1, . . . , ĥi−1,k} = tgt prop(invNeti, i, k, ĥi,1, . . . , ĥi,k)
14: end for
15: for j = 1 to k do
16: h0,j = xj

17: layer backprop(h0,j , ĥ1,j)
18: for i = 2 to l do
19: hi−1,j = Fi−1(xj)
20: layer backprop(hi−1,j , ĥi,j)
21: end for
22: end for

2.2 Refinement of Deep Learning via Target Propagation

The algorithms presented in the previous section form the basis for building a
refinement technique for pre-trained deep networks. The overall approach goes
as follows. In a first phase the deep network is trained via BP, as usual. In a
second phase, targets are propagated downward through the layers, as in Algo-
rithms 1 and 2, and the network is trained layer-wise accordingly. This phase is



84 V. Laveglia and E. Trentin

called “refinement”. Algorithm 2 provides a detailed description of this refine-
ment strategy in terms of pseudo-code. The algorithm invokes a routine Ini-
tialize Network(.) used for initializing a generic feed-forward neural net with
random parameters before the actual training takes place. Finally, the routine
layer backprop(hi−1,j , ĥi,j) realizes the adaptation of the weights between layers
i − 1 and i (for i = 1, . . . , l) via online gradient-descent. This application of
gradient-descent uses hi−1,j as its input, and ĥi,j as the corresponding target
output. It is seen that extensions of the procedure to batch gradient-descent
and/or multi-epochs training are straightforward by working out the skeleton of
pseudo-code offered by Algorithm 3.

3 Experiments

Experiments were conducted on the popular MNIST dataset2 [14]. We used
all the 70,000 MNIST patterns, representing pixel-based images of handwritten
digits (10 classes overall) having a dimensionality equal to 784. A 10-fold cross-
validation strategy was applied, where for each fold as much as 80% of the data
were used for training, 10% for validation/model selection, and 10% for test. The
most significant results on MNIST published so far, obtained with a variety of
different approaches, are listed in [15]. Variants on the theme of convolutional
neural nets are known to yield the highest accuracies to date [6,23], as expected
given the visual nature of the dataset. Our aim here is to exploit MNIST as a
significant and difficult learning task suitable to assess the effectiveness of the
present approach, and to compare the proposed algorithms to established non-
convolutional feed-forward networks and target propagation methods previously
applied to MNIST [16,20].

The topology of each layer and the hyperparameters were selected via grid
search. Gradient-based training of the main network dnet (the classifier) relied
on the root mean square propagation (RMSProp) variant of BP [22], while for
the inversion net and the layer-wise refinement of dnet upon target propaga-
tion (routine layer backprop(.) in Algorithm 3) the Adam variant of stochas-
tic BP [13] turned out to be best. Besides a 784-dimensional input layer with
linear activation functions and a class-wise 10-dimensional output layer with
softmax activations, dnet had 3 hidden layers having 140, 120, and 100 neurons,
respectively. Logistic sigmoid activation functions were used in the hidden layers.
Connection weights and bias values for the sigmoids were initialized at random
from a uniform distribution over the range (−0.5, 0.5). RMSProp was applied
for a maximum of 104 steps with early stopping (based on the generalization
error not improving over the last 2000 steps), using a mini-batch size of 128
and a learning rate set to 0.01. As for the inversion nets, the dimensionality of
the input and output layers were fixed according to the topology of the specific,
adjacent layers in dnet between which the output targets had to be propagated
(the input layer of InvNet had linear activation functions, while its output layer

2 Available at http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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used logistic sigmoids), as explained in the previous section. A single hidden
layer of 200 sigmoid units was used. The Adam optimizer was applied for a
maximum of 1000 steps with early stopping, using a mini-batch size of 128 and
a learning rate set to 0.001. Finally, the adaptation of the layer-specific weights
in dnet upon propagation of the corresponding targets via the trained InvNet
(procedure layer backprop(.) in Algorithm 3) relied on the Adam optimizer,
as well, with mini-batch size of 32 and learning rate set to 0.001.

Table 1 presents the average accuracies (± the corresponding standard devi-
ations) on the 10-fold crossvalidation for dnet trained with RMSProp, with the
bare target propagation, and with the refinement algorithm, respectively, eval-
uated on the training and the test sets. It is seen that the target propagation
scheme required a proper BP-based initialization in order to achieve significant
accuracies. in fact, In terms of learning capabilities (evaluated on the train-
ing sets), target propagation applied to the pre-trained dnet according to the
refinement strategy yielded a relative 32.75% average error rate reduction over
RMSProp, along with a much more stable behavior (the standard deviation was
reduced as much as 42%). The statistical significance of the improvement evalu-
ated via Welch’s t-test (in order to account for the different variances of the two
populations) results in a confidence level that is ≥ 99.75%. In terms of gener-
alization capabilities (evaluated on the test sets), when applying the refinement
strategy a significant relative 8.20% error rate reduction over RMSProp was
observed on average, preserving the same stability of the performance (in fact,
the difference between the standard deviations yielded by the two approaches is
neglectable, namely 0.002%). Welch’s t-test assessed a statistical significance of
the gap between the results yielded by the two algorithms which is even higher
than before (due to the much smaller variance of the RMSProp results), that is
a confidence level ≥ 99.9%.

Table 1. Accuracies on the MNIST 10-class classification task (avg. ± std. dev. on a
10-fold crossvalidation).

Algorithm Training Test

RMSProp 99.48 ± 0.13 98.12 ± 0.05

Target propagation 87.30 ± 0.29 86.64 ± 0.27

Refinement 99.65 ± 0.08 98.27 ± 0.06

Table 2 offers a comparison among MNIST classifiers based on non-
convolutional feed-forward deep neural networks using no augmentation of the
training set (see [7,17] for established results obtained using augmentation).
The comparison involves the error rate as observed on the test set (average ±
standard deviation on the 10-fold crossvalidation, whenever available) and the
number of free (i.e., adaptive) parameters in the model, that is an index of the
model complexity. The proposed technique (target propagation with refinement)
is compared with the approach by [20], that is a 2-hidden layer network with



86 V. Laveglia and E. Trentin

Table 2. Comparison between the proposed algorithm and the established approaches,
in terms of error rate and number of adaptive parameters.

Algorithm Test error #Parameters

Refinement 1.73 ± 0.06 3.04 × 105

[16] 1,94 5.36 × 105

[20] 1,6 1.28 × 106

Fig. 1. Learning and generalization curves for dnet.

800 units per layer (resulting in a very complex machine), and by [16], that is
a 7 hidden layer network having 240 neurons per layer. It is seen that the error
rate achieved by the proposed refinement algorithm is in the middle between its
competitors, but the complexity of the machine is dramatically smaller. A rela-
tive 11.02% error rate reduction is yielded by the present refinement approach
over the difference target propagation algorithm, while a relative 7.25% reduc-
tion is still offered by [20] (credited by [11] of being the best performance yielded
by a “regular” feed-forward net) over the present refinement procedure, at the
expense of the number of adaptive parameters, which is one order of magnitude
higher. Figure 1 presents the learning and generalization curves (mean squared
error on training and validation sets, respectively) obtained running regular BP
learning of dnet in one of the 10-folds of the present experiment. For graphical
convenience, the plot is limited to the first 5000 steps (no evident changes in
behavior were observed during the following steps). Note that the loss used to
plot the learning curve was evaluated, from step to step, on the corresponding
training mini-batch only, while the generalization curve was always evaluated
on the whole validation set. This is the reason why the learning curve fluctu-
ates locally, while the generalization curve is much smoother. The curves are
compared with those corresponding to the refinement via target propagation,
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Fig. 2. Learning and generalization curves of the procedure layer backprop(.) applied
to the three hidden layers of dnet.

Fig. 3. Learning and generalization curves of the procedure layer backprop(.) applied
to the output layer of dnet.

namely Figs. 2 and 3. The former plots the learning and generalization curves
of the layer-specific gradient-descent adaptation of the weights in the 1st, 2nd,
and 3rd hidden layers of dnet, respectively, by means of the application of the
procedure layer backprop(.) to the target propagated via the inversion net.
Similarly, Fig. 3 shows the curves for layer backprop(.) applied to the weights
in the topmost layer of dnet. Although eventually one is interested in solving
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the original learning problem, it is seen that the layer-specific sub-problems are
actually difficult high-dimensional learning problems, which may just not admit
any sound single-layered solution. This explains the observed difficulties met by
gradient-descent in minimizing the corresponding layer-specific loss functions.

4 Conclusions

Target propagation emerges as a viable approach to learning and refinement
of deep neural networks, tackling the vanishing-gradient issues stemming from
application of plain BP to deep architectures. Albeit preliminary, the empiri-
cal evidence stresses that the proposed refinement strategy yields classification
accuracies that are in line with the state-of-the-art algorithms for training feed-
forward networks. The error rate reduction observed over the bare BP-based deep
learning was shown to be statistically significant according to Welch’s t-tests.
The experiments presented in the paper revolved around a 5-layer architecture,
yet our efforts are currently focusing on deeper networks. Consequently, also
the application of inversion nets featuring more than one hidden layers is under
investigation. The training set for the inversion net can be enriched, as well, by
synthetically generating layer-specific input-output pairs obtained from the orig-
inal ones with the addition of random noise, resulting in different examples of the
signed errors ei used to drive the learning of the target-propagation relationship.
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Abstract. This paper faces the problem of extracting knowledge from
raw text. We present a deep architecture in the framework of Learning
from Constraints [5] that is trained to identify mentions to entities and
relations belonging to a given ontology. Each input word is encoded into
two latent representations with different coverage of the local context,
that are exploited to predict the type of entity and of relation to which
the word belongs. Our model combines an entropy-based regularizer and
a set of First-Order Logic formulas that bridge the predictions on entity
and relation types accordingly to the ontology structure. As a result, the
system generates symbolic descriptions of the raw text that are inter-
pretable and well-suited to attach human-level knowledge. We evaluate
the model on a dataset composed of sentences about simple facts, that
we make publicly available. The proposed system can efficiently learn to
discover mentions with very few human supervisions and that the rela-
tion to knowledge in the form of logic constraints improves the quality
of the system predictions.

Keywords: Information Extraction · Learning from Constraints
Deep Learning · Symbolic knowledge representation

1 Introduction

Information Extraction (IE) is one of the most important fields in Natural Lan-
guage Processing (NLP), and it is about extracting structured knowledge from
unstructured text [17]. IE encompasses a large variety of sub-problems, and, for
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the purpose of this work, we mostly consider Named Entity Recognition (NER)
and Relation Extraction (RE).

The goal of NER systems is to detect and classify proper nouns according to
a predefined set of entity types, such as “Person”, “Organization”, “Location”,
and others. Many NER systems [10,18] rely on handcrafted features and external
knowledge, such as gazetteers or capitalization information. On one hand, they
can help in spotting named entities, but, on the other hand, these techniques
are usually tied to the considered task. Differently, Collobert et al. [4] deeply
studied a neural model requiring only minor feature engineering. Their model
was applied to several NLP problems, such as part-of-speech tagging, chunking,
semantic role labeling, NER, and language modeling. More recent approaches
make a wide use of recurrent neural networks (mostly LSTMs [6]), such as the
one of Lample et al. [8], Chiu and Nichols [2] exploited similar networks, but
character-level features are detected by convolutional nets, also used in [20].

Relation Extraction addresses the problem of finding and categorizing rela-
tions between entities in a given text document. This problem is even harder than
NER, since relations are expressed in much more ambiguous ways than entity
names. There is also a big issue related to RE, that is the lack of large collec-
tions of high quality labeled data. Relations can be implicit, they can have fuzzy
boundaries, and they can also be constituted of non-contiguous words. Labeling
can be hard even for humans, and it can be strongly inconsistent among dif-
ferent supervisors. Some approaches rely only on unsupervised models [16,19],
segmenting the word sequences (“mentions”) bounded by two defined entities.
Mintz et al. [13] proposed an alternative paradigm, the so called “distant supervi-
sion”, that is a simple form of weak supervision. Intuitively, the distant approach
is founded on the idea that sentences containing the same pair of entities are
likely to express the same relation. Entities are taken from Freebase1, and the
considered relations are the ones that link the entity pair in the knowledge base.
Miwa and Bansal [15] presented an end-to-end solution to extract both relations
and entities from sentences. Their approach is based on stacked bidirectional
tree structured LSTMs, where entities are extracted first, then relations are pre-
dicted.

This review shows that Deep Learning achieved serious improvements in NLP
and IE-related applications. The renewed interest in recurrent neural networks
and the introduction of distributed representations of words and sentences [1,4,
12] allowed researchers to construct several systems that can be trained end-to-
end, removing the costly efforts in feature engineering. However, these methods
require large amounts of data to work properly, that in most of the cases need to
be labeled. Supervisions are expensive, and, in the specific case of IE, researchers
tend to focus on precise sub-tasks that are well studied and defined. Some of them
(e.g. NER and RE) share several aspects, and addressing those problems jointly
can be fruitful.

This work faces the problem of linking text portions to a given ontology with
a known schema that is composed of entity and relation types. NER and RE can

1 https://developers.google.com/freebase/.

https://developers.google.com/freebase/
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be seen as special instances of the considered setting. The problems of recogniz-
ing and segmenting mentions to both entity and relation types are treated in a
uniform way, reformulating them as problems of making predictions on a word
given its context. While predicting the entity type of the mention to which the
word belongs usually requires just a local context, spotting the relation type in
which the word is involved needs a larger context. Following this intuition, we
propose the idea that every word in the sentence can be considered from two
different perspectives that we refer to as “narrow” and “broad” views. We pro-
pose a deep architecture that develops two latent representations of each word,
associated to the just mentioned views. A predictor of entity types is attached
to the former representation, whereas a relation type prediction operates on
the latter. Our architecture is an instance of the generic framework of Learning
from Constraints [5], where the unifying notion of “constraint” is used to inject
knowledge coming from supervised and unsupervised data as well. In particular,
an entropy-based index (that resembles the mutual information from the input
views to the predictors) is maximized over all the data that is read by the system
(labeled or not), while First-Order Logic (FOL) formulas are used to bridge pre-
dictions of entity and relation types. Formulas are converted into constraints by
means of T-Norms. Linking the predictions on the two views allows the system
to mutually improve their quality, differently from those models that treat them
independently. When tested on a collection of sentences about factual knowl-
edge, our model achieves good performances without requiring a large number
of supervisions. This becomes more evident when logic constraints are intro-
duced between the two views. We notice that this approach allows us to build
neural models that provide an interpretable description of the unstructured raw
text, by means of the FOL formalism. This interpretability, that is usually miss-
ing in neural architectures, offers a suitable basis to easily introduce additional
information provided by an external supervisor. As a matter of fact, having a
human-in-the-loop is known to be a crucial element in those models that learn
and expand their internal knowledge bases in a life-long-learning setting [14].

This paper is organized as follows. Section 2 describes the proposed architec-
ture and the logic constraints. Section 3 reports our experimental results, while
Sect. 4 concludes the paper.

2 Model

We are given a data collection D composed of b utterances. Every utterance
u ∈ D consists of |u| words indicated with wj , ∀j = 1, . . . , |u|. We are also given
an ontology O, composed of kn entity types and kb relation types. Relations
involve pairs of entities of pre-defined types, as sketched in Fig. 1. For each word
wi, the goal of our model is to learn to predict what is the entity type associated
to word wi, and what is the relation type to which wi participates. For example,
in the sentence Paris is the capital of France, the system should predict that
Paris is an entity of type “city”, that France is an entity of type “country”,
and that each word of the sentence is associated to the relation type “capitalof”,
where all the mentioned types belong to the given ontology.
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Fig. 1. Ontology. Nodes are entity types, while edges are relation types.

We follow the idea of developing two latent representations of wi, that we refer
to as “narrow” and “broad” views, respectively. We indicate such representations
as x

(n)
i ∈ X (n) and x

(b)
i ∈ X (b), where X (n),X (b) are the generic spaces to which

they belong, and n, b stand for “narrow” and “broad”. Determining the entity
type of wi can be usually done by considering a local view around it, and that
is what x

(n)
i encodes. Finding the relation type of wi usually requires to have a

wider view around wi, since mentions to relations involve larger spans of text,
that is the rationale behind representation x

(b)
i .

We consider a fixed-size vocabulary of words V, so that each wj is a 1-hot
representation of size |V|, and those wj that are not covered by V are marked
with a generic symbol unk. Computing each x

(·)
i (being it narrow or broad) is the

outcome of two main computational stages. The first stage consists in projecting
the target symbol wi into a latent (distributed) representation ei ∈ R

d, where d
is the dimensionality of the embedding space. The embeddings of our vocabulary
{ei, i = 1, . . . , |V|}, are stored (column-wise) into W ⊂ R

|V|×d, so that

ei = Wwi . (1)

The second stage consists in fusing the distributed representations of the target
word itself and of the other words around it, thus generating x

(·)
i by means of

a Bidirectional Recurrent Neural Network (Bi-RNN). In detail, the Bi-RNN is
composed by two RNNs that process two sequences of word embeddings,

S→ = e1, e2, . . . , ei

S← = e|u|, e|u|−1, . . . , ei .

Both sequences terminate in the position of the target word, but S→ starts from
the beginning of the sentence, while S← starts from the end. Hidden states of
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the RNNs at the end of the sequences are concatenated, generating x
(·)
i . We use

Long Short Term Memories (LSTMs) to implement each RNN,

x
(n)
i =

[
LSTM (n→)(S→), LSTM (n←)(S←)

]

x
(b)
i =

[
LSTM (b→)(S→), LSTM (b←)(S←)

]
.

The global architecture is depicted in Fig. 2. While the embeddings {ei}, are
shared by the “narrow” and “broad” paths, the Bidirectional RNNs are inde-
pendently developed in the two views. We implement the broad path of Fig. 2
(right side) by stacking multiple layers of Bidirectional RNNs. The last layer will
embrace a larger context (due to the compositional effects of the stacking pro-
cess), and it will model a higher-level/coarser representation of the input word.
We notice that, in general, the broad representation could embrace multiple
sentences, or even paragraphs.

Fig. 2. Architecture of the proposed model. The utterance u is converted in a sequence
of embeddings e1 . . . , e|u|, feeding two bidirectional LSTMs, that compute two repre-

sentations (x
(n)
i , x

(b)
i ) of each word wi, also referred to as “narrow” and “broad” views

(left and right paths, respectively, where the right path usually includes multiple layers
of LSTMs). The predictor (MLP) on the “narrow” view outputs the entity type to
which wi belong, while the MLP on the “broad” view is about the relation type of wi.

For each word wi, we make predictions on the entity/relation types of the
ontology O that are more compatible with wi. In particular, we introduce two
set of functions that model the classifiers of each entity/relation type of O,

f (n) = [f (n)
1 , . . . , f

(n)
kn

] : Xn → [0, 1]kn (2)

f (b) = [f (b)
1 , . . . , f

(b)
kb

] : X b → [0, 1]kb (3)
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where f (n) are about entities and f (b) are about relations, and every component
of vectors f (n) and f (b) is in the range [0, 1]. Both f (n) and f (b) are multilayer
perceptrons having kn and kb output units with sigmoidal activations, as can be
observed in the upper portions of the architecture in Fig. 2.

2.1 Semantic Features

Since predictors in (2) and (3) are associated to interpretable entity/relation
types of the ontology O, we will also refer to them as “semantic features”.

We expect semantic features to be learned from data by enforcing a com-
bination of several constraints (they are enforced in a soft manner, so they are
implemented as penalty functions to be minimized - we keep using the generic
term “constraint” when referring to them). Each constraint guides the learning
process accordingly to a specific principle that we describe in what follows. The
objective function of our problem is Z, and we seek for those f (n), f (b) for which
Z is minimal,

min
f(n),f(b)

Z
(
f (n), f (b)

)
= min

f(n),f(b)

∑

f∈{f(n),f(b)}
[R(f) + C(f,L) + U(f)] + Φ

(
f (n), f (b)

)
.(4)

where R(f) is a regularization term (implemented with the classical weight decay
approach). The term C(f,L) is the traditional cross-entropy loss, commonly used
in supervised learning, that enforces a supervision constraint on those words that
have been supervised by an expert, collected (together with the supervision) in L.
Not all the words are supervised, and in the experiments we will also evaluate the
case in which no-supervisions are provided at all. The term U(f), is a constraint
inspired by the idea of maximizing the mutual information from the space of
word representations to the space of semantic features [11],

U(f) =
b∑

s=1

⎡
⎣

|us|∑
i=1

P (f(xsi), θv) + P (max
p

f(xsi), θh)

⎤
⎦ + λg · G(f). (5)

where s is the index of a sentence in D, while i is the word index. In detail, U(f) is
a sum of two contributions: the one in square brackets enforces the development
of only a small number of features on each word/sentence, while G(f) ensures
an unbiased development of the features over all the dataset D. The sets θv, θh
collect some customizable positive scalars (U(f) in Eq. (4) is applied to narrow
and broad features independently, so we have two independent pairs of θv, θh),
while λg is a tuneable weight > 0. In detail, if H(v) = −∑|v|

k=1 vk log vk is the
Shannon entropy, we have

G(f) = −H

⎛
⎝1

b

b∑
s=1

1
|us|

|us|∑
i=1

f(xsi)

⎞
⎠ (6)

P (v, θ = {λ1, λ2, γ}) = λ1 · H(v) + λ2

⎛
⎝

|v|∑
k=1

vk − γ

⎞
⎠

2

. (7)
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The term G(f) is minimized when all the semantic features are activated uni-
formly over all D, on average. The loss P is minimized when the activations
provided as its first argument are “close” to 1-hot vectors, that means that we
want a few-strongly-activated elements. Notice that the term P is used twice
in (5). Its first instance applies to the activations of semantic features on each
“word”. The second instance is about the activations of semantic features on
each “sentence” (pooled with the max operator). As a matter of fact, P con-
straints our model to develop a few, well activated features on each word, and
a few well activated features on each sentence. Both the terms G and P involve
the entropy function H, that is meaningful when its input is a probability distri-
bution. For this reason, the squared term in P introduces a competition among
the provided activations, that are enforced to sum to γ. If γ = 1 we have a
probability distribution, while if γ > 1 (but still small) we have a sort of relaxed
implementation of the probabilistic relationships. This makes the system more
tolerant to multiple activations on the same input, that, from the practical point
of view, turns out to be desirable. The last term of (4), Φ(f (n), f (b)), is a con-
straint coming from First-Order Logic (FOL), that introduces a link between
the two views on the data, with the goal of improving the quality of both the
categories of semantic features.

2.2 Logic Constraints

Narrow and broad semantic features are related to each other due to their link
in the ontology O. Consider, for example, an ontology composed of entity types
“city”, “country”, and of the relation type “capitalof ”. In the following sentence,
Paris is the capital of France, we can associate the entity type “city” to Paris,
the type “country” to France and the relation type “capitalof ” to each word of
the sentence (since they all contribute to such relation). Our system is expected
to give strong activation to the features indicate below (for the purpose of this
description, we make explicit the entity/relation type to which each feature is
associated),

f
(b)
capitalof︷ ︸︸ ︷

Paris︸ ︷︷ ︸
f
(n)
city

is the capital of France︸ ︷︷ ︸
f
(n)
country

.

We can clearly grasp that whenever the narrow features f
(n)
city and f

(n)
country

are active together in a sentence, it is very likely that the sentence involves the
relation “being a capital of ”, i.e., that f

(b)
capitalof should be active too, and vicev-

ersa1. Since the functions f model the activation of predicates of the ontology
O, we can implement this relationship by means of FOL formulas, such as
1 In general, this could be ambiguous, since multiple relations could be associated to

a city and a country. We solve this problem by introducing a special narrow feature
for each broad function (to simplify the presentation, we avoid going into further
details).
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f
(n)
city ∧ f

(n)
country ⇔ f

(b)
capitalof .1 (8)

We repeat this process for each relation in O, getting multiple formulas,
that are then translated into real-valued constraints φr(f (n), f (b)) by means of
T-Norms, as studied in [5]. For each T-Norm, there exists a unique function
⇒ called residuum, satisfying certain properties which is the natural transla-
tion of the logic implication. In this work, we considered the residuum of the
�Lukasiewicz T-Norm. �Lukasiewicz logic presents good properties such as the
involutive negation. However, translating a large chain of ∧ operations with such
T-Norm requires a strong activation of all the involved components because the
sum of n features should be greater than n−1. This could be sometimes a strong
requirement to satisfy. Hence, we converted the ∧ operator using the Gödel T-
Norm, which instead defines such operator as the minimum among the whole
predicates,

f1 ∧ f2 ∧ . . . ∧ fn = min(f1, f2, . . . , fn) . (9)

Departing from the provided example, in the ontology O we have a large
number of relations and, for each of them, we can build a FOL formula as (8),
and translate it into a real-valued penalty function. Summing up all the penalties,
we get

Φ(f (n), f (b)) = λl ·
kb∑
r=1

φr(f (n), f (b)), (10)

where λl > 0 is a customizable scalar. We remark that whenever the activations
of the premises and of the conclusions of (8) are both small (i.e., false), the
corresponding constraints are automatically satisfied. The actual contribution of
each φr(f (n), f (b)) becomes significant whenever there is disagreement between
the semantic features computed on the broad and narrow sides.

2.3 Segmentation

In Eq. (8) we did not make explicit the arguments on which semantic features
operate. While semantic features are designed to make predictions on single
words, the FOL constraints can involve longer portions of text, uniformly referred
to as “segments” (the previous example involved two single-word segments for
narrow features - Paris; France - but, in general, we can have longer segments).
In order to evaluate the FOL constraints we need to segment the input sentence
and compute segment-level activations of the semantic features.

Segmentation is performed as follows: for each word, we mark as “active”
only the narrow features whose activation score is beyond a decision threshold
(assumed to be 0.5). If multiple nearby words share the same active feature, we
collapse them into a single segment. This procedure generates multiple segmen-
tation hypotheses for each narrow feature. We prune the hypotheses by keeping
only the segment with the strongest activation (we kept also a second hypoth-
esis for those narrow features involved twice in the same relation). In the case
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of broad features, for simplicity, we assume that there is only a single segment
that cover the whole sentence. Finally, segment-level activations are computed
by averaging the word-level scores. An example of segment activation/selection
procedure is illustrated in Table 1 (the first entity is badly segmented).

Table 1. Segment generation/selection. Shaded elements are above the activation
threshold (0.5), whereas bordered rectangles indicates the segments we select.

3 Experiments

We manually created (and made public) a dataset2 D with sentences that are
word-by-word linked to a given ontology. The dataset is a collection of 1000
sentences, where 700 are used to train our model and 300 are used as test set.
Each sentence is constituted by a triple structured as entity1 -relation-entity2.
Our ontology is composed of 11 entity types, and 23 relation types, whose orga-
nization is exactly the one that we have already shown in Fig. 1, where nodes are
entity types and links are relation types. We kept data simple; sentences have
no co-references, quite explicit relation expressions, and the vocabulary V cov-
ers almost all the words. We intentionally introduced some noise in the labeling
process, to make the task more challenging.

Word embeddings W were initialized (and kept fixed) with the ones from
[3], that are vectors with 50 components. The sizes of recurrent network states
(500) and the hidden layers of multilayer perceptron blocks have been chosen by
cross-validation. In the case of broad features we have two layers of recurrence.
The narrow and broad MLP-based predictors have a single layer with 1200 and
800 hidden units, respectively. Our cost function was optimized with ADAM [7],
using mini-batches of size 32 (sentences), and we also introduced some gradient
noise and gradient clipping.

The objective function in Eq. 4 requires the tuning of several hyper-
parameters. However, the values of the parameter γ in the sets θv and θh can be
defined exploiting prior knowledge on the sentence structure (recall that we have
two independent pairs (θv, θh) for broad and narrow features). Broad features
are supposed to be 1-hot in each word, and the active broad feature should be
the same in the whole sentence. Thus, we set γ = 1 in both θv and θh. Likewise,
we expect only one narrow feature per word, which means γ = 1 in the case of
θv, but here the number of features per sentence is set to γ = 3 in the case of
θh. The remaining hyper-parameters were tuned by cross-validation.
2 http://sailab.diism.unisi.it/onto-sentences-dataset/.

http://sailab.diism.unisi.it/onto-sentences-dataset/
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Experiments are evaluated with different scores. A common metric used in
Information Extraction is the F1 score, but it can be only applied with labeled
data, so it is not possible to measure entropy-based constraints when enforced in
a completely unsupervised framework. In such situations we evaluate the mutual
information between the semantic features and the ground truth. In particular,
we adopted the Normalized Mutual Information (NMI) [9].

We consider a sparsely supervised setting and we compare our model against
two simplified instances of it: one is trained only using constraints on the super-
vised examples, i.e. without entropy-based and logic constraints, another one
exploits also entropy-based constraints but not logic formulas. We varied the
number of labeled sentences in the training set ranging from only 1 supervised
sentence per relation type, to a fully labeled case (“all”). Additionally, one of
the models is also trained without considering any supervised data at all.

Figure 3 reports our results. First, we focus on the scores obtained in the
case in which supervised constraints are not exploited. Since we are in a fully
unsupervised case, we do not introduce logic constraints, so that only one plot
is meaningful (green line, first dot of the plot). This is due to the fact that in
the unsupervised case we do not have access to the symbolic elements of the
ontology that are associated to the semantic features. The NMI scores in the
narrow and broad cases (Fig. 3 (a, c)) show that although entropy constraints
produce a significant score in the case of broad features, the result on narrow
features are not encouraging. As a matter of fact, words in the borders of two
entity types are sources of errors. In the case of broad features, since we output
a prediction on the whole sentence, this issue is not present.

When supervised examples are introduced, Fig. 3 (a) shows that even only one
supervised sentence per formula remarkably improves the NMI score of narrow
features. Interestingly, the unsupervised case, despite its low performances, is still
better than using a single supervision. Differently, broad features are less affected
by the introduction of the first supervised example (Fig. 3 (c)), since they were
already showing good performances in the fully unsupervised case. Performances
of semi-supervised models (both in the case of entropy and entropy + logic) are
significantly better than the model trained only with supervisions (NMI and F1,
Fig. 3 (a, b, c, d)). More generally, the entropy-based terms are crucial whenever
the number of supervised data is limited. Only when we go beyond 10 supervised
sentences per formula (≈ one third of the training set) the supervised case gets
closer to the semi-supervised entropy-based case, but still does not reach the case
in which logic formulas are added. Introducing logic formulas almost constantly
gives improvements over the entropy-only case, confirming that bridging the
predictions on broad and narrow views is important to allow a positive transfer
of information between the two views.
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(a) (b)

(c) (d)

Fig. 3. Comparison of the quality of semantic features on narrow (a), (b) and broad
(c), (d) views in the case of different models (test set). While (a), (c) are about the
NMI score, (b), (d) report the F1 measure. The entropy-based constraints (green curve,
NMI only, (a), (c)) are also evaluated in the unsupervised case (the yellow line repeats
this result over all the graph, as reference). (Color figure online)

4 Conclusions

We presented a deep architecture in the framework of Learning from Constraints
[5], that was designed to extract and identify mentions to entity and relation
types belonging to a given ontology. Thanks to the introduction of two latent
representations (views) of the input data, we implemented entity and relation
detectors in a uniform way, differently from several existing systems. Our results
have shown that introducing ontology-related information, represented as First-
Order Logic formulas, helps the system to improve the quality of its predictions.

Our model must be extended to larger scale data and evaluated in less con-
trolled environments. We plan to investigate more challenging settings, following
the idea of life-long learning, and departing from the usual batch-mode approach
toward a framework where there is an online interaction with humans. This is
made possible by the interpretable representations of the raw text that are gen-
erated by our model.
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Abstract. Lifelong learning aims to develop machine learning systems
that can learn new tasks while preserving the performance on previous
learned tasks. In this paper we present a method to overcome catas-
trophic forgetting on convolutional neural networks, that learns new
tasks and preserves the performance on old tasks without accessing the
data of the original model, by selective network augmentation (SeNA-
CNN). The experiment results showed that SeNA-CNN, in some scenar-
ios, outperforms the state-of-art Learning without Forgetting algorithm.
Results also showed that in some situations it is better to use SeNA-CNN
instead of training a neural network using isolated learning.

Keywords: Lifelong learning · Catastrophic forgetting
Convolutional neural networks · Supervised learning

1 Introduction

Deep learning is a sub-field of machine learning which uses several learning
algorithms to solve real-world tasks as image recognition, facial detection, sig-
nal processing, on supervised, unsupervised and reinforcement learning using
feature representations at successively higher, more abstract layers. Even with
the growth and success of deep learning on many applications, some issues still
remain unsolved. One of these issues is the catastrophic forgetting problem [8].
This issue can be seen as an handicap to develop truly intelligent systems.

Catastrophic forgetting arises when a neural network is not capable of
preserving the past learned task when learning a new task. There are some
approaches that benefit from previously learned information to improve perfor-
mance of learning new information, for example fine-tuning [7] where the param-
eters of the old tasks are adjusted for adapting to a new task and, as was shown
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in [3], this method implies forgetting the old task while learning the new task.
Other approach well known is feature extraction [6] where the parameters of the
old network are unchanged and the parameters of the outputs of one or more
layers are used to extract features for the new task. There is also a paradigm
called joint train [4] where parameters of old and new tasks are jointly trained
to minimize the loss in all tasks.

There are already some methods built to overcome the problem of catas-
trophic forgetting [9,11,13]. But even with these and other approaches, the prob-
lem of catastrophic forgetting is still a big challenge for the Artificial Intelligence
(AI) community and according to [18] is now appropriate to the AI community
to move toward algorithms that are capable of learning multiple problems over
time.

In this paper we present a new method that is capable of preserving the
previous learned task while learning a new tasks without requiring a training set
with previous tasks data. This is achieved by selective network augmentation,
where new nodes are added to an existing neural network trained on an original
problem, to deal with the new tasks.

SeNA-CNN is similar to progressive neural networks proposed in [16] and in
the next section we present the main differences between the two methods.

This paper is structured as follows: Sect. 2 presents related works on exist-
ing techniques to overcome the problem of catastrophic forgetting in neural
networks. In Sect. 3 we describe SeNA-CNN and some implementation details.
Section 4 presents the experiments and results of SeNA-CNN and on Sect. 5 we
present the conclusions.

2 Related Work

The problem of catastrophic forgetting is a big issue in machine learning and
artificial intelligence if the goal is to build a system that learns through time,
and is able to deal with more than a single problem. According to [12], without
this capability we will not be able to build truly intelligent systems, we can only
create models that solve isolated problems in a specific domain. There are some
recent works that tried to overcome this problem, e.g., domain adaptation that
uses the knowledge learned to solve one task and transfers it to help learning
another, but those two tasks have to be related. This approach was used in [10]
to avoid the problem of catastrophic forgetting. They used two properties to
reduce the problem of catastrophic forgetting. The first properties was to keep
the decision boundary unchanged and the second was that the feature extractor
from the source data by the target network should be present in a position close
to the features extracted from the source data by the source network. As was
shown in the experiments, by keeping the decision boundaries unchanged new
classes can not be learned and it is a drawback of this approach because it
can only deal with related tasks, with the same number of classes, while in our
approach, we are able to deal with unrelated problems with different number of
classes.
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The Learning without Forgetting (LwF) algorithm proposed in [11] adds
nodes to an existing network for a new task only in the fully connected layers and
this approach demonstrated to preserve the performance on old tasks without
accessing training data for the old tasks. We compare SeNA-CNN with LwF
algorithm. The main difference is that instead of adding nodes in fully connected
layers, we add convolutional and fully connected layers of the new tasks to an
existing model and SeNA-CNN has a better capability of learning new problems
than LwF because we train a series of convolutional and fully connected layers
while LwF only trains the added nodes in the fully connected layer and hence,
depends on the original task’s learned feature extractors to represent the data
from all problems to be learned.

Progressive Neural Networks (PNN), proposed in [16], also addressed the
problem of catastrophic forgetting via lateral connection to a previous learned
network. The main difference to SeNA-CNN is that the experiment was in rein-
forcement learning while our proposal is designed to work with supervised learn-
ing for image classification problems. This approach, as SeNA-CNN begins with
one column, a CNN trained on a single problem. When adding new tasks param-
eters from the previous task are frozen and new columns are added and initialised
from scratch. Another difference between PNN and SeNA-CNN, is that SeNA-
CNN use the two first convolutional layers of the original model trained on iso-
lated learning and by doing that SeNA-CNN can learn the new tasks faster than
if all the layers had to be trained from scratch, while PNN adds an entire column
each time that new tasks come and the new column is randomly initialised. In
the experimental section [16] they demonstrated the proposed method with 2,
3 and 4 columns architecture on Atari Game and 3D maze game. For future
work, as in our approach, the authors aims to solve the problem of adding the
capability to automatically choose at which task a label belongs because during
the experiment it was necessary on test time to choose which task to use for
inference.

3 Proposed Method

Our proposal is a method that is able to preserve the performance on old tasks
while learning new tasks, without seeing again the training data for old tasks,
as is necessary in [11], using selective network augmentation.

A model that is capable of learning two or more tasks has several advantages
against that which only learns one task. First is that the previous learned task
can help better and faster learning the new task. Second, the model that learns
multiple tasks may result in more universal knowledge and it can be used as a
key to learn new task domains [17].

Initially a network is instantiated with L layers with hidden layers hi and
parameters θn with random initialization. The network is then trained until con-
vergence. Figure 1(a) presents the original model for old task trained on isolated
learning, Fig. 1(b) is our proposed model with two tasks. In Fig. 1(b) the blue
colour represents the old task network and the orange corresponds to the new
added nodes for the new task.
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When a new tasks is going to be learned instead of adding nodes only in fully
connected layers as is done in [11], we add layers for the new task Typically the
added layers contain a structure similar to the network that we trained on iso-
lated learning. We consider the option of not adding the first two layers, because
the neurons in those layers find several simple structures, such as oriented edges
as demonstrated in [15]. The remaining layers seem to be devoted to more com-
plex objects, and hence, are more specific to each problem, and that is why we
choose to create these new layers. It also resembles the idea of mini-columns in
the brain [14]. We add those layers and train them initialized with weights of
old tasks, keeping the old task layers frozen.

When switching to a third task, we freeze the two previous learned tasks and
only train the new added layers. This process can be generalized to any number
of tasks that we wish to learn.

Fig. 1. Original and our model used in the experiment process to avoid the catastrophic
forgetting by selective network augmentation. The blue coloured boxes correspond to
the old task and the orange coloured correspond to the added layers. (Color figure
online)

4 Experiments

We compared our method with the algorithm LwF proposed in [11].
Our experiments evaluate if the proposed method can effectively avoid the

catastrophic forgetting problem. We conducted our experiments using three well
known datasets namely CIFAR10 [2], CIFAR100 [2] and SVHN2. Table 1 shows
information on each dataset, and the number of images on training and test sets.
CIFAR10 AND CIFAR100 are very similar. CIFAR10 has 10 classes and these
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Table 1. Number of images for train and test sets.

Data set CIFAR10 CIFAR100 SVHN2

Train 50000 50000 73257

Test 10000 10000 26032

Fig. 2. Example images of the datasets used on the experiments. First row images
corresponds to CIFAR10, second corresponds to SVHN2 and the last one are from
CIFAR100 dataset.

are subset of the 100 classes of CIFAR100. SVHN2 corresponds to street house
numbers and has 11 classes (Fig. 2).

Figure 3 shows the procedure used to test the ability of both models (SeNA-
CNN and LwF) to overcome catastrophic forgetting. Both models use the previ-
ous model trained on isolated learning. We add the new tasks and then evaluate
the performance on the old tasks for each method.

4.1 Network Architecture

The neural network used on isolated learning was a standard network architec-
ture with 4 convolutional layers, the first one is the input, 6 activation layers
(one of them is the softmax), 2 maxpooling layers, 3 dropout layers, a flatten
layer and 2 dense layers. For new tasks the architecture was almost the same.
The difference was that for the new tasks we did not add the first two convoluti-
nal layers, we used the first two layers of the model trained on isolated. Figure 4
shows the proposed approach when the three branches corresponding to each
task are connected. This is a functional model and overall this model had 8 con-
volutinal layers, 6 fully-connected layers, 11 ReLUs activation layers, 4 pooling
layers and 7 dropout layers. The model receives tensor input and this input is
propagated to all branches and each branch produce an output. To choose the
branch to predict at test time, we set all other tasks, images and targets values
to zero and only show to the model the images and targets we want to predict. So
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Fig. 3. Procedure used to test both evaluated models to overcome catastrophic forget-
ting.

far this process is done by hand and we consider for future work the automatic
choice of which task to predict.

Input images are RGB and have 32 × 32 pixels. The first convolution layer
has filters with dimensions 32 × 32 while the other two convolution layers have
filters with 64 × 64. We used the keras API [5] running on tensorflow [1].

4.2 Training Methodology

Our main goal is to evaluate if the proposed model learns new tasks while pre-
serving the performance on old tasks. During training we followed the same prac-
tice as [11], the main difference is that we first freeze all layers of the original
model and only train the added nodes. Then we train all weights for convergence
using back-propagation with SGD algorithm with dropout enabled. All the net-
works had the same architecture, and the learning rate was set to 0.01, weight
decay of 1e − 6 and momentum 0.9. All networks use the same train, validation
and test split for a given seed number. Table 2 shows the performance and exe-
cution time of each network after 12 training epochs. We run each experiment
ten times and present results corresponding to the mean and standard deviation
of these 10 repetitions. We run our experiments using a GeForce GTX TITAN
X with 12 GiB.

4.3 Isolated Learning

We started by training 3 networks, one for each of the 3 data sets. Results of
the experiment are shown in Table 2 where for each network we present the
mean performance, its standard deviation and the execution time for train and
test. These networks will be used both for SeNA-CNN and LwF in the next
experiments.
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Fig. 4. Procedure used at test time for the three tasks. This is the stage when we
combine the three tasks.

Table 2. Network performance on isolated learning and execution time for train and
test sets.

Train Test Baseline [%] Execution time [s]

CIFAR10 CIFAR10 74.10± 0.70 312

CIFAR100 CIFAR100 51.44± 0.40 423

SVHN2 SVHN2 92.27± 0.80 438

4.4 Adding New Tasks to the Models

As Fig. 3 shows, we used the networks trained on isolated learning to implement
our method by adding layers of the new tasks in such way that the model can
learn a new task without forgetting the original one. Table 3 presents the per-
formance of the proposed method when adding new tasks and compares it with
the baseline [11]. These results correspond to the performance of our model and
LwF when using a model trained on cifar10 for isolated learning and we added
to the model as new tasks svhn2 and cifar100. This process was repeated for the
other two tasks.

Results shows that SeNA-CNN outperformed LwF algorithm almost in all
scenarios, showing that selectively adding layers to an existing model can pre-
serve the performance on the old tasks when learning a new one, also is not
necessary to train again the previous model and the new task learned will not
interfere on the previous learned one. Overall SeNA-CNN outperformed LwF
algorithm in 2/3 of the experiments showing the effectiveness of the proposed
method to learn new tasks.

We also evaluated if, when adding a new task, the knowledge previous learned
was not overwritten. As shown in Fig. 3 we tested if the model was able to pre-
serve the previous learned task. Table 4 presents the results of these experiments.
The second and third columns represent results of cifar10 as old task using the
others two as new tasks. Similar setups are presented in the remaining columns.
Results shows that our method outperformed LwF when remembering the
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Table 3. SeNA-CNN and LwF test accuracy (and standard deviation) on new tasks.

Old New LwF SeNA-CNN

CIFAR10 SVHN2 84.02(0.47) 82.27(0.38)

CIFAR10 CIFAR100 53.10(0.55) 55.67(0.52)

CIFAR100 CIFAR10 75.23(0.53) 75.69(0.52)

CIFAR100 SVHN2 86.49(0.39) 90.04(0.38)

SVHN2 CIFAR10 66.42(0.62) 67.27(0.58)

SVHN2 CIFAR100 49.05(0.63) 47.15(0.45)

previous learned tasks in all cases, and once again. We also verified that in some
scenarios such as cifar100 �→cifar10 (for both methods), cifar100 performance
increased compared to isolated learning, and it suggests using both proposed
models instead of training from a random weights initialization, without inter-
action with other problems. These results are understandable since cifar10 and
cifar100 are very similar and the two layers shared during the train of the new
tasks increased the performance. Results show that by applying our method it
is possible to overcome the problem of catastrophic forgetting when new tasks
are added to the model.

Table 4. SeNA-CNN and LwF test accuracy (and standard deviation) showing that
our method does not forget old tasks after learning the new ones and outperforms the
LwF method in all cases.

New Old LwF SeNA-CNN

CIFAR10 SVHN2 87.96(0.75) 89.84(0.68)

CIFAR10 CIFAR100 52.39(0.43) 53.34(0.58)

CIFAR100 CIFAR10 69.37(0.65) 70.59(0.59)

CIFAR100 SVHN2 89.01(0.39) 89.53(0.57)

SVHN2 CIFAR10 65.80(0.47) 67.83(0.59)

SVHN2 CIFAR100 48.11(0.41) 49.40(0.72)

4.5 Three Tasks Scenario

To demonstrate that SeNA-CNN is able to deal with several different problems,
we experiment by learning three tasks. In this case we used the three datasets
previously presented and we combine them two by two as old and one as new
task. In Table 5 we presents results when adding a new task to a model that
had already learned two tasks. From this scenario clearly in all cases SeNA-
CNN outperformed LwF when learning a new task, and also the performance
for cifar100 continue increasing for both methods and consolidating what we
previously said.
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Table 5. Three tasks SeNA-CNN and LwF test accuracy (and standard deviation) on
new tasks.

Old New LwF SeNA-CNN

SVHN2, CIFAR10 CIFAR100 46.96(0.29) 47.15(0.48)

CIFAR10, CIFAR100 SVHN2 87.21(0.30) 87.87(0.50)

CIFAR100, SVHN2 CIFAR10 74.71(0.50) 75.69(0.14)

CIFAR10, SVHN2 CIFAR100 54.24(0.37) 54.87(0.63)

SVHN2, CIFAR100 CIFAR10 65.99(0.47) 66.00(0.48)

CIFAR100, CIFAR10 SVHN2 87.68(0.43) 89.08(0.37)

In this scenario we also evaluated the ability to preserve the performance of
the two old learned tasks. Table 6 present results of both methods when they
have to recall the old tasks. Comparing results, both algorithms typically had
the same percentage of performance, meaning that in some scenarios SeNA-CNN
performed better than LwF and vice-versa. Once again these results shows the
ability to overcome the catastrophic forgetting problem in convolutional neural
networks by selectively network augmentation.

Table 6. Three tasks SeNA-CNN and LwF test accuracy (and standard deviation) on
old tasks.

New Old LwF SeNA-CNN

CIFAR100 SVHN2, CIFAR10 89.23(0.70), 75.14(0.14) 89.01(0.44), 76.81(0.64)

SVHN2 CIFAR10, CIFAR100 73.99(0.12), 56.78(0.37) 71.11(0.37), 56.20(0.58)

CIFAR10 CIFAR100, SVHN2 52.41(0.26), 87.10(0.22) 49.14(0.58), 89.17(0.57)

CIFAR100 CIFAR10, SVHN2 74.28(0.25), 90.04(0.39) 75.58(0.52), 88.07(0.94)

CIFAR10 SVHN2, CIFAR100 90.13(0.59), 48.11(0.27) 90.19(0.64), 46.96(0.51)

SVHN2 CIFAR100, CIFAR10 47.20(0.40), 74.95(0.43) 47.87(0.63), 75.24(0.39)

5 Conclusion

In this paper we presented a new method, SeNA-CNN to avoid the problem
of catastrophic forgetting by selective network augmentation and the proposed
method demonstrated to preserve the previous learned tasks without accessing
the old task’s data after the original training had been done. We demonstrated
the effectiveness of SeNA-CNN to avoid catastrophic forgetting for image clas-
sification by running it on three different datasets and compared it with the
baseline LwF algorithm.

It has the advantage of being able to learn better new tasks than LwF since
we train a series of convolutional and fully connected layers for each new task,
whereas LwF only adds nodes to the fully connected layers and hence, depends
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on the original task’s learned feature extractors to represent the data from all
problems to be learned.

We also showed that in some scenarios SeNA-CNN and LWF increases the
performance when compared to isolated training for classification problems with
some similarity. This is understandable since by reusing partial information from
previous tasks, we are somehow doing fine-tuning on the new task.

As future work we consider adapting SeNA-CNN for on-line learning and
make it automatically choose which task is to be classified.
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Abstract. We study the quantification of uncertainty of Convolutional
Neural Networks (CNNs) based on gradient metrics. Unlike the classical
softmax entropy, such metrics gather information from all layers of the
CNN. We show for the EMNIST digits data set that for several such
metrics we achieve the same meta classification accuracy – i.e. the task
of classifying predictions as correct or incorrect without knowing the
actual label – as for entropy thresholding. We apply meta classification
to unknown concepts (out-of-distribution samples) – EMNIST/Omniglot
letters, CIFAR10 and noise – and demonstrate that meta classification
rates for unknown concepts can be increased when using entropy together
with several gradient based metrics as input quantities for a meta clas-
sifier. Meta classifiers only trained on the uncertainty metrics of known
concepts, i.e. EMNIST digits, usually do not perform equally well for all
unknown concepts. If we however allow the meta classifier to be trained
on uncertainty metrics for some out-of-distribution samples, meta clas-
sification for concepts remote from EMNIST digits (then termed known
unknowns) can be improved considerably.

Keywords: Deep learning · Uncertainty quantification
Meta classification

1 Introduction

In recent years deep learning has outperformed other classes of predictive models
in many applications. In some of these, e.g. autonomous driving or diagnostics
in medicine, the reliability of a prediction is of highest interest. In classification
tasks, the thresholding on the highest softmax probability or thresholding on the
entropy of the classification distributions (softmax output) are commonly used
metrics to quantify classification uncertainty of neural networks, see e.g. [11].
However, misclassification is oftentimes not detected by these metrics and it is
also well known that these metrics can be fooled easily. Many works demon-
strated how an input can be designed to fool a neural network such that it
incorrectly classifies the input with high confidence (termed adversarial exam-
ples, see e.g. [9,13,18,19]). This underlines the need for measures of uncertainty.
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A basic statistical study of the performance of softmax probability thresh-
olding on several datasets was developed in [11]. This work also assigns proper
out-of-distribution candidate datasets to many common datasets. For instance
a network trained on MNIST is applied to images of handwritten letters, scaled
gray scale images from CIFAR10, and different types of noise. This represents a
baseline for comparisons.

Using classical approaches from uncertainty quantification for modeling input
uncertainty and/or model uncertainty, the detection rate of misclassifications
can be improved. Using the baseline in [11], an approach named ODIN, which is
based on input uncertainty, was published in [15]. This approach shows improved
results compared to pure softmax probability thresholding. Uncertainty in the
weights of a neural network can be modeled using Bayesian neural networks. A
practically feasible approximation to Bayesian neural networks was introduced
in [8], known as Monte-Carlo dropout, which also improves over classical softmax
probability thresholding.

Since the softmax removes one dimension from its input by normalization,
some works also perform outlier detection on the softmax input (the penultimate
layer) and outperform softmax probability thresholding as well, see [2].

In this work we propose a different approach to measure uncertainty of a neu-
ral network based on gradient information. Technically, we compute the gradient
of the negative log-likelihood of a single sample during inference where the class
argument in the log-likelihood is the predicted class. We then extract compressed
representations of the gradients, e.g., the norm of a gradient for a chosen layer.
E.g., a large norm of the gradient is interpreted as a sign that, if the prediction
would be true, major re-learning would be necessary for the CNN. We interpret
this ‘re-learning-stress’ as uncertainty and study the performance of different
gradient metrics used in two meta classification tasks: separating correct and
incorrect predictions and detecting in- and out-of-distribution samples.

The closest approaches to ours are probably [2,11] as they also establish a self
evaluation procedure for neural networks. However they only incorporate (non-
gradient) metrics for particular layers close to the networks output while we con-
sider gradient metrics extracted from all the layers. Just as [2,11] our approach
does not make use of input or model uncertainty. However these approaches, as
well as our approach, are somewhat orthogonal to classical uncertainty quantifi-
cation and should be potentially combinable with input uncertainty and model
uncertainty, as used in [8,15], respectively.

The remainder of this work is structured as follows: First, in Sect. 2 we intro-
duce (gradient) metrics, the concept of meta classification and threshold indepen-
dent performance measures for meta classification, AUROC and AUPR, that are
used in the experiments. In Sect. 3 we introduce the network architecture and
the experiment setup containing the choice of data sets. We use EMNIST [6]
digits as a known concept on which the CNN is trained and EMNIST letters,
CIFAR10 images as well as different types of noise as unknown/unlearned con-
cepts. Then we statistically investigate the separation performance of our metrics
for correct vs. incorrect classifications provided by CNNs. This is followed by a
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performance study for the detection of in- and out-of-distribution samples (detec-
tion of unlearned concepts) in Sect. 4. Therefore we also combine available met-
rics for training and comparing different meta classifiers. In this section meta
classifiers are trained only using known concepts, i.e., EMNIST digits. After-
wards, in Sect. 5, we insert unlearned concepts (which therefore become known
unknowns) into the training of the meta classifiers. While the softmax base-
line achieves an AUROC value of 95.83% our approach gains 0.81% in terms of
AUROC and even more in terms of AUPR values.

2 Entropy, Softmax Baseline and Gradient Metrics

Given an input x ∈ R
n, weights w ∈ R

p and class labels y ∈ C = {1, . . . , q},
we denote the output of a neural network by f(y|x,w) ∈ [0, 1]. The entropy of
the estimated class distribution conditioned on the input (also called Shannon
information, [16])

E(x,w) = − 1
log(q)

∑

y∈C
f(y|x,w) log(f(y|x,w)), (1)

is a well known dispersion measure and widely used for quantifying classification
uncertainty of neural networks. In the following we will use the term entropy
in the sense explained above. Note that this should not be confused with the
entropy underlying the (not estimated and joint) statistical distribution of inputs
and labels. The softmax baseline proposed by [11] is calculated as

S(x,w) = max
y∈C

f(y|x,w). (2)

Using the maximum a posteriori principle (MAP), the predicted class is defined
by

ŷ(x,w) := arg max
y∈C

f(y|x,w) (3)

according to the Bayes decision rule [3], or as one hot encoded label ĝ(x,w) ∈
{0, 1}q with

ĝk(x,w) =

{
1, ŷ(x,w) = k

0, else
(4)

for k = 1, . . . , q. Given an input sample xi with one hot label yi, predicted
class label ĝi (from Eq. (4)) and a loss function L = L(f(y|xi, w), yi), we can
calculate the gradient of the loss function with respect to the weights ∇wL =
∇wL(f(y|xi, w), ĝi). In our experiments we use the gradient of the negative log-
likelihood at the predicted class label, which means

L = L(f(y|xi, w), ĝi) = −
∑

y∈C
ĝiy log

(
f(y|xi, w)

)
= − log

(
f(ŷ|xi, w)

)
. (5)

We apply the following metrics to this gradient:



116 P. Oberdiek et al.

– Absolute norm (‖∇wL‖1)
– Euclidean norm (‖∇wL‖2)
– Minimum (min (∇wL))
– Maximum (max (∇wL))
– Mean (mean (∇wL))
– Skewness (skew (∇wL))
– Kurtosis (kurt (∇wL))

These metrics can either be applied layerwise by restricting the gradient to
those weights belonging to a single layer in the neural network or to the whole
gradient on all layers.

The metrics can be sampled over the input X and conditioned to the event
of either correct or incorrect classification. Let T (w) and F (w) denote the sub-
set of correctly and incorrectly classified samples for the network f(y|x,w),
respectively. Given a metric M (e.g. the entropy E or any gradient based
one), the two conditioned distributions M(X,w)|T (w) and M(X,w)|F (w) are
further investigated. For a threshold t, we measure P (M(X,w) < t |T (w)) and
P (M(X,w) ≥ t |F (w)) by sampling X. If both probabilities are high, t gives a
good separation between correctly and incorrectly classified samples. This con-
cept can be transfered to the detection of out-of-distribution samples by defining
these as incorrectly classified. We term this procedure (classifying M(X,w) < t
vs. M(X,w) ≥ t) meta classification.

Since there are many possible ways to compute thresholds t, we compute
our results threshold independent by using Area Under the Receiver Operating
Curve (AUROC) and Area Under the Precision Recall curve (AUPR). For any
chosen threshold t we define

TP = #{correctly predicted positive cases},

TN = #{correctly predicted negative cases},

FP = #{incorrectly predicted positive cases},

FN = #{incorrectly predicted negative cases}.

and can compute the quantities

R = TPR =
TP

TP + FN
(True positive rate or Recall),

FPR =
FP

FP + TN
(False positive rate),

P =
TP

TP + FP
(Precision).

When dealing with threshold dependent classification techniques, one calculates
TPR (R), FPR and P for many different thresholds in the value range of the
variable. The AUROC is the area under the receiver operating curve, which has
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the FPR as ordinate and the TPR as abscissa. The AUPR is the area under the
precision recall curve, which has the recall as the ordinate and the precision as
abscissa. For more information on these performance measures see [7].

The AUPR is in general more informative for datasets with a strong imbal-
ance in positive and negative cases and is sensitive to which class is defined as the
positive case. Because of that we are computing the AUPR-In and AUPR-Out,
for which the definition of a positive case is reversed. In addition the values of
one variable are multiplied by −1 to switch between AUPR-In and AUPR-Out
as in [11].

3 Meta Classification – A Benchmark Between Maximum
Softmax Probability and Gradient Metrics

We perform all our statistical experiments on the EMNIST data set [6], which
contains 28 × 28 gray scale images of 280 000 handwritten digits (0–9) and
411 302 handwritten letters (a–z, A–Z). We train the CNNs only on the digits,
in order to test their behavior on untrained concepts. We split the EMNIST data
set (after a random permutation) as follows:

– 60,000 digits (0–9) for training
– 20,000 digits (0–9) for validation
– 200,000 digits (0–9) for testing
– 20,000 letters (a–z, A–Z) as untrained concepts

Additionally we included the CIFAR10 library [12], shrinked and converted to
gray scale, as well as 20,000 images generated from random uniform noise. All
concepts can be seen in Fig. 1.

Fig. 1. Different concepts used for our statistical experiments

The architecture of the CNNs consists of three convolutional (conv) layers
with 16 filters of size 3 × 3 each, with a stride of 1, as well as a dense layer with
a 10-way softmax output. Each of the first two conv layers are equipped with
leaky ReLU activations

LeakyReLU(x) =

{
x, x > 0
0.1x, x < 0

(6)



118 P. Oberdiek et al.

and followed by 2 × 2 max pooling. We employ L2 regularization with a regu-
larization parameter of 10−3. Additionally, dropout [17] is applied after the first
and third conv layer. The dropout rate is 33%.

The models are trained using stochastic gradient descent with a batch size
of 256, momentum of 0.9 and categorical cross entropy as cost function. The
initial learning rate is 0.1 and is reduced by a factor of 10 every time the average
validation accuracy stagnates, until a lower limit for the learning rate of 0.001 is
reached. All models were trained and evaluated using Keras [5] with Tensorflow
backend [1]. Note, that the parameters where chosen from experience and not
tuned to any extent. The goal is not to achieve a high accuracy, but to detect
the uncertainty of a neural network reliably.

Fig. 2. Empirical distribution for entropy, euclidean norm and minimum applied to
correctly predicted and incorrectly predicted digits from the test data (green and red)
of one CNN. Further distributions are generated from EMNIST samples with unlearned
letters (blue), CIFAR10 images (gray) and uniform noise images (purple). (Color figure
online)

In this section, we study the performance of gradient metrics, the softmax
baseline and the entropy in terms of AUROC and AUPR for EMNIST test data,
thus considering the error and success prediction problem, formulated in [11].
First of all we demonstrate that gradient metrics are indeed able to provide good
separations. Results for the entropy, euclidean norm and minimum are shown
in Fig. 2 (green and red). Note that we have left out the mean, skewness and
kurtosis metric, as their violin plots showed, that they are not suitable for a
threshold meta classifier.

In what follows we define EMNISTc as the set containing all correctly clas-
sified samples of the EMNIST test set and EMNISTw as the set containing all
incorrectly classified ones. From now on we resample the data splitting and use
ensembles of CNNs. More precisely, the random splitting of the 280,000 digit
images in training, validation and test data is repeated 10 times and we train
one CNN for each splitting. In this way we train 10 CNNs that differ with respect
to initial weights, training, validation and test data. We then repeat the above
meta classification for each of the CNNs. With this non parametric bootstrap, we
try to get as close as possible to a true sampling of the statistical law underlying
the EMNIST ensemble of data and obtain results with statistic validity.
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Table 1. AUROC, AUPR-In (EMNISTc as positive case) and AUPR-Out (EMNISTc
as negative case) values for the threshold classification on the softmax baseline, entropy
as well as selected gradient metrics. All values are in percentage and averaged over 10
differently initialized CNNs with distinct splittings of the training data. Values in
brackets are the standard deviation of the mean in percentage. To get the standard
deviation within the sample, multiply by

√
10.

Metric EMNISTc/
EMNISTw

EMNISTc/
EMNIST
letters

EMNISTc/
CIFAR10

EMNISTc/
uniform
noise

AUROC

Softmax baseline 97.82 (0.03) 87.62 (0.20) 99.13 (0.11) 92.95 (1.86)

Entropy 97.74 (0.04) 88.44 (0.21) 99.24 (0.03) 93.52 (1.83)

Absolute norm 97.77 (0.03) 87.22 (0.16) 98.19 (0.03) 90.66 (1.96)

Euclidean norm 97.78 (0.03) 87.27 (0.17) 98.38 (0.02) 91.05 (1.92)

Minimum 97.78 (0.03) 87.30 (0.20) 98.40 (0.03) 90.50 (2.16)

Maximum 97.70 (0.03) 86.92 (0.20) 98.31 (0.04) 87.05 (2.70)

Standard deviation 97.78 (0.03) 87.26 (0.17) 98.38 (0.02) 90.98 (1.93)

AUPR-In

Softmax baseline 99.97 (0.00) 98.39 (0.03) 99.98 (0.00) 99.31 (0.19)

Entropy 99.97 (0.00) 98.38 (0.04) 99.95 (0.00) 99.36 (0.19)

Absolute norm 99.97 (0.00) 98.42 (0.02) 99.89 (0.00) 99.07 (0.21)

Euclidean norm 99.97 (0.00) 98.42 (0.02) 99.90 (0.00) 99.11 (0.21)

Minimum 99.97 (0.00) 95.20 (5.40) 99.90 (0.00) 99.05 (0.23)

Maximum 99.97 (0.00) 95.03 (5.65) 99.89 (0.00) 98.67 (0.31)

Standard deviation 99.97 (0.00) 95.04 (5.70) 99.90 (0.00) 99.11 (0.21)

AUPR-Out

Softmax baseline 39.96 (0.57) 59.04 (0.37) 77.10 (1.90) 40.10 (4.87)

Entropy 95.56 (0.05) 60.36 (0.42) 91.27 (0.39) 42.46 (5.38)

Absolute norm 95.28 (0.06) 58.39 (0.37) 66.62 (0.35) 33.08 (3.58)

Euclidean norm 95.30 (0.06) 58.27 (0.38) 70.81 (0.52) 34.03 (3.68)

Minimum 95.36 (0.05) 58.76 (0.42) 72.72 (0.36) 33.00 (3.83)

Maximum 95.32 (0.06) 55.01 (0.41) 74.59 (0.71) 26.84 (3.02)

Standard deviation 95.30 (0.06) 58.26 (0.38) 70.75 (0.52) 33.88 (3.66)

Table 1 shows that the softmax baseline as well as some selected gradient
metrics exhibit comparable performance on the test set in the error and success
prediction task. Column one corresponds to the empirical distributions depicted
in Fig. 2 for 200,000 test images.

In a next step we aggregate entropy and all gradient based metrics (eval-
uated on the gradient of each layer in the CNN) in a more sophisticated
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classification technique. Therefore we choose a variety of regularized and unreg-
ularized logistic regression techniques, namely a Generalized Linear Model
(GLM) equipped with the logit link function, the Least Absolute Shrinkage
and Selection Operator (LASSO) with a L1 regularization term and a regular-
ization parameter λ1 = 1, the ridge regression with a L2 regularization term and
a regularization parameter of λ2 = 1 and finally the Elastic net with one half L1

and one half L2 regularization, which means λ1 = λ2 = 0.5. For details about
these methods, cf. [10].

To include a non linear classifier we train a feed forward NN with one hidden
layer containing 15 rectified linear units (ReLUs) with L2 weight decay of 10−3

and 2-way softmax output. The neural network is trained in the same fashion as
the CNNs with stochastic gradient descent. Both groups of classifiers are trained
on the EMNIST validation set. Results for the logistic regression techniques can
be seen in Table 2 (column one) and those for the neural network in Table 3 (first
row of each evaluation metric). For comparison we also include the entropy and
softmax baseline in each table. The regression techniques perform equally well
or better compared to the softmax baseline. This is however not true for the NN.
For the logistic regression types including more features from early layers did not
improve the performance, the neural network however showed improved results.
This means the additional information in those layers can only be utilized by a
non linear classifier.

4 Recognition of Unlearned Concepts

A (C)NN, being a statistical classifier, classifies inside the prescribed label space.
In this section, we empirically test the hypothesis that test samples out of the
label space will be all misclassified, however at a statistically different level of
entropy or gradient metric, respectively. We test this hypothesis for three cases:
First we feed the CNN with images from the EMNIST letter set and determine
the entropy as well as the values for all gradient metrics for each of it. Secondly
we follow the same procedure, however the inputs are gray scale CIFAR10 images
coarsened to 28 × 28 pixels. Finally, we use uncorrelated noise that is uniformly
distributed in the gray scales with the same resolution. Roughly speaking, we test
empirical distributions for unlearned data that is close to the learned concept as
in the case of EMNIST letters, data that represents a somewhat remote concept
as in the case of CIFAR10 or, as in the case of noise, do not represent any concept
at all.

We are classifying the output of a CNN on such input as incorrect label, this
way we solve the in- and out-of-distribution detection problem from [11], but
are still detecting misclassifications in the prescribed label space. The empirical
distributions of unlearned concepts can be seen in Fig. 2. As we can observe,
the distributions for incorrectly classified samples are in a statistical sense sig-
nificantly different from those for correctly classified ones. The gradient metrics
however are not able to separate the noise samples very well, but also result-
ing in an overall good separation of the other concepts, as for the entropy. The
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threshold classification evaluation metrics can be seen in Table 1. For the logistic
regression results in Table 2 one can see that the GLM is inferior to the other
methods. Regression techniques with a regularization term like LASSO, Ridge
and Elastic net are performing best. We get similar AUROC values as for the
threshold classification with single metrics, but can improve between 5% and
14.08% over the softmax baseline in terms of AUPR-Out values for unknown
concepts, showing a better generalization.

Table 2. Average AUROC, AUPR-In and AUPR-Out values for different regression
types trained on the validation set and all metric features including the entropy but
excluding the softmax baseline. The values are averaged over 10 CNNs and displayed
in percentage. The values in brackets are the standard deviations of the mean in per-
centage. To get the standard deviation within the sample, multiply by

√
10.

Metric/Regression
technique

EMNISTc/
EMNISTw

EMNISTc/
EMNIST
letters

EMNISTc/
CIFAR10
noise

EMNISTc/
uniform

AUROC

Softmax baseline 97.82 (0.03) 87.62 (0.20) 99.13 (0.11) 92.95 (1.86)

Entropy 97.74 (0.04) 88.44 (0.21) 99.42 (0.10) 93.52 (1.83)

GLM 94.76 (0.70) 85.94 (0.46) 80.26 (5.46) 89.41 (2.90)

LASSO 97.75 (0.03) 89.34 (0.17) 99.23 (0.03) 93.86 (1.04)

Ridge 97.59 (0.03) 88.63 (0.11) 98.93 (0.02) 94.08 (0.67)

Elastic net 97.79 (0.06) 89.27 (0.24) 98.82 (0.06) 93.47 (0.67)

AUPR-In

Softmax baseline 99.97 (0.00) 98.39 (0.03) 99.98 (0.00) 99.31 (0.19)

Entropy 99.97 (0.00) 98.38 (0.04) 99.99 (0.00) 99.36 (0.19)

GLM 99.81 (0.05) 96.80 (0.21) 95.51 (1.15) 97.81 (0.84)

LASSO 99.97 (0.00) 98.30 (0.06) 99.95 (0.00) 99.33 (0.12)

Ridge 99.97 (0.00) 97.86 (0.04) 99.93 (0.00) 99.36 (0.08)

Elastic net 99.97 (0.00) 98.26 (0.09) 99.92 (0.00) 99.29 (0.08)

AUPR-Out

Softmax baseline 39.96 (0.57) 59.04 (0.37) 77.10 (1.90) 40.10 (4.87)

Entropy 95.56 (0.05) 60.36 (0.42) 86.07 (1.76) 42.46 (5.38)

GLM 31.27 (0.79) 57.72 (0.74) 62.90 (6.77) 46.43 (5.24)

LASSO 36.27 (0.32) 64.04 (0.26) 91.18 (0.44) 48.38 (3.12)

Ridge 38.17 (0.34) 61.92 (0.18) 82.95 (0.61) 47.30 (2.20)

Elastic net 38.71 (0.65) 63.43 (0.62) 79.56 (1.76) 45.03 (1.92)
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5 Meta Classification with Known Unknowns

In the previous section we trained the meta classifier on the training or validation
data only. This means it has no knowledge of entropy or metric distributions
for unlearned concepts, hence we followed a puristic approach treating out of
distribution cases as unknown unknowns. The classification accuracy could be
improved, by extending the training set of the meta classifier with the entropy
and gradient metric values of a few unlearned concepts and labeling them as
false, i.e., incorrectly predicted. As in the previous sections we then train meta
classifiers on the metrics. For this we use the same data sets as [11], namely the
omniglot handwritten characters set [14], the notMNIST dataset [4] consisting
of letters from different fonts, the CIFAR10 dataset [12] coarsened and converted
to gray scale as well as normal and uniform noise. In order to investigate the
influence of unknown concepts in the training set of the meta classifier, we used
the LASSO regression and the NN introduced in Sect. 3 and supplied them with
different training sets, consisting of

– EMNIST validation set
– EMNIST validation set and 200 uniform noise images
– EMNIST validation set, 200 uniform noise images and 200 CIFAR10 images
– EMNIST validation set, 200 uniform noise images, 200 CIFAR10 images and

200 omniglot images

We are omitting the results for the LASSO here, since they are inferior to
those of the NN. Including known unknowns into the training set, the NN has
far better performance on the unknown concepts, even though the amount of
additional training data is small. Noteworthily the validation set together with
only 200 uniform noise images increases the results on the AUPR-Out values for
all unknown concepts already significantly by 13.74%, even comparable to using
all concepts. Together with the fact, that noise is virtually available at no cost, it
is a very promising candidate for improving the generalization of the meta classi-
fier without the need of generating labels for more datasets. The in-distribution
detection rate of correct and wrong predictions is also increased when using
additional training concepts, making it only beneficial to include noise into the
training set of the meta classifier. Our experiments show however that normal
noise does not have such a high influence on the performance as uniform noise
and is even decreasing the in-distribution meta classification performance. All
in all we reach a 3.48% higher performance on the out of distribution examples
compared to the softmax baseline in AUPR-Out and 0.81% in AUROC, whereas
the increase in AUPR-In is marginal (0.12%).
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Table 3. AUROC, AUPR-In (EMNISTc is positive case) and AUPR-Out (EMNISTc
is negative case) values for a NN meta classifier. “All” contains omniglot, notMNIST,
CIFAR10, normal noise and uniform noise. We used 200 samples of each concept that
was additionally included into the training set. The supplied features are all gradient
based metrics as well as the entropy. The displayed values are averages over 5 differently
initialized NN meta classifiers for each of the 10 CNNs trained on the EMNIST dataset.
All values are in percentage and the values in brackets are the standard deviations of
the mean in percentage. To get the mean within the sample multiply by

√
10.

Wrong

datasets

Entropy Softmax

baseline [11]

Training set for the neural network meta classifier

EMNIST

validation

EMNIST

validation+

uniform

noise

EMNIST

validation+

uniform

noise+CIFAR10

EMNIST valida-

tion+uniform

noise+CIFAR10+

omniglot

AUROC

EMNISTw 97.74 (0.02) 97.84 (0.02) 94.59 (0.17) 96.51 (0.08) 96.69 (0.08) 96.68 (0.07)

Omniglot 98.05 (0.03) 97.84 (0.03) 94.38 (0.15) 97.29 (0.12) 97.44 (0.10) 97.84 (0.06)

notMNIST 95.41 (0.15) 95.24 (0.15) 85.90 (0.49) 93.22 (0.46) 94.49 (0.28) 94.86 (0.22)

CIFAR10 99.24 (0.03) 99.03 (0.04) 81.19 (1.40) 96.27 (0.63) 99.12 (0.03) 99.09 (0.03)

Normal noise 94.36 (0.54) 94.49 (0.50) 56.09 (1.56) 98.37 (0.08) 98.34 (0.09) 98.17 (0.10)

Uniform noise 94.31 (0.84) 93.87 (0.85) 86.77 (1.16) 94.22 (0.54) 93.87 (0.71) 94.42 (0.70)

All 96.04 (0.19) 95.83 (0.19) 80.55 (0.49) 95.49 (0.29) 96.36 (0.19) 96.64 (0.16)

AUPR-In

EMNISTw 99.97 (0.02) 99.97 (0.02) 99.89 (0.17) 99.95 (0.08) 99.96 (0.08) 99.96 (0.07)

Omniglot 99.84 (0.03) 99.82 (0.03) 99.04 (0.15) 99.73 (0.12) 99.75 (0.10) 99.80 (0.06)

notMNIST 99.45 (0.15) 99.43 (0.15) 95.86 (0.49) 98.83 (0.46) 99.19 (0.28) 99.29 (0.22)

CIFAR10 99.95 (0.03) 99.94 (0.04) 95.47 (1.40) 99.41 (0.63) 99.94 (0.03) 99.93 (0.03)

Normal noise 99.59 (0.54) 99.60 (0.50) 92.72 (1.56) 99.89 (0.08) 99.89 (0.09) 99.88 (0.10)

Uniform noise 99.65 (0.84) 99.62 (0.85) 98.05 (1.16) 99.56 (0.54) 99.53 (0.71) 99.57 (0.70)

All 98.66 (0.19) 98.59 (0.19) 84.98 (0.49) 97.72 (0.29) 98.53 (0.19) 98.71 (0.16)

AUPR-Out

EMNISTw 35.83 (0.30) 39.94 (0.32) 32.95 (0.28) 36.02 (0.39) 35.98 (0.42) 35.33 (0.40)

Omniglot 83.48 (0.21) 80.45 (0.22) 74.17 (0.38) 80.36 (0.71) 81.46 (0.60) 83.40 (0.39)

notMNIST 74.86 (0.38) 14.59 (0.06) 64.57 (0.42) 71.53 (0.79) 74.91 (0.61) 75.13 (0.49)

CIFAR10 91.27 (0.39) 87.38 (0.46) 54.45 (1.17) 73.93 (2.39) 90.84 (0.55) 89.82 (0.64)

Normal noise 54.98 (2.16) 57.32 (1.79) 18.57 (0.76) 68.73 (1.73) 67.89 (1.77) 65.12 (1.74)

Uniform noise 37.97 (2.50) 36.63 (2.23) 56.66 (1.90) 58.56 (2.70) 56.59 (2.82) 59.53 (2.94)

All 89.17 (0.40) 88.07 (0.39) 75.64 (0.48) 89.38 (0.47) 91.23 (0.35) 91.55 (0.32)

6 Conclusion and Outlook

We introduced a new set of metrics that measures the uncertainty of deep CNNs.
These metrics have a comparable performance with the widely used entropy and
maximum softmax probability to meta-classify whether a certain classification
proposed by the underlying CNN is presumably correct or incorrect. Here the
performance is measured by AUROC, AUPR-In and AUPR-Out. Entropy and
softmax probability perform equally well or slightly better than any single mem-
ber of the new gradient based metrics for the detection of unknown concepts
like EMNIST letters, gray scale converted CIFAR10 images and uniform noise
where simple thresholding criteria are applied. But still, our new metrics allow
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contributions of different layers and weights to the total uncertainty. Combining
the gradient metrics together with entropy in a more complex meta classifier
increases the ability to identify out-of-distribution examples, so that in some
cases these meta classifiers outperform the baseline. Additional calibration by
including a few samples of unknown concepts increases the performance signifi-
cantly. Uniform noise proved to raise the overall performance, without the need
of more labels. Overall the results for the classification of correct or incorrect
predictions increased when the meta classifier was supplied with more distinct
concepts in the training set. It seems that the higher number of uncertainty met-
rics helps to better hedge the correctly classified samples from the variety of out
of sample classes, which would be difficult, if only one metric is available. Note
that this increase in meta classification is particularly valuable, if one does not
want to deteriorate the classification performance of the underlying classifier by
additional classes for the known unknowns.

As future work we want to evaluate the performance and robustness of such
gradient metrics on different tasks in pattern recognition. Further features could
be generated by applying the metrics to activations rather than gradients. One
could also investigate the possibility of generating artificial samples, labeled as
incorrect, for the training set of the meta classifier in order to further improve
the results.
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Abstract. We propose a novel end-to-end neural network architecture
that, once trained, directly outputs a probabilistic clustering of a batch
of input examples in one pass. It estimates a distribution over the num-
ber of clusters k, and for each 1 ≤ k ≤ kmax, a distribution over
the individual cluster assignment for each data point. The network is
trained in advance in a supervised fashion on separate data to learn
grouping by any perceptual similarity criterion based on pairwise labels
(same/different group). It can then be applied to different data contain-
ing different groups. We demonstrate promising performance on high-
dimensional data like images (COIL-100) and speech (TIMIT). We call
this “learning to cluster” and show its conceptual difference to deep met-
ric learning, semi-supervise clustering and other related approaches while
having the advantage of performing learnable clustering fully end-to-end.

Keywords: Perceptual grouping · Learning to cluster
Speech & image clustering

1 Introduction

Consider the illustrative task of grouping images of cats and dogs by perceived
similarity: depending on the intention of the user behind the task, the similarity
could be defined by animal type (foreground object), environmental nativeness
(background landscape, cp. Fig. 1) etc. This is characteristic of clustering per-
ceptual, high-dimensional data like images [15] or sound [24]: a user typically has
some similarity criterion in mind when thinking about naturally arising groups
(e.g., pictures by holiday destination, or persons appearing; songs by mood, or
use of solo instrument). As defining such a similarity for every case is difficult,
it is desirable to learn it. At the same time, the learned model will in many
cases not be a classifier—the task will not be solved by classification—since the
number and specific type of groups present at application time are not known
c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 126–138, 2018.
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in advance (e.g., speakers in TV recordings; persons in front of a surveillance
camera; object types in the picture gallery of a large web shop).

Grouping objects with machine learning is usually approached with cluster-
ing algorithms [16]. Typical ones like K-means [25], EM [14], hierarchical clus-
tering [29] with chosen distance measure, or DBSCAN [8] each have a specific
inductive bias towards certain similarity structures present in the data (e.g.,
K-means: Euclidean distance from a central point; DBSCAN: common point
density). Hence, to be applicable to above-mentioned tasks, they need high-level
features that already encode the aspired similarity measure. This may be solved
by learning salient embeddings [28] with a deep metric learning approach [12],
followed by an off-line clustering phase using one of the above-mentioned algo-
rithm.

However, it is desirable to combine these distinct phases (learning salient
features, and subsequent clustering) into an end-to-end approach that can be
trained globally [19]: it has the advantage of each phase being perfectly adjusted
to the other by optimizing a global criterion, and removes the need of man-
ually fitting parts of the pipeline. Numerous examples have demonstrated the
success of neural networks for end-to-end approaches on such diverse tasks as
speech recognition [2], robot control [21], scene text recognition [34], or music
transcription [35].

Fig. 1. Images of cats (top) and dogs (bottom) in urban (left) and natural (right)
environments.

In this paper, we present a conceptually novel approach that we call “learning
to cluster” in the above-mentioned sense of grouping high-dimensional data by
some perceptually motivated similarity criterion. For this purpose, we define
a novel neural network architecture with the following properties: (a) during
training, it receives pairs of similar or dissimilar examples to learn the intended
similarity function implicitly or explicitly; (b) during application, it is able to
group objects of groups never encountered before; (c) it is trained end-to-end in
a supervised way to produce a tailor-made clustering model and (d) is applied
like a clustering algorithm to find both the number of clusters as well as the
cluster membership of test-time objects in a fully probabilistic way.

Our approach builds upon ideas from deep metric embedding, namely to learn
an embedding of the data into a representational space that allows for specific
perceptual similarity evaluation via simple distance computation on feature vec-
tors. However, it goes beyond this by adding the actual clustering step—grouping
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by similarity—directly to the same model, making it trainable end-to-end. Our
approach is also different from semi-supervised clustering [4], which uses labels
for some of the data points in the inference phase to guide the creation of groups.
In contrast, our method uses absolutely no labels during inference, and more-
over doesn’t expect to have seen any of the groups it encounters during infer-
ence already during training (cp. Fig. 2). Its training stage may be compared
to creating K-means, DBSCAN etc. in the first place: it creates a specific clus-
tering model, applicable to data with certain similarity structure, and once cre-
ated/trained, the model performs “unsupervised learning” in the sense of finding
groups. Finally, our approach differs from traditional cluster analysis [16] in how
the clustering algorithm is applied: instead of looking for patterns in the data in
an unbiased and exploratory way, as is typically the case in unsupervised learn-
ing, our approach is geared towards the use case where users know perceptually
what they are looking for, and can make this explicit using examples. We then
learn appropriate features and the similarity function simultaneously, taking full
advantage of end-to-end learning.

Training

Testing

Proposed Model:
Training

Proposed Model:
Training

Proposed Model:
Evaluation

switch to a disjunct set of classes

P(k=1)=0.20 P(k=2)=0.75 P(k=3)=0.05

P(k=1)=0.05 P(k=2)=0.15 P(k=3)=0.80

P(k=1)=0.10 P(k=2)=0.80 P(k=3)=0.10

Fig. 2. Training vs. testing: cluster types encountered during application/inference
are never seen in training. Exemplary outputs (right-hand side) contain a partition
for each k (1–3 here) and a corresponding probability (best highlighted blue). (Color
figure online)

Our main contribution in this paper is the creation of a neural network archi-
tecture that learns to group data, i.e., that outputs the same “label” for “similar”
objects regardless of (a) it has ever seen this group before; (b) regardless of the
actual value of the label (it is hence not a “class”); and (c) regardless of the num-
ber of groups it will encounter during a single application run, up to a predefined
maximum. This is novel in its concept and generality (i.e., learn to cluster pre-
viously unseen groups end-to-end for arbitrary, high-dimensional input without
any optimization on test data). Due to this novelty in approach, we focus here on
the general idea and experimental demonstration of the principal workings, and
leave comprehensive hyperparameter studies and optimizations for future work.
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In Sect. 2, we compare our approach to related work, before presenting the model
and training procedure in detail in Sect. 3. We evaluate our approach on different
datasets in Sect. 4, showing promising performance and a high degree of gener-
ality for data types ranging from 2D points to audio snippets and images, and
discuss these results with conclusions for future work in Sect. 5.

2 Related Work

Learning to cluster based on neural networks has been approached mostly as
a supervised learning problem to extract embeddings for a subsequent off-line
clustering phase. The core of all deep metric embedding models is the choice
of the loss function. Motivated by the fact that the softmax-cross entropy loss
function has been designed as a classification loss and is not suitable for the
clustering problem per se, Chopra et al. [7] developed a “Siamese” architecture,
where the loss function is optimized in a way to generate similar features for
objects belonging to the same class, and dissimilar features for objects belong-
ing to different classes. A closely related loss function called “triplet loss” has
been used by Schroff et al. [32] to get state-of-the-art accuracy in face detec-
tion. The main difference from the Siamese architecture is that in the latter
case, the network sees same and different class objects with every example. It is
then optimized to jointly learn their feature representation. A problem of both
approaches is that they are typically difficult to train compared to a standard
cross entropy loss.

Song et al. [37] developed an algorithm for taking full advantage of all the
information available in training batches. They later refined the work [36] by
proposing a new metric learning scheme based on structured prediction, which is
designed to optimize a clustering quality metric (normalized mutual information
[27]). Even better results were achieved by Wong et al. [38], where the authors
proposed a novel angular loss, and achieved state-of-the-art results on the chal-
lenging real-world datasets Stanford Cars [17] and Caltech Birds [5]. On the
other hand, Lukic et al. [23] showed that for certain problems, a carefully chosen
deep neural network can simply be trained with softmax-cross entropy loss and
still achieve state-of-the-art performance in challenging problems like speaker
clustering. Alternatively, Wu et al. [26] showed that state-of-the-art results can
be achieved simply by using a traditional margin loss function and being careful
on how sampling is performed during the creation of mini-batches.

On the other hand, attempts have been made recently that are more similar
to ours in spirit, using deep neural networks only and performing clustering
end-to-end [1]. They are trained in a fully unsupervised fashion, hence solve a
different task then the one we motivated above (that is inspired by speaker- or
image clustering based on some human notion of similarity). Perhaps first to
group objects together in an unsupervised deep learning based manner where Le
et al. [18], detecting high-level concepts like cats or humans. Xie et al. [40] used
an autoencoder architecture to do clustering, but experimental evaluated it only
simplistic datasets like MNIST. CNN-based approaches followed, e.g. by Yang
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et al. [42], where clustering and feature representation are optimized together.
Greff et al. [10] performed perceptual grouping (of pixels within an image into
the objects constituting the complete image, hence a different task than ours)
fully unsupervised using a neural expectation maximization algorithm. Our work
differs from above-mentioned works in several respects: it has no assumption on
the type of data, and solves the different task of grouping whole input objects.

Fig. 3. Our complete model, consisting of (a) the embedding network, (b) cluster-
ing network (including an optional metric learning part, see Sect. 3.3), (c) cluster-
assignment network and (d) cluster-count estimating network.

3 A Model for End-to-End Clustering of Arbitrary Data

Our method learns to cluster end-to-end purely ab initio, without the need to
explicitly specify a notion of similarity, only providing the information whether
two examples belong together. It uses as input n ≥ 2 examples xi, where n
may be different during training and application and constitutes the number of
objects that can be clustered at a time, i.e. the maximum number of objects in a
partition. The network’s output is two-fold: a probability distribution P (k) over
the cluster count 1 ≤ k ≤ kmax; and probability distributions P (· | xi, k) over
all possible cluster indexes for each input example xi and for each k.

3.1 Network Architecture

The network architecture (see Fig. 3) allows the flexible use of different input
types, e.g. images, audio or 2D points. An input xi is first processed by an
embedding network (a) that produces a lower-dimensional representation zi =
z(xi). The dimension of zi may vary depending on the data type. For example,
2D points do not require any embedding network. A fully connected layer (FC)
with LeakyReLU activation at the beginning of the clustering network (b) is
then used to bring all embeddings to the same size. This approach allows to use
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the identical subnetworks (b)–(d) and only change the subnet (a) for any data
type. The goal of the subnet (b) is to compare each input z(xi) with all other
z(xj �=i), in order to learn an abstract grouping which is then concretized into
an estimation of the number of clusters (subnet (d)) and a cluster assignment
(subnet (c)).

To be able to process a non-fixed number of examples n as input, we use
a recurrent neural network. Specifically, we use stacked residual bi-directional
LSTM-layers (RBDLSTM), which are similar to the cells described in [39] and
visualized in Fig. 4. The residual connections allow a much more effective gra-
dient flow during training [11] and avoid vanishing gradients. Additionally, the
network can learn to use or bypass certain layers using the residual connections,
thus reducing the architectural decision on the number of recurrent layers to the
simpler one of finding a reasonable upper bound.

Fig. 4. RBDLSTM-layer: A BDLSTM with residual connections (dashed lines). The
variables xi and yi are named independently from the notation in Fig. 3.

The first of overall two outputs is modeled by the cluster assignment net-
work (c). It contains a softmax-layer to produce P (� | xi, k), which assigns a
cluster index � to each input xi, given k clusters (i.e., we get a distribution
over possible cluster assignments for each input and every possible number of
clusters). The second output, produced by the cluster-count estimating network
(d), is built from another BDLSTM-layer. Due to the bi-directionality of the
network, we concatenate its first and the last output vector into a fully con-
nected layer of twice as many units using again LeakyReLUs. The subsequent
softmax-activation finally models the distribution P (k) for 1 ≤ k ≤ kmax. The
next subsection shows how this neural network learns to approximate these two
complicated probability distributions [20] purely from pairwise constraints on
data that is completely separate from any dataset to be clustered. No labels for
clustering are needed.
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3.2 Training and Loss

In order to define a suitable loss-function, we first define an approximation
(assuming independence) of the probability that xi and xj are assigned to the
same cluster for a given k as

Pij(k) =
k∑

�=1

P (� | xi, k)P (� | xj , k).

By marginalizing over k, we obtain Pij , the probability that xi and xj belong
to the same cluster:

Pij =
kmax∑

k=1

P (k)
k∑

�=1

P (� | xi, k)P (� | xj , k).

Let yij = 1 if xi and xj are from the same cluster (e.g., have the same group
label) and 0 otherwise. The loss component for cluster assignments, Lca, is then
given by the weighted binary cross entropy as

Lca =
−2

n(n − 1)

∑

i<j

(ϕ1yij log(Pij) + ϕ2(1 − yij) log(1 − Pij))

with weights ϕ1 and ϕ2. The idea behind the weighting is to account for the
imbalance in the data due to there being more dissimilar than similar pairs
(xi, xj) as the number of clusters in the mini batch exceeds 2. Hence, the weight-
ing is computed using ϕ1 = c

√
1 − ϕ and ϕ2 = c

√
ϕ, with ϕ being the expected

value of yij (i.e., the a priori probability of any two samples in a mini batch com-
ing from the same cluster), and c a normalization factor so that ϕ1+ϕ2 = 2. The
value ϕ is computed over all possible cluster counts for a fixed input example
count n, as during training, the cluster count is randomly chosen for each mini
batch according to a uniform distribution. The weighting of the cross entropy
given by ϕ is then used to make sure that the network does not converge to
a sub-optimal and trivial minimum. Intuitively, we thus account for permuta-
tions in the sequence of examples by checking rather for pairwise correctness
(probability of same/different cluster) than specific indices.

The second loss term, Lcc, penalizes a wrong number of clusters and is given
by the categorical cross entropy of P (k) for the true number of clusters k in the
current mini batch:

Lcc = − log(P (k)).

The complete loss is given by Ltot = Lcc +λLca. During training, we prepare
each mini batch with N sets of n input examples, each set with k = 1 . . . kmax

clusters chosen uniformly. Note that this training procedure requires only the
knowledge of yij and is thus also possible for weakly labeled data. All input
examples are randomly shuffled for training and testing to avoid that the network
learns a bias w.r.t. the input order. To demonstrate that the network really learns
an intra-class distance and not just classifies objects of a fixed set of classes, it is
applied on totally different clusters at evaluation time than seen during training.
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3.3 Implicit vs. Explicit Distance Learning

To elucidate the importance and validity of the implicit learning of distances in
our subnetwork (b), we also provide a modified version of our network architec-
ture for comparison, in which the calculation of the distances is done explicitly.
Therefore, we add an extra component to the network before the RBDLSTM
layers, as can be seen in Fig. 3: the optional metric learning block receives the
fixed-size embeddings from the fully connected layer after the embedding net-
work (a) as input and outputs the pairwise distances of the data points. The
recurrent layers in block (b) then subsequently cluster the data points based on
this pairwise distance information [3,6] provided by the metric learning block.

We construct a novel metric learning block inspired by the work of Xing et al.
[41]. In contrast to their work, we optimize it end-to-end with backpropagation.
This has been proposed in [33] for classification alone; we do it here for a clus-
tering task, for the whole covariance matrix, and jointly with the rest of our
network. We construct the non-symmetric, non-negative dissimilarity measure
d2A between two data points xi and xj as

d2A(xi, xj) = (xi − xj)T A(xi − xj)

and let the neural network training optimize A through Ltot without intermedi-
ate losses. The matrix A as used in d2A can be thought of as a trainable distance
metric. In every training step, it is projected into the space of positive semidef-
inite matrices.

4 Experimental Results

To assess the quality of our model, we perform clustering on three different
datasets: for a proof of concept, we test on a set of generated 2D points with a
high variety of shapes, coming from different distributions. For speaker cluster-
ing, we use the TIMIT [9] corpus, a dataset of studio-quality speech recordings
frequently used for pure speaker clustering in related work. For image clustering,
we test on the COIL-100 [30] dataset, a collection of different isolated objects in
various orientations. To compare to related work, we measure the performance
with the standard evaluation scores misclassification rate (MR) [22] and normal-
ized mutual information (NMI) [27]. Architecturally, we choose m = 14 BDL-
STM layers and 288 units in the FC layer of subnetwork (b), 128 units for the
BDLSTM in subnetwork (d), and α = 0.3 for all LeakyReLUs in the experiments
below. All hyperparameters where chosen based on preliminary experiments to
achieve reasonable performance, but not tested nor tweaked extensively. The
code and further material and experiments are available online1.

We set kmax = 5 and λ = 5 for all experiments. For the 2D point data, we use
n = 72 inputs and a batch-size of N = 200 (We used the batch size of N = 50
for metric learning with 2D points). For TIMIT, the network input consists of

1 See https://github.com/kutoga/learning2cluster.

https://github.com/kutoga/learning2cluster
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n = 20 audio snippets with a length of 1.28 s, encoded as mel-spectrograms with
128 × 128 pixels (identical to [24]). For COIL-100, we use n = 20 inputs with
a dimension of 128 × 128 × 3. For TIMIT and COIL-100, a simple CNN with
3 conv/max-pooling layers is used as subnetwork (a). For TIMIT, we use 430
of the 630 available speakers for training (and 100 of the remaining ones each
for validation and evaluation). For COIL-100, we train on 80 of the 100 classes
(10 for validation, 10 for evaluation). For all runs, we optimize using Adadelta
[43] with a learning rate of 5.0. Example clusterings are shown in Fig. 5. For all
configurations, the used hardware set the limit on parameter values: we used the
maximum possible batch size and values for n and kmax that allow reasonable
training times. However, values of n ≥ 1000 where tested and lead to a large
decrease in model accuracy. This is a major issue for future work.

Fig. 5. Clustering results for (a) 2D point data, (b) COIL-100 objects, and (c) faces
from FaceScrub (for illustrative purposes). The color of points/colored borders of
images depict true cluster membership. (Color figure online)

Table 1. NMI ∈ [0, 1] and MR ∈ [0, 1] averaged over 300 evaluations of a trained
network. We abbreviate our “learning to cluster” method as “L2C”.

2D points (self generated) TIMIT COIL-100

MR NMI MR NMI MR NMI

L2C (=our method) 0.004 0.993 0.060 0.928 0.116 0.867

L2C + Euclidean 0.177 0.730 0.093 0.883 0.123 0.884

L2C + Mahalanobis 0.185 0.725 0.104 0.882 0.093 0.890

L2C + Metric Learning 0.165 0.740 0.101 0.880 0.100 0.880

Random cluster assignment 0.485 0.232 0.435 0.346 0.435 0.346

Baselines (related work) k-Means: MR = 0.178,

NMI = 0.796

DBSCAN: MR = 0.265,

NMI = 0.676

[24]: MR = 0 [42]: NMI = 0.985

The results on 2D data as presented in Fig. 5a demonstrate that our method
is able to learn specific and diverse characteristics of intuitive groupings. This is
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superior to any single traditional method, which only detects a certain class of
cluster structure (e.g., defined by distance from a central point). Although [24]
reach moderately better scores for the speaker clustering task and [42] reach a
superior NMI for COIL-100, our method finds reasonable clusterings, is more
flexible through end-to-end training and is not tuned to a specific kind of data.
Hence, we assume, backed by the additional experiments to be found online, that
our model works well also for other data types and datasets, given a suitable
embedding network. Table 1 gives the numerical results for said datasets in the
row called “L2C” without using the explicit metric learning block. Extensive
preliminary experiments on other public datasets like e.g. FaceScrub [31] confirm
these results: learning to cluster reaches promising performance while not yet
being on par with tailor-made state-of-the-art approaches.

We compare the performance of our implicit distance metric learning method
to versions enhanced by different explicit schemes for pairwise similarity com-
putation prior to clustering. Specifically, three implementations of the optional
metric learning block in subnetwork (b) are evaluated: using a fixed diagonal
matrix A (resembling the Euclidean distance), training a diagonal A (resem-
bling Mahalanobis distance), and learning the entire coefficients of the distance
matrix A. Since we argue above that our approach combines implicit deep metric
embedding with clustering in an end-to-end architecture, one would not expect
that adding explicit metric computation changes the results by a large extend.
This assumption is largely confirmed by the results in the “L2C+. . . ” rows in
Table 1: for COIL-100, Euclidean gives slightly worse, and the other two slightly
better results than L2C alone; for TIMIT, all results are worse but still rea-
sonable. We attribute the considerable performance drop on 2D points using all
three explicit schemes to the fact that in this case much more instances are to
be compared with each other (as each instance is smaller than e.g. an image, n
is larger). This might have needed further adaptations like e.g. larger batch sizes
(reduced here to N = 50 for computational reasons) and longer training times.

5 Discussion and Conclusions

We have presented a novel approach to learn neural models that directly output
a probabilistic clustering on previously unseen groups of data; this includes a
solution to the problem of outputting similar but unspecific “labels” for similar
objects of unseen “classes”. A trained model is able to cluster different data
types with promising results. This is a complete end-to-end approach to clus-
tering that learns both the relevant features and the “algorithm” by which to
produce the clustering itself. It outputs probabilities for cluster membership of
all inputs as well as the number of clusters in test data. The learning phase only
requires pairwise labels between examples from a separate training set, and no
explicit similarity measure needs to be provided. This is especially useful for high-
dimensional, perceptual data like images and audio, where similarity is usually
semantically defined by humans. Our experiments confirm that our algorithm is
able to implicitly learn a metric and directly use it for the included clustering.
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This is similar in spirit to the very recent work of Hsu et al. [13], but does not
need and optimization on the test (clustering) set and finds k autonomously. It
is a novel approach to learn to cluster, introducing a novel architecture and loss
design.

We observe that the clustering accuracy depends on the availability of a
large number of different classes during training. We attribute this to the fact
that the network needs to learn intra-class distances, a task inherently more
difficult than just to distinguish between objects of a fixed amount of classes
like in classification problems. We understand the presented work as an early
investigation into the new paradigm of learning to cluster by perceptual similar-
ity specified through examples. It is inspired by our work on speaker clustering
with deep neural networks, where we increasingly observe the need to go beyond
surrogate tasks for learning, training end-to-end specifically for clustering to
close a performance leak. While this works satisfactory for initial results, points
for improvement revolve around scaling the approach to practical applicability,
which foremost means to get rid of the dependency on n for the partition size.

The number n of input examples to assess simultaneously is very relevant
in practice: if an input data set has thousands of examples, incoherent single
clusterings of subsets of n points would be required to be merged to produce a
clustering of the whole dataset based on our model. As the (RBD) LSTM layers
responsible for assessing points simultaneously in principle have a long, but still
local (short-term) horizon, they are not apt to grasp similarities of thousands
of objects. Several ideas exist to change the architecture, including to replace
recurrent layers with temporal convolutions, or using our approach to seed some
sort of differentiable K-means or EM layer on top of it. Preliminary results on
this exist. Increasing n is a prerequisite to also increase the maximum number
of clusters k, as k � n. For practical applicability, k needs to be increased by an
order of magnitude; we plan to do this in the future. This might open up novel
applications of our model in the area of transfer learning and domain adaptation.

Acknowledgements. We thank the anonymous reviewers for helpful feedback.
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24. Lukic, Y., Vogt, C., Dürr, O., Stadelmann, T.: Learning embeddings for speaker
clustering based on voice equality. In: 2017 IEEE 27th International Workshop on
Machine Learning for Signal Processing (MLSP) (2017)

25. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297 (1967)

26. Manmatha, R., Wu, C., Smola, A.J., Krähenbühl, P.: Sampling matters in deep
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Abstract. Multi-instance multi-label learning (MIML) is a framework
in machine learning in which each object is represented by multiple
instances and associated with multiple labels. This relatively new app-
roach has achieved success in various applications, particularly those
involving learning from complex objects. Because of the complexity of
MIML, the cost of data labeling increases drastically along with the
improvement of the model performance. In this paper, we introduce a
MIML active learning approach to reduce the labeling costs of MIML
data without compromising the model performance. Based on a query
strategy, we select and request from the Oracle the label set of the
most informative object. Our approach is formulated in a pool-based sce-
nario and uses Miml-knn as the base classifier. This classifier for MIML
is based on the k-Nearest Neighbor algorithm and has achieved supe-
rior performance in different data domains. We proposed novel query
strategies and also implemented previously used query strategies for
MIML learning. Finally, we conducted an experimental evaluation on
various benchmark datasets. We demonstrate that these approaches can
achieve significantly improved results than without active selection for
all datasets on various evaluation criteria.

Keywords: Multi-instance · Multi-label · Active learning
k nearest neighbors · Partially supervised learning
Acoustic classification of birds · Text categorization
Scene classification

1 Introduction

In standard supervised learning, an object consists of a single instance, rep-
resented by a feature vector, and is associated with a single class label. This
framework is known as single-instance single-label (SISL) learning. The goal of
SISL learning is to train a classifier model which learns from training instances
how to assign a class label to any feature vector. However, in many real appli-
cations, such a learning framework is less convenient to model complex objects,
c© Springer Nature Switzerland AG 2018
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which intrinsic representation is a collection of instances. Likewise, these com-
plex objects may also be associated simultaneously with multiple class labels.
For example, a scene image may comprise images of mountains, lakes, and trees,
and we may associate it with the labels Landscape and Summer at the same
time. If we extract a single instance to represent it, some useful information may
get lost. In another approach, we can segment the image into multiple regions
and extract one instance from each region of interest. Another example could
be in text categorization tasks where a document may be annotated with mul-
tiple labels. To fully exploit the content with multiple topics, it would be more
advantageous if we represent each paragraph with one instance. Zhou and Zhang
[22] introduced multi-instance multi-label (MIML) learning, where each object
is represented by a bag of multiple instances (feature vectors with fixed-length),
and each object is associated with a set of class labels. Several algorithms for
MIML have been proposed and achieved better performance in image and text
classification, in comparison to conventional methods adapted for MIML classifi-
cation. Other successful applications include genome protein function prediction
[18], gene expression patterns annotation [20], relationship extraction [15], video
understanding [19], classification of bird species [1,2], and predicting tags for
web pages [14].

In most cases of supervised learning, it is necessary to use large amounts of
training examples to obtain accurate models. Nevertheless, it is a typical situ-
ation that the costs of manually labeled data are expensive or time-consuming.
Active learning is an approach of a partially-supervised learning algorithm
[3,4,10] that reduces the required amount of training data without compro-
mising the model performance. This goal is accomplished by selecting the most
informative examples from the unlabeled examples and query their label from
an oracle (expert). Pool-based sampling is the most common scenario in active
learning in which queries are drawn from a static or closed pool of unlabeled
examples. Many active learning strategies have been proposed to estimate the
informativeness of unlabeled samples [13,17]. These query strategies are based
on different measures, e.g., uncertainty, expected error reduction and informa-
tion density. A comprehensive literature survey on query strategies is provided
by Settles [12].

For MIML datasets, the cost of labeled data depends on the maximum
amount of possible labels for a bag of instances. In some applications, MIML
provides a major advantage because it is easier or less costly to obtain labels at
the bag-level than at instance-level. Nevertheless, because of their multiplicity
in the input and output spaces, the required amount of training data to improve
the accuracy model increases dramatically. For this reason, it is of great interest
to implement active learning algorithms in a MIML framework. Currently, few
studies have proposed active learning methods for MIML. Retz and Schwenker
[9] use MimlSvm [23] as the base classifier in which the MIML data is reduced to
a bag-level output vector. This representation is later used to formulate an active
learning strategy. Another proposed method uses MimlFast as base classifiers



MIML-kNN Active Learning 141

and the approach actively queries the most valuable information by exploiting
diversity and uncertainty in both the input and output spaces [5].

The efficiency of an active learning algorithm relies not only on the query
strategy design but also on the selection of the base classifier. Two of the most
commonly used classifiers are MimlBoost and MimlSvm [22,23]. Nevertheless,
MimlBoost can handle only small datasets and does not yield good perfor-
mance in general [6]. MimlSvm reaches a satisfying classification accuracy for
text and image, but usually not for other types of data sets [1,6]. A better alter-
native is Miml-knn[21] (Multi-Instance Multi-Label k-Nearest Neighbor) which
combines the well-known k-Nearest Neighbor technique with MIML. Given a
test example, Miml-knn not only considers its κ neighbors but also considers
its κ′ citers, i.e., examples that consider the test example within their κ′ near-
est neighbors. The identification of neighbors and citers relies on the Hausdorff
distance which is an estimation of the distances between bags. One advantage of
using Miml-knn with pool-based sampling is that the distance between all bags
(i.e., labeled and unlabeled bags) can be precomputed and stored for later use in
any model learning or prediction. Beside this, Miml-knn classifiers have achieve
a superior performance than the MimlSvm and MimlBoost for different types
of data such as text [11,21], image [21,22], and bio-acoustic data [1].

In this paper, we introduce an active multi-instance multi-label learning app-
roach within a pool-based scenario and use Miml-knn as the base classifier. This
method aims to reduce the amount of training MIML data needed to achieve
the highest possible classification performance. This paper presents two major
contributions to active learning and MIML learning. First, we motivate and
introduce several new query strategies within the MIML framework. Later we
conduct an empirical study of our proposed active learning methods on a variety
of benchmark MIML data.

The remainder of this paper is organized as follows. Section 2 describes in
detail the proposed approach. Section 3 describes the experiments and presents
their results, followed by conclusions in Sect. 4.

2 Method

2.1 MIML Framework

In a MIML framework, an example X consists of a bag of instances X = {xj}m
j=1

where m is the number of instances and each instance xj = [x1, . . . , xD] is a D-
dimensional feature vector. The number of instances m can variate among bags.
In this framework, each bag X can be associated to one or more labels and
they are represented by a label set Y = {yk} where k ∈ {1, . . . ,K}. For our
purposes, Y is represented by a label indicator vector I = [I1, . . . , IK ] where the
entry Ik = 1 if yk ∈ Y and Ik = 0 otherwise. Given a fully labeled training
set L = {(Xl, Yl)}L

l=1, the learning task in a MIML framework is to train a
classification model which is a function h : 2X → 2Y that maps a set of instances
X ∈ X to a set of labels Y ∈ Y.
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MIML algorithms such as MimlSvm, MimlRbf and Miml-knn reduce the
MIML problem to a single-instance multi-label problem by associating each bag
X with a bag-level feature vector z (X) ∈ R

K which combines information from
the instances in the bag. Each algorithm uses different approaches to compute
a bag-level feature vector. Nevertheless all these methods heavily depend on the
use of some form of bag-level distance measure. The most common choice is
the Hausdorff distance DH (X,X ′). Retz and Schwenker [9] examined several
variations of this distance. For this paper we consider the maximum Dmax

H ,
median Dmed

H and average Davg
H Hausdorff distances defined as:

Dmax
H (X,X ′) = max

{
max
x∈X

min
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x′∈X′

min
x∈X

d (x,x′)
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d (x,x′) +
∑

x′∈X′
min
x∈X

d (x,x′)

)
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where d (x,x′) = ‖x − x′‖ is the Euclidean distance between instances.

2.2 MIML-kNN

In the following we describe Miml-knn algorithm [21]. Given an example bag
X and a training set L = {(Xl, Yl)}, first we identify in the training bags
XL = {Xl}, the κ nearest neighbors, and the κ′ citers of X by employing the
Hausdorff metric DH (X,X ′). This means that we have to identify the neighbors
set Nκ (X) and the citers set Cκ′ (X). These sets are defined as follows

Nκ (X) = {A|A is one of X’s κ nearest neighbors in XL} (2a)
Cκ′ (X) = {B|X is one of B’ sκ′ nearest neighbors in XL ∪ {X}} (2b)

The citers bags are the bags that consider X to be one of their κ′ nearest neigh-
bors. After the computation of Nκ (X) and Cκ′ (X), we defined a labeling counter
vector z (X) = [z1 (X) , . . . , zK (X)] where the entry zk (X) is the number of bags
in Z (X) = Nκ (X) ∪ Cκ′ (X) that include label yk in their label set. Using the
binary label vector I (X), z (X) is defined as

z (X) =
∑

X′∈Z(X)

I (X ′) (3)

Later, the information contained in z (X) is used to obtain the predicted
label set Ŷ associated to X by employing a prediction function f (X) =
[f1 (X) , . . . , fK (X)] such that

fk (X) = w�
k · z (X) (4)

where w�
k is the kth transposed column of the weight matrix W = [w1, . . . ,wK ].

The classification rule is that the label ŷk belongs to the predicted label set
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Ŷ (X) = {ŷk} only if fk (X) > 0. Hence, for the predicted indicator vector
Î (X) =

[
Î1, . . . , ÎK

]
the entry Îk = 1 if fk (X) > 0 and Îk = 0 otherwise. The

values of W are computed using a linear classification approach by minimizing
the following sum-of-squares error function

E =
1
2

L∑
l=1

K∑
k=1

(
w�

K · z (Xl) − yk (Xl)
)2

(5)

This error minimization implies to solve the weight matrix W as in a least sum-
of-squares problem of the form

(
Z�Z

)
W = Z�Y. In this case, the matrix W

is computed using a linear matrix inversion technique of singular value decom-
position.

2.3 Active Learning

In this part, we present the strategies of active learning for a multi-instance
multi-label data set using Miml-knn as the base classifier. Initially we have a
set of labeled data L = {(Xl, Yl)} with L labeled bags and a set of unlabeled
data U = {Xu} with U unlabeled bags. In an active learning scenario, usually
the amount of unlabeled data is much larger than the amount of labeled data,
i.e. U � L. The main task of an active learning algorithm is to select the most
informative bag X∗ according to some query strategy φ (X), which is a function
evaluated on each example X from the pool U . In this work, the selection of the
bag X∗ is done according to

X∗ = argmax
X∈U

φ (X) (6)

Algorithm 1 describes the pool-based active learning algorithm for training a
Miml-knn model. One advantage of using Miml-knn with pool-based sam-
pling, is that, the distance between all bags (i.e. labeled and unlabeled bags)
can be precomputed and stored for later use in any model learning or prediction
task. As in Algorithm 1, first we calculated the bag distance matrix D such that
dij = DH (Xi,Xj) for all bags Xi,Xj . Then from this matrix we can extract
the distance submatrix DL of the labeled bags and use it in the training of a
Miml-knn model (see Eq. 5). For classification of the bag X, we have to feed
the trained Miml-knn model with the subtracted matrix DL∪{X} (see Eq. 2).
In the following, we describe in detail the query strategies we proposed which
will be later compared in an empirical study.

Uncertainty Sampling (Unc). This approach is one of the most common
in SISL framework. Here a learner queries the instance that is most uncertain
how to label. For a muti-label problem we define the uncertainty as φ (X) =
1 − P (Ŷ |X) where P (Ŷ |X) is the bag posterior probability for the predicted
label set Ŷ given the bag X. We calculate P (Ŷ |X) as the probability given the
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Algorithm 1. Active kMIML
input:

L: Labeled data set {(Xl, Yl)}
U : Unlabeled data set {Xu}
κ : Neighbors parameter
κ′: Citers parameter

output:

h : Miml-knn model

1 begin
2 Calculate the distance matrix D using DH (Xi, Xj) for all bags

Xi, Xj ∈ {Xu, Xl}
3 Train a Miml-knn model h on L using κ, κ′ and DL

4 repeat
5 Classify each bag X ∈ U with trained Miml-knn model h using

κ, κ′,DL∪{X}
6 Calculate φ (X) for all X
7 Select the most informative bag X∗ with arg max φ (X)
8 Request the label set Y ∗ for X∗

9 Remove X∗ from U
10 Add (X∗, Y ∗) to L
11 Train a Miml-knn model on L using κ, κ′ and DL
12 until stop criterion reached

combination of labels ŷk founded in Ŷ (X). For this we use a single-label posterior
probability P (ŷk|X) to estimate the uncertainty φ (X) as

φ (X) = 1 −
∏

ŷk∈Ŷ

P (ŷk|X) (7)

The Miml-knn classifier output for the kth label is a prediction function fk (X).
This function outputs higher positive or lower negative values for very certain
positive or negative predictions respectively. Considering Eq. 4, this means that
when |fk (X)| � 0 the vectors w�

k and z are linearly codependent. For the most
uncertain label prediction then |fk (X)| ≈ 0 which means that w�

k and z are
linearly independent. Based on this, we estimate P (ŷk|X) using a normalization
on fk (X) using the Cauchy–Schwarz inequality as follows

P (ŷk|X) =
1
2

(
w�

k · z (X)
‖w�

k ‖‖z (X) ‖ + 1
)

(8)

Diversity (Div). This method is based on the multi-label active learning
method proposed by Huang et al. [5,6]. This method considers that the most
informative bags are those where the number of predictions are inconsistent with
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the average of predicted labels in the training set. Using the indicator vector
Î (X), φ (X) is formulated as follows

φ (X) =

∣∣∣∣∣
1
K

K∑
k=1

Îk (X) − ρL

∣∣∣∣∣ (9)

where

ρL =
1

LK

L∑
l=1

K∑
k=1

Ik (Xl) (10)

Margin (Mrg). A high positive (or low negative) value of fk(X) means that
the model has a high certainty that X positively (or negatively) belongs to the
kth class. Meanwhile lower absolute values in fk(X) indicate a high uncertainty.
This strategy chooses the bag which average output values are the nearest to
zero. This means

φ (X) = − 1
K

K∑
k=1

|fk (X)| (11)

Range (Rng). This method is similar to the margin query strategy. In this
case is considered that lower range of output values fk (X) indicates higher
uncertainty. This strategy is defined as

φ (X) = −
(

max
k

fk (X) − min
k

fk (X)
)

(12)

Percentile (Prc). This approach is related to ExtMidSelect used by Retz
und Schwenker [9]. This method measures the distance between the upper
and lower values of f (X) = [f1, . . . , fK ] delimited by the percentile value
Fp (X) = percentile(f (X) , p) at the percentage p = 100 (1 − ρL) %, see Eq. 10.
The strategy is defined as

φ (X) = − |F↑ (X) − F↓ (X)| (13)

where F↑ (X) and F↓ (X) are respectively the conditional means of the upper
and lower values, this means F↑ (X) = E [f (X) |fk ≥ Fp] and F↓ (X) =
E [f (X) |fk < Fp].

Information Density (IDC & IDH). It has been suggested that uncertainty
based strategies for SISL are prone to querying outliers. To address this problem,
Settles et al. [13] proposed a strategy that favors uncertain samples nearest to
clusters of unlabeled samples. This strategy uses a similarity measure S (X) and
an uncertainty sampling φu (X) such that

φ (X) = φu (X) · S (X) (14)
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Table 1. Statistics on data sets used in experiments

Instances per bag Labels per bag

Dataset Bags Labels Inst. Feat. min max mean ± std. min max mean ± std.

Birds 548 13 10,232 38 2 43 8.7 ± 7.9 1 5 2.1 ± 1.0

Scene 2,000 5 18,000 15 9 9 9.0 ± 0.0 1 3 1.2 ± 0.4

Reuters 2,000 7 7,119 243 2 26 3.6 ± 2.7 1 3 1.2 ± 0.4

CK+ 430 79 7,915 4,391 4 66 18.4 ± 7.6 2 9 4.0 ± 1.5

UnitPro(G.s.) 379 340 1,250 216 2 8 3.1 ± 1.2 1 69 4.0 ± 7.0

The uncertainty factor φu (X) is formulated as in Eq. 7. We defined two types
of similarity measures. The first approach (IDC) is based on a cosine distance
using the formula

cos (X,X ′) =
x̃ · x̃′

‖x̃‖‖x̃′‖ (15)

where x̃ is a bag-level vector that is the mean of features over all instances
xj ∈ X, this is x̃ = (1/m)

∑m
j=1 xj where m = |X|. The similarity measure

based on cosine distance is defined as

S (X) =
1
U

∑
X′∈ U

cos (X,X ′) (16)

The second approach (IDH) is based on the Hausdorff distance from Eq. 1. The
similarity measure is defined as

S (X) = 1 − exp
(
D̄U (X)

)
∑

X′∈ U
exp

(
D̄U (X ′)

) (17)

where D̄U (X) is the mean distance between the bag X and the unlabeled bags,
this is D̄U (X) = (1/U)

∑U
u=1 DH (X,Xu). In order to have comparable measures

we applied on D̄U (X) a softmax averaging.

3 Experiments

We conduct a series of experiments to compare the performance of each of the
query strategies presented in this work. We employed five MIML benchmark
datasets including Birds [1,2], Reuters [11], Scene [22], CK+ [7,8] and Unit-
Pro(G.s.) [16,18]. A summary of the datasets is presented in Table 1. All data
sets are publicly available and prepared as MIML datasets except for the CK+
dataset. We extracted this last one from the Cohn-Kanade dataset and the labels
correspond to action units categories. A bag represents an image sequence and
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Table 2. Miml-knn parameters

ecnamrofrePsretemaraP

Dataset DH κ κ′ h.l. ↓ r.l. ↓ o.e. ↓ co. ↓ a.a. ↑ a.p. ↑ a.r. ↑ a.f1 ↑
Birds med 5 15 0.100 0.080 0.138 2.633 0.431 0.764 0.780 0.781
Scene med 1 9 0.171 0.182 0.340 0.975 0.463 0.620 0.575 0.597
Reuters max 5 17 0.037 0.031 0.078 0.355 0.820 0.895 0.910 0.903
CK+ max 43 19 0.034 0.124 0.198 28.14 0.163 0.757 0.544 0.633
UnitPro(G.s.) avg 43 11 0.025 0.356 0.653 175.9 0.267 0.237 0.297 0.263

we extracted appearance based (local binary patterns) and shape based (his-
togram of oriented gradients) features at each image. UnitPro(G.s.) dataset is
a complete proteome of the bacteria Geobacter sulfurreducens downloaded from
the UniProt databank [16].

For each dataset, we randomly sample 20% of bags as the test data, and the
rest as the unlabeled pool for active learning. Before the active learning tasks, 5%
of the unlabeled pool is randomly labeled to train an initial Miml-knn model.
After each query, we train a Miml-knn model with the extended labeled data
and we test the performance of this model on the test set. Additionally, we run an
experiment with a bag random sampling and use it as a reference. We run each
experiment until we label 50% of the original unlabeled pool. In the experiments,
a simulated Oracle provides the labels requested. We repeat the experiment
30 times for each of the datasets. The performance of the Miml-knn models
using active learning was estimated with eight measures: hamming loss, ranking
loss, coverage, one error, average accuracy, average precision, average recall and
average f1-measure (see [1,22,23]). These measures are common performance
metrics for evaluation in MIML framework. Lower values for hamming loss,
ranking loss, coverage and one error imply a better performance and vice-versa
for the other four measures.

For each data set we tuned the number of neighbors κ, the number of citers
κ′ and the type of Hausdorff distance DH to obtain a maximum model perfor-
mance. We perform a cross-validation test over all combinations of (κ, κ′) ∈
{1, 3, 5, . . . , 75}2 with DH ∈ {Dmax

H ,Davg
H ,Dmed

H }. For each combination we
tested 30 replicas with 20% and 80% of the data randomly selected as test-
ing and training set respectively. At last, we selected the parameters setting
that maximizes the average f1-measure. The results of the parameter tuning are
reported in Table 2.

The results of the performance experiments are shown in Table 3. The black
dot (•) indicates that the performance is significantly better than the bag random
sampling (Rnd). The white dot (◦) indicates the opposite case. Regarding the
query strategy, we observe that among all datasets several strategies have supe-
rior performance than Rnd. The information density based approaches (IDD &
IDH) in UnitPro(G.s.) and Scene have significantly worse performance. In con-
trast, these strategies performed better using the CK+ and Birds dataset. The
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Table 3. Comparison of query strategies at 50% of data labeled. ↑ (↓) indicate that
higher (lower) values imply a better performance. • (◦) indicate that the query strategy
is significantly better (worse) than a random bag sampling (Rnd) based on a paired
t-test at the 5% significance level (p < 0.05).

Rnd Unc Div Mrg Prc Rng IDC IDH

Birds

h.l. ↓ 0.116 0.111• 0.107• 0.097• 0.100• 0.101• 0.106• 0.116
r.l. ↓ 0.099 0.093• 0.089• 0.077• 0.077• 0.079• 0.086• 0.091•
o.e. ↓ 0.188 0.183 0.173• 0.163• 0.157• 0.158• 0.178 0.189
co. ↓ 2.889 2.804 2.752• 2.559• 2.552• 2.584• 2.702• 2.761•
a.a. ↑ 0.730 0.720 0.724 0.718 0.767• 0.768• 0.738 0.731
a.p. ↑ 0.821 0.826 0.835• 0.850• 0.852• 0.848• 0.835• 0.822
a.r. ↑ 0.730 0.720 0.724 0.718 0.767• 0.768• 0.738 0.731
a.f1 ↑ 0.773 0.769 0.775 0.778 0.807• 0.806• 0.783• 0.774
Scene

h.l. ↓ 0.196 0.204◦ 0.200◦ 0.187• 0.190• 0.191• 0.205◦ 0.209◦
r.l. ↓ 0.210 0.221◦ 0.213 0.191• 0.193• 0.195• 0.221◦ 0.226◦
o.e. ↓ 0.380 0.396◦ 0.383 0.352• 0.362• 0.363• 0.396◦ 0.404◦
co. ↓ 1.100 1.140◦ 1.110 1.036• 1.039• 1.046• 1.140◦ 1.160◦
a.a. ↑ 0.493 0.492 0.496 0.470◦ 0.496 0.506• 0.487 0.494
a.p. ↑ 0.754 0.744◦ 0.752 0.771• 0.767• 0.766• 0.744◦ 0.739◦
a.r. ↑ 0.493 0.492 0.496 0.470◦ 0.496 0.506• 0.487 0.494
a.f1 ↑ 0.596 0.592 0.597 0.584◦ 0.603 0.609• 0.588 0.592
Reuters

h.l. ↓ 0.045 0.042• 0.041• 0.050◦ 0.048◦ 0.051◦ 0.104 0.104
r.l. ↓ 0.039 0.035• 0.034• 0.044◦ 0.033• 0.039 0.121 0.121
o.e. ↓ 0.100 0.087• 0.085• 0.120◦ 0.090• 0.106◦ 0.274 0.274
co. ↓ 0.409 0.387• 0.381• 0.436◦ 0.374• 0.407 0.916 0.916
a.a. ↑ 0.872 0.901• 0.896• 0.826◦ 0.905• 0.883• 0.675 0.675
a.p. ↑ 0.934 0.941• 0.943• 0.923◦ 0.941• 0.931 0.816 0.816
a.r. ↑ 0.872 0.901• 0.896• 0.826◦ 0.905• 0.883• 0.675 0.675
a.f1 ↑ 0.902 0.921• 0.919• 0.871◦ 0.922• 0.906 0.738 0.738
CK+

h.l. ↓ 0.041 0.040 0.040 0.040 0.043◦ 0.042◦ 0.039• 0.040•
r.l. ↓ 0.163 0.152• 0.150• 0.157 0.157 0.157 0.146• 0.149•
o.e. ↓ 0.270 0.246• 0.247• 0.268 0.264 0.263 0.250 0.240•
co. ↓ 32.84 31.98 31.00• 32.19 32.31 32.08 30.54• 30.97•
a.a. ↑ 0.492 0.514• 0.520• 0.514• 0.524• 0.526• 0.511• 0.500
a.p. ↑ 0.599 0.615• 0.617• 0.609• 0.605 0.607 0.622• 0.622•
a.r. ↑ 0.492 0.514• 0.520• 0.514• 0.524• 0.526• 0.511• 0.500
a.f1 ↑ 0.540 0.560• 0.564• 0.557• 0.561• 0.563• 0.561• 0.554•
UnitPro(G.s.)

h.l. ↓ 0.040 0.043 0.032• 0.027• 0.064◦ 0.061◦ 0.076◦ 0.086◦
r.l. ↓ 0.503 0.496 0.494 0.498 0.501 0.514 0.531◦ 0.519
o.e. ↓ 0.834 0.826 0.819 0.811• 0.824 0.828 0.865◦ 0.866◦
co. ↓ 196.9 192.3 192.5 187.6• 189.9• 192.6 212.5◦ 201.7
a.a. ↑ 0.180 0.202• 0.181 0.170 0.221• 0.202• 0.185 0.206•
a.p. ↑ 0.141 0.148 0.154 0.168• 0.158• 0.153 0.101◦ 0.108◦
a.r. ↑ 0.180 0.202• 0.181 0.170 0.221• 0.202• 0.185 0.206•
a.f1 ↑ 0.157 0.170 0.166 0.168 0.183• 0.173• 0.129◦ 0.141◦

best performance among all datasets is achieved by the percentile strategy (Prc)
followed by margin (Mrg) and diversity (Div) strategies. Regarding the dataset,
in the Reuters and UnitPro(G.s.) dataset we observe in general a remarkable
performance of the strategies. In the Reuters dataset, uncertainty (Unc) and
diversity (Div) strategies are significantly better for all metrics.
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Fig. 1. Example of query strategies performance based on the average f1-measure
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Fig. 2. Example of query strategies performance based on the hamming loss

Figures 1 and 2 shows the performance curves as the number of labeled data
increases until the stop criterion is reached (50% labeled). We show a selection
of the most representative curves based on the avg. f1-measure and hamming
loss metrics. We observe in Fig. 1b that the Miml-knn model can reach its best
performance with much less labeled data (∼25%) using uncertainty (Unc) or
percentile (Prc) query strategies. A similar situation can be observed in Fig. 2c
where the Miml-knn reaches nearly the lowest hamming loss at approx. 35% of
labeled data using the margin (Mrg) query strategy.

4 Conclusion

In this paper we proposed an active learning approach to reduce the labeling
cost of the MIML dataset using Miml-knn as base classifier. We introduced
novel query strategies and also implemented previously used query strategies for
MIML learning. Finally, we conducted an experimental evaluation on various
benchmark datasets. We demonstrated that these approaches can achieve sig-
nificantly improved results than no active selection for all datasets on various
evaluation criteria.
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Abstract. Nonlinear multi-output regression problem is to construct a
predictive function which estimates an unknown smooth mapping from
q-dimensional inputs to m-dimensional outputs based on a training data
set consisting of given “input-output” pairs. In order to solve this prob-
lem, regression models based on stationary kernels are often used. How-
ever, such approaches are not efficient for functions with strongly varying
gradients. There exist some attempts to introduce non-stationary kernels
to account for possible non-regularities, although even the most efficient
one called Manifold Learning Regression (MLR), which estimates the
unknown function as well its Jacobian matrix, is too computationally
expensive. The main problem is that the MLR is based on a computa-
tionally intensive manifold learning technique. In this paper we propose
a modified version of the MLR with significantly less computational com-
plexity while preserving its accuracy.

Keywords: Nonlinear multi-output regression
Manifold learning regression · Non-stationary kernel

1 Introduction

1.1 Nonlinear Multi-output Regression

We formulate a nonlinear multi-output regression task [1–3]: let f be an unknown
smooth mapping from an input space X ⊂ R

q to m-dimensional output space
R

m. Given a training data set

Z(n) = {Zi = (xi,yi = f(xi)) , i = 1, 2, . . . , n} , (1)
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consisting of input-output pairs, the task is to construct the function y∗ =
f∗(x) = f∗(x|Z(n)) to predict the true output y = f(x) for an arbitrary Out-of-
Sample (OoS) input x ∈ X with small predictive error |y∗ − y|. In engineering
applications f∗(x) is usually used as a surrogate of some target function [4].
Most of optimization algorithms use gradient of the optimized function; in this
case, the regression method also should allow estimating m × q Jacobian matrix
Jf (x) = ∇xf(x) of the mapping f(x) at an arbitrary input point x ∈ X.

There exist various regression methods such as least squares (LS) techniques
(linear and nonlinear), artificial neural networks, kernel nonparametric regres-
sion, Gaussian process regression, kriging regression, etc. [1–3,5–16]. A classical
approach is based on Kernel Nonparametric Regression (KNR) [7]: we select the
kernel function K(x,x′) (see [17]) and construct the KNR-estimator

fKNR(x) =
1

K(x)

n∑

j=1

K(x,xj) · yj , K(x) =
n∑

j=1

K(x,xj), (2)

which minimizes (over ŷ) the residual
∑n

j=1 K(x,xj) |ŷ − yj |2.
The symmetric non-negative definite function K(x,x′) can be interpreted as

a covariance function of some random field y(x); thus, the unknown function
f(x) can be interpreted as a realization of the random field y(x) and K(x,x′) =
cov(f(x), f(x′)). If we consider only the first and second moments of this random
field, then without loss of generality we can assume that this field is Gaussian
and as a result obtain so-called Gaussian Process Regression [5,6,18,19].

One of the most popular kernel estimators is kriging, first developed by Krige
[20] and popularized by Sacks [21]. Kriging provides both global predictions and
their uncertainty. Kriging-based surrogate models are widely used in engineering
modeling and optimization [4,22–24].

Kriging regression combines both linear LS and KNR approaches: the devi-
ation of the unknown function f(x) from its LS estimator, constructed on basis
of some functional dictionary, is modeled by a zero mean Gaussian random field
with the covariance function K(x,x′). Thus we can estimate the deviation at
the point x using some filtration procedure and known deviations at the sam-
ple points {xi}. Usually stationary covariance functions K(x,x′) are used that
depend on their arguments x and x′ only through the difference (x − x′).

1.2 Learning with Non-stationary Kernels

Many methods use kernels that are stationary. However, as indicated e.g. in
[2,3,5,6], such methods have serious drawbacks in case of functions with strongly
varying gradients. Traditional kriging “is stationary in nature” and has low accu-
racy in case of functions with “non-stationary responses” (significant changes in
“smoothness”) [25,26]. Figure 1 illustrates this phenomenon by the Xiong func-
tion f(x) = sin(30(x − 0.9)4) · cos(2(x − 0.9)) + (x − 0.9)/2, x ∈ [0, 1], and its
kriging estimator with a stationary kernel [25]. Therefore, non-stationary kernels
with adaptive kernel width are used to estimate non-regular functions. There are
strategies for constructing the non-stationary kernels [26].
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Fig. 1. Example of Kriging prediction with a stationary covariance [25].

The interpretable nonlinear map approach from [27] uses the one-to-one
reparameterization function u = ϕ(x) with the inverse x = ψ(u) to map the
Input space X to U = ϕ(X), such that the covariance function k(u,u′) =
K(ψ(u), ψ(u′)) = cov(f(ψ(u)), f(ψ(u′))) becomes approximately stationary.
This approach was studied for years in geostatistics in case of relatively low
dimensions (q = 2, 3), and the general case has been considered in [25] with

the reparameterization function ϕ(x) = x0 +
∫ x(1)

x
(1)
0

∫ x(2)

x
(2)
0

· · · ∫ x(q)

x
(q)
0

s(x)dx, where

x = (x(1), x(2), . . . , x(q)) and s(x) is a density function, modelled by a linear
combination of some “dictionary” functions with optimized coefficients. A sim-
ple one-dimensional illustration of such map is provided in Fig. 2.

Fig. 2. A conceptual illustration of the nonlinear reparameterization function [25].

After such reparameterization, KNR-estimator (2) gKNR(u) for the func-
tion g(u) = f(ψ(u)) with the stationary kernel k(u,u′) is constructed, and the
function f∗(x) = gKNR(ϕ(x)) is used as an estimator for f(x).

1.3 Manifold Learning Regression

A fundamentally different geometrical approach to KNR called Manifold Learn-
ing Regression (MLR) was proposed in [10,11]; MLR also constructs the repa-
rameterization function u = ϕ(x) and estimates the Jacobian matrix Jf (x).
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MLR compares favourably with many conventional regression methods. In
Fig. 3 (see [10]) we depict the KNR-estimator fKNR (2) with a stationary kernel
and the MLR-estimator fMLR for the Xiong function f(x). The input values in
the set Z(n), n = 100 were uniformly randomly distributed on the interval [0, 1].

We see that the MLR method provides the essentially smoother estimate. The
mean squared errors MSEKNR = 0.0024 and MSEMLR = 0.0014 were calculated
using the test sample with n = 1001 uniform grid points in the interval [0, 1].

Fig. 3. Reconstruction of the Xiong function (a) by KNR with stationary kernel (b)
and MLR (c).

MLR is based on a Manifold Learning approach. Let us represent in the
input-output space R

p, p = q + m, the graph of the function f by the smooth
q-dimensional manifold (Regression Manifold, RM)

M(f) = {Z = F(x) ∈ R
p : x ∈ X ⊂ R

q} ⊂ R
p, (3)

embedded in the ambient space R
p and parameterized by the single chart

F : x ∈ X ⊂ R
q → Z = F(x) = (x, f(x)) ∈ R

p. (4)

Arbitrary function f∗ : X → R
m also determines the manifold M(f∗) (substitute

f∗(x) and F∗(x) instead of f(x) and F(x) in (3) and (4)).
In order to apply MLR, we estimate RM M(f) using the training data Z(n) (1)

by the Grassmann & Stiefel Eigenmaps (GSE) algorithm [28]. The constructed
estimator MGSE = MGSE(Z(n)), being also a q-dimensional manifold embedded
in R

p, provides small Hausdorff distance dH(MGSE ,M(f)) between these man-
ifolds. In addition, the tangent spaces L(Z) to RM M(f) at the manifold points
Z ∈ M(f) are estimated by the linear spaces LGSE(Z) with “aligned” bases
smoothly depending on Z. GSE also constructs the low-dimensional parameter-
ization h(Z) of the manifold points Z and the recovery mapping g(h), which
accurately reconstructs Z from h(Z).

To get the estimator fMLR(x) of the unknown function f , we solve the
equation M(fMLR) = MGSE . Using the estimator LGSE(F(x)), we also con-
struct m × q matrix GMLR(x), which estimates the m × q Jacobian matrix
Jf (x) = ∇xf(x) of f(x) at the arbitrary point x ∈ X. Here as the reparam-
eterization function u = ϕ(x) we use approximation of the unknown function
h(F(x)) (it depends on f(x), which is unknown at the OoS points x ∈ X).
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1.4 Paper Contribution

The GSE algorithm contains several very computationally expensive steps such
as construction of the aligned bases in the estimated tangent spaces, the embed-
ding mapping and the recovery mappings, the reparameterization mapping, etc.
Although the incremental version of the GSE algorithm [29] reduces its com-
plexity, still it remains computationally expensive.

The paper proposes a new modified version of the MLR algorithm (mMLR)
with significantly less computational complexity. We developed a simplified ver-
sion of the MLR algorithm, which does not require computationally expensive
steps, listed above, so that we can construct the estimators (fMLR(x),GMLR(x))
while preserving the same accuracy. Then instead of using the KNR procedure
with a stationary kernel we developed its version with a non-stationary kernel,
which is defined on basis of the constructed MLR estimators.

Note that in this paper we consider the case when the input domain X ⊂ R
q

is a “full-dimensional” subset of Rq (i.e., the intrinsic dimension of X is equal
to q) in contrast to [6,16], where X is a low-dimensional manifold in R

q. In [30]
they reviewed approaches to the regression with manifold valued inputs.

The paper is organized as follows. Section 2 describes some details of the
GSE/MLR algorithms; the proposed mMLR algorithm is described in Sect. 3.

2 Manifold Learning Regression

2.1 Tangent Bundle Manifold Estimation Problem

The MLR algorithm is based on the solution of the Tangent bundle manifold
estimation problem [31,32]: estimate RM M(f) (3) from the dataset Z(n) (1),
sampled from M(f). The manifold estimation problem is to construct:

– the embedding mapping h from RM M(f) to the q-dimensional Feature Space
(FS) Th = h(M(f)), which provides low-dimensional parameterization (coor-
dinates) h(Z) of the manifold points Z ∈ M(f),

– the recovery mapping g(t) from FS Th to R
p, which recovers the manifold

points Z = g(t) from their low-dimensional coordinates t = h(Z),

such that the recovered value rh,g(Z) = g(h(Z)) is close to the initial vector Z:

g(h(Z)) ≈ Z, (5)

i.e. the recovery error δh,g(Z) = |rh,g(Z)−Z| is small. These mappings determine
the q-dimensional Recovered Regression manifold (RRM)

Mh,g = rh,g(M(f)) = {rh,g(Z) ∈ R
p : Z ∈ M(f)}

= {Z = g(t) ∈ R
p : t ∈ Th = h(M(f)) ⊂ R

q}, (6)

which is embedded in the ambient space R
p, covered by the single chart g,

and consists of all recovered values rh,g(Z) of the manifold points Z. Thanks
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to (5) we get proximity of the manifolds Mh,g ≈ M(f), i.e. the Hausdorff dis-
tance dH(Mh,g,M(f)) between RM M(f) and RRM Mh,g (6) is small due the
inequality dH(Mh,g,M(f)) ≤ supZ∈M(f) δh,g(Z).

The manifold proximity (5) at the OoS point Z ∈ M(f) \ Z(n) characterizes
the generalization ability of the solution (h,g) at the specific point Z. Good
generalization ability requires [32] that the pair (h,g) should provide the tangent
proximities Lh,g(Z) ≈ L(Z) between the tangent spaces L(Z) to RM M(f) at
points Z ∈ M(f) and the tangent spaces Lh,g(Z) = Span(Jg(h(Z))) (spanned by
columns of the Jacobian matrix Jg(t) of the mapping g at the point t = h(Z))
to RRM Mh,g at the recovered points rh,g(Z) ∈ Mh,g. Note that the tangent
proximity is defined in terms of a chosen distance between these tangent spaces
considered as elements of the Grassmann manifold Grass(p, q), consisting of all
q-dimensional linear subspaces in R

p.
The set of manifold points equipped with the tangent spaces at these points

is called the Tangent bundle of the manifold [33], and therefore we refer to
the manifold estimation problem with the tangent proximity requirement as
the Tangent bundle manifold learning problem [31]. The GSE algorithm, briefly
described in the next section, provides the solution to this problem.

2.2 Grassmann and Stiefel Eigenmaps Algorithm

The GSE algorithm consists of the three successively performed steps: tangent
manifold learning, manifold embedding, and manifold recovery.

Tangent Manifold Learning. We construct the sample-based p × q matrices
H(Z) with columns {H(k)(Z) ∈ R

p, 1 ≤ k ≤ q}, smoothly depending on Z, to
meet the relations Span(H(Z)) ≈ L(Z) and ∇H(i)(Z)H(j)(Z) = ∇H(j)(Z)H(i)(Z)
(covariant differentiation is used here), 1 ≤ i < j ≤ q, for all points Z ∈ M(f).

The latter condition provides that these columns are coordinate tangent fields
on RM M(f) and, thus, H(Z) is the Jacobian matrix of some mapping [33]. Thus
the mappings h and g are constructed in such a way that

Jg(h(Z)) = H(Z). (7)

Using Principal Component Analysis (PCA), we estimate the tangent space L(Z)
at the sample point Z ∈ Z(n) [34] by the q-dimensional linear space LPCA(Z),
spanned by the eigenvectors of the local sample covariance matrix

Σ(Z|Kp) =
1

Kp(Z)

n∑

j=1

Kp(Z,Zj) · [(Zj − Z) · (Zj − Z)T], (8)

corresponding to the q largest eigenvalues; here Kp(Z) =
∑n

j=1 Kp(Z,Zj) and
Kp(Z,Z′) is a stationary kernel in R

p (e.g., the indicator kernel I{|Z − Z′| < ε}
or the heat kernel [35] Kp,ε,ρ(Z,Z′) = I{|Z−Z′| ≤ ε} · exp{−ρ · |Z−Z′|2} with
the parameters ε and ρ).

We construct the matrices H(Z) to meet the relations

Span(H(Z)) = LPCA(Z), (9)
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therefore, the required proximity Span(H(Z)) ≈ L(Z) follows automatically from
the approximate equalities LPCA(Z) ≈ L(Z), which are satisfied when RM M(f)
is “well sampled” and the parameter ε is small enough [36].

The principal components form the orthogonal basis in the linear space
LPCA(Z). Let us denote the p × q matrix with the principal components as
columns by QPCA(Z). However, for different Z these bases are not agreed with
each other and can be very different even in neighboring points. While preserving
the requirements (9), the GSE algorithm constructs other bases in these linear
spaces, determined by the p × q matrices

HGSE(Z) = QPCA(Z) · v(Z). (10)

Here q×q nonsingular matrices v(Z) should provide smooth dependency of H(Z)
on Z and coordinateness of the tangent fields {H(k)(Z) ∈ R

p, 1 ≤ k ≤ q}.
At the sample points the matrices Hi = HGSE(Zi) (10) are constructed to

minimize the quadratic form
∑n

i,j=1 Kp(Zi,Zj) · ‖Hi − Hj‖2F under the coor-
dinateness constraint and certain normalizing condition, required to avoid a
degenerate solution; here ‖ · ‖F is the Frobenius matrix norm. The exact solu-
tion of this problem is obtained in the explicit form; at the OoS points Z, the
matrices HGSE(Z) are constructed using certain interpolation procedure.

Manifold Embedding. After we construct the matrices HGSE(Z) and assum-
ing that the conditions (5) and (9) are satisfied, we use the Taylor series expan-
sion of the mapping g(t), t = h(Z) to get the relation Z′ − Z ≈ HGSE(Z) ·
(h(Z′) − h(Z)) for the neighboring points Z,Z′ ∈ M(f). These relations, consid-
ered further as regression equations, allow constructing the embedding mapping
hGSE(Z) and FS Th = h(M(f)).

Manifold Recovery. After we construct the matrices HGSE(Z) and the map-
ping hGSE , using known values {g(ti) ≈ Zi} (5) and {Jg(ti) = Hi} (9),
ti = hGSE(Zi), we construct the mapping gGSE(t) and the estimator GGSE(t)
for its covariance matrix Jg(t).

2.3 Manifold Learning Regression Algorithm

We split the p-dimensional vector Z =
(

Zin

Zout

)
, p = q+m, into the q-dimensional

vector Zin and the m-dimensional vector Zout and obtain the corresponding
partitions

HGSE(Z) =
(

HGSE,in(Z)
HGSE,out(Z)

)
, QPCA(Z) =

(
QPCA,in(Z)
QPCA,out(Z)

)
,

gGSE(t) =
(

gGSE,in(t)
gGSE,out(t)

)
, GGSE(t) =

(
GGSE,in(t)
GGSE,out(t)

)
(11)

of the p×q matrices HGSE(Z) and QPCA(Z), the p-dimensional vector gGSE(t),
and the p × q matrix GGSE(t); note that the q × q matrix GGSE,in(t) and the
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m× q matrix GGSE,out(t) are the Jacobian matrices of the mappings gGSE,in(t)
and gGSE,out(t), respectively.

It follows from the proximities (5), (9) and the partition (11) with Z = F(x)
(4) that

gGSE,in(hGSE(F(x))) ≈ x, gGSE,out(hGSE(F(x))) ≈ f(x), (12)

but the left part of the latter equation cannot be used for estimating the unknown
function f(x) since it depends on the function hGSE(F(x)), which in its turn
depends on the function f(x).

According to the MLR approach we construct the estimator ϕ(x) for the
function hGSE(F(x)) as follows. We have two parameterizations of the manifold
points Z = F(x) ∈ M(f): the “natural” parameterization by the input x ∈ X and
the GSE-parameterization t = hGSE(Z), which are linked by the unknown one-
to-one mapping t = ϕ(x), whose values {ϕ(xi) = ti = hGSE(Zi)} are known at
the sample inputs {xi}. The relations (5) and (12) imply that gGSE,in(ϕ(x)) ≈ x
and GGSE,in(ϕ(x)) ·Jϕ(x) ≈ Iq. Thus we get that Jϕ(x) ≈ G−1

GSE,in(ϕ(x)); here
Jϕ(x) is the Jacobian matrix of the mapping ϕ(x). Therefore, the known matri-
ces {G−1

GSE,in(ϕ(xi)) = G−1
GSE,in(ti)} estimate the Jacobian matrices {Jϕ(xi)}

at the sample inputs {xi}.
Based on the known values {(ϕ(xi),Jϕ(xi))}, ϕ(x) is estimated at the arbi-

trary point x by ϕMLR(x) = 1
Kq(x)

∑n
j=1 Kq(x,xj) · {tj + G−1

GSE,in · (x − xj)};
here Kq(x,x′) is a stationary kernel in R

q (like Kp,ε,ρ, but defined in R
q).

The relations (12) imply that GGSE,out(ϕ(x)) · Jϕ(x) ≈ Jf (x) and we get

fMLR(x) = gGSE,out(ϕMLR(x)), (13)

GMLR(x) = GGSE,out(ϕMLR(x)) · G−1
GSE,in(ϕMLR(x)) (14)

as the estimators for the unknown function f(x) and its Jacobian matrix Jf (x).
Note that the estimators (13), (14) require constructing the aligned bases

(matrices HGSE(Z)), the embedding mapping hGSE(Z), the recovery mapping
gGSE(t) and the estimator GGSE(t) for its Jacobian matrix, and the reparame-
terization mapping ϕMLR(x). These GSE steps are computationally expensive,
even if the incremental version of GSE is used [29].

3 Modified Manifold Learning Regression

The proposed modified version of the MLR method consists of the following
parts: constructing both the PCA-approximations for the tangent spaces at the
sample points (as in case of the GSE algorithm) and the preliminary estimation of
f(x) for arbitrary inputs (Sect. 3.1), constructing both the PCA-approximations
LPCA(Z) at the OoS points Z = F(x) and the estimators GMLR(x) of the
Jacobian matrix Jf (x) for arbitrary inputs (Sect. 3.2), constructing the non-
stationary kernels based on the preliminary MLR estimators and their usage
for construction of both the new adaptive PCA-approximations and the final
estimators (fmMLR(x),GmMLR(x)).
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3.1 Preliminary Estimation of Unknown Functions

We start from the standard PCA-approximations for the tangent spaces L(Z) at
the sample points.

Step 1. Given the training dataset Z(n) (1), p × q matrices QPCA(Zi) and
linear spaces LPCA(Zi) = Span(QPCA(Zi)), i = 1, 2, . . . , n, are constructed as
in Sect. 2.2.

Let {HGSE(Zi) = QPCA(Zi) · v(Zi)} (10) be the GSE-matrices, computed
after the estimation of the aligning matrices {v(Zi)}. It follows from (7) and
(9)–(11) that

GGSE,in(hGSE(Z)) = HGSE,in(Z) = QPCA,in(Z) · v(Z),
GGSE,out(hGSE(Z)) = HGSE,out(Z) = QPCA,out(Z) · v(Z).

Thus the estimator GMLR(x) (14) at the sample inputs {xi} is equal to

GMLR(xi) = HGSE,out(Zi) · H−1
GSE,in(Zi)

= QPCA,out(Zi)v(Zi)v−1(Zi)QPCA,in(Zi) = QPCA,out(Zi)Q−1
PCA,in(Zi) (15)

and depends only on the PCA-matrices {QPCA(Zi)}, not on the matrices v(Zi).

Step 2. Compute the estimators {GMLR(xi)} (15) for i = 1, 2, . . . , n.
After the Step 2 we obtain values GMLR(xi) of the Jacobian matrix of f(x)

at the sample inputs. Using the Taylor series expansion we get that f(x) ≈
f(x′)+Jf (x′) · (x−x′) for the neighboring input points x,x′ ∈ X. We construct
the estimator f∗(x) for f(x) at the arbitrary point x as a solution to the regression
problem with known Jacobian values at sample points [30] by minimizing the
residual

∑n
j=1 Kq(x,xj) · |y − yj − GMLR(xj) · (x − xj)|2 over y.

Step 3. Compute the estimator f∗(x) at the arbitrary input x ∈ X

f∗(x) =
1

Kq(x)

n∑

j=1

Kq(x,xj) · {yj + GMLR(xj) · (x − xj)}

= fsKNR(x) +
1

Kq(x)

n∑

j=1

Kq(x,xj) · GMLR(xj) · (x − xj). (16)

Here fsKNR(x) = 1
Kq(x)

∑n
j=1 Kq(x,xj) · yj is the KNR-estimator (2) with a

stationary kernel.
Note that the estimators f∗(x) (16) and {GMLR(xi)} (15) coincide with the

MLR-estimators (13) and (14) but they have significantly lower computational
complexity.

3.2 Estimation of Jacobian Matrix at Arbitrary Point

The p × q matrix QPCA(Z) and the tangent space LPCA(Z) at the OoS point
Z = F(x) are computed using the estimator f∗(x) (16). Thus we can define
FMLR(x) = (x, f∗(x)) (4).
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Step 4. Compute the p×q matrix QPCA(Z∗) at the point Z∗ = FMLR(x), such
that its columns are the eigenvectors of the matrix Σ(Z∗|Kp) (8) corresponding
to the q largest eigenvalues.

The matrix QPCA(FMLR(x)) estimates the matrix QPCA(F(x)) at the arbi-
trary input x ∈ X. Thus, the relation (14) results in the next step.

Step 5. Compute the preliminary estimator GMLR(x) for Jf (x) at the arbitrary
input x ∈ X

GMLR(x) = QPCA,out(FMLR(x)) · Q−1
PCA,in(FMLR(x)). (17)

Then based on (17) we compute the preliminary estimators

fMLR(x) =
1

Kq(x)

n∑

j=1

Kq(x,xj) · {yj + GMLR(x) · (x − xj)}

= fsKNR(x) + GMLR(x) · (x − xsKNR) (18)

for f(x) at the arbitrary input x ∈ X; here xsKNR = 1
Kq(x)

∑n
j=1 Kq(x,xj) · xj .

3.3 Estimation of Unknown Function at Arbitrary Point

The estimators fMLR(x) (18) and GMLR(x) (17) use the stationary kernels
Kq(x,x′) in (18) and Kp(Z,Z′) in Σ(Z∗|Kp) (7), respectively; here we introduce
their non-stationary analogues.

Let L = Span(Q) and L′ = Span(Q′) be q-dimensional linear spaces in R
p

whose orthonormal bases are the columns of the p × q orthogonal matrices Q
and Q′, respectively. Considering them as elements of the Grassmann manifold
Grass(p, q), let us denote by

dBC(L,L′) = {1 − Det2[QT · Q′]}1/2 and KBC(L,L′) = Det2[QT · Q′]

the Binet-Cauchy metric and the Binet-Cauchy kernel on the Grassmann mani-
fold, respectively [37,38]. Note that these quantities do not depend on a choice
of the orthonormal bases Q and Q′. Let us introduce another Grassmann kernel
depending on the threshold τ as

KG,τ (L,L′) = I{dBC(L,L′) ≤ τ} · KBC(L,L′).

The final mMLR estimators are constructed by modification of the Steps
1–5 above using the introduced non-stationary kernels. For Z,Z′ ∈ Z(n), we
introduce the non-stationary kernel

Kp,MLR(Z,Z′) = Kp,ε,ρ(Z,Z′) · KG,τ (LPCA(Z),LPCA(Z′)). (19)

Step 6 (modified Step 1). The columns of the orthogonal p × q matri-
ces QmPCA(Zi) at sample points consist of the eigenvectors of the matrices
Σ(Zi|Kp,MLR) (8) corresponding to its q largest eigenvalues, i = 1, 2, . . . , n.
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When calculating the covariance matrices Σ(Zi|Kp,MLR) we use the non-
stationary kernels Kp,MLR (19) at the sample points.

Step 7 (modified Step 2). Using (17) with the matrices {QPCA(Zi)} replaced
by the matrices {QmPCA(Zi)} we compute the modified m × q matrices
{GmMLR(xi)}.

Step 8 (modified Step 3). The value f∗∗(x) at the arbitrary input x ∈ X is
computed by (16) with the matrices {GMLR(xi)} replaced by the matrices
{GmMLR(xi)}.

Step 9 (modified Step 4). We compute the p × q matrix QmPCA(Z) at the
point Z = FmMLR(x) = (x, f∗∗(x)) with arbitrary input x ∈ X. Columns of this
matrix are the eigenvectors of the matrix Σ(FmMLR(x)|Kp,MLR) (8) correspond-
ing to its q largest eigenvalues with the non-stationary kernel Kp,MLR(Z,Z′)
(19), Z,Z′ ∈ Z(n).

Let us denote LmPCA(FmMLR(x)) = Span(QmPCA(FmMLR(x))). For the
arbitrary inputs x,x′ ∈ X we introduce the non-stationary kernel

Kq,MLR(x,x′) = Kq,ε,ρ(x,x′)·KG,τ (LmPCA(FmMLR(x)),LmPCA(F(x))). (20)

Step 10 (modified Step 5). We compute the final estimators GmMLR(x) for
Jf (x) at the arbitrary input x ∈ X by the formula (17), where QPCA(FMLR(x))
is replaced by QmPCA(FmMLR(x)).

After that, we compute the final estimators fmMLR(x) for f(x) at the arbi-
trary input x ∈ X by the formula (18) in which GMLR(x) is replaced by
GmMLR(x), the KNR-estimators fsKNR(x) and xsKNR with the stationary ker-
nel Kq are replaced by the KNR-estimators fnsKNR(x) and xnsKNR with the
non-stationary kernel Kq,MLR (20), respectively.

4 Conclusion

The initially proposed Manifold Learning Regression (MLR) method was based
on the GSE-solution to the Tangent Bundle Manifold Learning problem, which
is very computationally expensive. The paper proposes a modified version of the
MLR method, which does not require to use the most of GSE/MLR steps (such
as constructing the aligned bases at the estimated tangent spaces, the embedding
and the recovery mappings, the reparameterization mapping, etc.). As a result
the modified estimator has significantly smaller computational complexity while
preserving its accuracy.
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École de technologie supérieure, Université du Québec, Montreal, Canada
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Abstract. Training classifiers using imbalanced data is a challenging
problem in many real-world recognition applications due in part to the
bias in performance that occur for: (1) classifiers that are often opti-
mized and compared using unsuitable performance measurements for
imbalance problems; (2) classifiers that are trained and tested on a fixed
imbalance level of data, which may differ from operational scenarios; (3)
cases where the preference of correct classification of classes is appli-
cation dependent. Specialized performance evaluation metrics and tools
are needed for problems that involve class imbalance, including scalar
metrics that assume a given operating condition (skew level and rela-
tive preference of classes), and global evaluation curves or metrics that
consider a range of operating conditions. We propose a global evalua-
tion space for the scalar F-measure metric that is analogous to the cost
curves for expected cost. In this space, a classifier is represented as a
curve that shows its performance over all of its decision thresholds and
a range of imbalance levels for the desired preference of true positive
rate to precision. Experiments with synthetic data show the benefits of
evaluating and comparing classifiers under different operating conditions
in the proposed F-measure space over ROC, precision-recall, and cost
spaces.

Keywords: Class imbalance · Performance visualization tools
F-measure

1 Introduction

Evaluating performance is a critical step in classifier design and comparison.
Classification accuracy is the most widely used performance metric, also used as
the objective function of many state-of-the-art learning algorithms (e.g., support
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vector machines). However, when data from different classes are imbalanced, it
favours the correct classification of the majority classes at the expense of high
misclassification rates for the minority ones. This is an issue in many detection
problems where samples of the class of interest (“positive” or “target” class)
are heavily outnumbered by those of other (“negative” or “non-target”) classes.
The widely used ROC curve (which plots the true positive rate vs the false
positive rate for two-class classification problems), is not suitable for imbalanced
data either, since it is independent of the level of imbalance. The alternative
Precision-Recall (PR) curve is more suitable than ROC space, since precision
is sensitive to imbalance; however, the performance of a given classifier under
different imbalance levels corresponds to different PR curves, which makes it
difficult to evaluate and compare classifiers.

Alternatively, scalar performance metrics like the expected cost (EC) and the
F-measure (widely used in information retrieval) are typically employed when
data is imbalanced. Since they seek different trade-offs between positive and neg-
ative samples, the choice between them is application-dependent. EC allows to
indirectly address class imbalance by assigning different misclassification costs
to positive and negative samples. Two graphical techniques have recently been
proposed to easily visualize and compare classifier performance in terms of EC
under all possible operating conditions: cost curves (CC) [3] and Brier curves
(BC) [5]. The F-measure, recently analyzed by many researchers [2,12–14] is
defined as the weighted harmonic mean of precision and recall, and thus evalu-
ates classifier performance using a weight that controls the relative importance
of recall (i.e., the true positive rate) and precision, which is sensitive to class
imbalance. However, no performance visualization tool analogous to CC or BC
exists for the F-measure. One may use the PR space to this aim, but the iso-
metrics of the F-measure in PR space are hyperbolic [7,9], which does not allow
to easily evaluate classifiers under diverse operating conditions.

This paper introduces F-measure curves, a global visualization tool for the
F-measure analogous to CC. It consists in plotting the F-measure of a given clas-
sifier versus two parameters – the level of imbalance and the preference between
recall and precision – and allows to visualize and compare classifier performance
in class imbalance problems for different decision thresholds, under different
operating conditions. In this space, a crisp classifier corresponds to a curve that
shows its F-measure over all possible imbalance levels, for a desired level of pref-
erence between recall and precision. A soft classifier corresponds to the upper
envelope of such curves for all possible decision thresholds. This space allows
to compare classifiers more easily than in the PR space for a given operating
condition, analogously to CC or BC vs the ROC space. For a given preference
level between precision and recall, one classifier may outperform another over all
skew levels, or only for a specific range, which can be determined both analyti-
cally and empirically in the proposed space, as with the CC space. To clarify the
benefits of the proposed space, experiments are performed on synthetic data.



F-Measure Curves 167

2 Performance Metrics and Visualization Tools

In many real-world applications, the distribution of data is imbalanced [10];
correctly recognizing positive samples is the main requirement, while avoiding
excessive misclassification of negative samples can also be important. If applica-
tion requirements are given by misclassification costs, misclassification of positive
samples usually exhibits a higher cost, which “indirectly” addresses class imbal-
ance. Otherwise, assigning different “fictitious” costs to misclassifications of pos-
itive and negative samples can be an indirect means to achieve the same goal.
Several performance metrics have been proposed so far for applications involving
imbalanced classes [1,6,8,11,15]. This section provides a review of these metrics
in terms of their sensitivity to imbalance, focusing on global spaces that consider
different operating conditions and preference weights.

Scalar Performance Metrics. We focus on two-class problems, although some
metrics can also be applied in multi-class cases. Let P (+) and P (−) be the prior
probability of the positive and negative class, and λ = P (−)/P (+) the class skew.
From a given data set with n+ positive and n− negative samples, P (+) can be
estimated as n+/(n++n−), and similarly for P (−), whereas λ can be estimated
as n−/n+ . As in [3], we focus on evaluating classifier performance as a function
of the prior of the positive class when the classifier is deployed, which can be
different than in the training and testing sets; accordingly, from now on we will
use P (+) (and P (−)) to denote the class prior during classifier deployment (use).
Since this value is unknown during classifier design, we will evaluate classifier
performance across all possible P (+) values.

Classifier performance on a given data set can be summarized by its con-
fusion matrix, in terms of the true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) counts. Let N+ and N− the number
of samples classified as positive and negative, respectively. The corresponding
rates are defined as TPR = TP/n+, FNR = FN/n+, TNR = TN/n− and
FPR = FP/n−.

Several scalar metrics can be defined from the above rates. The widely used
error rate, defined as (FP + FN)/(n+ + n−), is biased towards the correct clas-
sification of the negative (majority) class, which is not suitable to imbalanced
data. When costs can be associated to classification outcomes (either correct or
incorrect), the expected cost (EC) is used; denoting as CFN and CFP the mis-
classification costs of positive and negative samples (usually the cost of correct
classifications is zero), EC is defined as:

EC = FNR · P (+) · CFN + FPR · P (−) · CFP (1)

When data is imbalanced, usually CFN > CFP, which can also avoid the bias
of the error probability toward the negative class. Accordingly, by setting suit-
able fictitious costs, EC can also be used to deal with class imbalance even if
misclassification costs are not precisely known or difficult to define. However, as
CFN/CFP increases, minimizing EC increases TPR at the expense of increasing
FPR, which may be undesirable.
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In information retrieval applications the complementary metrics Precision
(Pr) and Recall (Re) are often used, instead: Re corresponds to TPR, whereas
Pr is defined as TP/(TP + FP ) or TP/N+. Pr depends on both TP and FP,
and drops severely when correct classification of positive class is attained at the
expense of a high fraction of misclassified negative samples, as can be seen by
rewriting Pr as:

Pr =
TP
n+

TP
n+

+ FP
n+

× n−
n−

=
TPR

TPR + λFPR
. (2)

This is useful to reveal the effect of class imbalance, compared to EC.
Pr and Re can be combined into the F-measure scalar metric [16], defined as

their weighted harmonic mean:

Fα =
1

α 1
Pr + (1 − α) 1

Re

, (3)

where 0 < α < 1. By rewriting α as (1+ β2)−1, β ∈ [0,+∞), Fα can be rewritten
as:

Fβ =
(1 + β2)Pr · Re

β2Pr + Re
=

(1 + β2)TP
(1 + β2)TP + FP + β2FN

. (4)

When α → 0, Fα → Re, and when α → 1, Fα → Pr. Note that the sensitivity of
the F-measure to the positive and negative classes can be adjusted by tuning α.
This measure can be preferable to EC for imbalanced data, since it weighs the
relative importance of TPR (i.e., Re) and Pr, rather than TPR and FPR.

Other metrics have been used, or specifically proposed, for class imbalance
problems, although they are currently less used than EC and the F-measure [6,8].

Global Evaluation Curves. In many applications it is desirable for the classifier to
perform well over a wide range of operating conditions, i.e., the misclassification
costs or the relative importance between Pr and Re, and the class priors. Global
curves depict the trade-offs between different evaluation metrics under different
operating conditions, without reducing them to an incomplete scalar measure.

The ROC curve is widely used for two-class classifiers: it plots TPR vs FPR
as a function of the decision threshold. A classifier with a specific threshold cor-
responds to a point in ROC space; a potentially optimal classifier lies on the
ROC convex hull (ROCCH) of the available points, regardless of operating con-
ditions. The best thresholds correspond to the upper-left point, corresponding
to the higher TPR and the lower FPR (see Fig. 4(a)). A drawback of the ROC
space is that it does not reflect the impact of imbalance, since TPR and FPR do
not depend on class priors [4]. The performance of a classifier for a given skew
level can be indirectly estimated in terms of EC, since in ROC space, each oper-
ating condition corresponds to a set of isoperformance lines with identical slope.
An optimal classifier for a given operating condition is found by intersecting the
ROCCH with the upper-left isoperformance line.
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When Pr and Re are used, their trade-off across different decision thresholds
can be evaluated by the precision-recall (PR) curve, which plots Pr vs Re. The
PR curve is sensitive to class imbalance, given its dependence on Pr. However,
different operating conditions (skew levels) lead to different PR curves, which
makes classifier comparison difficult. Moreover, differently from ROC space, the
convex hull of a set of points in PR space has no clear meaning [7]. If the F-
measure is used, its isometrics can be analytically obtained in PR space, analo-
gously to EC isometrics in ROC space; however they are hyperbolic [7,9], which
makes it difficult to visualize classifier performance over a range of decision
thresholds, skew levels, and preference of Pr to Re. In the case of EC this prob-
lem has been addressed by the CC visualization tool, described below, and by its
BC extension. Inspired by CC, we propose in Sect. 3 an analogous visualization
tool for the F-measure.

Expected Costs Visualization Tools. CCs [3] are used to visualize EC over a
range of misclassification costs and skew levels. More precisely, CCs visualize
the normalised EC (NEC), which is defined as EC divided by the maximum
possible value of EC; the latter value turns out to be P (+)CFN +P (−)CFP, and
NEC can be written as:

NEC = (FNR − FPR)PC(+) + FPR ∈ [0, 1], (5)

where PC(+) is the “probability times cost” normalization term, which is defined
as:

PC(+) =
P (+) · CFN

P (+) · CFN + P (−)CFP
∈ [0, 1]. (6)

CCs are obtained by depicting NEC versus PC(+) on a [0, 1]× [0, 1] plot, which
is named “cost space”. Note that NEC = FPR, if PC(+) = 0, and NEC =
FNR = 1 − TPR, if PC(+) = 1. The always positive and always negative
classifiers correspond to two lines connecting points (1,0) to (0,1), and (0,0) to
(1,1), respectively, in the cost space. The operating range of a classifier is the
set of operating points for which it dominates both these lines [3]. By defining:

m =
CFP

CFP + CFN
, where 0 < m ≤ 1 (7)

m can be seens as weighing the importance of both classes, and Eq. (6) can be
rewritten as:

PC(+) =
(1/m − 1) · P (+)

(1/m − 2) · P (+) + 1
(8)

The CCs of two classifiers Ci and Cj may cross: in this case each classifier
outperforms the other for a certain range of operating points.

Interestingly, there is a point-line duality between CC and ROC space: a
point in ROC space is a line in cost space, and vice versa. The lower envelope of
cost lines corresponds to the ROCCH in ROC space. In cost space quantitatively
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evaluating classifier performance for given operating conditions does not require
geometric constructions as in ROC space, but only a quick visual inspection [3].
This helps users to easily compare classifiers to the trivial classifiers, to select
between them, or to measure their difference in performance [3].

BCs [5] are a variant of CCs – they visualize classifier performance assuming
that the classifier scores are estimates of the posterior class probabilities, without
requiring optimal decision threshold for a given operating condition.

No performance visualization tools analogous to CCs or BCs exist for the
F-measure: defining and investigating such a space is the subject of the next
section.

3 The F-Measure Space

We propose a visualization tool analogous to CC for evaluating and comparing
the F-measure of one or more classifiers under different operating conditions,
i.e., class priors and α. To this aim we rewrite the F-measure from Eq. (3) to
make the dependence on P (+) and α explicit:

Fα =
TPR

α(TPR + λ · FPR) + (1 − α)
(9)

=
1/αTPR

1/α + 1/P (+)FPR + TPR − FPR − 1
(10)

In contrast to the EC of Eqs. (1) and (10) indicates that Fα cannot be written as
a function of a single parameter. However, since our main focus is performance
evaluation under class imbalance, we consider the F-measure as a function of
P (+) only, for a fixed α value. Accordingly, we define the F-measure curve of a
classifier as the plot of Fα as a function of P (+), for a given α.

F-Measure Curve of a Classifier. For a crisp classifier defined by given values
of TPR and FPR, the F-measure curve is obtained by simply plotting Fα as
a function of P (+), for a given α, using Eq. (10). Equation (10) implies that,
when P (+) = 0, Fα = 0, and when P (+) = 1, Fα = TPR/(α(TPR − 1) + 1).
It is easy to see that, when TPR > FPR (which is always the case for a non-
trivial classifier), Fα is an increasing and concave function of P (+). For different
values of α one gets a family of curves. For α = 0 we have Fα = TPR, and for
α = 1 we have Fα = Pr. Thus, for any fixed α ∈ (0, 1), each curve starts at
Fα = 0 for P (+) = 0, and ends in Fα = Pr for P (+) = 1. By computing dFα/dα

from Eq. (10), one also obtains that all curves (including the one for α = 0)
cross when P (+) = FPR/(FPR − TPR + 1). Figure 1 shows an example for a
classifier with TPR = 0.8 and FPR = 0.15, and for five α values. CCs are also
shown for comparison.

Consider now changing the decision threshold for a given soft classifier and
a given α value. Whereas a point in ROC space corresponds to a line in cost
space, it corresponds to a (non-linear) curve in F-measure space. As the decision
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Fig. 1. Cost curves (left) and F-measure curves (right) for a given classifier with TPR
= 0.8 and FPR = 0.15, for different values of m and α. Note that for all values of P (+):
(1) for m = 0, EC = 1 − TPR, (2) for m = 1, EC = FPR, (3) for α = 0, Fα = TPR.

threshold changes, one obtains a curve in ROC space, a family of lines in cost
space, and a family of curves in F-measure space. More precisely, as the decision
threshold increases (assuming that higher classifier scores correspond to a higher
probability of the positive class), the ROC curve starts at TPR = 0 and FPR =
0, and proceeds towards TPR = 1 and FPR = 1. For a given value of α, the
corresponding F-measure curves move away from the Y axis and get closer to
the diagonal line connecting the lower-left point P (+) = 0, Fα = 0 to the upper-
right point P (+) = 1, Fα = 1. An example is shown in Fig. 2. For any given
operating condition (i.e., value of P (+)), only one decision threshold provides
the highest Fα. Accordingly, the upper envelope of the curves that correspond
to the available pairs of (TPR, FPR) values shows the best performance of the
classifier with the most suitable decision threshold for each operating condition.

Comparing Classifiers in the F-Measure Space. Consider two classifiers with
given values of (TPRi, FPRi) and (TPRj , FPRj), and a fixed value of α.
From Eq. (10) one obtains that, if FPRj < FPRi and TPRj < TPRi, or when
FPRj > FPRi and TPRj > TPRi, then the F-measure curves cross in a single
point characterized by:

P ∗
i,j(+) =

FPRi · TPRj − FPRj · TPRi

(1 − 1/α)(TPRj − TPRi) + FPRi · TPRj − FPRj · TPRi
. (11)

It is also easy to analytically determine which of the classifiers outperform the
other for lower or higher P (+) values than P ∗

i,j(+). If the above conditions do
not hold, one of the classifiers dominates the other for all values of P (+) > 0;
the detailed conditions under which F j

α > F i
α or F j

α < F i
α are not reported here

for the sake of simplicity, but can be easily obtained as well. Examples of the
two cases above are shown in Fig. 3.

In general, given any set of crisp classifiers, the best one for any given P (+)
value can be analytically determined in terms of the corresponding TPR and
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Fig. 2. A soft classifier in ROC space (ROCCH), inverted PR space (for three values
of P (+)), cost space (m = 0.5) and F-measure space (α = 0.5), for six threshold
values Th1 > Th2 > . . . > Th6 corresponding to TPR1 = 0, 0.55, 0.75, 0.88, 0.98, 1, and
FPR1 = 0, 0.08, 0.15, 0.28, 0.5, 1. The upper envelope of the cost and F-measure curves
is shown as a thick, blue line. (Color figure online)

FPR values, and can be easily identified by the corresponding F-measure curve.
Similarly, the overall performance of two or more soft classifiers can be easily
compared by visually comparing the upper envelopes of their F-curves.

An example of the comparison of two soft classifiers, with six different thresh-
old values, is shown in Fig. 4, where C1 is the same as in Fig. 2. In ROC space,
the ROCCH of C1 and C2 cross on a single point around FPR = 0.3. The lower
envelopes of the corresponding CCs cross around PC(+) = 0.7, and thus C1

and C2 perform the same for approximately 0.6 < PC(+) < 0.7, whereas C1

outperforms C2 for PC(+) < 0.6. When the F-measure is used, comparing C1

and C2 for different skew levels in PR space is more difficult, instead, as shown
by the corresponding (inverted) PR curves. This task is much easier in the F-
measure space; in this example it can be seen that the upper envelopes of the
F-measure curves of C1 and C2 cross: C2 outperforms C1 for P (+) < 0.4, they
perform the same for 0.4 < P (+) < 0.6, and C1 outperforms C2 for P (+) > 0.6.
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Fig. 3. F-measure curves of two classifiers, for α = 0.5. Left: (TPR1, FPR1) =
(0.98, 0.5), (TPR2, FPR2) = (0.93, 0.6): C1 dominates C2. Right: (TPR1, FPR1) =
(0.55, 0.08), (TPR2, FPR2) = (0.5, 0.03): the two curves cross at the P ∗

1,2(+) value of
Eq. (11) shown in red. (Color figure online)

These example shows that comparing the F-measure of two (or more) classifiers
over all skew levels in F-measure space is as easy as comparing their EC in cost
space.

Selecting the Best Decision Threshold or the Best Classifier. ROC curves can
be used to set parameters like the optimal decision threshold, or to select the
best classifier, for a given operating condition. To this aim, when the EC is used
as the performance measure, the ROCCH of the classifier(s) is found and the
optimal classifier (or parameter value) is selected by intersecting the upper-left
EC iso-performance line corresponding to the given operating condition with the
ROCCH. This process is easier in cost space, where the operating condition is
shown on the X axis. Analogously, when the F-measure is used, this process is
easier in the F-measure space than in PR space. For this purpose, the classifier(s)
can be evaluated during design on a validation set (or on different validation
sets with different imbalance levels, if the imbalance level during operation is
unknown); then, during operation, the imbalance level of the data is estimated
and the classification system is adapted based on its performance in cost or
F-measure space.

4 Synthetic Examples

We give an example of classifier performance evaluation and comparison in F-
measure space and, for reference, in ROC, PR, and cost spaces. In particular, we
show how the effect of class imbalance can be observed using these global visu-
alization tools. To this aim we generate a non-linear, 2D synthetic data set: the
negative class is uniformly distributed, and surrounds the normally distributed
positive class with mean μ+ = (0.5, 0.5) and standard deviation σ+ = 0.33. The
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Fig. 4. Comparison between two soft classifiers (C1 is the same as in Fig. 2) with six
threshold values in ROC space, inverted PR space, cost space (m = 0.5) and F-measure
space (α = 0.5). Note that in cost and F-measure spaces the lower and upper envelopes
of the curves corresponding to the six threshold values are shown, respectively.

class overlap is controlled by the minimum distance δ = 0.15 of negative samples
to μ+. We consider three classifiers: Naive Bayes (C1), 5-NN (C2), and RBF-
SVM (C3). We draw 2000 samples from each class (M− = M+ = 2000), and
use half of them for balanced training. To visualize classifier performance under
different operating conditions, we consider different imbalance levels for testing
(which simulates the classifier deployment phase). To this aim, we draw from
the remaining 2000 samples different testing data subsets of fixed size equal to
1000. The number of testing samples from both classes is chosen as follows: for
P (+) < 0.5, M+ = 500, M− = λM+, where λ ∈ {0.1, . . . , 0.9} with a step of
0.05; for P (+) > 0.5, M− = 500, M+ = λM−, with λ chosen in the same way;
for P (+) = 0.5, M+ = M− = 500.

The performance of the three crisp classifiers, using a decision threshold
of 0.5, is first compared in F-measure and cost spaces in Figs. 5a and b, for
0.1 < P (+) < 0.9, α = 0.1, 0.5, 0.9, and m = 0.1, 0.5, 0.9. It can be seen that
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Fig. 5. Performance comparison among Naive Bayes (C1), 5-NN (C2) and RBF-SVM
(C3) in different spaces.

some of the corresponding curves cross, depending on α and m: in this case
each classifier outperforms the other for a different range of values of PC(+) or
P (+); these ranges can be easily determined analytically. The performance of
the same, soft classifiers across different decision thresholds is then compared in
ROC and PR spaces for three values of P (+) = 0.1, 0.5, 0.9 (Figs. 5c and d), and,
for all possible values of P (+), in cost and F-measure spaces (Figs. 5e and f).
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As expected, ROC space is not affected by the degree of class imbalance, i.e.,
by changes in P (+). In PR space each value of P (+) leads to a different curve
for a given classifier, instead, but visual comparison of the corresponding F-
measure is very difficult: indeed this would require to draw also the hyperbolic
iso-performance lines, and anyway only a small, finite number of both P (+)
and Fα values can be considered in this space, which does not allow a complete
comparison. In cost and F-measure spaces the performance of each classifier for
all possible values of P (+) is visualized by a single curve, instead, for a given
value of m (in cost space) or α (in F-measure space). In these spaces visual
comparison of the corresponding performance measure is very easy, and can
be carried out for all possible operating conditions (i.e., values P (+)). In this
example, from Figs. 5e and f one can conclude that, in terms of both EC and
F-measure, C1 and C3 perform nearly equally across all operating conditions.
Moreover, classifier C2 dominates both C1 and C3 for all values of P (+); however
the amount by which C2 outperforms them is very small in terms of the F-
measure, when P (+) is higher than about 0.6, and in terms of EC, when P (+)
is around 0.7.

5 Conclusions

In this paper, we reviewed the main existing scalar and global measures and visu-
alization tools for classifier performance evaluation, focusing on class imbalance.
Then we proposed a new, specific visualization tool for the scalar F-measure,
which is widely used for class imbalance problems, filling a gap in the literature.

Similarly to cost curves, the proposed F-measure curves allow to easily eval-
uate and compare classifier performance, in terms of the F-measure, across all
possible operating conditions (levels of class imbalance) and values of the deci-
sion threshold, for a given preference weight between precision and recall. This
space can be used to select the best decision threshold for a soft classifier, and
the best soft classifier among a group, for a given operating condition. In ongoing
research, we are investigating how to use the F-measure space for the design of
classifier ensembles that are robust to imbalance, and to adapt learning algo-
rithms to class imbalance.
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Abstract. Unsupervised estimation of probability density functions by
means of parametric mixture densities (e.g., Gaussian mixture models)
may improve significantly over plain, single-density estimators in terms
of modeling capabilities. Moreover, mixture densities (and even mixtures
of mixture densities) may be exploited for the statistical description of
phenomena whose data distributions implicitly depend on the distinct
outcomes of a number of non-observable, latent states of nature. In spite
of some recent advances in density estimation via neural networks, no
proper mixtures of neural component densities have been investigated so
far. The paper proposes a first algorithm for estimating Neural Mixture
Densities based on the usual maximum-likelihood criterion, satisfying
numerically a combination of hard and soft constraints aimed at ensur-
ing a proper probabilistic interpretation of the resulting model. Prelim-
inary results are presented and their statistical significance is assessed,
corroborating the soundness of the approach with respect to established
statistical techniques.

Keywords: Density estimation · Mixture density
Unsupervised learning · Constrained learning · Mixture of experts

1 Introduction

Density estimation is fundamental to a number of (apparently unrelated) tasks.
Firs and foremost, it is at the core of the search for a statistical description of
populations represented in terms of a sample of data distributed according to an
unknown probability density function (pdf) [10]. Then, it is involved (possibly
only implicitly) in the estimation of the probabilistic quantities that are neces-
sary in order to apply Bayes decision rule for pattern classification, in particular
the class-conditional probabilities [10]. Other tasks include data compression
and model selection [11], coding [3], etc. Even the estimation of regression mod-
els may rely implicitly on density estimation, since it can be described as the
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estimation of a model p(y|x) that captures the statistical relationship between
an independent random vector x and the corresponding output vector y [4]. As
pointed out by Vapnik [28], density estimation is an intrinsically difficult prob-
lem, and it is still open nowadays. This latter fact is mostly due to the shortcom-
ings of established statistical approaches, either parametric or non-parametric
(the reader is referred to [25] for a list of the major drawbacks of the statistical
techniques), and by the technical difficulties that arise from attempting to use
artificial neural networks (ANNs) or machine learning for pdf estimation. Such
difficulties stem from: (1) the unsupervised nature of the learning task, (2) the
numerical instability problems entailed by pdfs, whose codomains may span the
interval [0,+∞) in the general case, and (3) the requirement of mathematical
plausibility of the estimated model, i.e. the respect of the axioms of probability.
Furthermore, the use of maximum-likelihood (ML) training in ANNs tends to
result in the so-called “divergence problem”, observed first in the realm of hybrid
ANN/hidden Markov models [20]. It consists in the progressive divergence of the
value of the ANN connection weights as ML training proceeds, resulting in an
unbounded growth of the integral of the pseudo-pdf computed by the ANN. The
problem does not affect radial basis functions (RBF) networks whose hidden-
to-output weights were constrained to be positive and to sum to one, as in the
RBF/echo state machine for sequences proposed in [26], or in the RBF/graph
neural network presented in [6] for the estimation of generalized random graphs.
Unfortunately, the use of RBFs in the latter contexts is justified by its allow-
ing for a proper algorithmic hybridization with models devised specifically for
sequence/structure processing, but using RBFs as a stand-alone paradigm for
density estimation is of neglectable practical interest, since they end up realizing
plain Gaussian mixture models (GMM) estimated via ML.

In spite of these difficulties, several approaches to pdf estimation via ANNs
are found in the literature [23]. First of all, a ML technique is presented in
[13] where the “integral equals 1” requirement is satisfied numerically divid-
ing the output of a multilayer Perceptron (MLP) by the numerical integral of
the function the MLP computes. No algorithms for computing the numerical
integral over high-dimensional spaces are handed out in [13]. Nonetheless, this
approach is related to the technique presented in this paper, insofar that ML will
be exploited herein. Differently from [13], a multi-dimensional ad-hoc numeric
integration method will be used in the following, jointly with hard constraints,
over a mixture of ANNs. Other approaches found in the literature translated the
estimation of univariate pdfs to the (theoretically equivalent) estimation of the
corresponding cumulative distribution functions (cdf) [12,27]. Regular backprop-
agation (BP) is applied, relying on the empirical cdf of the data for generating
synthetic target outputs. After training the MLP model φ(·) of the cdf, the pdf
can be recovered by applying differentiation to φ(·). The idea is sound, since the
requirements that φ(·) has to satisfy to be interpretable as a proper cdf (namely,
that it ranges between 0 and 1, and that it is monotonically non-decreasing)
appear to be more easily met than the corresponding constraints on pdf models
(that is, the unit integral). Unfortunately, there are drawbacks to the cdf-based
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approaches (see [25]). In particular, a good approximation of the cdf does not
necessarily translate into a similarly good estimate of its derivative. In fact, a
small squared error between φ(·) and the target cdf does not mean that φ(·) is free
from steep fluctuations that imply huge, rapidly changing values of its deriva-
tive. Negative values of ∂φ(x)

∂x may occasionally occur, since a linear combination
of logistics is not necessarily monotonically increasing. Besides, cdf-based algo-
rithms naturally apply to univariate cases, whilst extension to multivariate pdfs
is far less realistic. The idea of generating empirical target outputs was applied
to non-parametric ANN-based pdf estimation in [22,24]. The former resorts to
the kn-Nearest Neighbor (kn-NN) technique [10] for generating unbiased pdf
estimates that are used to label the training set for a MLP. Like in the kn-NN,
the resulting model is not a proper pdf (the axioms of probability are not sat-
isfied in the general case). On the other way around, the algorithm presented
in [22] uses a modified criterion function to be minimized via gradient descent
for pdf estimation via MLP. The criterion involves two terms: a loss between
the MLP output and a synthetically-generated non-parametric estimate of the
corresponding input pattern, and a loss between the integral of the function
computed by the MLP and its target (i.e., unity) value. Numerical integration
methods are used to compute the integral at hand and its derivatives w.r.t. the
MLP parameters within the gradient-descent via backpropagation. The ideas
behind such integration methods are exploited in this paper, as well.

A generalization of plain pdf estimation models stems from the adoption
of mixture densities, where the unknown pdf is rather modeled in terms of a
combination of any number of component densities [10]. GMMs are the most
popular instance of mixture densities [5]. Traditionally, mixture densities were
intended mostly as real-life extensions of the single-pdf parametric model, e.g.
along the following line: one Gaussian may not be capable to explain the whole
data distribution but K Gaussian pdfs might as well be, as long as K is large
enough. Nevertheless, there is much more than this to the very notion of mixture
density. In fact, different components are specialized to explain distinct latent
phenomena (e.g., stochastic processes) that underlie the overall data generation
process, each such phenomenon having different likelihood of occurrence w.r.t.
others at diverse regions of the feature space. This suites particularly those sit-
uations where the statistical population under analysis is composed of several
sub-populations, each having different distribution. Examples of practical rel-
evance include (among many others) the statistical study of heterogeneity in
meta-analysis [7], where samples drawn from disjoint populations (e.g., adults
and children, male and female subjects, etc.) are collectively collected and have to
be analyzed as a whole; the modeling of unsupervised or partially-supervised [17]
data samples in statistical pattern recognition [10], where each sub-population
corresponds to a class or category; the distribution of financial returns on the
stock market depending on latent phenomena such as a political crisis or a war
[8]; the assessment of projectile accuracy in the military science of ballistics
when shots at the same target come from multiple locations and/or from dif-
ferent munition types [18], etc. In general, the sub-populations in a mixture are
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unlikely to be individually distributed according to simple (e.g., Gaussian) pdfs,
therefore parametric models (e.g., GMMs) are seldom a good fit to these sce-
narios. In fact, let ξ1, . . . , ξK be K disjoint states of nature (the outcomes of
a discrete, latent random variable Ξ, each outcome corresponding to a specific
sub-population), and let p(x|ξi) be the pdf that explains the distribution of the
random observations x given the i-th state of the latent variable, for i = 1, . . . ,K.
At the whole population level the data will the distributed according to the mix-
ture p(x) =

∑K
i=1 P (ξi)p(x|ξi). Attempts to apply a GMM to model p(x) will not

necessarily result in a one-to-one relationship between the Gaussian components
in the GMM and the state-specific generative models p(x|ξi). In general, at the
very least, more than one Gaussian component will be needed to model p(x|ξi).
Although mixtures of mixture models offer increased modeling capabilities over
plain mixture models to this end, they turned out to be unpopular due to the
difficulties of estimation of their parameters [2].

Given the aforementioned relevance and difficulties of estimating pdfs in gen-
eral and mixture models in particular, and in the light of the above-named short-
comings of the established approaches, the paper contributes (for the first time)
a plausible solution in the form of a mixture model built on ANNs. The model,
presented in Sect. 2 and called neural mixture model (NMM), is a convex com-
bination of component densities estimated by component-specific MLPs. The
NMM is intrinsically non-parametric, since no prior assumptions on the form of
the underlying component densities is made [10]. In fact, due to the “universal-
ity” of MLPs [9], the model may approximate any (bounded and continuous)
multimodal multivariate pdf to any degree of precision1. Besides, due to the
learning and generalization capabilities of ANNs, the NMM can actually learn
a smooth and general form for the mixture at hand, overcoming the drawbacks
of the traditional non-parametric techniques, as well. A ML training algorithm
is devised, satisfying (at least numerically) a combination of hard and soft con-
straints required in order to guarantee a proper probabilistic interpretation of
the estimated model. The resulting machine can also be seen as a novel, special
case of mixture of experts [29] having a specific task, a ML-based unsupervised
training algorithm, and a particular probabilistic strategy for assigning credit
to its individual experts. A preliminary experimental evaluation is reported in
Sect. 3, while Sect. 4 draws some pro tempore conclusions.

2 Model and Estimation Algorithm

Let us consider an unlabeled training set T = {x1, . . . ,xn} of n independent
random vectors (i.e., patterns) in a d-dimensional feature space, say R

d. The
patterns are assumed to be identically distributed according to an unknown pdf
p(x). In order to estimate p(x) from T we introduce a neural mixture model
p̃(x|W ) defined as

1 According to the meaning of “approximation” and under the conditions required in
order for (e.g.) Cybenko’s theorem to hold true [9].
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p̃(x|W ) =
K∑

i=1

cip̃i(x|Wi) (1)

where W denotes the overall set of parameters in the NMM (that is
c1, . . . , cK ,W1, . . . ,Wk). The mixing coefficients ci are such that ci ∈ [0, 1] for
i = 1, . . . , K and

∑K
i=1 ci = 1, and the generic i-th component density p̃i(x|Wi)

is defined, in turn, as

p̃i(x|Wi) =
ϕi(x,Wi)∫
ϕi(x,Wi)dx

(2)

where ϕi(x,Wi) represents the function computed by a component-specific MLP
having adaptive parameters Wi. We say that this MLP realizes the i-th neural
component of the NMM. A constraint on

∫
ϕi(x,Wi)dx will be imposed shortly

to enure satisfaction of the axioms of probability. Clearly, each MLP in the NMM
has d input units and a single output unit, and it is expected to have one or
more hidden layers. Without loss of generality for all the present intents and
purposes, we assume that the patterns of interest are confined within a compact
S ⊂ R

d (in practice, any data normalization technique may be applied in order
to guarantee that this assumption holds true) such that, in turn, S can be seen
as the definition domain of ϕi(x,Wi) for all i = 1, . . . , K. As a consequence,
numerical integration techniques can be used to compute

∫
ϕi(x,Wi)dx and

the other integrals required shortly. In so doing, Eq. (2) reduces to p̃i(x|Wi) =
ϕi(x,Wi)∫

S
ϕi(x,Wi)dx

.
Some precautions are to be taken in regard to the nature of the activation

function fi(.) used in the output layer of the i-th MLP. In fact, fi(.) shall be
capable of spanning a codomain that fits the general definition of pdf, that is (in
principle) any range in [0,+∞). Although this may be granted in several differ-
ent ways, herein we opt for a logistic sigmoid with component-specific adaptive
amplitude λi ∈ R

+, namely fi(ai) = λi/(1 + exp(−ai)) as described in [19],
where ai represents the current activation value for the output unit of the i-th
neural component. Consequently, each MLP in the NMM can stretch its output
over any required component-specific interval [0, λi), which is not bounded a
priori but is rather learned (along with the other parameters in Wi) so as to fit
the nature of the specific component density at hand. Other general advantages
entailed by the use of adaptive amplitudes are pointed out in [19].

The training algorithm is expected to revolve around a proper learning rule
for the mixture parameters W given the unlabeled sample T , such that even-
tually p̃(x|W ) results in a proper estimate of p(x). This requires pursuing two
purposes: (1) exploiting the information encapsulated in T to approximate the
unknown pdf; (2) preventing the MLPs in the NMM from developing spurious
solutions, by enforcing the constraints

∫
S

ϕi(x,Wi)dx = 1 for all i = 1, . . . ,K.
To this end, a constrained stochastic gradient-ascent algorithm is devised that
aims at the maximization of the point-wise likelihood p̃(xj |W ) of the NMM given
the current training pattern xj , to be applied iteratively for j = 1, . . . , n. This
is achieved by means of an on-line, differentiable criterion function C(.) defined
as
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C(W,xj) = p̃(xj |W ) − ρ

K∑

i=1

1
2

(

1 −
∫

S

ϕi(x,Wi)dx
)2

(3)

that has to be maximized with respect to the NMM parameters W under the
(hard) constraints that ci ∈ [0, 1] for i = 1, . . . ,K and

∑K
i=1 ci = 1. The second

term in the criterion, instead, is a “soft” constraint that enforces a unit integral
of p̃i(x,Wi) over S for all i = 1, . . . , K, as sought, resulting in

∫
S

p̃(x|W )dx � 1.
The hyper-parameter ρ ∈ R

+ controls the importance of the constraints, and it
is used in practical applications to tackle numerical issues. The gradient-ascent
learning rule Δw for a generic parameter w in the NMM is then defined as
Δw = η ∂C(.)

∂w , where η ∈ R
+ is the learning rate. Different calculations are

needed, according to the fact that w is either: (i) a mixing coefficient, say w = ck;
or (ii) a parameter (connection weight, bias, or adaptive amplitude) within any
of the neural component densities. In case (i), we first introduce K unconstrained
latent variables γ1, . . . , γK , and we let

ck =
ς(γk)

∑K
i=1 ς(γi)

(4)

for k = 1, . . . , K, where ς(x) = 1/(1 + e−x). Each γk is then treated as the
unknown parameter to be actually estimated instead of the corresponding ck.
In so doing, higher-likelihood mixing coefficients that satisfy the required con-
straints are implicitly obtained from application of the learning rule. The latter
takes the following form:

Δγk = η
∂C(.)
∂γk

(5)

= η
∂p̃(xj |W )

∂γk

= η
∂

∑K
i=1 cip̃i(xj |Wi)

∂γk

= η
K∑

i=1

p̃i(xj |Wi)
∂

∂γk

(
ς(γi)

∑K
�=1 ς(γ�)

)

= η

{

p̃k(xj |Wk)
ς ′(γk)

∑K
�=1 ς(γ�)

−
K∑

i=1

p̃i(xj |Wi)
ς(γi)ς ′(γk)
[
∑

� ς(γ�)]2

}

= η
ς ′(γk)

∑
� ς(γ�)

{p̃k(xj |Wk) − p̃(xj |W )}

Secondly, let us move to scenario (ii), that is where w is a parameter within
one of the neural components. In this case, taking the partial derivative of
C(W,xj) with respect to w requires calculating the derivatives of the first and
the second terms in the right-hand side of Eq. (3). In the following calculations
we assume that w belongs to the (generic) k-th neural component. For the first
term we have:
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∂p̃(xj|W )

∂w
=

∂

∂w

K∑

i=1

cip̃i(xj|Wi) (6)

=
∂

∂w
{ckp̃k(xj|Wk)}

= ck
∂

∂w

{
ϕk(xj , Wk)∫

S ϕk(x, Wk)dx

}

= ck

{
1∫

S ϕk(x, Wk)dx

∂ϕk(xj , Wk)

∂w
− p̃k(xj , Wk)∫

S ϕk(x, Wk)dx

∂

∂w

∫

S
ϕk(x, Wk)dx

}

=
ck∫

S ϕk(x, Wk)dx

{
∂ϕk(xj , Wk)

∂w
− ϕk(xj , Wk)∫

S ϕk(x, Wk)dx

∫

S

∂ϕk(x, Wk)

∂w
dx

}

where Leibniz rule was exploited in the last step of the calculations. Note that
Eq. (6) is a mathematical statement of the rationale behind the different impact
that current training pattern xj has on the learning process in distinct neural
components of the NMM. First, the amount of parameter change Δw is propor-
tional to the probabilistic “credit” ck of the component at hand. Second (and
foremost), the quantities within brackets in Eq. (6) depend on the value of the
k-th MLP output over xj , and on its derivative. If, at any time during the train-
ing, ϕk(.) does not change significantly in a neighborhood of xj (e.g. if xj lies in
a high-likelihood plateau or, vice versa, in a close-to-zero plateau of ϕk(.)) then
the contribution of the first quantity within brackets is neglectable. Moreover,
if ϕk(xj) � 0 then the second term within brackets turns out to be neglectable,
as well. To the contrary, the contribution of xj to the parameter adaptation of
k-th component network will be paramount if ϕk(.) returns high likelihood over
xj and significant variations in its surroundings.

At this point Leibniz rule is used again in the calculation of the derivative of
the second term in the right-hand side of Eq. (3), which can be written as

∂

∂w

{

ρ
K∑

i=1

1
2

(

1 −
∫

S

ϕi(x,Wi)dx
)2

}

(7)

=
∂

∂w

{
ρ

2

(

1 −
∫

S

ϕk(x,Wk)dx
)2

}

= −ρ

(

1 −
∫

S

ϕk(x,Wk)dx
)

∂

∂w

∫

S

ϕk(x,Wk)dx

= −ρ

(

1 −
∫

S

ϕk(x,Wk)dx
)∫

S

∂ϕk(x,Wk)
∂w

dx.

Algorithms for the computation of ∂ϕk(xj ,Wk)
∂w ,

∫
S

ϕk(x,Wk)dx, and
∫

S
∂

∂wϕk

(x,Wk)dx are needed in order to compute the right-hand side of Eqs. (6) and
(7). The quantity ∂ϕk(xj ,Wk)

∂w is the usual partial derivative of the output of a
MLP with respect to one of its parameters, and it is computed via plain BP (or,
as in [19] if w = λk). As for the integrals, deterministic numerical quadrature
integration techniques (e.g., Simpson’s method, trapezoidal rule, etc.) are viable
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only for d = 1, since they do not scale up computationally to higher dimensions
(d ≥ 2) of the feature space. This is all the more critical if we bear in mind
that

∫
S

∂
∂wϕk(x,Wk)dx has to be computed iteratively and individually for each

parameter of each neural component in the NMM. Besides, deterministic integra-
tion methods do not exploit the very nature of the function to be integrated. In
fact, in the present context the integrand is expected to be closely related to the
pdf (say, pk(x)) that explains the distribution of the specific sub-sample of data
drawn from the k-th component of the mixture. In fact, accounting for the pdf of
the data should drive the integration algorithm towards integration points that
cover “interesting” (i.e., having high component-specific likelihood) regions of the
domain of the integrand. For these reasons, we use a component-oriented variant
of the approach we proposed in [21], that can be seen as an instance of Markov
chain Monte Carlo [1]. It is a non-deterministic, multi-dimensional integration
technique which actually accounts for the component-specific probability distri-
bution of the data. Let φk(x) denote the integrand of interest (either ϕk(x,Wk)
or ∂ϕk(x,Wk)

∂w ). An approximation of the integral of φk(x) over S is obtained via
Monte Carlo with importance sampling [16] as

∫
S

φk(x)dx � V (S)
m

∑m
�=1 φk(ẋ�)

where m properly sampled integration points ẋ1, . . . , ẋm are used. Sampling of
the 
-th integration point ẋ� (for 
 = 1, . . . , m) is attained by drawing it at
random from the mixture density p

(k)
u (x) defined as

p(k)u (x) = α(t)u(x) + (1 − α(t))p̃k(x|Wk) (8)

where u(x) is the uniform distribution over S, and α : N → (0, 1) is a decaying
function of the number t of the NMM training epochs (a training epoch is a com-
pleted re-iteration of Eqs. (6) and (7) for all the parameters of the NMM over
all the observations in T ) for t = 1, . . . , T , such that α(1) � 1.0 and α(T ) � 0.0.
As in [21] we let α(t) = 1/(1+ e

t/T −1/2
θ ), where θ is a hyperparameter. Eq. (8) is

such that the importance sampling mechanism it implies accounts for the (esti-
mated) component density p̃k(x|Wk) of the k-th latent subsample of the data,
therefore respecting the natural distribution of such sub-population and focus-
ing integration on the relevant (i.e., having high component-specific likelihood)
integration points. On the other hand, since the estimates of this component den-
sities are not reliable during the early stage of the NMM training process, Eq. (8)
prescribes a (safer) sampling from a uniform distribution at the beginning, like
in the plain Monte Carlo algorithm. As the robustness of the NMM estimates
increases, i.e. as t increases, sampling from p̃k(x|Wk) replaces progressively the
sampling from u(x), ending up in entirely non-uniform importance sampling.
The form of α(t) is such that the algorithm basically sticks with the uniform
sampling for quite some time before beginning crediting the estimated pdfs, but
it ends up relying mostly on the neural component densities throughout the
advanced stage of training. Since ϕk(x,Wk) is non-negative by construction, for
t → T the sampling occurs substantially from |ϕk(x,Wk)| /

∫
S

|ϕk(x,Wk)| dx,
that is a sufficient condition for granting that the variance of the estimated
integral vanishes and the corresponding error goes to zero [15].
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Sampling from p
(k)
u (x) requires an effective method for sampling from the

output of the k-th MLP in the NMM. A specialization of Markov chain Monte
Carlo, namely the Metropolis–Hastings (M-H) algorithm [14], is used herein.
M-H is robust to the fact that, during training, ϕk(x,Wk) may not be prop-
erly normalized but it is proportional by construction to the corresponding pdf
estimate (which is normalized properly, instead, by definition) [14]. Due to its
efficiency and ease of sampling, a multivariate logistic pdf with radial basis,
having location x and scale σ, is used as the proposal pdf q(x′|x) required
by M-H to generate a new candidate sample x′ = (x′

1, . . . , x
′
d) from the cur-

rent sample x = (x1, . . . , xd). Formally, such a proposal pdf is defined as
q(x′|x, σ) =

∏d
i=1

1
σ e(x

′
i−xi)/σ(1 + e(x

′
i−xi)/σ)−2 which can be sampled readily

by means of the inverse transform sampling technique. Any approach to model
selection can be applied to fix empirically the values for the present hyperpa-
rameters (that is, the scale σ of the proposal pdf and the burn-in period for
M-H).

3 Preliminary Experimental Evaluation

This Section presents a preliminary evaluation of the NMM behavior on
random samples generated synthetically from a multimodal pdf p(·) hav-
ing known form. The random samples used in the experiments were
drawn from mixtures p(x) of c Fisher-Tippett pdfs, that is p(x) =
∑c

i=1
Pi

βi
exp

(
−x−μi

βi

)
exp

{
− exp

(
−x−μi

βi

)}
. The mixing parameters P1, . . . , Pc

were drawn at random (any time a new dataset had to be generated) from the
uniform distribution over [0.1] and normalized such that

∑c
i=1 Pi = 1. The com-

ponent densities of the Fisher-Tippett mixture are identified by their locations
μi and scales βi, respectively, for i = 1, . . . , c. The locations were drawn at ran-
dom from the uniform distribution over (0, 10), while the scales were randomly
and uniformly distributed over (0.01, 0.9). The estimation tasks we faced involved
1200 patterns randomly drawn from p(x), and a variable number c of component
densities, namely c = 5, 10, 15 and 20, respectively. Each c-specific dataset was
split into a training set (n = 800 patterns) and a validation set (the remaining
400 patterns). The integrated squared error (ISE) between p(x) and its estimate
p̃(x), that is

∫
(p(x) − p̃(x))2 dx, is used as the criterion of assessment of the

performance of the estimation techniques. The ISE is computed numerically via
Simpson’s method.

In the present experiments we used NMMs involving MLPs with a single
hidden layer of 9 units. Logistic sigmoid activation functions were used, having
layer-wise [19] trainable amplitudes λ. All the parameters in the NMM were
initialized at random over small intervals centered at zero, except for the ampli-
tudes λ that were initially set to 1 and the mixing coefficients that were set to
ci = 1/K for i = 1, . . . ,K. As in [22] we let θ = 0.07 in the definition of the
function α(t), and the number of integration points was set to m = 400, sampled
at the beginning of each training epoch using a scale σ = 9 for the logistic pro-
posal pdf in M-H. The burn-in period of the Markov chain in M-H was stretched
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over the first 500 states. The other hyperparameters of the NMM were fixed via
random-search based on the cross-validated likelihood criterion exploiting the
validation set. Input data were not normalized. Results are reported in Table 1.
NMMs having different values of K (that is K = 4, 8 and 12) were evaluated, and
compared with the most prominent statistical techniques, parametric and non-
parametric, namely: 8-, 16- and 32-GMM initialized via k-means and refined via
iterative maximum-likelihood re-estimation [10], kn-NN with unbiased kn = 1

√
n

[10], and Parzen Window (PW) with unbiased bandwidth hn = 1/
√

n of the
Gaussian kernels [10].

Table 1. Estimation of the Fisher-Tippett mixture p(x) (with n = 800) in terms of
integrated squared error as a function of the number c of Fisher-Tippett component
densities. Best results are shown in boldface. (Legend: k-GMM and k-NMM denote the
GMM and the NMM with k components, respectively).

c 5 10 15 20 Avg.± std. dev.

8-GMM 9.60× 10−3 1.12× 10−2 4.57× 10−2 7.99× 10−2 (3.66± 2.89)× 10−2

16-GMM 6.33× 10−3 9.29× 10−3 3.78× 10−2 4.24× 10−2 (2.40± 1.63)× 10−2

32-GMM 7.15× 10−3 9.82× 10−3 2.41× 10−2 3.03× 10−2 (1.78± 0.97)× 10−2

kn-NN 6.54× 10−3 8.70× 10−3 2.03× 10−2 2.36× 10−2 (1.48± 0.73)× 10−2

PW 6.02× 10−3 8.94× 10−3 2.14× 10−2 1.98× 10−2 (1.40± 0.67)× 10−2

4-NMM 6.41× 10−3 7.06× 10−3 1.09× 10−2 1.40× 10−2 (9.59± 3.07)× 10−3

8-NMM 5.89× 10−3 6.02× 10−3 8.11× 10−3 1.01× 10−2 (7.53± 1.73)× 10−3

12-NMM 6.38× 10−3 6.27× 10−3 8.05× 10−3 9.64× 10−3 (7.59± 1.38)× 10−3

It is seen that all the models yield values of the resulting ISE that tend to
increase as a function of c. Nevertheless, the NMM improves systematically and
significantly over all the statistical approaches regardless of c. On average, both
the 8-NMM and the 16-NMM offer a 46% relative ISE reduction over the PW
(the PW turns out to be the closest competitor to NMM in the present setup).
Welch’s t-test returns a level of confidence >90% on the statistical significance
of the gap between the results yielded by the 8-NMM (or, by the 12-NMM) and
by the PW, respectively. Moreover, the NMM results in the stablest estimators
overall, as shown by the values of the standard deviations (last column of the
table). This is evidence of the fact that the degree of fitness of the NMMs to
the true pdf is less sensitive to the complexity of the underlying Fisher-Tippett
mixture (that is, to c) than that yielded by the traditional statistical models.
As expected, ISE differences are observed among the k-NMMs depending on the
different values of k. In the present setup, differences between the 8-NMM and
the 12-NMM turn out to be mild (especially if compared to the overall gaps
between NMMs and the established statistical techniques), and they depend on
the complexity of the underlying pdf to be estimated, at least to some extent,
as expected.
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4 Pro Tempore Conclusions and On-Going Research

Density estimation remains an open, non-trivial task: in fact, significant improve-
ment over established approaches may still be expected of novel techniques,
capable of increased robustness of the resulting pdf estimates. In spite of the
relative simplicity of the data used in the previous Section, the empirical evi-
dence reported therein confirms that the traditional statistical techniques may
yield inaccurate estimates, whereas the NMM may result in a model of the data
that is closer to the true pdf underlying the unlabeled samples at hand. For the
time being, we are in the early stages of investigating the behavior of the tech-
nique over multivariate random vectors. Model selection (in particular, selection
of proper ANN architectures) is under further investigation, as well, by exploit-
ing the implicit availability of a mathematically grounded assessment criterion,
namely the likelihood of the model (e.g., of its architecture) given a validation
set. Finally, another facet of the NMM that is currently under development lies
in the initialization procedure: non-uniform initialization of the mixing coeffi-
cients may turn out to be helpful in breaking potential ties, and initializing the
individual neural components via BP learning of a subset of the components of a
pre-estimated reference mixture model (i.e., a GMM) may also fruitfully replace
the bare random initialization of the MLPs parameters.

References

1. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC
for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)

2. Aste, M., Boninsegna, M., Freno, A., Trentin, E.: Techniques for dealing with
incomplete data: a tutorial and survey. Pattern Anal. Appl. 18(1), 1–29 (2015)

3. Beirami, A.: Wireless network compression via memory-enabled overhearing
helpers. IEEE Trans. Wirel. Commun. 15(1), 176–190 (2016)

4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, Heidelberg (2006). https://doi.org/10.1007/978-1-4615-
7566-5

6. Bongini, M., Rigutini, L., Trentin, E.: Recursive neural networks for density esti-
mation over generalized random graphs. IEEE Trans. Neural Netw. Learn. Syst.
(2018). https://doi.org/10.1109/TNNLS.2018.2803523

7. Borenstein, M., Hedges, L.V., Higgins, J.P.T., Rothstein, H.R.: Introduction to
MetaAnalysis. Wiley-Blackwell, New York (2009)

8. Cuthbertson, K., Nitzsche, D.: Quantitative Financial Economics: Stocks, Bonds
and Foreign Exchange, 2nd edn. Wiley, New York (2004)

9. Cybenko, G.: Approximation by superposition of sigmoidal functions. Math. Con-
trol Signal Syst. 2(4), 303–314 (1989)

10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-
Interscience, New York (2000)

11. Liang, F., Barron, A.: Exact minimax strategies for predictive density estimation,
data compression, and model selection. IEEE Trans. Inf. Theory 50(11), 2708–2726
(2004)

https://doi.org/10.1007/978-1-4615-7566-5
https://doi.org/10.1007/978-1-4615-7566-5
https://doi.org/10.1109/TNNLS.2018.2803523


Maximum-Likelihood Estimation of Neural Mixture Densities 189

12. Magdon-Ismail, M., Atiya, A.: Density estimation and random variate generation
using multilayer networks. IEEE Trans. Neural Netw. 13(3), 497–520 (2002)

13. Modha, D.S., Fainman, Y.: A learning law for density estimation. IEEE Trans.
Neural Netw. 5(3), 519–23 (1994)

14. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics.
Oxford University Press, Oxford (1999)

15. Ohl, T.: VEGAS revisited: adaptive Monte Carlo integration beyond factorization.
Comput. Phys. Commun. 120, 13–19 (1999)

16. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn.
Wiley, Hoboken (2012)

17. Schwenker, F., Trentin, E.: Pattern classification and clustering: a review of par-
tially supervised learning approaches. Pattern Recognit. Lett. 37, 4–14 (2014)

18. Spall, J.C., Maryak, J.L.: A feasible bayesian estimator of quantiles for projectile
accuracy from non-i.i.d. data. J. Am. Stat. Assoc. 87(419), 676–681 (1992)

19. Trentin, E.: Networks with trainable amplitude of activation functions. Neural
Netw. 14(45), 471–493 (2001)

20. Trentin, E.: Maximum-likelihood normalization of features increases the robustness
of neural-based spoken human-computer interaction. Pattern Recognit. Lett. 66,
71–80 (2015)

21. Trentin, E.: Soft-constrained nonparametric density estimation with artificial neu-
ral networks. In: Schwenker, F., Abbas, H.M., El Gayar, N., Trentin, E. (eds.)
ANNPR 2016. LNCS (LNAI), vol. 9896, pp. 68–79. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46182-3 6

22. Trentin, E.: Soft-constrained neural networks for nonparametric density estimation.
Neural Process. Lett. (2017). https://doi.org/10.1007/s11063-017-9740-1

23. Trentin, E., Freno, A.: Probabilistic interpretation of neural networks for the classi-
fication of vectors, sequences and graphs. In: Bianchini, M., Maggini, M., Scarselli,
F., Jain, L.C. (eds.) Innovations in Neural Information Paradigms and Applica-
tions. SCI, vol. 247, pp. 155–182. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04003-0 7

24. Trentin, E., Freno, A.: Unsupervised nonparametric density estimation: a neural
network approach. In: Proceedings of the International Joint Conference on Neural
Networks, IJCNN 2009, pp. 3140–3147 (2009)

25. Trentin, E., Lusnig, L., Cavalli, F.: Parzen neural networks: fundamentals, proper-
ties, and an application to forensic anthropology. Neural Netw. 97, 137–151 (2018)

26. Trentin, E., Scherer, S., Schwenker, F.: Emotion recognition from speech signals
via a probabilistic echo-state network. Pattern Recognit. Lett. 66, 4–12 (2015)

27. Vapnik, V.N., Mukherjee, S.: Support vector method for multivariate density esti-
mation. In: Advances in Neural Information Processing Systems, pp. 659–665. MIT
Press (2000)

28. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995).
https://doi.org/10.1007/978-1-4757-2440-0

29. Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty years of mixture of experts. IEEE
Trans. Neural Netw. Learn. Syst. 23, 1177–1193 (2012)

https://doi.org/10.1007/978-3-319-46182-3_6
https://doi.org/10.1007/s11063-017-9740-1
https://doi.org/10.1007/978-3-642-04003-0_7
https://doi.org/10.1007/978-3-642-04003-0_7
https://doi.org/10.1007/978-1-4757-2440-0


Generating Bounding Box Supervision
for Semantic Segmentation with Deep

Learning

Simone Bonechi, Paolo Andreini(B), Monica Bianchini, and Franco Scarselli

Department of Information Engineering and Mathematics,
University of Siena, Siena, Italy
paolo.andreini@yahoo.it

Abstract. Most of the leading Convolutional Neural Network (CNN)
models for semantic segmentation exploit a large number of pixel–level
annotations. Such a human based labeling requires a considerable effort
that complicates the creation of large–scale datasets. In this paper, we
propose a deep learning approach that uses bounding box annotations
to train a semantic segmentation network. Indeed, the bounding box
supervision, even though less accurate, is a valuable alternative, effective
in reducing the dataset collection costs. The proposed method is based
on a two stage training procedure: first, a deep neural network is trained
to distinguish the relevant object from the background inside a given
bounding box; then, the output of the network is used to provide a weak
supervision for a multi–class segmentation CNN. The performances of
our approach have been assessed on the Pascal–VOC 2012 segmentation
dataset, obtaining competitive results compared to a fully supervised
setting.

Keywords: Deep learning · Semantic segmentation
Weak supervision · Bounding box

1 Introduction

Image semantic segmentation is one of the fundamental topic in computer vision.
Its goal is to make dense predictions, inferring the label of every pixel within an
image. In the last few years, the use of Convolutional Neural Networks (CNNs)
has lead to an impressive progress in this field [1–3], yet based on the use of
large datasets of fully annotated images. The human annotation procedure for
semantic segmentation is particularly expensive, since it requires a pixel–level
characterization of images. For this reason, the available datasets are normally
orders of magnitude smaller than image classification datasets (f.i. ImageNet
[4]). Such a limitation is important, since the performance of CNNs is largely
affected by the amount of training examples. On the other hand, bounding box
annotations are less accurate than per–pixel annotations, but they are cheaper
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and easier to be obtained. In this paper, we propose a simple method, called
BBSDL – for Bounding Box Supervision with Deep Learning –, to train CNNs
for semantic segmentation using only a bounding box supervision (or a mix of
bounding box and pixel–level annotations). Figure 1 provides a general overview
of our method, that can be sketched as follows.

• A background–foreground network (BF–Net) is trained on a relatively large
dataset with a full pixel–level supervision. The aim of the BF–Net is to rec-
ognize the most relevant object inside a bounding box.

• A multi–class segmentation CNN is trained on a target dataset, in which the
supervision is obtained exploiting the output of the BF–Net.

The rationale behind this approach is that realizing a background–foreground
segmentation, constrained to a bounding box, is significantly simpler than
obtaining a multi–class semantic segmentation on the whole image. Following
this intuition, we consider a scenario in which only bounding box annotations
are available on a target dataset. The pixel–level supervision, on such dataset,
can be produced from the bounding boxes exploiting the BF–Net trained on
a different dataset. In particular, multi–class annotations can be generated in
many ways from the output of the BF–Net and, indeed, a set of different solutions
were tested, in order to produce the best target for the multi–class segmentation
network. The effectiveness of the proposed method has also been compared with
other existing techniques [5,6].

The paper is organized as follows. In Sect. 2, we briefly review the state–of–
the–art research in semantic segmentation and weakly supervised approaches.
Section 3 presents the details of our method, whereas Sect. 4 describes the exper-
imental setup and collects the obtained results. Finally, some conclusions and
future perspectives are drawn in Sect. 5.

2 Related Works

Semantic segmentation describes the process of associating each pixel of an image
with a class label. Over the past few years, impressive results in image semantic
segmentation, so as in many other visual recognition tasks, have been obtained
thanks to deep learning techniques [1–3]. Recent semantic segmentation algo-
rithms often convert existing CNN architectures, designed for image classifica-
tion, to fully convolutional networks. In this framework, semantic segmentation
is generally formulated as a pixel–level labeling problem, which requires hand–
made fully annotated images. Sadly, producing this kind of supervision is highly
demanding and costly. In order to reduce the annotation efforts, some deep
learning methods exploit weak supervision. In contrast to learning under strong
supervision, these methods are able to learn from weaker annotations, such as
image–level tags, partial labels, bounding boxes, etc. In particular, weak super-
vised learning has been addressed through Multiple Instance Learning (MIL) [7].
MIL deals with training data arranged in sets, called bags, with the supervision
provided only at the set level, while single instances are not individually labeled
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Fig. 1. The training scheme. On the top, weak segmentation annotations are generated
from the BF–Net output. At the bottom, the multi–class network is trained based on
the generated weak supervision.

[8]. For instance, in [9], a semantic texton forest approach—based on ensem-
bles of decision trees that act directly on image pixels—, revisited in the MIL
framework, is proposed for semantic segmentation. Instead, a MIL formulation of
multi–class semantic segmentation, by a fully convolutional network, is presented
in [10]. MIL extensions to classical segmentation approaches are also introduced
in [11] and [12]. Finally, the recently proposed WILDCAT method [13] exploits
only global image labels to train deep convolutional neural networks to perform
image classification, point–wise object localization, and semantic segmentation.

On the other hand, following an approach which is something similar to our
proposal, i.e. that of using bounding box labeling to aid semantic segmentation,
in [5], the BoxSup method is proposed, where the core idea is that to iterate
between automatically generating region proposals and training convolutional
networks. Similarly, in [6], an Expectation–Maximization algorithm was used to
iteratively update the training supervision. Nevertheless, while both the above
described methods rely on an iterative procedure, our approach directly produces
the segmentation supervision, exploiting a deep convolutional network.

3 The BBSDL Method

In the following, we delve into the details of the multi stage training algorithm
proposed in this paper (see Fig. 1).
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BF–Net Training. The first step in the proposed approach consists in training
a deep neural network, capable of recognizing the most relevant object inside a
bounding box, thus separating the background from the foreground, called BF–
Net (top of Fig. 1). Our experiments are conducted using the Pyramid Scene
Parsing architecture [3] (PSP, see Fig. 2).

Fig. 2. Scheme of the pyramid scene parsing network, proposed by [3], used in this
paper.

The PSP net is a deep fully convolutional neural network which re–purposes
the ResNet [14], originally designed for image classification, to perform semantic
segmentation. Differently from the original ResNet, a set of dilated convolutions
[2] replaces standard convolutions to enlarge the receptive field of the neural
network. To gather context information, the PSP exploits a pyramid of pooling
with different kernel size. Both upsampling and concatenation produce the final
feature representation, which is fed into a convolutional layer to get the desired
per–pixel predictions. ResNets of different depths (i.e. with a different number
of convolutional layers) were proposed in the original paper [14]. We chose to
use the ResNet50 architecture, due to computational issues.

To train this network a dataset composed by image crops is required. Each
crop should contain only a single relevant object, in which pixels are anno-
tated either as foreground or background; the information about the object
class is not needed and indeed it is not used during training. We employ the
COCO dataset [15], which collects instance–level fully annotated images (i.e.,
in which objects of the same category are labeled separately). Such supervi-
sion can be used to extract the bounding box that encloses each object and
its background–foreground pixel–wise annotation. The images are then cropped,
using the obtained bounding boxes. Moreover, in order to include more context
information, each crop is enlarged by 5%, compared with the corresponding box
dimensions. Image crops are finally used for training and validating the BF–Net.

Multiclass Dataset Generation. Once the BF–Net has been trained, the
pixel–level supervision for the multi–class segmentation network training is gen-
erated (bottom of Fig. 1). All the bounding box annotations in the target dataset
need to be replaced with a multi–class pixel–level supervision. To this aim, the
BF–Net is used to produce predictions over each bounding box. Different strate-
gies can be employed in order to convert such predictions into the final seg-
mentation supervision. In particular, if the näıve approach consists in directly
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replacing each bounding box with the pixel–level classification given by the BF–
Net, a more refined strategy suggests to use the value of the BF–Net output
probability prob(x, y), at position (x, y), to obtain the label l(x, y) for the same
point:

l(x, y) =

⎧
⎨

⎩

background if prob(x, y) < th1

foreground if prob(x, y) > th2

uncertain otherwise
(1)

The thresholds th1 and th2, after a trial–and–error procedure, have been
fixed to 0.3 and 0.7, respectively. If prob(x, y) ∈ (th1, th2), then (x, y) is labeled
as uncertain and will not be considered for the gradient computation.

Based on both these strategies, a problem naturally arises when bounding
box annotations partially overlap. Indeed, in this situation, it is not clear which
prediction should be trusted. To solve the ambiguity, three different heuristic
approaches were used in the experiments, which are sketched in the following.

• Ignore Intersection – Overlapping regions are labeled as “uncertain”, so
that the gradient will not be propagated in these regions.

• Smallest Box – Overlapping regions are considered to belong to the smallest
bounding box, which is supposed to coincide with the foreground object.

• Fixed Threshold – Overlapping regions are considered to belong to the
bounding box with the highest foreground probability prediction.

In Sect. 4.2, we review the experimental results obtained using the three
different strategies.

Multiclass Segmentation Network Training. Once the pixel–level supervi-
sion is provided, the multi–class network can be trained. In all the experiments,
the Pascal–VOC 2012 dataset [16] has been exploited for the PSP training and
validation. Similarly to the BF–Net, we used the PSP50 as the multi–class seg-
mentation network, with 21 probability output maps. The experimental details
are reported in Sect. 4.3.

Implementation Details. Both the BF–Net and the multi–class segmentation
network are implemented in TensorFlow. All the experiments follow the same
training procedure that will be explained in the following. Actually, the training
phase is composed of two different stages. First, the images are resized at a fixed
resolution of 233×233, using padding to maintain the original aspect ratio; early
stopping is implemented based on the validation set. Then, the training continues
using random crops of 233 × 233 pixels to obtain a more accurate prediction.
The Adam optimizer [17], with learning rate set to 10−6 and a mini–batch of
15 examples, has been used to train the network. The evaluation phase relies on
a sliding window approach. The experimentation was carried out in a Debian
environment, with a single NVIDIA GeForce GTX 1080 Ti GPU, with 128 GB
of RAM. The average inference time for each image is about 1.6 s and depends
on its size.



Generating Bounding Box Supervision for Semantic Segmentation 195

4 Experiments and Results

In Sect. 4.1, we describe the datasets used in our experiments, whereas the weak
supervision generation is presented in Sect. 4.2. Finally the experimental results
are discussed in Sect. 4.3.

4.1 The Datasets

COCO–2017. The COCO–2017 dataset [15], firstly released by Microsoft Cor-
poration, collects 115000 training and 5000 validation instance–level fully anno-
tated images. Also a test set of 41000 images is provided. The object categories
are 80, plus the background. However in our experiments, the class supervision
is not used. From the given annotations, 816590 and 34938 bounding boxes have
been extracted, respectively, for training and evaluating the BF–Net.

Pascal–VOC 2012. The original Pascal–VOC 2012 segmentation dataset col-
lects 1464 training and 1449 validation pixel–level fully annotated images. A test
set of 1456 images is also provided, yet without a publicly available labeling. The
object categories are 20, plus the background class and a “don’t care” class, to
account for uncertain regions. Finally, a set of 14212 additional images are pro-
vided, with only bounding box annotations. Following the procedure reported
in [18], an augmented Pascal–VOC segmentation set was also devised, which
provides full pixel–level annotations for 9118 out of the 14212 images originally
weakly annotated, yielding a total of 10582 training images. The Pascal–VOC
dataset is used for training and evaluating the multi–class segmentation network.

4.2 Weak Supervision Generation for Pascal–VOC 2012

The generation of weak supervisions for the Pascal–VOC dataset follows the pro-
cedure described in Sect. 3. First, the BF–Net is trained on the COCO dataset.
All the bounding box annotations of the 10582 augmented Pascal–VOC images
are then replaced with the multi–class pixel–level supervision obtained from the
output of the BF–Net.

Table 1 compares the generated weak supervisions with the strong annota-
tions provided by the Pascal–VOC dataset. Based on the reported results, the
best performances are obtained using the “Fixed Threshold” approach, provid-
ing an improvement of more than 4% of the mean Intersection over Union (mean
IoU)1, compared to the other methods. It is also worth noting that, when the
probability falls between the two thresholds, an uncertainty region is produced.
This region, as depicted in Fig. 3, mostly coincides with the uncertainty class
present in the Pascal–VOC annotations.
1 The Mean Intersection over Union is a common measure used to evaluate the quality

of a segmentation algorithm, and adopted by the Pascal–VOC competitions. The
mean IoU is defined as the average of the ratios |T ∩ P |/|T ∪ P | for all the images
in the test set, where P is the set of pixels predicted as foreground, T is the set of
pixels actually annotated as foreground, and | · | denotes the set cardinality operator.
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Table 1. Comparison between the Pascal–VOC annotations and the annotations gen-
erated by BBSDL.

Supervision generation approach Mean IoU

Ignore intersection 76.22%

Smallest box 78.01%

Fixed threshold 82.32%

(a) (b) (c)

Fig. 3. Qualitative comparison between Ground–Truth segmentation and generated
annotations. (a) Original image. (b) Generated annotations with a fixed threshold. (c)
Ground–Truth segmentation.

Table 2 reports the results obtained by training the multi–class segmenta-
tion network on the Pascal–VOC validation set, confirming the Fixed Threshold
approach as the most effective. For this reason, this setup will be used in all the
following experiments.
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Table 2. Results of the multi–class segmentation on the Pascal–VOC validation set,
obtained with different strategies, for the pixel–level weak supervision generation.

Supervision generation approach Mean IoU

Ignore intersection 60.93%

Smallest box 60.64%

Fixed threshold 65.28%

4.3 Experimental Results

In order to evaluate the proposed framework, we set up the following exper-
iments, that simulate a different availability of pixel–level and bounding box
annotations.

• Mask supervised setting – This is the baseline method, in which all the
10582 pixel–level annotations of the Pascal–VOC training set are used.

• BoundingBox supervised setting – The pixel–wise labeling provided by
the Pascal–VOC dataset is totally disregarded. All the bounding boxes are
replaced with the supervision provided by the BF–Net.

• Semi supervised setting – This simulate the situation in which a relatively
reduced number of pixel–wise annotations is available, whereas it is possible
to rely on a greater set of bounding box annotations. As in [5] and [6], we
used 1464 strongly supervised pixel–level annotations, replacing the bounding
boxes in the remaining 9118 images with the supervision provided by BBSDL.

Table 3 shows the results obtained by BBSDL on the Pascal–VOC 2012 val-
idation set, with the three different experimental setups, compared with other
state–of–the–art methods, namely BoxSup [5] and Box–EM [6]. A qualitative
evaluation is reported in Fig. 4.

Training with strong annotations produces the best mean IoU on the vali-
dation set (70.41%). Instead, the mean IoU drops to 65.28%, using only weak
bounding box annotations. On the other hand, the semi–supervised setup allows
to obtain a mean IoU of 69.20%2, which is just 1.21 point worse than the strongly
supervised setup. As expected, the performance achieved by using only bound-
ing box annotations is less than that obtainable with a strong supervision. How-
ever, the produced results show that BBSDL is viable to be used in practical
applications, where strong annotations are not available or, in general, are too
expensive to be produced. On the validation set, the difference in performance

2 We report the results of the semi–supervised approach just for the sake of complete-
ness, since the real purpose of this paper is to present a method that can work on a
dataset where no strong supervision is available.
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(a) (b) (c) (d) (e)

Fig. 4. Qualitative comparison of the results obtained with the three different super-
vision strategies. (a) Original image. Segmentation obtained by weak bounding box
annotations (b), based on the semi–supervised setting (c), and by pixel–level annota-
tions (d). (e) Ground–Truth segmentation.

of BBSDL compared to the strong–supervised (Mask) and the weakly super-
vised (BoundingBox) cases is 5.13%. This result outperforms that obtained by
the Box–EM approach (with a difference of 7%), but it is worse with respect to
BoxSup. However, BoxSup employs the MCG segmentation proposal mechanism
[19], previously trained on the pixel–level annotations of the Pascal–VOC train-
ing set. In Table 4, the results on the Pascal–VOC test set are reported, which
look similar to those obtained on the validation set. Unfortunately, the baseline
results for BoxSup on the test set are not reported in [5], whereas Box–EM uses
a different number of training images—differently from BBSDL and BoxSup,
Box–EM also uses the validation images to train the model. For this reason, the
comparative evaluation is possible only on the validation set.
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Table 3. Comparative results on the Pascal–VOC 2012 validation set.

Method Supervision Num. of strong tag Num. of weak tag Mean IoU

BoxSup [5] Mask 10582 - 63.80%

BoxSup [5] BoundingBox - 10582 62.00%

BoxSup [5] Semi 1464 9118 63.50%

Bbox–EM [6] Mask 10582 - 67.60%

Bbox–EM [6] BoundingBox - 10582 60.60%

Bbox–EM [6] Semi 1464 9118 65.10%

BBSDL Mask 10582 - 70.41%

BBSDL BoundingBox - 10582 65.28%

BBSDL Semi 1464 9118 69.20%

Table 4. Comparative results on the Pascal–VOC 2012 test set.

Method Supervision Num. of strong tag Num. of weak tag Mean IoU

BoxSup [5] Mask 10582 - -

BoxSup [5] BoundingBox - 10582 64.4%

BoxSup [5] Semi 1464 9118 66.2%

Bbox–EM [6] Mask 12031 - 70.3%

Bbox–EM [6] BoundingBox - 12031 62.2%

Bbox–EM [6] Semi 1464 10567 66.6%

BBSDL Mask 10582 - 70.36%

BBSDL BoundingBox - 10582 66.24%

BBSDL Semi 1464 9118 70.25%

5 Conclusions and Future Perspectives

This paper explores the use of bounding box annotations for the training of a
state–of–the–art semantic segmentation network. The output of a background–
foreground network, capable of recognizing the most relevant object inside a
region, has been used to deduce pixel–wise annotations. A fixed threshold strat-
egy has been employed in order to convert the background–foreground network
output into the final segmentation supervision. Actually, the obtained weak
supervision allowed to train a multi–class segmentation network, whose perfor-
mances are competitive with respect to approaching the semantic segmentation
problem in a strongly–supervised framework. In perspective, how to avoid the
use of predefined thresholds for the multi–class dataset generation represents
an important issue to deal with, in order to improve the BBSDL performances.
Moreover, also training the BF–Net based on unsupervised data should be a mat-
ter of future work, capturing images from videos and exploiting the temporal
information related to successive frames.
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19. Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale com-
binatorial grouping. In: Proceedings of IEEE CVPR 2014, pp. 328–335 (2014)

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48


Inductive–Transductive Learning
with Graph Neural Networks

Alberto Rossi1,2(B), Matteo Tiezzi1(B), Giovanna Maria Dimitri3,
Monica Bianchini1, Marco Maggini1, and Franco Scarselli1(B)

1 Department of Information Engineering and Mathematics,
University of Siena, Siena, Italy

{mtiezzi,monica,maggini,franco}@diism.unisi.it
2 Department of Information Engineering, University of Florence, Florence, Italy

alberto.rossi@unifi.it
3 Department of Computer Science, Computer Laboratory,

University of Cambridge, Cambridge, UK
gmd43@cam.ac.uk

http://sailab.diism.unisi.it

Abstract. Graphs are a natural choice to encode data in many real–
world applications. In fact, a graph can describe a given pattern as a com-
plex structure made up of parts (the nodes) and relationships between
them (the edges). Despite their rich representational power, most of
machine learning approaches cannot deal directly with inputs encoded
by graphs. Indeed, Graph Neural Networks (GNNs) have been devised as
an extension of recursive models, able to process general graphs, possibly
undirected and cyclic. In particular, GNNs can be trained to approxi-
mate all the “practically useful” functions on the graph space, based on
the classical inductive learning approach, realized within the supervised
framework. However, the information encoded in the edges can actually
be used in a more refined way, to switch from inductive to transductive
learning. In this paper, we present an inductive–transductive learning
scheme based on GNNs. The proposed approach is evaluated both on
artificial and real–world datasets showing promising results. The recently
released GNN software, based on the Tensorflow library, is made avail-
able for interested users.

Keywords: Graph Neural Networks · Transductive learning
Graph representations

1 Introduction

Graphs are a rich structured model that can be exploited to encode data from
many different domains, which range from bioinformatics [1,2] to neuroscience
[3], and social networks [4]. Despite the simplicity of the concepts at the basis
of the definition of a graph, the possibility to encode complex data as a set of
parts, i.e. the graph nodes, and a set of relationships between these parts, i.e.
c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 201–212, 2018.
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the graph edges, allows a good compromise between the need of a compact data
representation and the preservation of most of the original input information.
This model is quite natural in many of the aforementioned applications and the
encoding is often straightforward. As an example, the Web can be naturally seen
and represented as a graph, with nodes corresponding to web pages (and storing
their content), and edges standing for the hyper-links between them [5].

Many classical machine learning approaches assume to deal with flat data,
encoded, for instance, as real valued vectors. Hence, complex data, such as
graphs, need to be transformed into these simpler encodings—typically with
some sort of graph traversal—often loosing useful information [6]. In this way,
the input to the machine learning tool is no more the original graph but instead a
linearized representation, in which the topological and structural information is
usually encoded in an unnatural way, that may hinder the learning process itself.
Moreover, the natural variability within graphs requires artificial solutions. For
instance, the mapping of a graph to a real valued vector can be implemented by
concatenating the features stored in each node, following an order derived from
the connection topology. However, this approach has many drawbacks. First, in
order to have a fixed dimensionality for the vector, all the input graphs should
have the same number of nodes or, at least, a maximum cardinality must be
chosen for this set, filling the vector elements with padding values when the
graph has a lower number of nodes. Second, the encoding of the topology by
the position of the node inside the vector is not well defined for any category of
graphs. Indeed, if for Directed Ordered Acyclic Graphs (DOAGs) such a topo-
logical order is uniquely defined, this does not hold for generic cyclic graphs,
where the mapping between nodes and related elements occupying particular
positions is arbitrary.

The Graph Neural Network Model (GNN), which was introduced in [6], is
able to process graphs directly, without the need of a preprocessing step and
without any limitation on the graph type. GNNs are supervised architectures,
designed as an extension to Recursive Neural Networks [17–19] and Markov Ran-
dom Chain Models. The original GNN model is based on the classical inductive
learning scheme, where a training set is used to adapt a parametric model.
Actually, inductive learning assumes the existence of some rules, that can be
implemented by the model, allowing us to classify a pattern given its properties.
In this framework, GNNs have been successfully used in different applications,
from the classification of Web pages (in Spam or Non–Spam) to the prediction
of chemical properties of drug molecules [7].

On the other hand, transductive learning adopts a more direct approach,
by which a pattern is classified according to its relationships with the examples
available in the training set. In this case, the training patterns are used directly
in the classification procedure, without adapting a parametric model, and even
without relying on the existence of classification rules and pattern features. In the
standard inductive approach, GNNs exclusively employ the parameters learnt
during the training procedure. Vice versa, in the transductive approach, the
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available targets are added to the node labels, and they are directly diffused
through the graph in the classification phase.

In this paper, we present a mixed transductive–inductive GNN model that
exhibits characteristics common to both the learning frameworks. This model is
evaluated on synthetic (clique detection and subgraph matching) and real (traffic
flow prediction and web–spam prediction) problems, involving structured inputs
encoded with graphs. In particular, we exploit a new implementation of GNNs
based on the TensorFlow platform [8].

The paper is organized as follows. In the next section, the GNN model and the
related learning algorithms are briefly sketched. Then, in Sect. 3 the transductive
approach for GNNs is described. Section 4 presents the experimental settings
and reports the obtained results. Finally Sect. 5 draws some conclusions and
delineates future perspectives.

2 The Graph Neural Network Model

A graph G is defined as a pair G = (V,E), where V represents the finite set
of nodes and E ⊆ V × V denotes the set of edges. An edge is identified by the
unordered pair of nodes it connects, i.e. e = (a, b), e ∈ E and a, b ∈ V . In the case
in which an asymmetric relationship must be encoded, the pair of nodes that
define an edge must be considered as ordered, so as (a, b) and (b, a) represent
different connections. In this case, it is preferable to use the term arc, while
the corresponding graph will be referred as directed. The GNN model has been
devised to deal with either directed or undirected graphs. Both edges and nodes
can be enriched by attributes that are collected into a label. In the following
we will assume that labels are vectors of predefined dimensionality (eventually
different for nodes and edges) that encode features describing each individual
node (f.i. average color, area, shape factors for nodes representing homogeneous
regions in an image) and each edge (f.i. the distance between the barycenters of
two adjacent regions and the length of the common boundary), respectively.

Graph Neural Networks are supervised neural network architectures, able
to face classification and regression tasks, where inputs are encoded as graphs
[6]. The computation is driven by the input graph topology, which guides the
network unfolding. The computational scheme is based on a diffusion mechanism,
by which the GNN updates the state vector at each node as a function of the
node label, and of the informative contribution of its neighborhood (edge labels
and states of the neighboring nodes), as defined by the input graph topology. The
state is supposed to summarize the information relevant to the task to be learnt
for each node and, given the diffusion process, it will finally take into account
the whole information attached to the input graph. Afterwards, the state is used
to compute the node output, f.i. the node class or a target property.

More formally, let xn ∈ IRs and on ∈ IRm be the state and the output at node
n, respectively, being fw the state transition function that drives the diffusion
process, while gw represents the output function. Then, the computation locally
performed at each node during the diffusion process can be described by the
following equation:
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xn =
∑

(n,v)∈E

fw(ln, l(n,v), xv, lv) (1)

on = gw(xn, ln) (2)

where ln ∈ IRq and l(n,v) ∈ IRp are the labels attached to n and (n, v), respec-
tively. As previously stated, the computation considers the neighborhood of n,
defined by its edges (n, v) ∈ E. In particular for each neighbor node v, the state
xv and the label lv are used in the computation (Fig. 1). The summation in Eq. 1
allows us to deal with any number of neighbors without the need of specifying
a particular position for each of them.

Fig. 1. The neighborhood of node 3. The state x3 depends on the node neighborhood
as x3 = fw(l3, l(3,1), x1, l1)+fw(l3, l(3,2), x2, l2)+fw(l3, l(3,4), x4, l4)+fw(l3, l(3,5), x5, l5).

Equation 1, replicated on all the nodes in the graph, defines a system of non–
linear equations in the unknowns xn, n ∈ V . The solution can be computed by
the Jacobi iterative procedure as

xn(t + 1) =
∑

(n,v)∈E

fw(ln, l(n,v), xv(t), lv) (3)

that implements the diffusion process for the state computation. If the state
transition function fw is a contraction mapping, the Banach Theorem guarantees
that the iterative procedure (Eq. 3) converges to a unique solution [6]. In practice,
the required iterations can be limited to a maximum number.

Both fw and gw can be implemented by simple multilayer perceptrons
(MLPs), with a unique hidden layer. The computation of Eq. 3 represents the
unfolding of the so called encoding network (Fig. 2), where fw and gw are com-
puted for each node. Basically, at each node in the graph, there is a replica of
the MLP realizing fw. Each unit stores the state at time t, i.e. xn(t). The set
of states stored in all the nodes at time t are then used to compute the states
at time t + 1. The module gw is also applied at each node for calculating the
output, but only after the state computation has converged.
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Fig. 2. Construction of the encoding network corresponding to a given input graph
(from left to right). The processing units fw and gw are replicated for each node and
connected following the graph topology.

During training, the network weights are adapted to reduce the error between
the network outputs and the expected targets on the set of supervised nodes. The
gradient computation is performed following the error Backpropagation scheme
on the unfolding network (see [21] for more details).

3 Transductive Learning with GNNs

In the inductive learning approach, a model Iw is learnt by adjusting its weights
w based on a set of labeled data, namely the training set [9]. Each example is
processed independently of the others, but the overall statistics allow the learning
algorithm to induce a general model to solve the task. Model prediction is based
only on the features describing each different input object. Once the model is
learnt, new unseen inputs can be processed one at a time to compute the model
output (f.i. the predicted class of the pattern).

Instead, in the transductive framework, the algorithm is designed to exploit
both labeled and unlabeled examples, taking advantage from relationships
between different samples, such as, for instance, some kind of spatial regulariza-
tion in the feature space (e.g. manifold regularization). The relationships among
data can be exploited either in the learning or in the prediction phase, or in both
of them. Basically, the prediction on the unlabeled data is obtained by propa-
gating the information available for the “near” examples, through the given
relationships between them. For instance, if n is an example at test time, then
the targets available in its neighborhood may be exploited, together with the
local features of n, as inputs to compute the transduced output [9]. This app-
roach is especially useful and natural when only a small set of labeled data, that
comes from an unknown stochastic process, is available. Indeed, a small sample
cannot be statistically relevant for inducing a general predictive rule [10] based
only on local features.

Most of the transductive approaches, available in literature, are based on
graphs (see e.g. [11,12]). In recent years, these methods have been widely
applied and implemented in many domains, thanks to their capability of being
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adaptable to different real–world applications, such as natural language process-
ing, surveillance, graph reconstruction and ECG classification [9].

Being capable of implementing functions on graphs, GNNs can be employed
either with a pure inductive approach or with a mixture of the transductive and
the inductive schemes. Given an input graph G = (V,E), the set of nodes V
can be split into the set S ⊂ V of supervised nodes and the set of unsupervised
nodes U ⊂ V (S ∩ U = ∅). When a pure inductive approach is used, the GNN
network is given as input one (or more) instance of the graph to be learnt (e.g.
the Web graph) and the targets for the supervised nodes in S, that are used
only to learn the GNN parameters. The trained GNN can then be exploited to
process both the original graph(s) in the learning set, to compute the output
predictions for the unlabeled nodes in U , and to process unseen graphs without
supervised nodes. For example, when considering a Web Spam problem in which
the input is a Web graph, the class of a given page is computed by the GNN
considering only the node features (e.g. the page contents) and its context in
the whole graph. The labels available at the nodes in S are not considered in
the computation. Basically it is assumed that the learning process was able to
embed the classification rules in the trained model.

However, it should be noted that also in this case the GNN exploits the
topology of the relationships among the nodes through the diffusion process
used to compute the states, as defined by Eq. 3. Both the nodes in S and U are
involved in this computation, but no information on the targets of the nodes
in S is exploited. In this sense, we cannot consider this scheme as a proper
transduction, since at test time only the node features and its context in the
data manifold affect the result of the computation.

In inductive–transductive GNNs, we assume to enrich the node features with
the target label such that it is explicitly exploited in the diffusion process, yield-
ing a direct transductive contribution. The way in which targets are diffused
and contribute to the final outputs is learnt from examples. We assume that the
learning set contains partially supervised graphs. For each graph, we split the set
of supervised nodes S into two disjoint subsets: the set of nodes used to compute
the loss L and the set of transductive nodes T . For the nodes in T the available
target is concatenated to the input feature vectors, whereas for the nodes in
L and in U a special null target is used (f.i. a vector of zeros). This setting
corresponds to a transduction case in which only the targets on the nodes in T
are available. Given a graph in the learning set, different training examples can
be generated by different splits of S into L and T . The splits can be randomly
generated. The nodes in L are used to define the training loss. This way the
GNN learns how to exploit the features of the nodes in V , the topology of the
relationships in E and the transductive targets in T to approximate the output
targets for the nodes in L. During the test phase, the set of supervised nodes S
is not split and all the targets are added as features for the corresponding nodes.
As before, the features for the nodes in U are obtained by concatenating the
original features with the null label, so that the trained model computes the
outputs on the nodes in U exploiting also the learnt transductive process.
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Notice that, during training, it is important that L and T have no intersec-
tion, otherwise the GNN would easily learn to produce the correct output at
a node by propagating directly the added target feature. The criterion used to
generate the sets L and U should try to approximate the actual distribution of
these two sets of nodes in the test phase.

4 Experimental Evaluation

In this section, we describe the overall methodology applied to evaluate the
proposed GNN transductive–inductive scheme. In particular, we describe the
datasets, synthetic and real, the setup for the experiments, and finally we present
the results.

4.1 Datasets

The evaluation of the inductive–transductive approach for GNNs has been per-
formed on two synthetic datasets. The first one for subgraph matching, the
other one for clique detection. Moreover, we tested the model on real–world
benchmarks, i.e. the WEBSPAM–UK2006 dataset1 and the traffic–flow graph of
England2.

Subgraph Localization. Given a graph G, the subgraph matching problem
consists in finding a subgraph S, of a given dimension, in G. In a more formal
way, the task is that of learning a function τ , such that τS(G,n) = 1, n ∈ V ,
when the node n belongs to the given subgraph S, and τS(G,n) = −1, otherwise
[15]. The problem of finding a given subgraph is common in many practical
problems and corresponds, for instance, to finding a particular small molecule
inside a greater compound [16]. An example of a subgraph structure is shown
in Fig. 3. Our dataset is composed of 700 different graphs, each one having 30
nodes. Instead, the considered subgraphs contain 15 nodes.

Clique Localization. A clique is a complete graph [4], i.e. a graph in which
each node is connected with all the others. In a network, overlapping cliques (i.e.
cliques that share some nodes) are admitted. In a social network for example,
cliques could represent friendship ties. In bioinformatics and computational biol-
ogy, cliques could be used for identifying similarities between different molecules
or for understanding protein–protein interactions [13]. Clique localization is a
particular instance of the subgraph matching problem [14]. A clique example is
shown in Fig. 4. In the experiments, we consider a dataset composed by 700 dif-
ferent graphs having 15 nodes each, where the dimension of the maximal clique
is 7 nodes.

WEBSPAM–UK2006—The dataset has been collected by a web crawl based
on the .uk domain [5]. The nodes of the network represent 11402 hosts, and
more than 730775 edges (links) are present. Many sets of features are available,

1 http://webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseII.
2 https://github.com/weijianzhang/EvolvingGraphDatasets/tree/master/traffic.

http://webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseII
https://github.com/weijianzhang/EvolvingGraphDatasets/tree/master/traffic
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Fig. 3. An example of a subgraph matching problem, where the graph with the blue
nodes is matched against the bigger graph. This task corresponds to finding the iso-
morphic function that maps the blue graph into the bigger one. (Color figure online)

Fig. 4. An example of a graph containing a clique. The blue nodes represent a fully
connected subgraph of dimension 4, whereas the red nodes do not belong to the clique.
(Color figure online)

grouped into three categories: basic, link–based, and content–based. We consider
only the first two categories, exploiting simple properties of the hosts, such as
the number of pages and the length of their name, while in the link–based set
we find also information on their in–degree, out–degree, PageRank, edge reci-
procity, assortativity coefficient, TrustRank, Truncated PageRank, estimation of
supporters, etc.

Traffic–Flow Prediction—This task consists in the prediction of the traffic–
flow over all motorways and ‘A’ roads, managed by the Highways Agency in
England. The problem is formulated as an edge–regression problem, since the
roads are encoded as the arcs of the graph and the nodes represent the crossroads.
In this case, nodes are not labeled, whereas a set of features (a label) is attached
to each edge. In particular, such features represent the journey times and speeds,
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estimated using a combination of sources, including Automatic Number Plate
Recognition (ANPR) cameras, in–vehicle Global Positioning Systems (GPS) and
inductive loops installed on the road surface. Journey times are derived from
real vehicle observations and computed using adjacent time periods or the same
time period on different days. The data are collected every 15 min, based on a
snapshot of the traffic at that time. The problem is that of predicting the traffic
flow across a certain road. We focus on a single time–stamp, obtaining 1002
nodes and 2499 edges, representing the roads.

4.2 Experimental Setup

The main goal of this paper consists in providing a comparison between the
transductive–inductive and the purely inductive learning frameworks. Hence,
the reported results are not to be intended as the state of the art.

In the experiments, the available datasets were split into a training, a val-
idation, and a test set, and different conditions were defined by varying the
percentage of labeled nodes: these nodes are assigned to the set T and are not
exploited in the performance evaluation. In fact, it is assumed that their output
is given and they are only exploited for the transduction, thanks to the diffusion
mechanism that characterizes the GNN model.

We evaluated all the models with five different percentages of labeled nodes:
0, 10, 20, 30, 50. In every task, we exploited a state function implemented by a
feedforward neural network with two hyperbolic tangent layers, composed by 15
and 5 neurons, respectively. Consequently, the dimension of the state is 5. For the
tasks of clique searching, subgraph and WebSpam detection, the output function
consists of a single softmax layer. For the flow–traffic detection we employed a
linear layer.

The learning procedure was based on a simple Gradient Descent Optimizer
with learning rate of 10−3, except for the WebSpam task, for which we used the
Adam optimizer with the same learning rate, in order to speed–up the learning
procedure. We set the threshold for the convergence of the state to 10−3. This
cut–off is used to stop the state update loop when the difference of the state
vectors in two subsequent iterations is below this value.

Moreover, in the WebSpam problem, we used the softmax output of a simple
MLP as node label, inspired by the work in [20]. This feedforward network is
composed by two hyperbolic tangent layers and a softmax output layer. Their
dimensions are 100, 20, and 2, respectively. We adopted the cross–entropy as the
loss function for the classification problems, whereas we used the mean squared
error function for the traffic–flow task, which is a regression problem.

In the comparisons, we considered also the learning time, since for some tasks
(f.i. subgraph and clique detection) the differences in classification performances
are not so evident when giving no time constraints. Hence, we set an appropri-
ate maximum number of epochs for each problem. For the subgraph detection
problem the limit was set to 20000 epochs, whereas we used 3000 as the number
of epochs to train the GNN for the WebSpam and clique detection problems,
and 5000 epochs for the traffic–flow prediction benchmark.
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A full–batch learning has been used in all the tasks, meaning that we adapt
the weights once for each epoch (i.e. after processing all the examples in the
learning set). In the case of WebSpam, the learning set consists of the whole
Web graph that must clearly be processed as a unique batch. In the case of
synthetic datasets, we simply considered all the graphs as belonging to a bigger
disconnected graph.

4.3 Results

Figure 5 shows the trend of the accuracy on the validation set for all the tasks
during the learning process.

Table 1 reports the results for the addressed tasks, when varying the per-
centage of labeled nodes exploited in the transductive phase. The first column,
corresponding to the value 0%, represents the purely inductive case.

(a) (b)

(c) (d)

Fig. 5. Validation accuracy (or MSE) obtained varying the exploited percentage of
labeled nodes, in the four different tasks.
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Table 1. Mean accuracy over five runs (mean squared error for the traffic–flow bench-
mark), together with the standard deviation.

% of labels 0% 10% 20% 30% 50%

Score Mean Std Mean Std Mean Std Mean Std Mean Std

SubGraph 77.26 0.44 77.58 1.10 77.94 1.14 78.87 0.53 83.12 1.50

Clique 82.16 2.31 83.55 3.62 84.9 2.95 84.1 2.95 83.56 1.86

WebSpam 91.46 0.49 91.54 0.48 91.94 0.60 92.23 0.46 92.49 0.65

Traffic (MSE) 1123 232 1159 152 968 114 865 178 811 105

Transductive learning demonstrated its effectiveness on all the benchmarks.
For some simple problems, like subgraph and clique detection, it is anyway diffi-
cult to obtain evident differences in absolute performance, for all the percentages
of labeled nodes exploited in the transduction.

5 Conclusions

In this paper, we presented a transductive learning framework based on GNNs
applied to graphs. We showed how this paradigm may improve the performances
with an experimental evaluation both on synthetic and real–world problems,
belonging to different domains.

Given the increasing amount of available structured data, it would be inter-
esting to test these techniques in other application domains, ranging from mobile
communications to the biomedical field, or to the large graphs provided by the
online social networks, like Facebook and Twitter. It would be also of interest to
investigate the properties of the diffusion process and the influence of a subset
of labeled nodes over the neighbors, in order to have a deeper understanding of
the GNN model.
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Abstract. Bounded rationality investigates utility-optimizing decision-
makers with limited information-processing power. In particular, infor-
mation theoretic bounded rationality models formalize resource con-
straints abstractly in terms of relative Shannon information, namely the
Kullback-Leibler Divergence between the agents’ prior and posterior pol-
icy. Between prior and posterior lies an anytime deliberation process that
can be instantiated by sample-based evaluations of the utility function
through Markov Chain Monte Carlo (MCMC) optimization. The most
simple model assumes a fixed prior and can relate abstract information-
theoretic processing costs to the number of sample evaluations. How-
ever, more advanced models would also address the question of learning,
that is how the prior is adapted over time such that generated prior
proposals become more efficient. In this work we investigate generative
neural networks as priors that are optimized concurrently with anytime
sample-based decision-making processes such as MCMC. We evaluate
this approach on toy examples.

Keywords: Bounded rationality · Variational Autoencoder
Adaptive priors · Markov Chain Monte Carlo

1 Introduction

Intelligent agents are usually faced with the task of optimizing some utility func-
tion U that is a priori unknown and can only be evaluated sample-wise. We do
not restrict ourselves on the form of this function, thus in principle it could be
a classification or regression loss, a reward function in a reinforcement learn-
ing environment or any other utility function. The framework of information-
theoretic bounded rationality [16,17] and related information-theoretic models
[3,14,20,21,23] provide a formal framework to model agents that behave in a
computationally restricted manner by modeling resource constraints through
information-theoretic constraints. Such limitations also lead to the emergence of
hierarchies and abstractions [5], which can be exploited to reduce computational
and search effort. Recently, the main principles have been successfully applied
c© The Author(s) 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 213–225, 2018.
https://doi.org/10.1007/978-3-319-99978-4_17
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to spiking and artificial neural networks, in particular feedforward-neural net-
work learning problems, where the information-theoretic constraint was mainly
employed as some kind of regularization [7,11,12,18]. In this work we intro-
duce bounded rational decision-making with adaptive generative neural network
priors. We investigate the interaction between anytime sample-based decision-
making processes and concurrent improvement of prior policies through learning,
where the prior policies are parameterized as Variational Autoencoders [10]—a
recently proposed generative neural network model.

The paper is structured as follows. In Sect. 2 we discuss the basic concepts
of information-theoretic bounded rationality, sampled-based interpretations of
bounded rationality in the context of Markov Chain Monte Carlo (MCMC),
and the basic concepts of Variational Autoencoders. In Sect. 3 we present the
proposed decision-making model by combining sample-based decision-making
with concurrent learning of priors parameterized by Variational Autoencoders.
In Sect. 4 we evaluate the model with toy examples. In Sect. 5 we discuss our
results.

2 Methods

2.1 Bounded Rational Decision Making

The foundational concept in decision-making theory is Maximum Expected Util-
ity [22], whereby an agent is modeled as choosing actions such that it maximizes
its expected utility

max
p(a|w)

∑

w

ρ(w)
∑

a

p(a|w)U(w, a), (1)

where a is an action from the action space A and w is a world state from the world
state space W , and U(w, a) is a utility function. We assume that the world states
are distributed according to a known and fixed distribution ρ(w) and that the
world sates w are finite and discrete. In the case of a single world state or world
state distribution ρ(w) = δ(w − w0), the decision-making problem simplifies
into a single function optimization problem a∗ = arg maxa U(a). In many cases,
solving such optimization problems may require an exhaustive search, where
simple enumeration is extremely expensive.

A bounded rational decision maker tackles the above decision-making prob-
lem by settling on a good enough solution. Finding a bounded optimal policy
requires to maximize the utility function while simultaneously remaining within
some given constraints. The resulting policy is a conditional probability distribu-
tion p(a|w), which essentially consists of choosing an action a given a particular
world state w. The constraints of limited information-processing resources can
be formalized by setting an upper bound on the DKL (say B bits) that the
decision-maker is maximally allowed to spend to transform its prior strategy
into a posterior strategy through deliberation. This results in the following con-
strained optimization problem [5]:

max
p(a|w)

∑

w

ρ(w)
∑

a

p(a|w)U(w, a), s.t. DKL(p(a|w)||p(a)) ≤ B. (2)
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This constrained optimization problem can be formulated as an unconstrained
problem [16]:

max
p(a|w)

(
∑

w

ρ(w)
∑

a

p(a|w)U(w, a) − 1
β

DKL(p(a|w)||p(a))

)
, (3)

where the inverse temperature β ∈ R
+ is a Lagrange multiplier that influences

the trade off between expected utility gain and information cost. For β → ∞ the
agent behaves perfectly rational and for β → 0 the agent can only act according
to the prior policy. The optimal prior policy in this case is given by the marginal
p(a) =

∑
w∈W ρ(w)p(a|w) [5], in which case the Kullback-Leibler divergence

becomes equal to the mutual information, i.e. DKL(p(a|w)||p(a)) = I(W ;A).
The solution to the optimization problem (3) can be found by iterating the
following set of self-consistent equations [5]:

{
p(a|w) = 1

Z(w)p(a) exp(β1U(w, a))

p(a) =
∑

w ρ(w)p(a|w),

where Z(w) =
∑

a p(a) exp(β1U(w, a)) is normalization factor. Computing such
a normalization factor is usually computationally expensive as it involves sum-
ming over spaces with high cardinality. We avoid this by Monte Carlo approxi-
mation.

2.2 MCMC as Sample-Based Bounded Rational Decision-Making

Monte Carlo methods are mostly used to solve two related kinds of problems.
One is to generate samples x from a given distribution q(x) and the other is
to estimate the expectation of a function. For example, if g(x) is a function
for which we need to compute the expectation Φ = Eq(x)[g(x)] we can draw N

samples {xi}N
i=1 to obtain the estimate Φ̂ = 1

N

∑N
i=1 g(xi) [15]. Samples can be

drawn by employing Markov Chains to simulate stochastic processes. A Markov
Chain can be defined by an initial probability p0(x) and a transition probability
T(x′, x), which gives the probability of transitioning from state x to x′. The
probability of being in state x′ at the (t + 1)-th iteration is given by:

pt+1(x′) =
∑

x

T(x′, x)pt(x). (4)

Such a chain can be used to generate sample proposals from a desired target
distribution q(x), if the following prerequisites are met [15]. Firstly, the chain
must be ergodic, i.e. the chain must converge to q(x) independent of the ini-
tial distribution p0(x). Secondly, the desired distribution must be an invariant
distribution of the chain. A distribution q(x) is an invariant of T(x′, x) if its
probability vector is an eigenvector of the transition probability matrix. A suffi-
cient, but not necessary condition to fulfill this requirement is detailed balance,
i.e. the probability of going from state x to x′ is the same as going from x′ to x:
q(x)T(x′, x) = q(x′)T(x, x′).
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An MCMC chain can be viewed as a bounded rational decision-making pro-
cess for a single context w in the sense that it performs an anytime optimization
of a utility function U(a) with some precision γ and that it is initialized with a
prior p(a). The target distribution has to be chosen as q(a) ∝ eγU(a) in this case.
A decision is made with the last sample when the chain is stopped. The resource
corresponds then to the number of steps the chain has taken to evaluate the func-
tion U(a). To find the transition probabilities T(x′, x) of the chain, we assume
detailed balance and a Metropolis-Hastings scheme T(x′, x) = g(x′|x)A(x′|x)
such that

T(x′, x)
T(x, x′)

=
g(x′|x)A(x′|x)
g(x|x′)A(x|x′)

= eγ(U(x′)−U(x)) (5)

with a proposal distribution g(x′|x) and an acceptance probability A(x′|x). One
common choice that satisfies Eq. (5) is

A(x′|x) = min
{

1,
g(x′|x)
g(x|x′)

eγ(U(x′)−U(x))
}

, (6)

which can be further simplified when using a symmetric proposal distribution
with g(x′|x) = g(x|x′), resulting in A(x′|x) = min

{
1, eγ(U(x′)−U(x))

}
.

Note that the decision of the chain will in general follow a non-equilibrium
distribution, but that we can use the bounded rational optimum as a normative
baseline to quantify how efficiently resources are used by analyzing how closely
the bounded rational equilibrium is approximated.

2.3 Representing Prior Strategies with Variational Autoencoders

While an anytime optimization process such as MCMC can be regarded as a
transformation from prior to posterior, the question remains how to choose the
prior. While the prior may be assumed to be fixed, it would be far more efficient
if the prior itself were subjected to an optimization process that minimizes the
overall information-processing costs. Since in the case of multiple world states w
the optimal prior is given by the marginal p(a) =

∑
w ρ(w)p(a|w), we can use the

outputs a of the anytime decision-making process to train a generative model of
the prior p(a). If the generative model was chosen from a parametric family such
as a Gaussian distribution, then training would consist in updating mean and
variance of the Gaussian. Choosing such a parametric family imposes restrictions
on the shape of the prior, in particular in the continuous domain. Therefore, we
investigate non-parametric generative models of the prior, in particular neural
network models such as Variational Autoencoders (VAEs).

VAEs were introduced by [10] as generative models that use a similar architec-
ture as deterministic autoencoder networks. Their functioning is best understood
as variational Bayesian inference in a latent variable model p(x|z, θ) with prior
p(z), where x is observable data, and z is the latent variable that explains the
data, but that cannot be observed directly. The aim is to find a parameter θ̂ML

that maximizes the likelihood of the data p(x|θ) =
∫

p(x|z, θ)p(z)dz. Samples
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from p(x|θ) can then be generated by first sampling z and then sampling an x
from p(x|z, θ). As the maximum likelihood optimization may prove difficult due
to the integral, we may express the likelihood in a different form by assuming a
distribution q(z|x, η) such that

log p(x|θ, η) =
∫

q(z|x, η) log
p(x|z, θ)p(z)

q(z|x, η)
dz +

∫
q(z|x, η) log

q(z|x, η)
p(z|x, θ)

dz

︸ ︷︷ ︸
=DKL(q||p)≥0

≥
∫

q(z|x, η) log
p(x|z, θ)p(z)

q(z|x, η)
dz =: F(θ, η). (7)

Assuming that the distribution q(z|x, η) is expressive enough to approximate
the true posterior p(z|x, θ) reasonably well, we can neglect the DKL between the
two distributions, and directly optimize the lower bound F(θ, η) through gradient
descent. In VAEs q(z|x, η) is called the encoder that translates from x to z and
p(x|z, θ) is called the decoder that translates from z to x. Both distributions and
the prior p(z) are assumed to be Gaussian

p(x|z, θ) = N (
x|μθ(z), σ2

I
)

q(z|x, η) = N (z|μη(x), Ση(x))
p(z) = N (z|0, I),

where μθ(z), μη(x) and Ση(x) are non-linear functions implemented by feed-
forward neural networks and where it is ensured that σ2 ↘ 0 and that Ση(x) is
a covariance matrix.

Note that the optimization of the autoencoder itself can also be viewed as a
bounded rational choice

max
θ,η

(
Eq(z|x,η) [log p(x|z, θ)] − DKL (q(z|x, η)||p(z))

)
, (8)

where the expected likelihood is maximized while the encoder distribution
q(z|x, η) is kept close to the prior p(z).

3 Modeling Bounded Rationality with Adaptive Neural
Network Priors

In this section we combine MCMC anytime decision-processes with adaptive
autoencoder priors. In the case of a single world state, the combination is
straightforward in that each decision selected by the MCMC process is fed as
an observable input to an autoencoder. The updated autoencoder is then used
as an improved prior to initialize the next MCMC decision. In case of multiple
world states, there are two straightforward scenarios. In the first scenario there
are as many priors as world states and each of them is updated independently.
For each world state we obtain exactly the same solution as in the single world
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U

Fig. 1. For each incoming world state w our model samples a prior indexed by xi ∼

p(x|w). Each prior p(a|x) is represented by a VAE. To arrive at the posterior policy
p(a|w, x), an anytime MCMC optimization is seeded with a0 ∼ p(a|x) to generate a
sample from p(a|w, x). The prior selection policy is also implemented by an MCMC
chain and selects agents that have achieved high utility on a particular w.

state case. In the second scenario there is only a single prior over actions for all
world states. In this case the autoencoder is trained with the decisions by all
MCMC chains such that the autoencoder should converge to the optimal rate
distortion prior. A third, more interesting scenario occurs when we allow multi-
ple priors, but less than world states—compare Fig. 1. This is especially plausible
when dealing with continuous world states, but also in the case of large discrete
spaces.

3.1 Decision Making with Multiple Priors

Decision-making with multiple priors can be regarded as a multi-agent decision-
making problem where several bounded rational decision-makers are combined
into a single decision-making process [5]. In our case the most suitable arrange-
ment of decision-makers is a two-step process where first each world state is
assigned probabilistically to a prior which is then used in the second step to ini-
tialize an MCMC chain—compare Fig. 1. The output of that chain is then used
to train the autoencoder corresponding to the selected prior. As each prior may
be responsible for multiple world states, each prior will learn an abstraction that
is specialized for this subspace of world states. This two-stage decision-process
can be formalized as a bounded rational optimization problem

max
p(a|w,x),p(x|w)

(
Ep(a|w,x)[U(w, a)] − 1

β1
I(W ;X) − 1

β2
I(W ;A|X)

)
, (9)

where p(x|w) is selecting the responsible prior p(a|x) indexed by x for world
state w. The resource parameter for the first selection stage is given by β1 and
by β2 for the second decision made by the MCMC process. The solution of
optimization (9) is given by the following set of equations:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p(x|w) = 1
Z(w)p(x) exp(β1ΔFpar(w, x))

p(x) =
∑

w ρ(w)p(x|w)
p(a|w, x) = 1

Z(w,x)p(a|x) exp(β2U(w, a))

p(a|x) =
∑

w p(w|x)p(a|w, x)
ΔFpar(w, x) = Ep(a|w,x)[U(w, a)] − 1

β2
DKL(p(a|w, x)||p(a|x)),

(10)

where Z(w) and Z(w, x) are the normalization factors and ΔFpar(w, x) is the free
energy of the action selection stage. The marginal distribution p(a|x) encapsu-
lates an action selection policy consisting of the priors p(a|w, x) weighted by the
responsibilities given by the Bayesian posterior p(w|x). Note that the Bayesian
posterior is not determined by a given likelihood model, but is the result of the
optimization process (9).

3.2 Model Architecture

Equation (10) describe abstractly how a two-step decision process with bounded
rational decision-makers should be optimally partitioned. In this section we pro-
pose a sample-based model of a bounded rational decision process that approx-
imately corresponds to Eq. (10) such that the performance of the decision pro-
cess can be compared against its normative baseline. To translate Eq. (10) into
a stochastic process we proceed in three steps. First, we implement the priors
p(a|x) as Variational Autoencoders. Second, we formulate an MCMC chain that
is initialized with a sample from the prior and generates a decision a ∼ p(a|x,w).
Third, we design an MCMC chain that functions as a selector between the dif-
ferent priors.

Autoencoder Priors. Each prior p(a|x) in Eq. (10) is represented by a VAE
that learns to generate action samples that mimic the samples given by the
MCMC chains—compare Fig. 2. The functions μθ(z), μη(a) and Ση(a) are imple-
mented as feed-forward neural networks with one hidden layer. The units in the
hidden layer were all chosen with sigmoid activation function, the output units in
the case of the μ-functions were also chosen as sigmoids and for the Σ-function
as ReLU. During training the weights η and θ are adapted to optimize the
expected log-likelihood of the action samples that are given by the decisions
made by the MCMC chains for all world states that have been assigned to the
prior p(a|x). Due to the Gaussian shape of the decoder distribution, optimizing
the log-likelihood corresponds to minimizing quadratic loss of the reconstruction
error. After training, the network can generate sample actions itself by feeding
the decoder network with samples from N (z|0, I).
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Encoder

A

μη(A)Ση(A)

DKL(μη(A), Ση(A)||N (0, I)) z ∼ N (μη(A), Ση(A))

Decoder

a0 = fθ(z)||a∗ − a0||

z ∼ N (0, I)

Decoder

a0 = fθ(z)

Fig. 2. The encoder translates the observed action into a latent variable z, whereas the
decoder translates the latent variable z into a proposed action a. During training the
weights η and θ are adapted to optimize the expected log-likelihood of the observed
action samples. After training, the network can generate actions by feeding the decoder
network with samples from N (z|0, I).

MCMC Decision-Making. To implement the bounded rational decision-
maker p(a|w, x) we obtain an action sample a ∼ p(a|x) from the autoencoder
prior to initialize an MCMC chain that optimizes the target utility U(w, a) for
the given world state. We run the MCMC chain for Nmax steps. In each step we
generate a proposal from a Gaussian distribution with g(a′|a) = N (a′|a, σ2) and
accept with probability

A(a′|a) = min
{
1, exp(γ(U(w, a′) − U(w, a)))

}
. (11)

Over the course of Nmax time steps, the precision γ is adjusted following an
annealing schedule conditioned on the maximum number of steps Nmax. We use
an inverse Boltzmann annealing schedule, i.e. γ(k) = γ0 + α log(1 + k), where α
is a tuning parameter. The rationale behind this is that we assume the sampling
process to be coarse grained in the beginning and is getting finer during the
search.

Prior Selection. To implement the bounded rational prior selection p(x|w)
through an MCMC process, we first sample an x from the prior p(x) and start
an MCMC chain that (approximately) optimizes ΔFpar(w, x) for a given world
state w sampled from ρ(w). The prior p(x) is represented by a multinomial
and updated by the frequencies of the selected prior indices x. The number
of steps in the prior selection MCMC chain was kept constant at a value of
N sel

max and similarly the precision γsel was annealed over the course of N sel
max time

steps. The target ΔFpar(w, x) comprises a trade-off between expected utility
and information resources. However, it cannot be directly evaluated and would
require the computation of DKL(p(a|x,w)‖p(a|x)). Here we use number of steps
in the downstream MCMC process as a resource measure. As the number of
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Fig. 3. Top: The line is given by the Rate Distortion Curve that forms a theoretical
efficiency frontier, characterized by the ratio between mutual information and expected
utility. Crosses represent single-prior agents and dots multi-prior systems. The labels
indicate how many steps were assigned to the second MCMC chain of a total of 100
steps. Bottom: Information processing and expected utility is increasing in the number
of utility evaluations, as we expected.

downstream steps was constant, the model selector’s choice only depended on the
average utility achieved by each decision-maker, which results in the acceptance
rule

A(x′|x) = min
{
1, exp(γsel(Ep(a|w,x)[U(w, a)] − Ep(a|w,x′)[U(w, a)]))

}
.

As the priors are discrete choices the proposal distribution q(xp|xp) samples
globally with p(x) = 1

|X| for all x.

4 Empirical Results

To demonstrate our approach we evaluate two scenarios. First, a simple agent,
which is equipped with a single prior policy pη(a), as introduced in Sect. 2.
In case of a single agent there is no need for a prior selection stage. Second,
we evaluated a multi-prior decision-making system and compared the results
to the single prior agent. For the mutli-prior agent, we split a fixed number
of MCMC steps between the prior selection and the action selection. The task
we designed consists of six world states where each world state has a Gaussian
utility function in the interval [0, 1] with a unique optimum. In both settings,
we equipped the Variational Autoencoders with one hidden layer consisting of
16 units with ReLU activations. We implemented the experiments using Keras
[2]. We show the results in Fig. 3.
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Fig. 4. Our results indicate that having multiple priors is more beneficial, if more
steps are available in total. Note that the stochasticity of our method decreases with
the number of allowed steps, as shown by the uncertainty band (transparent regions).

Our results indicate that using MCMC evaluation steps as a surrogate for
information processing costs can be interpreted as bounded rational decision-
making. In Fig. 3 we show the efficiency of several agents with different processing
constraints. To compare our results to the theoretical baseline, we discretized
the action space into 100 equidistant slices and solved the problem using the
algorithm proposed in [5] to implement Eq. (10). Furthermore our results indicate
that the multi-prior system generally outperforms the single-prior system in
terms of utility.

To illustrate the differences in efficiency between the single prior agent and
the multi-prior agents, we plotted in Fig. 4 utility gained through the second
MCMC optimization. For multi-prior agents this is caused by specialized priors
which provide initializations to the MCMC chains that are close to the optimal
action. In this particular case, ΔU does not become zero because we allow only
three priors to cover six world states, thus leading to abstraction, i.e. specializing
on actions that fit well for the assigned world states. In single-prior agents, the
prior is adapting to all world states, thus providing, on average, an initial action
that is suboptimal for the requested world state.

5 Discussion

In this study we implemented bounded rational decision makers with adap-
tive priors. We achieved this with Variational Autoencoder priors. The bounded
rational decision-making process was implemented by MCMC optimization to
find the optimal posterior strategy, thus giving a computationally simple way
of generating samples. As the number of steps in the optimization process was
constrained, we could quantify the information processing capabilities of the
resulting decision-makers using relative Shannon entropy. Our analysis may have
interesting implications, as it provides a normative framework for this kind of
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combined optimization of adaptive priors and decision-making processes. Prior
to our work there have been several attempts to apply the framework of
information-theoretic bounded rationality to machine learning tasks [7,11,12,
18]. The novelty of our approach is that we design adaptive priors for both the
single-step case and the multi-agent case and we demonstrate how to transform
information-theoretic constraints into computational constraints in the form of
MCMC steps.

Recently, the combination of Monte Carlo optimization and neural networks
has gained increasing popularity. These approaches include both using MCMC
processes to find optimal weights in ANNs [1,4] and using ANNs as parametrized
proposal distributions in MCMC processes [8,13]. While our approach is more
similar to the latter, the important difference is that in such adaptive MCMC
approaches there is only a single MCMC chain with a single (adaptive) pro-
posal to optimize a single task, whereas in our case there are multiple adap-
tive priors to initialize multiple chains with otherwise fixed proposal, which
can be used to learn multiple tasks simultaneously. In that sense our work is
more related to mixture-of-experts methods and divide-and-conquer paradigms
[6,9,24], where we employ a selection policy rather than a blending policy, as we
design our model specifically to encourage specialization. In mixture-of-experts
models, there are multiple decision-makers that correspond to multiple priors
in our case, but experts are typically not modeled as anytime optimization pro-
cesses. The possibly most popular combination of neural network learning with
Monte Carlo methods was achieved by AlphaGo [19], which beat the leading Go
champion by optimizing the strategies provided by value networks and policy
networks with Monte Carlo Tree Search, leading to a major breakthrough in
reinforcement learning. An important difference here is that the neural network
is used to directly approximate the posterior and MCMC is used to improve
performance by concentrating on the most promising moves during learning,
whereas in our case ANNs are used to represent the prior. Moreover, in our
work we assumed the utility function (i.e. the value network) to be given. For
future work it would be interesting to investigate how to incorporate learning
the utility function into our model to investigate more complex scenarios such
as in reinforcement learning.
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Abstract. We consider the problem of feature selection, and we propose
a new information-theoretic algorithm for ordering the features according
to their relevance for classification. The novelty of our proposal consists
in adopting Rényi min-entropy instead of the commonly used Shannon
entropy. In particular, we adopt a notion of conditional min-entropy that
has been recently proposed in the field of security and privacy, and which
is strictly related to the Bayes error. We evaluate our method on two
classifiers and three datasets, and we show that it compares favorably
with the corresponding one based on Shannon entropy.

1 Introduction

The identification of the “best” features for classification is a problem of increas-
ing importance in machine learning. The size of available datasets is becoming
larger and larger, both in terms of samples and in terms of features of the
samples, and keeping the dimensionality of the data under control is neces-
sary for avoiding an explosion of the training complexity and for the accuracy
of the classification. Several authors have considered this problem, including
[5,6,8,14,15,17–19,24,28].

The known methods for reducing the dimensionality can be divided in two
categories: those which transform the feature space by reshaping the original
features into new ones (feature extraction), and those which select a subset of the
features (feature selection). The second category can in turn be divided in three
groups: the wrapper, the embedded, and the filter methods. The last group has the
advantage of being classifier-independent, more robust with respect to the risk of
overfitting, and more amenable to a principled approach. In particular, several
proposals for feature selection have successfully applied concepts and techniques
from information theory [4–6,13,22,28,29]. The idea is that the smaller is the
conditional (aka residual) entropy of the classes given a certain set of features,
the more likely the classification of a sample is to be correct. Finding a good
set of features corresponds therefore to identifying a set of features, as small as
possible, for which such conditional entropy is below a certain threshold.

In this paper, we focus on the filter approach and we propose a new
information-theoretical method for feature selection. The novelty consists in the
c© Springer Nature Switzerland AG 2018
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use of Rényi min-entropy H∞ rather than Shannon entropy. As far as we know,
all the previous proposals are based on Shannon entropy, with the notable excep-
tion of [12] who considered the Rényi entropies but, however, used a different
notion of min-entropy, and reported experimental results only on other orders
of Rényi entropies.

For feature selection we need the conditional version of entropy. Rényi did
not define it, but there have been various proposals, in particular by Arimoto
[3], Sibson [25], Csiszár [11], and Cachin [7]. In particular, [7] defined the condi-
tional min-entropy of X given Y along the lines of conditional Shannon entropy,
namely as the expected value of the entropy of X for each given value of Y .
Such definition, however, violates the monotonicity property. Namely, knowing
the value of Y could increase the entropy of X rather than diminishing it.

Recently, some advances in the fields of security and privacy have revived the
interest for the Rényi min-entropy. The reason is that it models a basic notion
of attacker: the (one-try) eavesdropper. Such attacker tries to infer a secret (e.g.,
a key, a password, etc.) from the observable behavior of the system trying to
minimize the probability of error. Note the similarity with the classification
problem, where we choose a class on the basis of the observed features, trying
to minimize the probability of mis-classification.

Driven by the motivation of providing an information-theoretic interpreta-
tion of the eavesdropper operational behavior, [26] proposed a definition of con-
ditional min-entropy H∞(X|Y ) which is consistent with the rest of the theory,
models all the expected properties of an eavesdropper, and corresponds closely to
the Bayes risk of guessing the wrong secret. (The formal definition of H∞(X|Y )
will be given in Sect. 2.) This definition can be shown equivalent to the one of
Arimoto [3]. It is then natural to investigate whether this notion can be useful
also for feature selection.

We could state the problem of feature selection as finding a minimum-size
subset S of the whole set of features F such that the min-entropy H∞(C|S) of the
classification C given S is below a given threshold. Because of the correspondence
with the Bayes risk, this would mean that the set S is optimal (i.e., minimal)
among the subsets for which the Bayes classifier achieves the desired level of
accuracy. However, is that the construction of such an optimal S would be NP-
hard. This is not due to the kind of entropy that we choose, but simply to the
fact that it is a combinatorial problem. In [16] it was shown that the problem
of feature selection can be modeled as search problem on a decision tree, and
it was argued that finding the optimal subtree which is able to cover F is an
NP-hard problem. The same intractability was claimed in [14] with respect to
wrappers and embedded methods, on the basis of the proof of [2].

We then adopt a greedy strategy to approximate the minimal subset of fea-
tures: following [6,28], we construct a sequence of subsets S0, S1, . . . , St, . . .,
where S0 = ∅ and at each subsequent step St+1 is obtained from St by adding
the next feature in order of relevance for the classification, taking into account
the ones already selected. In other words, we select the feature f such that
H∞(C|St ∪ {f}) is minimal, and we define St+1 as St ∪ {f}. The construction
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of this series should be interleaved with a test on the accuracy of the intended
classifier(s): when we obtain an ST that achieves the desired level of accuracy, we
can stop. The difference with respect to [6,28] is that the relevance is measured
by Rényi min-entropy rather than Shannon entropy.

Note that, because of the relation between the conditional min-entropy and
the Bayes risk, our method is locally optimal. Namely, for any other possible
feature f ′ (including the one that would be selected using Shannon entropy),
the set St+1 is at least as good as St ∪ {f ′} in terms of accuracy of the Bayes
classifier (the ideal classifier giving the best accuracy). This does not necessarily
mean that the set ST is the smallest one: since we are not making an exhaustive
search on all possible subsets of F , and we add the features one by one, we may
not find the “shortest path” to achieve sufficient accuracy. The same applies to
the analogous algorithms based on Shannon entropy. Hence we have no guarantee
that our method is better than that of [6,28], nor vice versa. In the experiments
we have performed, however, our method outperforms almost always the one
based on Shannon entropy (cfr. Sect. 4).

2 Preliminaries

In this section we briefly review some basic notions from probability and infor-
mation theory. We refer to [10] for more details.

Let X,Y be discrete random variables with respectively n and m possible
values: X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}. Let pX(·) and pY (·)
indicate the probability distribution associated to X and Y respectively, and
let pY,X(·, ·) and pY |X(·|·) indicate the joint and the conditional probability
distributions, respectively. Namely, pY,X(x, y) represents the probability that
X = x and Y = y, while pY |X(y|x) represents the probability that Y = y
given that X = x. For simplicity, when clear from the context, we will omit the
subscript, and write for instance p(x) instead of pX(x).

Conditional and joint probabilities are related by the chain rule p(x, y) =
p(x) p(y|x), from which (by the commutativity of p(x, y)) we can derive the
Bayes theorem: p(x|y) = p(y|x) p(x)/p(y).

The Rényi entropies [23] are a family of functions representing the uncer-
tainty associated to a random variable. Each Rényi entropy is characterized
by a non-negative real number α (order), with α �= 1, and is defined as
Hα(X) def= 1

1−α log(
∑

i p(xi)α). If p(·) is uniform then all the Rényi entropies
are equal to log |X|. Otherwise they are weakly decreasing in α. Shannon and
min-entropy are particular cases:

α → 1 H1(X) = −∑
x p(x) log p(x) Shannon entropy

α → ∞ H∞(X) = − log maxx p(x) min-entropy

Let H1(X,Y ) represent the joint entropy X and Y . Shannon conditional
entropy of X given Y is the average residual entropy of X once Y is known, and
it is defined as H1(Y |X) def=

∑
xy p(x, y) log p(x|y) = H1(X,Y )−H1(Y ). Shannon
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mutual information of X and Y represents the correlation of information between
X and Y , and it is defined as I1(X;Y ) def= H1(X) − H1(X|Y ) = H1(X) +
H1(Y ) − H1(X,Y ). It is possible to show that I1(X;Y ) ≥ 0, with I1(X;Y ) = 0
iff X and Y are independent, and that I1(X;Y ) = I1(Y ;X).

As for Rényi conditional min-entropy, we use the version of [26]: H∞(X|Y ) def=
− log

∑
y maxx(p(y|x)p(x)). This definition closely corresponds to the Bayes risk,

i.e., the expected error when we try to guess X once we know Y , formally
defined as B(X |Y ) def= 1 − ∑

y p(y) maxx p(x|y). The “Rényi mutual informa-

tion” is defined as: I∞(X;Y ) def= H∞(X) − H∞(X|Y ). It is possible to show
that I∞(X;Y ) ≥ 0, and that I∞(X;Y ) = 0 if X and Y are independent
(the reverse is not necessarily true). Contrary to Shannon mutual informa-
tion, I∞ is not symmetric. The conditional mutual information is defined as
I∞(X;Y |Z) def= H∞(X|Z) − H∞(X|Y,Z), and analogously for Shannon condi-
tional mutual information.

3 Our Proposed Algorithm

Let F be the set of features at our disposal, and let C be the set of classes. Our
algorithm is based on forward feature selection and dependency maximization:
it constructs a monotonically increasing sequence {St}t≥0 of subsets of F , and,
at each step, the subset St+1 is obtained from St by adding the next feature in
order of importance (i.e., the informative contribution to classification), taking
into account the information already provided by St. The measure of the “order
of importance” is based on conditional min-entropy. The construction of the
sequence is assumed to be done interactively with a test on the accuracy achieved
by the current subset, using one or more classifiers. This test will provide the
stopping condition: once we obtain the desired level of accuracy, the algorithm
stops and gives as result the current subset ST . Of course, achieving a level of
accuracy 1 − ε is only possible if B(C | F ) ≤ ε.

Definition 1. The series {St}t≥0 and {f t}t≥1 are inductively defined as fol-
lows:

S0 def= ∅
f t+1 def= argminf∈F\StH∞(C | f, St)

St+1 def= St ∪ {f t+1}

The algorithms in [6,28] are analogous, except that they use Shannon entropy.
They also define f t+1 based on the maximization of mutual information instead
of the minimization of conditional entropy, but this is irrelevant. In fact I1(C; f |
St) = H1(C | St) − H1(C | f, St), hence maximizing I1(C; f | St) with respect
to f is the same as minimizing H1(C | f, St) with respect to f .

Our algorithm is locally optimal, in the sense stated by the following propo-
sition, whose proof can be found in [20]:
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Proposition 1. At every step, the set St+1 minimizes the Bayes risk of the
classification among those which are of the form St ∪ {f}, namely:

∀f ∈ F B(C | St+1) ≤ B(C | St ∪ {f})

In the following sections we analyze some extended examples to illustrate
how the algorithm works, and also compare it with the ones of [6,28].

3.1 An Example in Which Rényi Min-Entropy Gives a Better
Feature Selection Than Shannon Entropy

Let us consider the dataset in Fig. 1, containing ten records labeled each by a
different class, and characterized by six features (columns f1, . . . , f5). We note
that f0 separates the classes in two sets of four and six elements respectively,
while all the other columns are characterized by having two values, each of
which univocally identify one class, while the third value is associated to all the
remaining classes. For instance, in column f1 value A univocally identifies the
record of class 0, B univocally identifies the record of class 1, and all the other
records have the same value along that column, i.e. C.

The last five features combined are necessary and sufficient ton completely
identify all classes, without the need of the first one. Note of the last five features
can be replaced by f0 for this purpose. In fact, each pair of records which are
separated by one of the features f1, . . . , f5, have the same value in column f0.

Class f0 f1 f2 f3 f4 f5
0 A C F I L O
1 A D F I L O
2 A E G I L O
3 A E H I L O
4 B E F J L O
5 B E F K L O
6 B E F I M O
7 B E F I N O
8 B E F I L P
9 B E F I L Q

Fig. 1. The dataset

If we apply the discussed feature selection method
and we look for the feature that minimizes H(Class|fi)
for i ∈ {0, . . . , 5} we obtain that:

– The first feature selected with Shannon is f0, in
fact H1(Class|f0) ≈ 2.35 and H1(Class|f�=0) = 2.4.
(The notation f�=0 stands for any of the fi’s except
f0.) In general, indeed, with Shannon entropy the
method tends to choose a feature which splits the
classes in a way as balanced as possible. The situa-
tion after the selection of the feature f0 is shown in
Fig. 2(a).

– The first feature selected with Rényi min-entropy
is either f1 or f2 or f3 or f4 or f5, in fact
H∞(Class|f0) ≈ 2.32 and H∞(Class|f�=0) ≈ 1.74.
In general, indeed, with Rényi min-entropy the
method tends to choose a feature which divides the
classes in as many sets as possible. The situation
after the selection of f1 is shown in Fig. 2(b).

Going ahead with the algorithm, with Shannon entropy we will select one
by one all the other features, and as already discussed we will need all of them
to completely identify all classes. Hence at the end the method with Shannon
entropy will return all the six features (to achieve perfect classification). On the
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f0

0, 1, 2, 3 4, 5, 6, 7, 8, 9

(a) Selection with Shannon.

f1

0 1 2, 3, 4, 5, 6, 7, 8, 9

(b) Selection with Rényi.

Fig. 2. Classes separation after the selection of the first feature.

f1

0 1

f2

2 3 4, 5, 6
7, 8, 9

H∞(Class|f1f2) = 1.

f1

0 1

f0

2, 3 4, 5, 6
7, 8, 9

H∞(Class|f1f0) ≈ 1.32.

f4

0 1

f0

0, 1
2, 3

6, 7
8, 9

H∞(Class|f4f0) ≈ 1.32.

Fig. 3. Selection of the second feature with Rényi.

other hand, with Rényi min entropy we will select all the remaining features
except f0 to obtain the perfect discrimination. In fact, at any stage the selec-
tion of f0 would allow to split the remaining classes in at most two sets, while
any other feature not yet considered will split the remaining classes in three
sets. As already hinted, with Rényi we choose the feature that allows to split
the remaining classes in the highest number of sets, hence we never select f0.

f1

0 1

f2

2 3

f3

4 5

f4

6 7

f5

8 9

Fig. 4. Sequence of class splitting with
Rényi.

For instance, if we have already
selected f1, we have H∞(Class|f1f0) ≈
1.32 while H∞(Class|f1f�=0) = 1.
If we have already selected f4, we
have H∞(Class|f4f0) ≈ 1.32 while
H∞(Class|f4f�=0) = 1. See Fig. 3.

At the end, the selection of fea-
tures using Rényi entropy will deter-
mine the progressive splitting repre-
sented in Fig. 4. The order of selec-
tion is not important: this particular
example is conceived so that the fea-
tures f1, . . . , f5 can be selected in any
order, the residual entropy is always
the same.

Discussion. It is easy to see that, in this example, the algorithm based on Rényi
min-entropy gives a better result not only at the end, but also at each step of
the process. Namely, at step t (cfr. Definition 1) the set St of features selected
with Rényi min-entropy gives a better classification (i.e., more accurate) than
the set S′t that would be selected using Shannon entropy. More precisely, we
have B(C | St) < B(C | S′t). In fact, as discussed above the set S′t contains



232 C. Palamidessi and M. Romanelli

Fig. 5. Features F (left) and F ′ (right).

necessarily the feature f0, while St does not. Let St−1 be the set of features
selected at previous step with Rényi min-entropy, and f t the feature selected at
step t (namely, St−1 = St \ {f t}). As argued above, the order of selection of the
features f1, . . . , f5 is irrelevant, hence we have B(C | St−1) = B(C | S′t \ {f0})
and the algorithm could equivalently have selected S′t \ {f0}. As argued above,
the next feature to be selected, with Rényi, must be different from f0. Hence by
Proposition 1, and by the fact that the order of selection of f1, . . . , f5 is irrelevant,
we have: B(C | St) = B(C | (S′t \ {f0}) ∪ {f t}) < B(C | S′t).

As a general observation, we can see that the method with Shannon tends to
select the feature that divides the classes in sets (one for each value of the feature)
as balanced as possible, while our method tends to select the feature that divides
the classes in as many sets as possible, regardless of the sets being balanced or
not. In general, both Shannon-based and Rényi-based methods try to minimize
the height of the tree representing the process of the splitting of the classes, but
the first does it by trying to produce a tree as balanced as possible, while the
second one tries to do it by producing a tree as wide as possible. Which of the
method is best, it depends on the correlation of the features. Shannon works
better when there are enough uncorrelated (or not much correlated) features,
so that the tree can be kept balanced while being constructed. Next section
shows an example of such situation. Rényi, on the contrary, is not so sensitive
to correlation and can work well also when the features are highly correlated, as
it was the case in the example of this section.

The experimental results in Sect. 4 show that, at least in the cases we have
considered, our method outperforms the one based on Shannon entropy. In gen-
eral however the two methods are incomparable, and perhaps a good practice
would be to construct both sequences at the same time, so to obtain the best
result of the two.

3.2 An Example in Which Shannon Entropy May Give a Better
Feature Selection Than Rényi Min-Entropy

Consider a dataset containing samples equally distributed among 32 classes,
indexed from 0 to 31. Assume that the data have 8 features divided in 2 types
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F and F ′, each of which consisting of 4 features: F = {f1, f2, f3, f4} and F ′ =
{f ′

1, f
′
2, f

′
3, f

′
4}. The relation between the features and the classes is represented

in Fig. 5.
Because of space restriction we have omitted the computations, the interested

reader can find them in the report version of this paper [20]. At step 3 one of the
possible outcomes of the algorithm based on Shannon is the set of features S3

1 =
{f1, f3, f4}, and one of the possible outcomes of the algorithm based on Rényi is
S3

∞ = {f ′
1, f

′
2, f

′
i} where i can be, equivalently, 3 or 4. At this point the method

with Shannon can stop, since the residual Shannon entropy of the classification
is H1(C | S3

1) = 0, and also the Bayes risk is B(C | S3
1) = 0, which is the

optimal situation in the sense that the classification is completely accurate. S3
∞

on the contrary does not contain enough features to give a completely accurate
classification, for that we have to make a further step. We can see that S4

∞ = F ′,
and finally we have H∞(C | S4

∞) = 0.
Thus in this particular example we have that for small values of the threshold

on the accuracy our method gives better results. On the other hand, if we want
to achieve perfect accuracy (threshold 0) Shannon gives better results.

4 Evaluation

In this section we evaluate the method for feature selection that we have pro-
posed, and we compare it with the one based on Shannon entropy by [6,28].

To evaluate the effect of feature selection, some classification methods have
to be trained and tested on the selected data. We used two different methods
to avoid the dependency of the result on a particular algorithm. We chose two
widely used classifiers: the Support Vector Machines (SVM) and the Artificial
Neural Networks (ANN).

Even though the two methods are very different, they have in common that
their efficiency is highly dependent on the choice of certain parameters. There-
fore, it is worth spending some effort to identify the best values. Furthermore,
we should take into account that the particular paradigm of SVM we chose only
needs 2 parameters to be set, while for ANN the number of parameters increases
(at least 4).

It is very important to choose values as robust as possible for the parameters.
It goes without saying that the strategy used to pick the best parameter setting
should be the same for both Shannon entropy and Rényi min-entropy. On the
other hand for SVM and ANN we used two different hyper-parameter tuning
algorithms, given that the number and the nature of the parameters to be tuned
for those classifiers is different.

In the case of SVM we tuned the cost parameter of the objective function
for margin maximization (C-SVM ) and the parameter which models the shape
of the RBF kernel’s bell curve (γ). Grid-search and Random-search are quite
time demanding algorithms for the hyper-parameter tuning task but they’re
also widely used and referenced in literature when it comes to SVM. Following
the guidelines in [9,21], we decided to use Grid-search, which is quite suitable
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when we have to deal with only two parameters. In particular we performed
Grid-search including a 10 folds CV step.

Things are different with ANN because many more parameters are involved
and some of them change the topology of the network itself. Among the various
strategies to attack this problem we picked Bayesian Optimization [27]. This
algorithm combines steps of extensive search for a limited number of settings
before inferring via Gaussian Processes (GP) which is the best setting to try
next (with respect to the mean and variance and compared to the best result
obtained in the last iteration of the algorithm). In particular we tried to fit the
best model by optimizing the following parameters:

– number of hidden layers
– number of hidden neurons in each layer
– learning rate for the gradient descent algorithm
– size of batches to update the weight on network connections
– number of learning epochs

To this purpose, we included in the pipeline of our code the Spearmint
Bayesian optimization codebase. Spearmint, whose theoretical bases are
explained in [27], calls repeatedly an objective function to be optimized. In our
case the objective function contained some tensorflow machine learning code
which run a 10 folds CV over a dataset and the objective was to maximize the
accuracy of validation. The idea was to obtain a model able to generalize as
much as possible using only the selected features before testing on a dataset
which had never been seen before.

We had to decide the stopping criterion, which is not provided by Spearmint
itself. For the sake of simplicity we decided to run it for a time lapse which has
empirically been proven to be sufficient in order to obtain results meaningful for
comparison. A possible improvement would be to keep running the same test
(with the same number of features) for a certain amount of time without reset-
ting the computation history of the package and only stop testing a particular
configuration if the same results is output as the best for k iterations in a row
(for a given k).

Another factor, not directly connected to the different performances obtained
with different entropies, but which is important for the optimization of ANN, is
the choice of the activation functions for the layers of neurons. In our work we
have used ReLU for all layers because it is well known that it works well for this
aim, it is easy to compute (the only operation involved is the max) and it avoids
the sigmoid saturation issue.

4.1 Experiments

As already stated, at the i-th step of the feature selection algorithm we consider
all the features which have already been selected in the previous i − 1 step(s).
For the sake of limiting the execution time, we decided to consider only the first
50 selected features with both metrics. We tried our pipeline on the following
datasets:
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– BASEHOCK dataset: 1993 instances, 4862 features, 2 classes. This dataset
has been obtained from the 20 newsgroup original dataset.

– SEMEION dataset: 1593 instances, 256 features, 10 classes. This is a dataset
with encoding of hand written characters.

– GISETTE dataset: 6000 instances, 5000 features, 2 classes. This is the dis-
cretized version of the NIPS 2003 dataset which can be downloaded from the
site of Professor Gavin Brown, Manchester University.

We implemented a bootstrap procedure (5 iterations on each dataset) to
shuffle data and make sure that the results do not depend on the particular
split between training, validation and test set. Each one of the 5 bootstrap
iterations is a new and unrelated experimental run. For each one of them a
different training-test sets split was taken into account. Features were selected
analyzing the training set (the test set has never been taken into account for
this part of the work). After the feature selection was executed according to
both Shannon and Rényi min-entropy, we considered all the selected features
adding one at each time. So, for each bootstrap iteration we had 50 steps, and in
each step we added one of the selected features, we performed hyper-parameter
tuning with 10 folds CV, we trained the model with the best parameters on the
whole training set and we tested it on the test set (which the model had never
seen so far). This procedure was performed both for SVM and ANN.

We computed the average performances over the 5 iterations and the results
are in Figs. 6, 7, and 8. In all cases the feature selection method using Rényi
min-entropy usually gave better results than Shannon, especially with the BASE-
HOCK dataset.

5 Related Works

In the last two decades, thanks to the growing interest in machine learning, many
methods have been setup to tackle the feature reduction problem. In this section
we discuss those closely related to our work, namely those which are based on
information theory. For a more complete overview we refer to [5,6,28].

The approach most related to our proposal is that of [6,28]. We have already
discussed and compared their method with ours in the technical body of this
paper.

As far as we know, Rényi min-entropy has only been considered, in the con-
text of feature selection, by [12] (although in the experiments they only show
results for other Rényi entropies). The definition they consider, however, is that
of [7] which, as already mentioned, has the unnatural characteristic that a fea-
ture may increase the entropy of the classification instead of decreasing it. It is
clear, therefore, that basing a method on this notion of entropy could lead to
strange results.

Two key concepts that have been widely used are relevance and redundancy.
Relevance refers to the importance for the classification of the feature under con-
sideration f t, and it is in general modeled as I1(C; f t). Redundancy represents
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Fig. 6. Accuracy of the ANN and SVM classifiers on the BASEHOCK dataset

Fig. 7. Accuracy of the ANN and SVM classifiers on the GISETTE dataset

how much the information of f t is already covered by S. It is often modeled as
I1(f t, S). In general, we want to maximize relevance and minimize redundancy.

One of the first algorithms ever implemented was the MIFS algorithm pro-
posed by [4], based on a greedy strategy. At the first step it selects f1 =
argmaxfi∈F I1(C; fi), and at step t it selects f t = argmaxfi∈F\St−1 [I1(C, fi) −
β

∑
fs∈St−1 I1(fi, fs)] where β is a parameter that controls the weight of the

redundancy part.
The mRMR approach (redundancy minimization and relevance maximiza-

tion) proposed by [22] is based on the same strategy as MIFS. However the
redundancy term is now substituted by its mean over the elements of the subset
S so to avoid its value to grow when new attributes are selected.

In both cases, if relevance outgrows redundancy, it might happen that many
features highly correlated and so highly redundant can still be selected. More-
over, a common issue with these two methods is that they do not take into
account the conditional mutual information I1(C, f t | S) for the choice of the
next feature to be selected f t.

More recent algorithms involve the ideas of joint mutual entropy I1(C; fi, S)
(JMI, [5]) and conditional mutual entropy I1(C; fi | S) (CMI, [13]). The
step for choosing the next feature with JMI is f t = argmaxfi∈F\St−1
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Fig. 8. Accuracy of the ANN and SVM classifiers on the SEMEION dataset

{
minfs∈St−1I(C; fi, fs)

}
, while with CMI is f t = argmaxfi∈F\St−1

{
minfs∈St−1I(C; fi | fs)

}
. In both cases the already selected features are taken

into account one by one when compared to the new feature f t. The correlation
between JMI and CMI is easy to prove [29]: I1(C; fi, S) = H1(C) − H1(C |
S) + H1(C | S) − H1(C | S) = I1(C;S) + I(C; fi | S).

6 Conclusion and Future Work

We have proposed a method for feature selection based on a notion of conditional
Rényi min-entropy. Although our method is in general incomparable with the
corresponding one based on Shannon entropy, in the experiments we performed
it turned out that our methods always achieved better results.

As future work, we plan to compare our proposal with other information-
theoretic methods for feature selection. In particular, we plan to investigate the
application of other notions of entropy which are the state-of-the-art in security
and privacy, like the notion of g-vulnerability [1], which seems promising for its
flexibility and capability to represent a large spectrum of possible classification
strategies.
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23. Rényi, A.: On measures of entropy and information. In: Proceedings of the 4th
Berkeley Symposium on Mathematics, Statistics, and Probability, pp. 547–561
(1961)

24. Sheikhpour, R., Sarram, M.A., Gharaghani, S., Chahooki, M.A.Z.: A survey on
semi-supervised feature selection methods. Pattern Recognit. 64, 141–158 (2017)

25. Sibson, R.: Information radius. Z. Wahrscheinlichkeitsth. und Verw. Geb 14, 149–
161 (1969)

26. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1007/978-3-642-41822-8_19
https://hal.archives-ouvertes.fr/hal-01830177
https://doi.org/10.1007/978-3-642-00596-1_21


Feature Selection with Rényi Min-Entropy 239
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Abstract. The Cherenkov Telescope Array (CTA) will be the world’s
leading ground-based gamma-ray observatory allowing us to study very
high energy phenomena in the Universe. CTA will produce huge data
sets, of the order of petabytes, and the challenge is to find better alterna-
tive data analysis methods to the already existing ones. Machine learning
algorithms, like deep learning techniques, give encouraging results in this
direction. In particular, convolutional neural network methods on images
have proven to be effective in pattern recognition and produce data rep-
resentations which can achieve satisfactory predictions. We test the use
of convolutional neural networks to discriminate signal from background
images with high rejections factors and to provide reconstruction param-
eters from gamma-ray events. The networks are trained and evaluated
on artificial data sets of images. The results show that neural networks
trained with simulated data can be useful to extract gamma-ray informa-
tion. Such networks would help us to make the best use of large quantities
of real data coming in the next decades.

Keywords: Gamma-ray astronomy · Cherenkov Telescope Array
Reconstruction technique · Image recognition · Deep learning
Convolutional neural networks

1 Introduction

The ground-based observation of the very high energy gamma-ray sky
(Egamma > 100 GeV) has greatly progressed during the last 40 years through
the use of imaging atmospheric Cherenkov telescopes (IACTs). These telescopes
aim to detect the air shower produced by the interaction of a primary cosmic
gamma ray in the Earth’s atmosphere. Charged air shower particles that travel

CTA website: https://www.cta-observatory.org/.

c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 243–254, 2018.
https://doi.org/10.1007/978-3-319-99978-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99978-4_19&domain=pdf
https://www.cta-observatory.org/


244 S. Mangano et al.

at ultra-relativistic speed emit Cherenkov light. This Cherenkov light propagates
to the ground producing a faint pool of Cherenkov light of about 120 m in radius.
The optical mirrors of the telescopes reflect the collected Cherenkov light into
the focal plane where photomultipliers convert light into an electrical signal that
is digitized and transmitted to record the image.

The image in the camera represents the electromagnetic air shower and is
used to identify the primary cosmic gamma-ray. However, Cherenkov light is not
only produced by cosmic gamma-rays but also by the more abundant hadronic
cosmic rays. These massive charged particles arriving from outer space are mostly
protons, but they also include heavier nuclei, which are known atoms without
their electron shells. The shape, intensity and orientation of the image provides
information about the primary cosmic particle type, energy, direction of propa-
gation and depth of first interaction.

Several different classification and reconstruction techniques exist which on
one hand discriminate gamma-ray events from the more numerous hadron events
and on the other hand infer the primary gamma-ray energy and direction. One of
the first developed reconstruction methods [1], the so called Hillas parametriza-
tion, used direction and elliptical shape of the gamma-ray images as the main
features to discriminate them against the hadronic cosmic ray background which
produces wider and more irregular images. Later more advanced reconstruction
methods with superior performance have been developed using machine learning
algorithms as in the case of random forest [2] for the MAGIC [3] telescope and
boosted decision trees [4] for the H.E.S.S. [5] and VERITAS [6] telescopes. A
further reconstruction method is to fit the image to results of a fast simulation
under the hypotheses that the image is an electromagnetic shower [7–9].

Recently, several gamma-ray observatories with Cherenkov telescopes started
using convolutional neural networks (CNNs) for classification and regression
problems [10–13]. CNNs belong to a class of supervised machine learning tech-
niques that have achieved impressive results in image processing [14,15] with
little need of human intervention in finding significant image features. With
enough training data CNNs can find patterns in the data that when applied
to images maximize the gamma-ray reconstruction performance or background
rejection. In general the study of such machine learning follows always the same
procedure: to start define a data set, then determine a cost function that has
to be minimized, next design a neural network architecture where computation-
ally efficient changes on adjustable parameters works, and in the end apply some
sort of stochastic gradient descent to minimize the cost function. For an in depth
treatment of the literature, see the following references [16–18].

The Cherenkov Telescope Array [19,20] (CTA) will be the next generation
ground-based gamma-ray observatory to study very high energy processes in the
Universe. The main goal of CTA is to identify and study high energy gamma-ray
sources, including objects such as supernova remnants, pulsars, binary stars and
active galaxies. The measured fluxes, energy spectra and arrival directions of
gamma rays will help to find answers to the origin of these high energy parti-
cles and provide information on the morphology of the sources. Also some more
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speculative models are investigated, like theories which incorporate the violation
of Lorentz invariance and predict unexpected cosmological effects on gamma-ray
propagation, or the search of possible signals from annihilating dark matter par-
ticles. CTA is expected to have around one order of magnitude improvement
in sensitivity in the energy range from ∼50 GeV to ∼50 TeV compared to cur-
rently operating IACTs. This is due to the fact that CTA has the capability to
detect gamma-rays over larger areas than existing observatories. CTA will pro-
vide whole-sky coverage with an observatory in the Southern Hemisphere (Cerro
Paranal, Chile) and an observatory in the Northern Hemisphere (La Palma,
Spain). The Southern Hemisphere observatory has a total of 99 telescopes of
three different sizes with an area of 4.5 km2 and the Northern Hemisphere obser-
vatory has a total of 19 telescopes with an area of 0.6 km2. These telescopes will
provide a large amount of images that encode primary particle information and it
is essential to develop efficient statistical tools to best extract such information.
Moreover both observatories will be equipped with four large size telescopes [21],
each with a mirror diameter of about 23 m and a focal length of 28 m. The large
size telescope will dominate the performance of the observatory between 20 GeV
and 200 GeV and will be equipped with a 1855 pixels camera with 4.6◦ full field
of view. First real data from such a telescope should be available already in the
end of 2018.

In this note, we aim to asses the use of CNNs to discriminate signal from
background images and to provide reconstruction parameters from gamma-ray
events for the CTA observatory. To evaluate the performance of the CNNs we
use official simulated CTA data exploiting the pixel wise information of mini-
mally treated images. In contrast to previous mentioned existing works, we apply
for the first time CNNs to simulated CTA data to reconstruct the gamma-ray
parameters. We focus only on large size telescopes with showers triggered in all
four telescopes. The remainder of this note is organized as follows. Section 2 gives
a short description of data simulation and data selection. In Sect. 3 we present
details about specific networks, explain analysis strategy and discuss results,
followed in Sect. 4 by concluding remarks.

2 Monte Carlo Simulation and Preselection

A Monte Carlo simulation has been used [22,23] to produce a large artificial
data set1 and to examine the performance of different CNN architectures. As
presented in [22] the Monte Carlo generated gamma-ray data has been verified
against real gamma-ray data from the existing Cherenkov telescopes. For this
study the directions of the primary gamma rays and protons are distributed
isotropically and extend well beyond the CTA field of view. In particular, for
this diffuse emission, no previous knowledge about the true direction of the
primary gamma-ray source position is assumed. The development of extensive
air showers caused by primary gamma-rays and protons including emission of
1 The simulation data used for this study were extracted from the so called CTA

prod-3 data set.
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Cherenkov light is simulated with CORSIKA [24]. The primary particles enter
the atmosphere as diffuse emission within 10◦ of the field of view center with an
average zenith angle of 20◦ and an average azimuth angle of 0◦. These events
have been produced in the energy range from 3 GeV to 330 TeV for gamma rays
and from 4 GeV to 660 TeV for protons. The distinct energy range values is
due to the fact that at the same energy, the Cherenkov photon intensity in a
proton shower is smaller than the one produced in a gamma-ray shower. The
ratio of Cherenkov photon yield between gamma-ray shower and proton shower
is around two for the selected energy range. In proton showers a large fraction of
the total energy is carried by hadrons and neutrinos which produce little or no
amounts of Cherenkov photons [25]. The atmospheric conditions of the La Palma
site have been reproduced and the response of the telescope is simulated by the
sim telarray [26] package. The generated camera images of telescopes consisting
of calibrated integrated charge and pulse arrival time per pixel is extracted from
the simulation using the MARS [27] package.

Fig. 1. Left: Camera pixel intensity of a four combined telescope image of a gamma-ray
event in a hexagonal grid with hexagonal pixels. Right: Same event as in the left Figure
but as a squared image with squared pixels produced by oversampling technique.

The main aim for IACTs is to fully reconstruct properties like type,
energy, direction and depth of first interaction of the primary particle from
the Cherenkov light produced by atmospheric shower. The use of more than one
telescope significantly improves the ability to reconstruct these particle proper-
ties as the air shower can be recorded under different viewing angles, usually
referred to as stereoscopic imaging. To incorporate this stereoscopic information
and reduce the complexity of different numbers of telescopes we select only events
that trigger four large size telescopes. To simplify the further analysis we com-
bine four images into a single image by summing pixel values. As CTA images
are arranged in a hexagonal grid like the one presented in Fig. 1 left, whereas
the CNN framework is designed to process only rectangular pixels, some image
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processing is needed. A straightforward conversion from the hexagonal (1855
pixels) to squared image (64 × 64 pixels) is to use an oversampling technique.
One such realization is presented in the Fig. 1 right. The CNN has been supplied
with such preprocessed integrated charge per pixel images and with labels like
primary particle type, energy, direction and depth of first interaction.

The following selection criteria have been used to simplify the reconstruction
task. The incoming directions of the randomized primary particles were selected
within a cone with four degrees radius centered on the pointing direction. The
impact points of the uniformly distributed primary particles on the ground have
been selected within a circle with a radius of 200 m around the coordinates of
each single telescope. This ensures that the superimposed elliptical images do
not overlap much. In principle such a selection can be done as a two class classi-
fication problem, distinguishing images with small overlap versus large overlap.
However for this study we did not include such a classification selection and we
leave this as a future development.

3 Convolutional Neural Networks for Simulated
Cherenkov Telescope Array Data

We present results of one CNN that separately classifies signal and background
events and a second one that reconstructs parameters of the primary gamma-ray
particles. We use TensorFlow [28] to implement a network architecture handling
as input the preprocessed images mentioned in the previous section. In the fol-
lowing, we give details about architecture and training of the CNNs and provide
examples of applications to official simulated CTA data.

A typical CNN architecture consist of several successive convolutional layers
followed by one or more fully connected layers. In the first convolutional layer
the input image is convolved by a filter (also referred as kernel) over a restricted
region (also referred as receptive field) producing activation maps. The restricted
region is in general much smaller than the input images and allows to identify in
the first layer simple features, like edges or curves. Applying filters on following
layers obtain activation maps that represent more and more complex features
producing an automated feature extractor. Such a feature extractor can possibly
identify discriminative information in the images that is not fully exploited by
existing reconstruction algorithms.

The goal of the CNN is not to achieve good predictions on training data
examples, but to make good predictions for new examples that are not con-
tained in the training set. This requires that the neural network finds the under-
lying main information in data and generalizes in a meaningful way. Various
neural network architectures were trained tuning hyperparameters in order to
optimize performance on the test set. The performance is given by energy and
angular resolution. Once the architecture and hyperparameters are decided, the
algorithm is fully automatic. Due to the large amount of possible parameter
combinations, the currently used solution was obtained by random search. Sev-
eral different sequential architectures with two, four and eight convolution layers
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combined with one or two fully connected layers with different activation func-
tions and kernel sizes have been tested. Usually neural networks which have
larger numbers of parameters may generalize better than neural networks with
fewer parameters, but larger networks may have an increased overfitting problem
and may require longer periods of time in order to complete a calculation than
smaller networks. Even if training of CNNs can take huge computer resources,
the finally trained network reconstructs a new event in a short time compared to
the training time. Using simpler architectures over more complex architectures
with similar performance reduce reconstruction times and so reduce computing
costs. Quicker reconstruction means quicker scientific results, which is better for
many scientific objectives such as for example transient phenomena and short-
timescale variability searches.

The selected architecture, which gives reasonable performance in terms of
function loss during testing, consists of four convolutional layers with a kernel
of 5 × 5 pixels and with a feature sizes of 32 in each layer. The convolutional
layers and fully connected layers both had exponential linear unit activation
for the regression and classification problem. In order to account for rotational
invariance, the data is augmented artificially with rotated examples (e.g. 0, 120
and 240◦)2. However the rotational invariance is only an approximation, since
the geomagnetic field actually breaks such a symmetry. Each convolution layer
is followed by a batch normalization layer [30] and an average pooling layer [31],
with pool size of two and stride length of two, which reduce the size of images to
half in pixels. A dropout layer [32] with 80% to keep the neurons is used during
training, whereas at the final test time dropout uses all neurons.

The flattened representations from the fourth convolution layer is then fol-
lowed by a fully connected layer of 256 parameters with the same activation
functions used in the previous layers. Finally we apply a sigmoid activation func-
tion for probabilistic predictions in the classification problem and no activation
function in the regression problem.

The initialization scheme used for the parameters is commonly referred to
as the Xavier initialization [33]. The cost function for the classification problem
is cross entropy and for the regression problem is mean squared error. Back-
propagation [34] is explicitly used to minimize the cost function by adapting
parameters using a gradient descent optimization algorithm [35]. Training pro-
ceeds by optimizing the cost function with L2 regularization and learning rate
decay using the Adam algorithm [36]. At each training step, we select a ran-
dom sample of simulated data with batch size of 256 and use them to optimize
the network parameters. The models were trained on a cluster with Tesla K80
GPUs. The data set for the classification problem consists of the same number
of gamma-ray and proton events with about 24000 simulated events and for the
regression problem consists of about 40000 gamma-ray events. The data was
randomly divided into two sets: a training set (80%) and a test set (20%).

2 One approach producing similar results as the one explained in the text was to use
harmonic networks [29] to grasp the rotational invariance of the problem.
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Fig. 2. The CNN gamma-ray and pro-
ton classification output for events
using an independent test set.

Fig. 3. ROC curve for simulated true
energy for gamma-ray and proton
events above 10 GeV.

After having trained the CNN for the classification problem, the classifier
is tested with an independent test set of gamma-ray and proton events. As
an example, Fig. 2 shows the result of the classification of this test set with
the trained CNN, representing the classification power of the CNN approach in
terms of gamma-ray and proton separation for events above 10 GeV. To illus-
trate the general performance of our binary classification problem, we use the
receiver operator characteristic (ROC) curve shown in Fig. 3. The ROC curve is
a graphical plot that illustrates the true positive rate versus the false positive
rate for each possible discrimination value.

We trained separate dedicated CNNs to estimate gamma-ray energies, direc-
tion and depth of first interaction. The trained networks for the regression prob-
lem are able to reproduce the simulated energy of the events as seen in the Fig. 4,
where reconstructed energy as a function of true energy is presented. Figure 5
shows the energy resolution as a function of the true energy of our CNN for two
different data sets. The on-axis and off-axis data set represent the energy reso-
lution of diffuse gamma-ray events with angles with respect to the field of view
center of less and more than two degrees, respectively. The energy resolution is
defined as the one standard deviation of a Gaussian function fit of the distri-
bution of the difference between true and reconstructed energy divided by true
energy for a given energy range. The expected energy resolution performance of
CTA [23] based on combination of Hillas parametrization and multivariate clas-
sification methods is slightly better with about an energy resolution of 9% at
300 GeV. Table 1 compares the energy resolution of the baseline algorithm with
the results of this work for three distinct energy bins. However these numbers
hava to be taken with care as such comparison are dependent on the differences
in data sample like diffuse and point like emission, data selection, number of
telescopes and selected strategy.
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Table 1. Comparison of energy resolution and angular resolution for three simulated
true energy bins for baseline CTA reconstruction algorithm and the CNN reconstruc-
tion presented in this work. Lower values implies better resolution. For the energy and
angular resolution only statistical uncertainties are shown.

Simulated
true energy

Energy resolution [%] Angular resolution [deg]

Baseline algorithm This work Baseline algorithm This work

30 GeV 25± 0.5 21± 0.4 0.26± 0.005 0.26± 0.01

300 GeV 9± 0.5 13± 0.4 0.09± 0.005 0.10± 0.005

3000 GeV 7± 0.5 11± 1.6 0.05± 0.005 0.08± 0.01

Fig. 4. Reconstructed energy as func-
tion of simulated true energy for only
diffuse gamma-ray events using a sepa-
rate CNN than the one used for classi-
fication.

Fig. 5. Energy resolution as a func-
tion of simulated true energy for two
different data sets of diffuse gamma-
ray events. The on-axis (off-axis) points
represent the resolution of diffuse
gamma-ray events with angles with
respect to the field of view center of
less (more) than two degrees.

The directional reconstruction performance as a function of true energy of
the CNN is given in the Fig. 6 for the two different on-axis and off-axis data
sets. As can be seen from the Fig. 6 the on-axis angular resolution is better
than the off-axis one. The angular resolution is defined as the angular offset,
relative to the true gamma-ray direction, within which 68% of the gamma-ray
events are reconstructed. The angular resolution for a point like emission for the
CTA baseline algorithm is about 0.09◦ at 300 GeV. Table 1 shows the angular
resolution of the baseline algorithm and the results of this work for three distinct
energy bins.

Finally, in contrast to energy and directional primary particle reconstruc-
tion, the reconstruction of depth of first interaction of the primary particle is
not used in many analyses, although depth of first interaction is useful to sepa-
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Fig. 6. Angular resolution as a func-
tion of simulated true energy for two
different data sets of diffuse gamma-
ray events. The on-axis (off-axis) points
represent the resolution of diffuse
gamma-ray events with angles with
respect to the field of view center of
less (more) than two degrees.

Fig. 7. Reconstructed depth of first
interaction as a function of simulated
true depth of first interaction using the
same CNN architecture as for recon-
struction of primary particle direction.

rate lepton from gamma-ray initiated showers. This quantity can be difficult to
reconstruct if the number of triggered telescopes is small. Moreover, the algo-
rithm [37] used to reconstruct this variable needs knowledge about the physics
interaction and detector response. In contrast CNN algorithm needs no addi-
tional physical knowledge except what is in the simulation and we use the same
CNN architecture as for directional reconstruction. Figure 7 shows the recon-
structed depth of first interaction as a function of true depth of that interaction.
A clear correlation is seen suggesting that the height of first interaction can be
estimated automatically without any further changes on the CNN architectures.

In this study we did not exploit all the information as images should be
separated according to individual telescopes. We should also take advantage of
including all relevant telescope types and the timing information. It has been
shown [38] that the primary particle information as well as the background
rejection can be significantly improved by using timing knowledge.

4 Summary and Conclusion

The aim of this work is to investigate a deep learning technique for atmospheric
Cherenkov telescopes classification and primary particle parameter estimation.
The approach of the work is to treat gamma-ray detection as a two class clas-
sification problem (gamma-ray versus proton events) as well as to reconstruct
gamma-ray shower parameters and solve it with supervised learning methods.

Promising CNN results have been found and a first comparison to previously
published baseline algorithm can be made. The main advantages of CNN over
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existing algorithm is that there is little need of specialized physics knowledge
with minimal preprocessing of data. Although the results are still not as good as
a existing model based algorithms, CNN have simpler implementation requiring
no detailed physics assumptions.

Further analysis on network architecture and image preprocessing is needed
to improve reconstruction results. Specifically our method does not exploit the
full information as images should be separated according to individual telescopes.
We leave the study for a more general CNN taking into account of more sophisti-
cated approaches, like use hexagonal symmetric features, include timing informa-
tion and use all telescope types for the future work. All these steps are required
to add more complexity and generalize our analysis in order to provide a more
performing CNN for upcoming CTA data.
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want to thank K. Bernlöhr for the simulation CTA prod-3 data set, which was carried
out at the Max Planck Institute for Nuclear Physics in Heidelberg. This work was
conducted in the context of the CTA Analysis and Simulation Working Group and this
paper has gone through internal review by the CTA Consortium.

References

1. Hillas, A.M.: Cherenkov light images of EAS produced by primary gamma rays
and by nuclei. In: Proceedings of the 19th International Cosmic Ray Conference,
La Jolla, vol. 3, pp. 445–448 (1985)

2. Albert, J., et al.: Implementation of the random forest method for the imaging
atmospheric Cherenkov telescope MAGIC. Nucl. Instrum. Meth. A 588, 424–432
(2008)
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Abstract. Sign language is a main communication channel among a
hearing disability community. Automatic sign language transcription
could facilitate better communication and understanding between a hear-
ing disability community and a hearing majority.

As a recent work in automatic sign language transcription has dis-
cussed, effectively handling or identifying a non-sign posture is one of
the key issues. A non-sign posture is a posture unintended for sign read-
ing and does not belong to any valid sign. A non-sign posture may arise
during a sign transition or simply from an unaware posture. Confidence
ratio (CR) has been proposed to mitigate the issue. CR is simple to
compute and readily available without extra training. However, CR is
reported to only partially address the problem. In addition, CR formu-
lation is susceptible to computational instability.

This article proposes alternative formulations to CR, investigates an
issue of non-sign identification for Thai Finger Spelling recognition,
explores potential solutions and has found a promising direction. Not
only does this finding address the issue of non-sign identification, it also
provide an insight behind a well-learned inference machine, revealing hid-
den meaning and new interpretation of the underlying mechanism. Our
proposed methods are evaluated and shown to be effective for non-sign
detection.

Keywords: Hand sign recognition · Thai Finger Spelling
Open-set detection · Novelty detection · Zero-shot learning
Inference interpretation

1 Introduction

Sign language is a main face-to-face communication channel in a hearing dis-
ability community. Like spoken languages, there are many sign languages, e.g.,
American Sign Language (ASL), British Sign Language (BSL), French Sign Lan-
guage (LSF), Spanish Sign Language (LSE), Italian Sign Language (LIS), Chi-
nese Sign Language (CSL), Indo-Pakistani Sign Language (IPSL), Thai Sign
Language (TSL), etc. A sign language usually has two schemes: a semantic sign
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scheme and a finger spelling scheme. A semantic sign scheme uses hand gestures,
facial expressions, body parts, and actions to communicate meaning, tone, and
sentiment. A finger spelling scheme uses hand postures to represent alphabets in
its corresponding language. Automatic sign language transcription would allow
better communication between a deaf community and hearing majority. Sign lan-
guage recognition has been subjects of various studies [2,7,11]. A recent study
[7], investigating hand sign recognition for Thai Finger Spelling (TFS), has dis-
cussed issues and challenges in automatic transcription of TFS. Although the
discussion is based on TFS, some issues are general across languages or even
general across domains beyond sign language recognition. One of the key issues
discussed in the study [7] is an issue of a non-sign or an invalid TFS sign, which
may appear unintentionally during a sign transition or from unaware hand pos-
tures.

The appearance of non-signs may undermine the overall transcription per-
formance. Nakjai and Katanyukul [7] proposed a light-weight computation app-
roach to address the issue. Sign recognition is generally based on multi-class
classification, whose output is represented in softmax coding. That is, a soft-
max output capable of predicting one of K classes is noted y = [y1y2 . . . yK ]T ,
whose coding bit yi ∈ [0, 1], i = 1, . . . , K and

∑K
i=1 yi = 1. A softmax output y

represents predicted class k when yk is the largest component: k = arg maxi yi.
Their approach is based on the assumption that the ratio between the largest
value of the coding bit and the rest shows the confidence of the model in its class
prediction. Softmax coding values have been normalized so that it can be asso-
ciated to both probability interpretation and cross-entropy calculation. Despite
the benefits of normalization, they use the penultimate values instead of the
softmax values for rationale that some information might have been lost dur-
ing the softmax activation. Penultimate values are inference values before going
through softmax activation (i.e., ak in Eq. 1). Specifically, to indicate a non-sign
posture, they proposed a confidence ratio (CR), cr = a

b , where a and b are the
largest and second largest penultimate values, respectively: a = am and b = an

where m = arg maxi ai and n = arg maxi�=m ai. Their CR has been reported
to be effective in identifying a posture that is likely to get a wrong prediction.
However, on their evaluating environment, they reported that CR could hardly
distinguish the cause of the wrong prediction whether it was a misclassified valid
sign or it was a forced prediction on an invalid sign. In addition, generally each
penultimate output is a real number, ai ∈ R. This nature poses a risk on CR
formulation for when there is zero or a negative number, CR can be misleading
or its computation can even collapse (when the denominator is zero).

Our study investigates development of an automatic hand sign recognition
for Thai Finger Spelling (TFS), alternative formulations to CR, a non-sign issue
and potential mitigations for a non-sign issue. TFS has 25 hand postures to
represent 42 Thai alphabets using single-posture and multi-posture schemas [7].
Single-posture schema directly associates a hand posture to a corresponding
alphabet. Multi-posture schema associates a series of 2 to 3 hand postures to
a corresponding alphabet. Based on probability interpretation of an inference



Automatic Hand Sign Recognition 257

output, Bayes theorem, and examining an internal structure of a commonly
adopted inference model, various formulations alternative to CR are investigated
(Sect. 3). Sections 2, 4, and 5 provide related background, methodologies and
experimental results, and discussion and conclusions, respectively.

2 Background

TFS Hand Sign Recognition. A recent visual-based state-of-the-art in TFS sign
recognition A-TFS [7] frames hand sign recognition as a pipeline of hand local-
ization and sign classification problem. A-TFS is an approach based on a color
scheme and a contour area using Green’s theorem for hand localization. Then,
an image region dominated by a hand is scaled to a pre-defined size (i.e., 64×64)
and passed through a classifier, implemented with a convolution neural network.
The classifier predicts the most likely class out of the 25 pre-defined classes, each
corresponding to a valid TFS sign.

Most visual-based TFS sign recognition studies [7,11] focus on static images.
However, a practical system should anticipate video and streaming data, where
unintended postures may be passed through the pipeline and cause confusion to
the final transcription result. Unintended postures can accidentally match valid
signs. This challenging case is worth a dedicated study and could be addressed
through a language model. However, even when the unintended postures do
not match any of the valid signs, a classifier is forced to predict one out of its
pre-defined classes. No matter which class it predicts, the prediction is wrong.
This could cause immediate confusion on its recognition result or undermine
performance of its subsequence process when using this recognition as a part of
a larger system. Confidence ratio (CR) [7] was proposed to address the issue,
but reported to be marginally effective.

Novelty Detection. A conventional classifier specifies a fixed number of classes
that it can predict and is forced to predict. This constraint allows it to be
efficiently optimized to its classification task, but it has a drawback, which is
more apparent when the assumption of all-inclusive classes is strongly violated.
The concept of flagging out an instance belonging to a class that an inference
machine has not seen at all in the training phase is a common issue and a
general concern beyond sign language recognition. The issue has been extensively
studied under various terms1, e.g., novelty detection, anomaly detection, outlier
detection, zero-shot learning, and open-set recognition.

Pimentel et al. [9] summarize a general direction in novelty detection. That
is, a detection method usually builds a model using training data containing no
examples or very few examples of the novel classes. Then, somehow depending
on approaches, a novelty score s is assigned to a sample under question x and the

1 Definition of novelty, anomaly, outlier, and zero-shot may be slightly different.
Approaches may be various [9,13], but they are generally addressing a similar con-
cern.
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final novelty judgement is decided by thresholding, i.e., the sample x is judged a
novelty (belonging to a new class) when s(x ) > τ for τ is a pre-defined threshold.

To obtain the novelty score, various approaches have been examined.
Pimentel et al. [9] categorize novelty detection into 5 approaches: probabilistic,
distance-based, reconstruction-based, domain-based, and information-theoretic
based techniques. A probabilistic approach relies on estimating a probability den-
sity function (pdf) of the data. A sample x is tested by thresholding the value
of its pdf: pdf(x ) < τ indicates x being novel. Training data is used to estimate
the pdf. Although this approach has a strong theoretical support, estimating
a pdf in practice requires a powerful generative model along with an efficient
mechanism to train it. A generative model at its fullest potential could provide
greater inference capabilities on data, such as expressive representation, recon-
struction, speculation, generation, and structured prediction. Its applicability is
much beyond novelty detection. However, high-dimension structured data, e.g.,
images, render this requirement very challenging. A computationally traceable
generative model is a subject of highly active research. Another related issue is
to determine a sensible value for τ , in which many studies [1,3] have resorted
to extreme value theory (EVT) [8]. A distance-based approach is presumably
[9] based on an assumption that data seen in a training process is tightly clus-
tered and data of new types locate far from their nearest neighbors in the data
space. Either a concept of nearest neighbors [14] or of clustering [6] is used.
Roughly speaking, a novelty score is defined by a distance either between a sam-
ple x and its nearest neighbors or between x and its closest cluster centroids.
The distance is often measured with Euclidean or Mahalanobis distance. The
approach relies on a mechanism to identify the nearest neighbors or the near-
est clusters. This usually is computationally intensive and becomes a key factor
attributed to its scalability issue in terms of data size and data dimensions. A
reconstruction-based approach involves building a re-constructive model, often
called “auto-encoder,” which learns to find a compact representation of input
and reproduce it as an output. Then, to test a sample, the sample is put through
a reconstruction process and a degree of dissimilarity between the sample and
its reconstructed counterpart is used as a novelty score. Hawkins et al. [4] used a
3-hidden-layer artificial neural network (ANN) learned to reproduce its input. As
an auto-encoder, a number of input nodes is equal to a number of output nodes
and a number of nodes in at least one hidden layer is smaller than a number of
input nodes in order to force ANN to learn a compressed representation of the
data. Any sample that cannot be reconstructed well is taken for novelty, as this
infers that its internal characteristics do not align with the compressed struc-
ture fine tuned to the training data. This approach may also resort to distance
measurement for a degree of dissimilarity, but it does not require to search for
the nearest neighbors. Therefore, once an auto-encoder is tuned, it is easier to
scale up than a distance-based approach. A domain-based approach associates
building a boundary of the data domain in a feature space. Any sample x is
considered novelty if its location on the feature space lies outside the bound-
ary. Schölkopf et al. [10] proposed one-class support vector machine (SVM) for
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novelty detection. SVM learns to build a boundary in a feature space to ade-
quately cover most training examples, while having a user-defined parameter
to control a degree to allow some training samples to be outside the boundary.
This compromising mechanism is a countermeasure to outliers in the training
data. The last approach—information-theoretic—involves measurement of infor-
mation content in the data. It assumes that samples of novelty increase infor-
mation content in the dataset significantly. As their task was to remove outliers
from data, He et al. [5] used a decrease in entropy of a dataset after removal of
the samples to indicate a degree of the samples being outliers. The samples were
heuristically searched. Pimentel et al. [9] note that this approach often requires
an information measure that is sensitive enough to pick up the effect of novelty
samples, especially when a number of these samples is small. Noted that most
approaches do not scale well to high-dimension structured data, like images.
Novelty detection in high-dimension structured data is still in an early stage.

Based on this categorization [9], a probabilistic approach is closest to the
direction we are taking. However, unlike many early works, firstly, rather than
requiring a dedicated model, our proposed method builds upon a well-adopted
classifier. It can be used with an already-trained model without requirement
for re-training. Secondly, most works including a notable work of OpenMax
[1]—whose performance achieves F-measure2 of 0.595—determine a degree of
novelty by how unlikely the sample belongs to any seen class. Another word, most
previous works have to examine every probability of sample x being seen class
i, Pr[class = i|x ], for i = 1, . . . , K, when K is a number of all seen classes. Our
work follows our interpretation of a softmax output, i.e., yi ≡ Pr[class = i|s,x ],
where s represents a state of being a seen class (not novelty). How likely sample
x is novel then can be directly deduced.

3 Prediction Confidence and Non-sign Identification

Confidence Score (cs). To quantify confidence in classification output, our study
investigates various candidates (shown in Table 1) based on that yk associates
to a probability of being class k and yk is generally obtained through a softmax
mechanism (Eq. 1). Formulation cs1 is straightforward. Formulation cs2 asso-
ciates to a logarithm of probability. Formulation cs3 is similar to confidence
ratio [7] (CR), but with an attempt to link an empirical utility to a theoretical
rationale. In addition, formulation cs3 is preferable in terms of computational
cost and stability. Formulation cs4—a logit function—has a more direct inter-
pretation of the starting assumption that the confidence is high when probability
of the predicted class is much higher than the rest.

Latent Cognizance. Given the input image x , the predicted sign in softmax
coding y ∈ R

K , where K is a number of the pre-defined classes, is derived
through a softmax activation: for k = 1, . . . , K,

2 Tested on 80, 000 images (including 15, 000 unknown images).
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Table 1. Formulations under investigation for confidence score (cs). Softmax value
yl = eal

∑K
i=1 eai

, where K is a number of predefined classes; al is a penultimate value; k

and j are indices of the largest and the second largest components, respectively

Confidence score cs1 = yk cs2 = ak cs3 = log
(

yk
yj

)
= ak − aj cs4 = log

(
yk

1−yk

)

Table 2. Formulations under investigation for cognizance function (g̃). Term a repre-
sents a penultimate value

Cognizance function g̃0(a) = a g̃1(a) = ea g̃2(a) = a2 g̃3(a) = a3 g̃4(a) = |a|

yk =
eak

∑K
i=1 eai

, (1)

where ak is the kth component of penultimate output. Each yk can be interpreted
as a probability that the given image belongs to sign class k, or more precisely a
probability that the given valid input belongs to class k. That is, yk ≡ Pr[k|s,x ]
where k indicates one of the K valid classes, x is the input under question,
and s indicates that x is representing one of the valid classes (being a sign).
For conciseness, conditioning on x may be omitted, e.g., yk ≡ Pr[k|s,x ] may
be written as yk = Pr[k|s]. Noted that, this insight is distinct to a common
interpretation [1] that a softmax coding bit yk of a well-learned inference model
estimates probability of being in class k, i.e., yk = Pr[k|x ]. This common notion
does not emphasize its conditioning on an inclusiveness of all pre-defined classes.

Identifying a non-sign can be achieved through determining the probability
of a sample x not belonging to any of the sign classes: Pr[s̄|x ] = 1 − Pr[s|x ].
To deduce Pr[s|x ], or concisely Pr[s], consider Bayesian relation: Pr[k|s] =

Pr[k,s]
∑K

i=1 Pr[i,s]
where Pr[k, s] is a joint probability. Given the Bayesian relation,

the inference mechanism (Eq. 1), and our new interpretation of yk, the following
relation is found:

eak

∑K
i=1 eai

=
Pr[k, s]

∑K
i=1 Pr[i, s]

. (2)

Based on Eq. 2, it should be easier to find an appropriate mapping between
eak and Pr[k, s] for the interpretability of the equation. Here, we draw the
assumption that penultimate value ak relates to joint probability Pr[k, s]
through an unknown function u : ak(x ) �→ Pr[k, s|x ]. Theoretically, this
unknown function is difficult to exactly characterize. In practice, even without
exact characteristics of this mapping, a good approximate is enough to accom-
plish a task of identifying a non-sign. Supposed there exists an approximate
mapping g, i.e., g(ak) ≈ Pr[k, s], therefore given g(ai)’s (for i = 1, . . . , K), a
non-sign can be identified by Pr[s|x ] =

∑
i Pr[i, s|x ] ≈ ∑

i g(ai(x )). Further
refining, to lessen burden on enforcing proper probability properties on g, define
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a “cognizance” function g̃ such that g̃(ai(x )) ∝ g(ai(x )). Consequently, define
primary and secondary latent cognizance as the following relations, respectively:

g̃ (ai(x )) ∝ Pr[i, s|x ], (3)
∑

i

g̃ (ai(x )) ∝ Pr[s|x ]. (4)

Various formulations (Table 2) are investigated for an effective cognizance
function. Identity g̃0 is chosen for its simplicity. Exponential g̃1 is chosen for
its immediate reflection on Eq. 2. It should be noted that a study on a whole
family of g̃ = m ·ea, where m is a constant, is worth further investigation. Other
formulations are intuitively included on an exploratory purpose.

4 Experiments

Various formulations of confidence score and choices of cognizance function are
evaluated on TFS sign recognition system. Our TFS sign recognition follows the
current state-of-the-art in visual TFS sign recognition [7] with a modification
of convolution neural network (CNN) configuration and its input resolution.
Instead of a 64 × 64 gray-scale image, our work uses a 128 × 128 color image
as an input for CNN. Our CNN configuration uses a VGG-16 [12] with the 2
fully-connected layers each having 2048 nodes, instead of 3 fully-connected layers
in the original VGG-16. Figure 1 illustrates our processing pipeline.

Fig. 1. Processing pipeline of our TFS sign recognition.

Sign Data. The main dataset contains images of 25 valid TFS sign postures.
Twelve signers3 were employed to perform TFS signs. Each signer performed all
25 valid TFS signs for 5 times. That resulted in a total number of 1500 images
(5 times ×25 postures ×12 signers), which were augmented to 15000 images.
The augmentation process generated new images from the original images using
different image processing methods, e.g., skewing, scaling, rotating, and trans-
lating. All augmented images were visually inspected for human readability and
semantic integrity. Every image is a color image with a resolution of approxi-
mately 800 × 600 pixels.
3 A signer is an individual person who performs TFS signs.
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Experimentation. The data was separated based on signers into a training set
and a test set, i.e., 11250 images from 9 signers for training set (75%) and
3750 images from the other 3 signers for test set (25%). The experiments were
conducted for 10 repetitions in a 10-fold manner. Specifically, each repetition
separated data differently, e.g., the 1st fold used data from signers 1, 2, and 3
for test and used the rest for training; the 2nd fold used test data from signers
2, 3, and 4; and so on till the last fold using test data from signers 10, 1, and 2.

The mean Average Precision (mAP), commonly used in object detection
[7], is a key performance measurement. Area under curve (AUC) and receiver
operating characteristic (ROC) are used to evaluate effectiveness of various for-
mulations for confidence score and latent cognizance. AUC is often referred to as
an estimate area under Precision-Recall curve, while ROC is usually referred to
an estimate area under Detection-Rate–False-Alarm-Rate curve. However, gen-
erally both areas are equivalent. We use them to differentiate the purpose of our
evaluation rather than taking them as different metrics. AUC is used for identi-
fication of samples not to be correctly predicted4. It is more direct to measure a
quality of a replacement for confidence ratio (CR) [7]. ROC is used for identifying
non-sign samples5. It is more direct to the very issue of non-sign postures.

Non-sign Data. In addition to the sign dataset, a non-sign dataset containing
images of various non-sign postures is used to evaluate non-sign identification
methods. All non-sign postures were carefully choreographed to be perceivably
different from any valid TFS sign and performed by a signer before augmented
to 1122 images. All augmented images had been visually inspected that they all
were readable and did not accidentally match to any of the 25 valid signs.

Results. Table 3 shows TFS recognition performance of the previous studies and
our work. The high performing mAP (97.59%) indicates that our model is well-
trained. The results were shown to be non-normal distributed, based on Lilliefors
test at 0.05 level. Wilcoxon rank-sum test was conducted on each treatment for
comparing (1) difference between correctly classified samples (CP) and misclassi-
fied samples (IP), (2) difference between CP and non-sign samples (NS), and (3)
difference between IP and NS. At 0.01 level, Wilcoxon rank-sum test confirmed all
3 differences in all treatments. Figure 2 shows boxplots of all treatments. Y-axes
show the treatment values, e.g., the top left plot has its Y-axis depicting values of
ak

aj
. The values are observed in 10 cross-validations each testing on 4872 images

(3750 sign images and 1122 non-sign images). Hence, each subplot depicts 48720

4 Positive is defined to be a sample of either a non-sign or an incorrect prediction.
5 Positive is defined to be a non-sign.
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data points6 categorized into 3 groups. Although the significance tests confirm
that the 3 groups are distinguishable using any of the treatments, the boxplots
show a wide range of degrees of difficulty to distinguish each individual sample,
e.g., cubic cognizance (

∑
i a

3
i ) seems to be easier than others on thresholding the

3 cases. To measure a degree of effectiveness, Tables 4 and 5 provide AUC and
ROC. Noted that, since treatment g̃0 gives results in a different manner than
others: a higher value associates to a non-sign (c.f. a lower value in others), the
evaluation logic is adjusted accordingly.

On finding an alternative to CR [7], maximal penultimate output ak appears
promising with the largest AUC (0.934) and it is simple to obtain (no extra com-
putation, thus no risk of computational instability). On addressing a non-sign
issue, cubic cognizance a3 gives the best ROC (0.929). Its smoothed estimate
densities7 of non-sign samples (NS) and sign samples (combining CP and IP) are
shown on Fig. 3a. Plots of detection rate versus false alarm rate of the 4 strongest
candidates and CR are shown in Fig. 3b. Table 6 shows non-sign detection per-
formance of the 4 strongest cognizance functions compared to a baseline, CR.
Non-sign detection performance is measured with accuracy—a ratio of correctly
classified sign/non-sign samples to all test samples—and F-measure—a common
performance index for novelty detection [1]—at thresholds selected so that every
treatment has its False Alarm Rate closest to 0.1.

Table 3. Performance of visual-based TFS sign recognition.

Method TFS coverage Data size
(# images)

Key factors Performance

Chansri and
Srinonchat [2]

16 signs 320 Kinect 3D camera,
HOG and ANN

83.33%

Silanon [11] 21 signs 2100 HOG and ANN 78.00%

A-TFS [7] 25 signs 1500 Hand Extraction
and CNN

91.26%

Our work
(V-TFS)

25 signs 15000 Hand Extraction
and VGG-16

97.59%

Table 4. Evaluation of confidence score formulations.

cr = ak
aj

cs1 = yk cs2 = ak cs3 = ak − aj cs4 = log
(

yk
1−yk

)

AUC 0.814 0.919 0.934 0.900 0.919

ROC 0.740 0.879 0.921 0.847 0.879

6 Extreme values—under 0.25 quantile and over 0.75 quantile—were removed.
7 A normalized Gaussian-smoothing version of histogram produced through smoothed

density estimates of ggplot2 (http://ggplot2.tidyverse.org) with default parameters.

http://ggplot2.tidyverse.org
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Table 5. Evaluation of various g̃ formulations on
∑

i g̃(ai) ∝ Pr[s].

Identity
g̃0(a) = a

Exponential
g̃1(a) = ea

Quadratic
g̃2(a) = a2

Cubic
g̃3(a) = a3

Absolute
g̃4(a) = |a|

AUC 0.437 0.930 0.855 0.934 0.737

ROC 0.419 0.920 0.845 0.929 0.726

Table 6. Non-sign detection performance of the cognizance functions c.f. CR. Thresh-
olds were selected so that every treatment has its False Alarm Rate closest to 0.1.

Treatment Threshold Accuracy F-measure

CR [7] 1.02 0.769 0.029

ea 100000.00 0.919 0.807

a2 26.70 0.866 0.627

a3 1700.63 0.926 0.831

|a| 50.88 0.825 0.425

Fig. 2. Upper row: boxplots of confidence ratio and candidates for confidence score.
A Y-axis shows values of confidence score in linear scale. The confidence score formu-
lations are indicated in the subplot titles. Lower row: boxplots of 5 candidates for a
cognizance function. A Y-axis shows

∑
i g̃(ai) values (

∑
i ai and

∑
i |ai| in linear scale;

the rest in log scale). The confidence score or cognizance values are shown in 3 groups:
CP for correctly classified samples; IP for misclassified samples; NS for non-sign samples.
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Fig. 3. (a) Left: illustration of smoothed estimated densities of sign (denoted SS) and
non-sign (denoted NS) data over

∑
i a

3
i . (b) Right: detection rate versus false alarm

rate curves of the 4 strongest candidates and the confidence ratio (CR).

5 Discussion and Conclusions

The cubic function has shown to be the best cognizance function among other
candidates, including the exponential function. In addition, the cubic cognizance
has ROC par to the max-penultimate confidence score. On the other hand, the
max-penultimate confidence score also provide a competitive ROC and could be
used to identify non-sign samples as well. Noted that OpenMax [1]—a state-of-
the-art in open-set recognition—uses penultimate output as one of its crucial
parts. Our finding could contribute to the development of OpenMax. A study of
using cubic cognizance in OpenMax system seems promising, since it is shown
to be more effective than a penultimate output. Another point worth noting is
that the previous work [7] evaluated confidence score on identifying non-signs
and could not confirm its effectiveness with the significance tests. Their results
agree with our early experiments when using a lower resolution image, a smaller
CNN structure, and training and testing on smaller datasets. In our early experi-
ment, only a few of the treatments could be confirmed for non-sign identification.
Those that were confirmed are consistent with ROC presented here. This obser-
vation implies a strong relation between state of the inference model and non-
sign-identification effectiveness. This relation deserves a dedicated systematic
study. Regarding applications of the techniques, thresholding can be used and a
proper value for the threshold has to be determined. This can be simply achieved
through tracing Fig. 3b with the corresponding threshold values. Alternatively,
the proper threshold can be determined based on Extreme Value Theory, like
many previous studies [1,3]. Another interesting research direction is to find a
similar solution for other inference families. Our techniques target a softmax-
based classifier, which is well-adopted especially in artificial neural network.
However, Support Vector Machine (SVM), another well-adopted classifier, is
built on a different paradigm. Application of latent cognizance to SVM might not
work or might be totally irrelevant. Investigation into the issue on other inference
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paradigms could provide a unified insight of the underlying inference mechanism
and benefits beyond addressing the novelty issue. Regarding starting assump-
tions, high ROC values of exponential and cubic cognizances support our new
interpretation and its following assumptions. However, the penultimate output,
according to our new interpretation, has relation ak(x ) = log(Pr[k|s,x ]) + C,
where C = − log

∑
i ai(x ). This relation only partially agrees with our results.

High value of AUC agrees with log(Pr[k|s,x ]) that a class is confidently clas-
sified, but Pr[k|s,x ] alone is not enough to determine a non-sign, which needs
Pr[s̄|x ]. This implies that our research is on a right direction, but it still needs
more studies to complete the picture.

In brief, our study investigates (1) alternatives to confidence ratio (CR) [7]
and (2) methods to identify a non-sign. The max-penultimate output is shown to
be a good replacement for CR in terms of detection performance and simplicity.
Its large value associates to a sample likely to be correctly classified and vice
versa. The cognizance

∑
i a

3
i is shown to be a good indicator for a non-sign

such that
∑

i a
3
i (x ) ∝ Pr[s|x ], i.e., a low value of

∑
i a

3
i (x ) associates to a

non-sign sample. To wrap up, our findings give an insight into a softmax-based
inference machine and provide a tool to measure a degree of confidence in the
prediction result as well as a tool to identify a non-sign. The implications may
go beyond our current scope of TFS hand-sign recognition and contribute to
open-set recognition or other similar concepts. Latent cognizance is viable for its
simplicity and effectiveness in identifying non-signs. These would help improve
an overall quality of the translation, which in turn hopefully leads to a better
understandingc among people of different physical backgrounds.
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Abstract. Affective dimensions (i.e. valence, arousal, etc.) are continuous, real
variables, bounded on [−1,+1]. They give insights on people emotional state.
Literature showed that regressing these variables is a complex problem due to
their variability. We propose here a two-step process. First, an ensemble of
ordinal classifiers predicts the optimal range within [−1, +1] and a discrete
estimate of the variable. Then, a regressor is trained locally on this range and its
neighbors and provides a finer continuous estimate. Experiments on audio data
from AVEC’2014 and AV+EC’2015 challenges show that this cascading pro-
cess can be compared favorably with state of art and challengers results.

Keywords: Affective computing � Ensemble of classifiers � Random forests

1 Introduction

Nowadays, vocal recognition of emotions has multiple applications in domains as
diverse as medicine, telecommunications or transport [1]. For example, in telecom-
munications, it would become possible to priorities the calls from individuals in
imminent danger situations over less relevant ones. In general, emotion recognition
enables the improvement of human/machine interfaces, which justifies the unexpected
increase of research on this field, due to the progresses in artificial learning.

Human interactions rely on multiple sources: body language, facial expressions,
etc. A vocal message carries a lot of information that we translate implicitly. This
information can be expressed or perceived verbally, but also non-verbally, through the
tone, the volume or the speed of the voice. The automatic analysis of such information
gives insights on the speaker emotional state.

The conceptualization of emotions is still a hot topic in psychology. Opinions do
not converge towards a unique model. In fact, we can mainly differentiate three
approaches [9]: (1) the basic emotions (Anger, Disgust, Fear, Happiness, Sadness,
Surprise) described by Ekman [6], (2) the circumplex model of affect and (3) the
appraisal theory. In the second model, the affective state is generally described, at least,
by two dimensions: the valence which determines the positivity of the emotion and the
arousal which determines the activity of the emotion [18, 23]. These two values,
bounded on [−1,+1], describe much more precisely the emotional state of an individual
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than the basic emotions. However, it has been shown that other dimensions were
necessary to report more accurately this state during an interaction [8].

The choice of one model or the other restrains the kind of machine learning
algorithms used to estimate the emotional state. In case of basic emotions, the variable
to be predicted is qualitative and nominal. Classification methods must be used. On the
contrary, affective dimensions are quantitative, continuous, and bounded variables. So,
regression predictor will be needed. To take advantage of the best of both worlds, we
propose in this study a method that combines classification and regression. To predict a
continuous and bounded variable, we first quantize the affect variable into bounded
ranges. For example, a 5 ranges valence quantization would give the following
boundaries {−1, −0.5, −0.2, +0.2, +0.5, +1}. It could be interpreted as “very negative”,
“negative”, “neutral”, “positive” and “very positive”. Then, we proceed into 3 steps:

• Train an ensemble of classifiers to estimate if the affect variable associated to an
observation is higher than a given boundary;

• Combine the ensemble decisions to predict the optimal range;
• Regress locally the affect variable on this range.

The proposed method is therefore a cascade of ordinal classifiers and local
regressors (COCLR). We will see in the following state of the art that similar proposals
have been made. But in this paper, we perform a thorough study on the key parameter
of this method: the number of ranges to be separated by the ensemble of ordinal
classifiers. We show experimentally that:

• On small and numerous ranges, ordinal classification performs well;
• On large ranges, the COCLR cascade performs better;
• On challenging databases (AVEC’2014 [23] and AV+EC’2015 [17], described in

Sect. 4), the COCLR cascade can be compared favorably with challengers’ and
winner’s proposals with an acceptable development and computational cost.

This paper is organized as follows. Section 2 focuses on the state of the art on affect
prediction on audio data. In Sect. 3, we will present the COCLR flowchart. In Sect. 4,
we will introduce the datasets used to train and evaluate our system and the different
pre-processing realized. Then, in Sect. 5, we will expose and discuss our results.
Finally, Sect. 6 offers some conclusions.

2 State of Art

The Audio-Visual Emotion recognition Challenges (AVEC), that takes place every
year since 2011, enables to assess the systems proposed on similar datasets. The main
objective of these challenges is to ensure a fair comparison between research teams by
using the same data. Particularly, the unlabeled test set is released to registered par-
ticipants some days before the challenge deadline. Moreover, the organizers provide to
the competitors a set of audio and video descriptors extracted by approved methods.

The prosodic features such as the height, the intensity, the speech rate, and the
quality of the voice, are important to identify the different types of emotions. Low level
acoustic descriptors like energy, spectrum, cepstral coefficients, formants, etc. enable
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an accurate description of the signal [23]. Furthermore, it has recently been demon-
strated that features learned by the first layers of deep convolutional networks were
quite similar to some acoustic descriptors [22].

2.1 Emotion Classification and Prediction

The classification of emotion is done through classical methods like support vector
machines (SVM) [2], Gaussian mixture models (GMM) [20] or random forests
(RF) [15]. For regression tasks, numerous models have been proposed: support vector
regressors (SVR) [5], deep belief networks (DBN) [13], bidirectional long-short term
memory networks (BLSTM) [14], etc. As all these models having their own pros and
cons, recent works focus on model combinations to improve overall accuracy. Thus, in
[11], authors propose to associate BLSTM and SVR to benefit from the treatment of the
past/present context of the BLSTM and the generalization ability of the SVR.

AV+EC’2015 challenge winners proposed in [12] a hierarchy of BLSTM. They
deal with 4 information channels: audio, video (described by frame-by-frame geometric
features and temporal appearance features), electrocardiogram and electro dermal
activity. They combine the predictions of single-modal deep BLSTM with a multi-
modal deep BLSTM that perform the final affect prediction.

2.2 Ordinal Classification and Hierarchical Prediction

The standard approach to ordinal classification converts the class value into a numeric
quantity and applies a regression learner to the transformed data, translating the output
back into a discrete class value in a post-processing step [7]. Here, we work directly on
numerical values of affect variables but quantify them into several ranges. Recently, a
discrete classification of continuous affective variables through generative adversarial
networks (GAN) has been proposed [3]. Five ranges are considered.

The idea of a combining regressors and classifiers has already been applied to deal
with age estimation from images. In [10], a first “global” regression is done with a SVR
on all ages. Then, it is refined by locally adjusting the age regressed value by using an
SVM. In [21] authors propose another hierarchy on the same issue. They define 3 age
ranges (namely “child”, “teen” an “adult”). An image is classified by combining the
results of a pool of classifiers (SVC, FLD, PLS, NN and naïve Bayes) in a majority
rule. Then, a second stage uses the appropriate relevant vector machine regression
model (trained on one age range) to estimate the age.

The idea of such a hierarchy is not new, but its application to affect data, have not
been proposed yet. Moreover, we show in the following experiments that the number of
boundaries to be considered impacts the performance of the whole hierarchy.

3 Cascade of Ordinal Classifiers and Local Regressors

The cascade of ordinal classifiers and local regressors proposed here is a hybrid
combination of classification and regression systems. Let us note X, the observation
(feature vector), y the affective variable to be predicted (valence or arousal) and by, the
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prediction. The variable y is continuous and defined on the bounded interval [−1, +1].
Therefore, it is possible to segment this interval into a set of n smaller sub-intervals
called “ranges” in the following, bounded by the boundaries bi and bi+1 with i 2 {1,
n + 1}. For example, n = 2 define 2 ranges: [−1, 0[ (“negative”) and [0, +1] (“posi-
tive”) and 3 boundaries bi 2 {−1, 0, +1}. Each boundary bi (except −1 and +1) may
define a binary classification issue: given the observation X, the prediction by is lower
(resp. higher) than bi. By combining the outputs of the (n − 1) binary classifiers, we get
an ordinal classification. Given the observation X, the prediction by is probably (nec-
essarily in case of perfect classification) located within the range [bi, bi + 1[. Once this
range obtained, a local regression is run on it along to its direct neighbors to predict y.
Figure 1 illustrates the full cascade. The structure of this system is modular and
compatible with any kind of classification and regression algorithms. Moreover, it is
generic and may be adapted to other subjects than affective dimension prediction.

3.1 Ordinal Classification

The regression of an affect value y on an observation X can be bounded by the
minimum and the maximum this value might take. The interval on which y is defined,
I = [min(y), max(y)], can be divided in n ranges.

The first stage of the cascade is an ensemble of (n − 1) binary classifiers. Each
classifier decides if, given the observation X, the variable to be predicted is higher than
the lower boundary bi of a range or not. Training samples are labeled −1 if their y value
is lower than bi and +1 otherwise. Considering the sorted nature of the boundaries bi,
we build here an ensemble of ordinal classifiers [7].

We combine the decisions of these classifiers to compute the lower and upper
bounds of the optimal range [bi, bi+1[. Consider an observation X with y = 0.15.
Suppose the number of ranges n = 6 and linearly distributed boundaries bi. The fol-
lowing ranges are defined: [−1.0, −0.5, −0.25, 0, 0.25, 0.5, 1.0]. In case of perfect
classification, the output vector of the ensemble of classifiers would be: {1, 1, 1, 1, −1,
−1} where −1 means “y is lower than bi” while +1 means “y is higher than bi”.
Obviously, bi is the bound associated to the “latest” classifier with a positive output and
bi+1 the first classifier with a negative output. By combining the local decisions of these
binary classifiers, we get the (optimal) range [bi, bi+1[. This range Ci will be used in the
second stage to locally predict y. In the example, this range is [0, 0.25[. However,
indecision between two classifiers can happen [16]. This indecision will be handled by
the second stage of the cascade.

The performance measure of the ordinal classifiers, the accuracy, is directly linked
to the definition of the ranges. The choice of the number of ranges n is a key parameter
of our system and can be seen as a hyper-parameter. The n ranges and their corre-
sponding boundaries bi can be defined in several ways. If they are linearly distributed,
they will define a kind of affective scale as in [3]. But the choice of the boundaries bi
could also prevent strong imbalances between classes. In case of highly imbalanced
classes, the application of a data augmentation method is strongly recommended [4].

From now on, we can evaluate the accuracy (ranges detection rates) of the classifier
combination. It can also be used to compute a discrete estimate of y, by using the center
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of the predicted range as the value ŷ. Finally, we can estimate the correlation of ŷ to the
ground truth y.

3.2 Local Regression

The aim of the second stage of the cascade is to compute the continuous value of
y. Thus, each range i is associated to a regressor Ri that locally regresses y on [bi,bi+1].
So, each regressor is specialized in the regression on a specific range. However, as
explained previously, indecisions between nearby classes throughout the ordinal
classification may induce an improper prediction of the range. De facto, the wrong
regressor can be activated, causing a drop of the correlation. The analysis of the first
stage results, illustrated by the confusion matrix (Fig. 2), indicates that prediction
mistakes are close enough or even connected to the optimal range which y belongs to.
Thus, we can expand the regression range to [bi−1, bi+2], if they exist.

Widening the local regression ranges helps to solve the indecision issue between
the nearby boundaries. Moreover, it frees us from the obligation to strongly optimize
the first stage. In fact, the use of a perfect classifier instead of a classifier that reaches an
accuracy of 90% on the first stage won’t have a significant impact on the result of the
whole cascade.

4 Databases

4.1 AVEC’2014

The AVEC’2014 database is an ensemble of audio and video recordings of
human/machine interaction [23]. This base is composed of 150 recordings, each of
them containing the reactions of only one person, realized from 84 German subjects.

Ordinal classifier 

Local regression 

Combination  

Regression range (R3) 

Fig. 1. COCLR: a two-stage cascade. The first stage is a combination of binary classifiers which
aim is to estimate y’s range. The observation X is handled by the corresponding local regressor
which will evaluate the value of y on this range and its neighbors.
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The age of the subjects varies between 18 and 63 years old. In order to create this
dataset, a part of the subjects has been recorded many times with a break of two weeks
between each recording session. The distribution of the records is arranged as fol-
lowing: 18 subjects have been recorded three times, 31 of them have been recorded
twice and the 34 lefts have been recorded only once. In these recordings, the subjects
had to realize two tasks:

– NORTHWIND – The participants read out loud an extract of “Die Sonne und der
Wind” (The North Wind and the Sun)

– FREEFORM – The participants answer numerous questions such as: “What is your
favorite meal?”; “Tell us a story about your childhood.”

Then the recordings are split in 3 parts: learning set, validation set, and test set, in
which 150 couples of Freeform-Northwind are equally distributed. Low-level
descriptors are described in Table 1.

4.2 AV+EC’2015/RECOLA

The second dataset we used to measure the performances of our system is the affect
recognition challenge AV+EC’2015 [17]. The AV+EC’2015 relies on the RECOLA
base. This one is composed of a set of 9.5 h of audio, video and physiologic recordings
(ECG, EDA) from 46 records of French people from different origins (Italian, German,
and French) and different genders. The AV+EC’2015 relies on a sub-set of 27
recordings completely labelled. In our case, we only used the audio recordings and only
worked on the valence which is known as the most complex to be predicted.

The learning, development and testing partitions contain 9 recordings each. The
diversity of origins and genders of the subjects has been preserved in these. The
different audio features used are available in the AV+EC’2015 presentation paper [17].

Fig. 2. Confusion matrix of the first stage of the cascade
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4.3 Data Augmentation

The study of the valence on a bounded interval allows the identification of several
intensity thresholds of the felt emotion. Then, we can qualify this as very negative,
negative, neutral, positive, and very positive, depending on this value. However, for the
AVEC’2014 and the AV+EC’2015/RECOLA bases, these intensity thresholds are no
equally represented. Figure 3 shows a clear unbalance of classes, favoring the repre-
sentation of observations corresponding to a neutral valence (between −0.1 and 0.1).
Considering the fact that some systems poorly support strong unbalances of classes
[19], we increased the volume of data using the Synthetic Minority Over-sampling
Technique [4].

5 Experimental Results

5.1 Performance Metrics

The cascade performances are directly linked to those of both stages. Thus, the per-
formances of the ensemble of ordinal classifiers are measured by the accuracy. It
measures the ratio of examples for which the interval has been correctly predicted. We
use the confusion matrix in order to analyze the behavior of this system in a more
precise way.

The performances of the ensemble of local regressors are measured using Pearson’s
correlation (PC), gold standard metric of the challenge AVEC’2014 [23] on which we
base our study. However, as these data are not normally distributed, we decided to
measure the performances of our system with Spearman’s correlation (SC) and the
concordance correlation coefficient (CCC) as well.

The experimental results presented in the following are computed on the
development/validation set of the different databases. Due to the temporal nature of

Table 1. 42 acoustic low-level descriptors (LLD); 1 computed on voiced and unvoiced frames,
respectively; 2 computed on voiced, unvoiced and all frames, respectively [17].

1 energy related LLD Group

Sum of auditory spectrum (loudness) Prosodic
25 spectral LLD
a ratio (50–1000 Hz/1–5 kHz)
Energy slope (0–500 Hz, 0.5–1.5 kHz)
Hammarberg index
MFCC 1–4
Spectral flux

Group
/ Spectral
/ Spectral
/ Spectral
Cepstral
Spectral

16 voicing related LLD Group
Fo (linear and semi-tone)
Formants 1, 2, 3 (freq., bandwidth, ampl.)
Harmonic difference H1-H2, HI-A3
Log. HNR, jitter (local), shimmer (local)

Prosodic
Voice qual.
Voice qual.
Voice qual.
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audio data, we have also decided to analyze the outputs of both stages on complete
sequences and applied temporal smoothing to refine results.

5.2 Preliminary Results

As previously stated, our architecture is modular and adapted to any kind of classifi-
cation or regression method. Throughout our experiments, we tried to use support
vector machines (C-SVM with RBF kernels) and random forests (RF with 300 decision
trees1, attribute bagging on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nfeatures

p
) as classifiers. The Table 2 presents the ordinal

classification rate obtained by these two systems on the development sets of
AVEC’2014 and AV+EC’2015, for the prediction of valence. We choose this affect
variable because it is known to be particularly hard to predict (see baseline results in
row 1). By taking the center of the predicted intervals as values of ŷ, we have been able
to compute the correlations of these two systems. These correlations enable to compare
the performances of our classifier ensemble to those of a unique “global” random forest
regressor dealing with the whole interval [−1, +1].

The results obtained on both databases encouraged us to continue with random
forests rather than support vector machines. Indeed, the results returned by these are
significantly sharper than the SVM ones, independently of the choice of the sub-
intervals. For the same reasons, we have decided to use random forests to perform local
regression.

5.3 Results on AVEC’2014

The Table 3 compares the performances of the different systems presented on the
development base of the AVEC’2014, while using several number of ranges n.

First, the interval I has been split here in 10 ranges: [−1.0, −0.4, −0.3, −0.2, −0.1,
0.0, 0.1, 0.2, 0.3, 0.4, 1.0]. The most performant system in term of correlation is here,
without a doubt, the ordinal classifier ensemble, where the values are the centers of the

Fig. 3. Valence distribution on the training set with 10 ranges of [−1; +1].

1 Sensitivity analysis on the number of decision trees is presented in Fig. 5.
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predicted ranges. It is as well relevant to point out that, despite the very high correlation
of the local regressors alone, the COCLR system does not seem efficient.

Then, the interval I has been split into 6 ranges: [−1.0, −0.4, −0.2, 0.0, 0.2, 0.4,
1.0].

We compare the performances of the different systems on the AVEC 2014
development base. The most performant system, as far as the correlation is concerned,
is still the ordinal classifier ensemble. However, the performance gap between the
COCLR and the ordinal classifier ensemble has tightened. It is also noteworthy that the
accuracy of the classification system has risen and the correlation of the local regressors
alone, has slightly dropped.

Finally, the interval I here has been split into n = 4 ranges, [−1.0, 0.3, 0.0, 0.3, 1.0].
Previous conclusions on ordinal classifiers and local regressors remain the same. But
this time, the COCLR cascade turned out to be significantly the most efficient one. The
correlation related to this system is the highest obtained for every choice of intervals of
any sort. These different results highlighted the importance of the choice of the number
of ranges on which the COCLR system stands. It seems, as well, that the correlation of
the local regressors alone decreases when we increase the size of the ranges, contrary to
the accuracy of the classification system.

Table 2. Valence prediction: comparison of different ordinal classifiers (SVM-OC and RF-OC),
one global random forest regressor (RF-GR) and the challenge baseline [11, 22] on the
development set. The performance measure is the Pearson correlation coefficient.

AVEC’2014 AV+EC’2015

Baseline 0.38 0.17
RF-GR 0.45 –

SVM-OC 0.61 0.56
RF-OC 0.77 0.65

Table 3. Valence prediction: impact of the number of ranges on performances of global
regressor (GR), ordinal classifier (OC), local regressors (LR) and cascade (COCLR). LR
performances are computed considering the classification as “perfect” (Accuracy = 1).

n Model Accuracy Pearson C Spearman C CCC

1 GR – 0.45 0.47 0.27
10 OC 0.78 0.69 0.70 0.60

LR – 0.91 0.90 0.89
COCLR – 0.51 0.53 0.37

6 OC 0.83 0.63 0.66 0.54
LR – 0.85 0.85 0.76
COCLR – 0.54 0.53 0.39

4 OC 0.89 0.47 0.48 0.29
LR – 0.80 0.81 0.77
COCLR – 0.77 0.77 0.65
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5.4 Results on AV+EC’2015/ RECOLA

As we did previously, we measured the performances of our system according to the
different sub-intervals. Affect value varies within [−0.3, 1.0] so we discard classifier
and regressors trained on ]−1.0,−0.3[. Throughout our tests, we used 3 groups of
different sub-intervals. The biggest, composed of 8 ranges, is: [−0.3, −0.2, −0.1, 0.0,
0.1, 0.2, 0.3, 0.4, 1.0]. The second one, composed of 5 ranges, is: [−0.3, −0.1, 0.0, 0.1,
0.3, 1.0]. Finally, the last one, composed of 3 ranges, is: [−0.3, 0.0, 0.3, 1.0]. The
Table 4 presents a summary of these results.

We can observe that the results derived from the RECOLA database are similar to
the ones the AVEC’2014. In fact, the most performant system remains the COCLR,
when we chose a small number of ranges. The correlation obtained by the cascade of
ordinal classifiers and local regressors for the valence on the development base is worth
0.67. As previously, we have observed a decline of the correlation of the local
regressors and a rise of the accuracy of the first stage of the cascade when the size of
the sub-intervals increased. Comparisons with challenge winner’s results [12] are
encouraging. Though our cascade get lower results (0.675) than their multimodal
system (0.725), it gets better result than those obtained on the audio channel only
(0.529). These latter are similar to those of the first stage ordinal classifier (0.521).

Last but not least, our proposal is fast to train (<10 mn for 3 ranges) and evaluate
(<0.1 ms) on an Intelcore I7-8 cores-3.4 GHz and doesn’t require a great amount of
memory space (<1Go for 3 ranges).

5.5 Temporal Smoothing

As previously stated, the AVEC’2014 and AV+EC’2015 are based on audio record-
ings. As a result, the observations provided are temporally linked. Because the system
we trained do not consider this characteristic, we have analyzed our results and the
ground truth in a temporal way. The Fig. 4 presents the ground trough valences and the
ones predicted by the ordinal classification system, according to the time on a sequence
of the development base. It is outstanding that the system seems to only miss punc-
tually. Indeed, it is exceptional that the system is majorly failing on a w time window
wide enough. By rendering a temporal smoothing operation with a sliding window of
size 5, we have been able to increase the performances of our system, as shown on
Fig. 5.

Table 4. Valence prediction: best obtained models for each number of ranges on AV+EC’2015
development set. Challenge results [12] on the audio channel (AC) and their multimodal system
(MM). The performance measure is the Pearson correlation coefficient.

Proposal Baseline AC Winner AC Winner MM

n 1 5 3 – – –

Best model GR OC COCLR – – –

Pearson C 0.463 0.521 0.675 0.167 0.529 0.725
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6 Conclusions

We propose in this article an original approach for the regression of a continuous,
bounded variable, based on a cascade of ordinal classifiers and local regressors. We
chose to applicate it to the estimation of affective variables such as the valence. The
first stage allows us to predict a trend, depending to the chosen interval. Thus, taking
into account, for example, four intervals, the emotional state of a person will be
qualified as very negative, negative, positive or very positive. We have been able to
observe that this trend is more accurately estimated while the number of interval is
increasing. The second stage enable a sharper prediction of the variable by regressing
locally, on its interval and its direct neighbors. It seems even more efficient when the

Fig. 4. Comparison between the ground truth and the ordinal classification on a sequence of the
AVEC’2014 database.

Fig. 5. Comparison of the results obtained before (right) and after running a temporal smoothing
(left) on the output of RF-ordinal classifiers (resp. 25, 50, 150 and 300 trees).
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number of considered interval is low. Indeed, it allows to reduce the influence of the
first stage on the prediction. Finally, we showed that the performances of this cascade
can be compared favorably to the ones of the winner of the challenge AV+EC’2015.

Despite these satisfying results, there are still room to improve it (others than
applying it to the prediction of the arousal and the – running – assessment of the
performances on the challenges test data). The COCLR is a cascade which first stage is
an ensemble of classifiers. The decision here is sanctioned by the least performant
classifier. A more adapted combination rule would impact advantageously the global
performances. The outputs (binary or probabilistic) of the ordinal classifier might also
enrich the descriptors used by the local regressors.

To conclude, the research introduces a cascading architecture which obtains
promising results on a challenging dataset. Several hypotheses have been issued
concerning the impact of the different parameters involved, but none of them has been
generalized yet. Testing this architecture on other datasets would help us to validate
these hypotheses and justify the general interest of this proposal.
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Abstract. Millions of tweets are published every day which contain
massive amount of opinions and sentiments. Thus, twitter is used heav-
ily in research and business areas. Twitter is a global platform that is
accessed from all the globe. Users express their opinions freely, using
informal language, without any rules and with different languages. We
propose a unified system that could be applied on any raw tweets and
could be applied without any man-made intervention. We use emoticons
as heuristic labels for our system and extract features statistically or
with unsupervised techniques. We combine classical and deep learning
algorithms with an ensemble algorithm to make use of different features
of each model and achieve better accuracy. The results show that our
approach is reliable and achieves accuracy near the state-of-the-art with
a smaller set of labeled tweets.

Keywords: Sentiment analysis · Twitter · Deep learning
NLP · Ensemble classifiers

1 Introduction

Sentiment analysis or opinion mining is one of the hottest fields in research area
nowadays, as knowing the sentiments and the opinions of people is crucial in
every industry. Millions of reviews are posted everyday. Manually tracking those
reviews is a very hard task so sentiment analysis plays an important role in
different applications such as reviewing movies, products, etc. [6]. It also could
be used to predict the price of stocks from users’ reviews in social media [2], even
presidential campaigns could use sentiment analysis to measure the popularity
of candidates and predict the winners [23].

Extracting the opinions from twitter1 is a challenging task, as users use
different languages. Users tend to express their opinions in informal language
and the used language is evolving so fast with new abbreviations and acronyms.
That created the need for a unified method that does not need any manual tasks
to deal with such massive amount of evolving non-structured data. However,

1 https://twitter.com/.
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most of the research was done for a specific language, sometimes for a specific
topic or context and depended on manually created corpus and lexicons which
need hard manual work.

Fortunately, twitter has some interesting features that could help in building
models that are language-independent and self-learning. One of those features
is emoticons/emoji. Even though there is a difference between emoticons and
emoji, in this paper, we use them interchangeably as both of them are used
to express sentiments and they could be mapped to each other. Emoticons are
popular and are commonly used on text messages, as they are able to express
the same sentiments among different users, wherever they come from.

Another feature is the geo-location data that is associated with each tweet.
This data could enable us to define a model from scratch with emoticons that
is specified for a particular region assuming that people from a certain area use
the same language.

In this paper, we build a semi-supervised model that uses unlabeled tweets
that are gathered by location from USA, then, we use these data to classify
English tweets as we know that USA speaks English. Then, we auto-label the
tweets using emoticons to generate our training data for our models. Then, we
extract features from labeled data by statistical and unsupervised approaches
i.e., tf-idf and word2vec. Finally, we apply different classical and deep learning
algorithms and combine them to make use of their features. Our model is a uni-
fied model, that could be applied on any raw tweets without any prior knowledge
of its language or the need for any manual tasks.

2 The Previous Work

In last decades, sentiment analysis held the interest of many researchers. [20]
provided a pioneering paper of how to apply machine learning methods such
as naive Bayes (NB), Support Vector Machine (SVM) and Maximum Entropy
(MaxEnt) on the text classification problem. They used Bag of words (BOW)
with unigram, bigram and part of speech (POS) as features. Researchers sub-
sequently attempted to improve the accuracy [1,11,24], but most of the work
depended on a specific language, certain context or needed different manual
tasks.

To overcome those limitations, researchers tried to develop semi-supervised
methods i.e. [13] built a model that needed only 3 words of any language and
some unlabeled data to auto-generate training labels then classify texts into
positive or negative. [7] proved that, depending on emoticons as heuristic data
to label raw tweets could be reliable. [17] used emoticons to auto label tweets
and applied the approach on four different languages and on multilingual tweets.
Although these papers achieved good accuracies, their work used classical meth-
ods and new ones were emerged with better accuracies.

Other researchers worked with large neural networks. [4] tried to build a
model that can extract most of Natural language processing tasks such as POS,
chunking (CHUNK) and Named Entity Recognition (NER) almost from scratch,
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by building a multi-layer neural network and with using large amount of unla-
beled data. In 2013, [16] introduced a revolutionary paper which introduced a
word embedding model called word2vec that could represent the semantic mean-
ing of words from their context in an unsupervised way.

Many researchers used word2vec with deep learning algorithms to achieve
better accuracy. [10] used a deep Convolutional Neural Network (CNN) by rep-
resenting each sentence as a list of its word embedding values, then he applied
different filters with the width of word2vec representation and with different
heights. Other researchers combined different deep learning algorithm to achieve
better performance [18], but deep learning methods are very time consuming,
vague and require a large amount of data.

3 Theory and Algorithms

The proposed model is a unified model, that could be applied on any raw tweets
without any limitations on the used language or how tweets were written. The
model is composed of four independent classical and deep learning algorithms
that are combined using a voting ensemble. All models are semi-supervised mod-
els that use emoticons as a heuristic data to generate the training data. Then,
the features get extracted either statistically or with unsupervised techniques
i.e. BOW or word2vec. Then, different classifiers are applied i.e. MaxEnt, SVM,
Long Short-Term Memory (LSTM) and CNN with the proper extracted features.

This section gives an overview of the steps that we followed to construct each
of our models and the techniques that were used in each step.

3.1 Data Processing

The first step in our model is processing the data. Data processing is a crucial
task in each text classification problem, as any subsequent step depends on it
[14]. In contrast to typical approaches that use language specific operations such
as removing stop words and CHUNK, we use only those operations that are
common between all languages and those that are related to twitter itself:

– Identifying emoticons and replacing them with their scores that will be used
in the next step to auto-label tweets.

– Replacing hashtags with their separate words.
– Replacing twitter’s reserved words such as RT for retweeting and @ for men-

tions, with place holders.
– Replacing URLs with placeholders.
– Reduction of words by allowing only duplicate characters as users tend to

repeat characters to emphasize the meanings.

3.2 Auto-Labeling

Auto-Labeling is the second task in our model. In this step, we generate our
training data from unlabeled ones. We depend on the sentiment carriers i.e.



284 M. Hanafy et al.

Table 1. Samlpe of Emoji and the equivalent emoticons with their Ranks

Emoji Emoticons Neg Neut Pos Rank

(Y) 0.115 0.248 0.637 0.521

:D 0.072 0.299 0.629 0.557

8) 0.106 0.297 0.597 0.491

:( 0.544 0.281 0.175 -0.368

emoticons or emoji to label the raw data by scoring each tweet with certain
score based on the scores of the sentiment carriers that it contains. This task
is similar to the work done by [7,17], but we use the scores of emoji that were
provided by [19], not just dividing them into positive and negative ones. Table 1
shows a sample of emoji and their equivalent emoticons with their scores. Each
tweet is scored by the average score of all its sentiment carriers, i.e. if the tweet
has 2 emoticons and their scores are .9 and .5, then the score of the tweet will
be .5+ .9

2 = .7. The tweet that has only one sentiment or its |score| > .7 will be
considered to be positive or negative, otherwise it will be neglected. By applying
our approach on CIKM dataset, we were able to generate 170 K labeled tweets
that were used as our training data.

3.3 Feature Extraction

The next step is extracting the important features from the available data. As we
build multiple models, we use different feature representation techniques. The
following section shows an overview of the used feature representation techniques.

TF-idf. Tf-idf is a statistical approach to find the important words in a corpus.
It depends on the frequency of a word in a document and its frequency in all
the corpora. Tf-idf is calculated as follows:

tf-idf(t, d,D) = tf(t, d) × idf(t)

idf(t) = log
nd

1 + df(d, t)

where, t is the word, d is the tweet, tf is the term frequency in the document,
nd is the number of tweets and df is document frequency where word exists.

BOW. Bag-of-words is one of the most used feature representation techniques
[14] in sentiment analysis. The basic idea is to select a set of important words,
then each document is represented as a vector of the number of the occurrences
of the selected words. BOW does not consider the order of words thus it is often
used with n-gram model. Selecting the important words could be done using
a language-related features i.e. POS and semantic words or using a statistical
approach i.e. Tf-idf as in the proposed model.
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Word2Vec. Word2Vec is a word embedding technique that was developed by
[16]. It depends on that the meaning of words defined by their company and
context [8]. Word2Vec is implemented by training a 2-layer neural network to
represent each word as a vector of certain length based on its context. The
resulted vectors have some unique features and can solve the analogy problem
by performing an arithmetic operation such as king − man = queen − woman.

3.4 Classifiers

The final step is using the classifiers. In our model, we use different classifiers,
then we combine them using ensemble classifier to make use of their unique
features. In this subsection, we demonstrate the different classifiers that we used.

SVM. Support Vector Machine has shown reliable results in the sentiment
classification problem. SVM is one of the first methods applied in this field and
is still being used. We found that using this model performs very well with BOW
and word2vec summation.

MaxEnt. Maximum Entropy is one of the most used models in a wide range of
applications. MaxEnt. follows this equation to find the probability of the output,
given a certain input:

PME(c|d, λ) =
exp [

∑
i λifi(c, d)]

∑
′c [exp

∑
i λifi(c, d)]

In our model, c is a positive or negative, d is the tweet and λ is learned parameters
of the model. We found that using this model performs very well with BOW and
word2vec summation.

LSTM. Recurrent Neural Network was introduced in early 80s, it was designed
to capture patterns in sequential data. RNN typically consists of multiple con-
nected units of the same-structured single-layer neural network. LSTM [9] is
an enhancement over RNN to overcome its selectivity and vanishing/exploding
gradient problems. LSTM extends the architecture of RNN by replacing the
multiple connected single-layer units with a more complex architecture consists
of a memory cell, and three gates that control the flow of the state.

CNN. Convolutional Neural Network has attracted many researchers in recent
years due to its out-performance, especially in image recognition and text clas-
sification [15]. The idea of CNN is to construct a convolutional layer from a set
of filters that traverse through the input layer, then, this convolutional layer is
followed by a pool layer and a deep neural network. CNN has three variations
based on how the model updates the word-embedding values during the training
stage: CNN-static, CNN-non-static and CNN-rand. In recent years, CNN has
applied in text classification and achieved remarkable results.
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Voting Ensembles. Ensemble classifiers have proved their reliability in
research and applications [21]. Voting ensembles combine the different classi-
fiers by considering the output of each classifier as a vote. Then, the ensemble
takes its final decision based on those votes. Voting ensembles have different
implementations i.e., majority voting and Weighted voting ensembles. Majority
voting ensemble makes its final decision as the majority of the output of the
base classifiers. Weighted voting ensemble is as enhancement over the Majority
voting, instead of treating the different classifiers equally, each classifier has its
weight/power when it votes. Voting ensemble classifiers often used when the base
classifiers are different in architecture and nature. In our model, we combine the
output of our base classifiers using majority and weighted voting classifiers that
showed a remarkable improvement in the final accuracy.

4 The Proposed Models

The previous section showed all the general steps and techniques to build the
models. This section shows how each of the models was built in details, the
motivation behind each model and finally, how and why combining the different
models generates better results.

4.1 Model 1: BOW with tf-idf

Model. In this model, we use tf-idf to construct our bag-of-words then we apply
different classical models i.e. MaxEnt. and SVM. There were different parameters
that affected our model such as the loss function, regularization parameter of
the classifier, size of the BOW and n-gram size.

Motivation. Bag-of-words is one of the oldest techniques, but it still proves
its reliability. BOW depends heavily on the selected n-gram features so it has
some limitations such as it does not consider the order of the words and it is
limited to the short context which is the size of n-gram. On the other hand,
BOW can thrive when tweets are short and have direct meaning or when they
contain powerful words such as “won” and “good”.

4.2 Model 2: Aggregation of Word2Vec

Model. This model is similar to work done by [12]. It depends on the fact
that each word is represented as a vector, and applying arithmetic operations on
those vectors i.e. “mean” and “summation” will give the semantic meaning of
the whole sentence. We then apply different classical classifiers such as MaxEnt.
and SVM on the output of the arithmetic operations.
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Motivation. Word2vec represents words as vectors that represent the semantic
meaning of the words. The original paper [16] showed that applying arithmetic
operations can solve the word-analogy problems such as king − man + woman
yields to queen. The original paper also showed that, words that have similar
meaning are close to each other. So applying arithmetic operations is effective.
On the other hand, aggregation of word2vec has its drawback as it does not
consider the order of sentence which can affect its ability of the classification.

4.3 Model 3: LSTM

Model. In this model, we represent each document as a list of word-embedding
values of its words, then we feed the document representation to the sequential
units of LSTM model. Finally, we tune the LSTM model.

Motivation. LSTM is very powerful with sequential data. It can solve the
problem of the order of the sentences and the long context due to its sequential
architecture and memory units. On the other hand, LSTM is a deep learning
algorithm so it needs massive amount of training data and needs much time to
train the model.

4.4 Model 4: CNN

Model. We build a model similar to [10], each document is represented as a
list of word-embedding values of its words, then we apply a CNN with different
filters that has the same width as word-embedding and different heights. In this
model, we use word2vec as our word-embedding representation.

Motivation. CNN have proved their validity when using different datasets for
training and testing [22]. CNN provides the ability to define the window size of
the filters which represent the context in our model. The drawbacks of CNN are
same as LSTM as they both are deep learning algorithms.

4.5 Model 5: The Proposed Model

Motivation. We have built four different models. Each model has its own
advantages and unique features that could solve the problem of the others.
Figure 1 shows the confusion matrix of the number of common correctly classified
tweets by the different models against the test dataset. The dark and light colors
indicate the relation between the different models. The figure shows that each
model can overcome the others on some tweets and all models are independent of
each other. Beside the direct output of our models, there are some other features
that could give more insights. Figure 2 shows the relation between the classifica-
tion probability of different models and the actual accuracy at this probability.
The figure shows that for all the models, the probability of the classification
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has a positive linear relationship with the accuracy so it could be considered
as a confidence of prediction. From the previous notes, building a classifier that
can combine the different models and make use of the different features could
improve the final accuracy of the models.

Fig. 1. Number of common correctly classified tweets between models

Model. To make use of the different models, a weighted voting ensemble classi-
fier is used. The classifier combines the output of the different models and their
classification probabilities. Then, each model is assigned a different weight when
voting.

5 Experiments

This section describes the different datasets that were used, how the experiments
were built and finally, the final results that achieved by the different models.

5.1 The Datasets

CIKM Datasets. This dataset was provided by [3]. It consists of 8M raw
tweets and associated geo-location data. The tweets were collected by location
from different locations in US with no restriction on the used language, thus it
contains some tweets in French, Spanish, etc. We used this dataset to generate
our training data by applying our auto-labeling technique.
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Fig. 2. Classification probability vs accuracy

STS-Test Datasets. STS-test set is one of the most popular datasets that is
used in sentiment analysis. It was provided by [7] and it contains 498 manually
annotated tweets. The dataset is divided as 177 negative, 139 neutral and 182
positive tweets. STS-test is a part bigger corpus containing additional 1.5M auto-
labeled tweets gathered in 2009. The corpus was limited to English language and
some categories e.g. products, companies, events, etc.

5.2 The Experimental Protocol

We use CIKM dataset to generate our training data by using auto-labeling tech-
nique that is described in Sect. 3.2 and we use STS-test set to test our models.
During training and testing cycles, we deal with each tweet as an independent
document that express even positive or negative sentiment [14].

In feature extraction step, we found that BOW achieved better results using
8K window size and word2vec with embedding size of 200 was enough, thus all
our experiments used these values.

During classification step, SVM and MaxEnt were tuned for the best regu-
larization value. CNN was tuned for different hidden dimension, dropout proba-
bility and number of filters. LSTM was tuned for different hidden dimension and
dropout probability. Weighted voting ensembles were tuned for different weights
of each model in range from 1:5.
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Table 2. Summary of the accuracy of all models
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Models Model 1 Model 2 Model 3 Model 4

Table 3. Proposed model accuracy

Model Accuracy

BOW with TF-IDF(MaxEnt) 80.22%

Aggregation of Word2Vec (MaxEnt + Avg) 84.4%

Aggregation of Word2Vec (SVM + Avg) 84.9%

LSTM 82.73%

CNN-static 83.87%

Majority voting classifier 85.00%

Weighted voting classifier 85.79%

Weighted voting classifier(probabilities) 86.07%

5.3 The Experimental Results

Table 2 shows the summary of the results achieved by each of the four models.
Table 3 compares the results achieved by each of the four models and the results
achieved by our proposed model. We can notice that the last model that uses

Table 4. Comparing the proposed model with the previous models

Model Accuracy

MaxEnt [7] 82.7%

SVM [7] 82.2%

SCNN [5] 85.2%

CharSCNN [5] 86.4%

(DeepCNN + Bi-LSTM) + SR + Glove [18] 86.6%

(DeepCNN + Bi-LSTM) + SR + Word2Vec [18] 86.35%

Our proposed model 86.07%
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the probability has outperformed all the models. The results show that we have
improved the accuracy of the individual models by more than 1% using a simple
voting ensemble. Table 4 shows the previous work done on the same STS-test set.
By comparing our results with previous work, we were able to achieve almost
the state-of-the-art accuracy with only 170 K labeled tweets, i.e. only 10% of the
others‘ training dataset, which saves much time and resources.

6 Conclusions and Future Work

We built a unified model that could be applied without any manual tasks and
does not require any information about the used language. We used emoticons
as a heuristic data to auto generate our training data. Then, we built multiple
classical and deep learning algorithms then combined them to achieve better
accuracy. We achieved accuracy near the-state-of-the-art results by using only
170 K of training data i.e. using only 10% of the others’ models that used 1.5M
training tweets.

Combining classical and deep learning algorithms improved the accuracy of
both. Deep learning algorithms can infer the long and complex sentences cor-
rectly and thrive when we have a big amount of data. But training deep learning
algorithms consumes time and resources. On the other hand, classical algorithms
are simple and could be trained easily and fast. It also can overcome deep algo-
rithms in some situations. Our model combines different models in a parallel
manner as it uses voting ensembles. Thus, each model could be independent of
the others and we can add more models easily to achieve better accuracy. In
the future, we will work on improving the efficiency of ensemble classifier by
adding more base models and by finding more parameters that could improve
the accuracy of the overall accuracy.
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Abstract. Handwriting recognition is a research topic with a lot of chal-
lenges and complications. One of the main complications is big databases
that affect classifier complexities and their ability to perform correctly.
This paper introduces a new ranking approach that is proposed as a
solution to this point of research. Per input test image, the approach
sorts database classes from the nearest to the furthest based on the cal-
culated ranks. Accordingly, the classification process is applied on only
subset of best nearest neighbor classes rather than the whole database
classes. The approach starts with computing simple regional-type fea-
tures to group similar competitive database classes together using deci-
sion trees. This grouping process aims to split big database to multiple
smaller ones. Decision trees match between test image and one of the
constructed smaller databases. Finally, Kullback-Leibler divergence is
measured between the pyramid histogram of gradients (PHoGs) features
extracted from the test image and the members of the matched smaller
database. This measurement sorts the matching classes to select smaller
subset from them. This subset represents best nearest neighbors of test
image that can be used for final classification. Reducing database size and
focusing classification on subset of best nearest neighbor classes reduce
the classifier complexity and increase the overall system classification
accuracy. The proposed approach was applied on IFN-ENIT database,
and its effect was tested on the SVM classifier.

Keywords: Handwriting recognition
Pyramid histogram of gradients · Kullback-Leibler divergence

1 Introduction

Handwriting recognition is one of the computer vision fields with many chal-
lenging aspects. It can be performed by two ways; online and offline. Online
recognition process uses sequential writing order [4] and instant temporal infor-
mation. Offline recognition process bases on visual features and pixel information
c© Springer Nature Switzerland AG 2018
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only. Off-line recognition is more challenging due to lack of temporal information
and absence of instant cursing.

Our work proposes a new ranking process that can be used as a guide to auto-
matic offline handwriting classifiers. Additional to the mentioned challenges that
affects this type of classifiers, being applied on big database increases difficulty
to classification process, and affects overall accuracy. Accordingly, classification
seems as a challenging competition that is responsible for matching test image
with the correct class from database. Considering all the database classes to be
competitive in such a challenging process is the main complication that affects
classifier performance. The target of the proposed approach is to facilitate this
challenging competition by selecting subsets of database classes; smaller in size
than the whole database, to apply classifier on. This reduction in size of database
classes affects classification performance and complexity positively. Now each
test image with a selected subset of database classes are participant in the clas-
sification process.

The proposed approach starts by extracting five regional features [5] from
input test image and database classes. Based on the extracted features, deci-
sion trees are applied to match between input test image and a set of matching
database classes. These matching classes are grouped in one set. A new pro-
posed ranking algorithm is then applied based on pyramid histogram of gradients
(PHoGs) [29] and Kullback-Leibler divergence measure [17] to sort these match-
ing classes relative to each input test image. Sorting classes from the nearest
to the furthest enables the selection of smaller subset. These subsets represents
best nearest neighbor classes of test image. Our objective is to use these subsets
for final classification stage instead the whole database to vote for the correct
test image class. By the end of the testing stage, the approach splits the big
database to smaller sets of similar classes to construct a data-mined database
version.

We tested our system on the Arabic handwriting IFN/ENIT database [26].
Arabic is one of the major languages [4] with a lot of challenges as mentioned
briefly in [1]. Next sections are organized to summarize related work, proposed
approach, experiments and finally conclusion respectively.

2 Related Work

Different recognition systems were proposed in the field of Arabic handwriting
recognition. This section summarizes similar offline handwritten recognition sys-
tems. The pyramid histogram of gradients (PHoG) were extracted as features
by Säıdani and Echi [29] to recognize Arabic/Latin and Machine-printed Hand-
written Databases. A survey was provided by Lawgali [18]. Different classifiers
were applied in this field.

Some systems used sliding window to compute different types of features.
Hicham et al. [11] proposed a solution without segmenting words into PAWs and
achieved 80.26% success rate on Arabic-Numbers database and 78.95% accuracy
on IFN/ENIT database [26] using local densities and statistical features. AlKha-
teeb et al. [3] computed intensity and structure-like features. Re-ranking method
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was applied to improve the accuracy to 89.24% using Gaussian-like function.
Jayech et al. [12] extracted statistical and structural features and applied syn-
chronous Multi-Stream Hidden Markov Model (MSHMM) and achieved 91.1%
recognition rate on IFN/ENIT database. MSHMM was also applied by Mezghani
et al. [22], Maqqor et al. [21], Pechwitz and Maergner [27] and Kessentini et al.
[14]. Mezghani et al. [22] automatically recognizes handwritten and printed Ara-
bic and French words using Gaussian Mixture Models (GMMs). Kessentini et al.
[14] worked offline using another multi-stream approach by combining density
and contour based features. The system succeeded by 79.8% on the IFN/ENIT
database. A confidence- and margin-based discriminative approach by Dreuw
et al. [6] was applied using maximum mutual information (MMI) criterion and
minimum phone error (MPE) criteria [9,10,25]. The MMI outperformed ML by
33% enhancement in word error rate on IFN/ENIT database.

Some other approaches recorded effective results using SVM like Al-Dmour
and Abuhelaleh [2]. The system was applied on a subset of IFN/ENIT database
with 85% recognition rate using SURF features. Khaissidi et al. [15] proposed an
unsupervised segmentation-free method using Histograms of Oriented Gradients
(HOGs) as features. The system achieved average precision 68.4% on Ibn Sina
data-set [23]. The SVM classifier and HOG features was also applied using Sobel
edge detectors by Elfakir et al. [7].

Mozaffari and Bahar [24] discriminate between Farsi/Arabic handwritten
from machine-printed words using histogram features. The system achieved suc-
cess rate 97% on a database of about 3000 words, printed/handwritten. Leila
et al. [19] computed invariant pseudo-Zernike moments features and applied
Fuzzy ARTMAP neural network. The system achieved 93.8% success rate on a
database that includes 96 different classes written by 100 different writers.

3 The Proposed System

The paper proposes a new ranking algorithm that can precede final classification
stages in pattern recognition process. The proposed system composes of two
separate stages. The first stage applies decision trees as shown in Fig. 1 to match
test image with a set of database classes. In the second stage, pyramid histogram
of gradients (PHoG) [29] features are computed followed by Kullback-Leibler
(KL) divergence measure [17] to introduce a new ranking algorithm. Ranking
process aims to sort the classes of the chosen matching set. Sorting process helps
to reduce computation complexity by shrinking the database part concerned in
the final classification stage. This concerned part is a subset of best nearest
neighbor classes chosen from the matching set after sorting.

3.1 Preprocessing

Input images during this stage is prepared for later valuable calculations. Our
images are binary images of white background and black handwriting Arabic
words. Negation of images [8] was necessary to concentrate computations on
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minor white pixels. Normalization of words’ size is essential to unify computation
environment of all database images.

3.2 Decision Trees Construction

This stage builds a tree-like model of decisions. It constructs a separate decision
tree per test image. It is a commonly known data mining process [28] to derive
a strategy to determine a particular set of matching classes for each test image.
Its performance is evaluated by degree of matching test image with the correct
set of classes. Matching process is considered to be correct when the decided set
includes the correct class of the input test image. Finally, this is measured by
true positive rate which is known as sensitivity [20]. In our proposed solution,
the searching strategy bases on five computed regional values proposed by [5].
These features are number of piece of Arabic words PAWs, number of holes,
extent, eccentricity and word orientation [5]. A sample of computed number of
holes and PAWs are shown in Fig. 2.

Fig. 1. The decision trees construction stage.

Fig. 2. A sample image after computing number of holes and PAWs.
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Eccentricity [13] measures the aspect ratio as shown in Fig. 3. Extent [5]
calculates the ratio between the area of the object and the area of its bounding
box. Finally, the calculated word orientation measures the angle between the
x-axis and the major axis of the word bounding ellipse.

ecc =
2c
b
, c2 = a2 − b2 (1)

Fig. 3. Eccentricity, F1 and F2 are the two foci of the ellipse.

Equation (1) defines eccentricity ecc in terms of distances a, b and c shown in
Fig. 3. The ranges of the five computed feature values are used to find the match-
ing set of classes per test image using decision trees. This process excludes a large
amount of training samples; which are not included in the matching set, where
their inclusion in the final classification increases the recognition complexity and
affects the accuracy negatively.

After applying this stage on the whole database, our database is data-mined.
The database is split into smaller sets of similar classes characterized by their
computed common features.

3.3 The Ranking Stage

The overview of the ranking stage is shown in Fig. 4. This stage begins by apply-
ing the PHoGs features followed by applying Kullback-Leibler Divergence Mea-
sure to sort the members of the matching set relative to the input image. The
output of this stage is a subset of the best nearest neighbors that can be used
for the final classification as shown in Fig. 4.

3.3.1 Pyramid Histogram of Gradients
Histogram of oriented gradients (HOG) [29,30] is a type of feature descrip-
tor that represents edge information. It bases on counting gradient orientation
occurrences in images’ region of interest (ROI). Pyramids histogram of gradients
(PHoG) is more powerful type of gradient features relative to the ordinary HOG
features. PHoG feature extraction technique relies on computing histogram of
gradients in localized portions of the image’s ROI. It is an extension that cap-
tures fine and more discriminative details than the ordinary HoGs. Each level
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Fig. 4. The ranking stage.

is constructed by contracting edges in the level below. First level description
is related to the original input data, representing the original (HoG). Higher
level represents partitioning of the image into connected sub-graphs, which are
subsets of pixels in each image. In every partition, features are computed inde-
pendently relative to others on the same level. The union of sequential feature
levels propagates information up and down laterally in the form of a pyramid as
shown in Fig. 5.

Considering L number of levels and angle range from 0–360 quantized into
discrete eight values, the following algorithm introduced by Saidani et al. [30] is
applied,

1. Divide the image into smaller cells (connected components).
2. For each cell, compute histogram of oriented gradients.
3. Discretize into pre-defined angular bins.
4. Normalization of 8-bin histogram of adjacent cells.

In the experiments, we applied the PHoGs at different levels L as shown
in Fig. 5a, b and c to study the effect of varying levels on the final classifier
performance.

3.3.2 Kullback-Leibler Divergence Measure
Kullback-Leibler divergence [17] is a way to measure the disparity between any
two probability distribution functions. It is an information-based measure of
divergence between any given distributions p(x) and q(x) defined over the vari-
able x. In our proposed approach, we considered the PHoGs to be distribution
functions over gradients values.
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Fig. 5. Pyramid histogram of gradients at different levels.

DKL(p(x) ‖ q(x)) =
∑

x∈X

p(x) ln (
p(x)
q(x)

) (2)

The measure of divergence DKL between the PHoG feature vector of each
test image and the PHoGs of the training samples is defined by Eq. (2) consid-
ering p(x) is the feature vector of test sample while q(x) is the feature vector
per training sample. The gradients are represented by the variable x. The small-
est divergence measures vote for the most probable membership classes corre-
sponding to the input test image. This measurement can be considered as the
difference between the cross-entropy for q(x) on p(x), and the self-entropy [31] of
p(x). Cross entropy is always a bigger value than self-entropy except if p(x) and
q(x) are identical. In this case, the cross entropy equals the self-entropy which
causes a difference to equal zero which represents the maximum divergence.

The classes of the same group are ranked from the nearest to the furthest
according to the computed divergence measure. This ranking process aims to
exclude another part from the matching set corresponding to each test image,
by choosing only subset of best nearest neighbors to pass finally for later classi-
fication.

4 Experiments

The proposed approach is applied on IFN/ENIT database [26], a database of
Arabic handwriting words written by different 411 writers. The database is
divided into four sets a, b, c and d which is the standard division stated in the
database official website [26]. We considered sets a, b, c as training sets, then the
approach was tested on set d as done previously by [3,12] and [6]. Set d con-
tains 859 different classes. Each class represents one city name. The number of
samples varies from one class to another.

4.1 Decision Trees Sensitivity

Decisions trees were applied firstly to match test image with a set of match-
ing classes. The matching sets’ sizes differ per sample. Sets’ sizes frequencies is
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represented in Fig. 6 by solid line. Decision trees sensitivity [20] of this process
was measured by the frequency of correct matching between the test image and
its matching set. This correct matching was considered by the test image class
number inclusion in the matched set. Sensitivity per set size is represented by
dotted line in Fig. 6. The difference between the Area Under Curve (AUC) of
the solid and dotted graphs in Fig. 6 is 13.4% of the whole AUC.

Fig. 6. Matching process sensitivity.

The IFN/ENIT database [26] has different ratios between the number of
training to testing samples, which affects sensitivity of the matching. The prob-
ability to match correct set versus ratio of training to testing samples is shown
in Fig. 7. The larger the ratio is, the better matching results occur which affect
the system performance positively.

Fig. 7. Effect of number of training samples on sensitivity.
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4.2 The Ranking Process

Figure 8 is a relation between ranks of correct classes inside their matching set
after sorting and the possible success rates that can be achieved. The rank of the
correct class comes to early positions after sorting. Saturation in graph means
that the expected cumulative success rate approximates 100%. This ranking
result allows later classification stage to be applied on a smaller subset of the
database. Shrinking the length of classes in matching set reduces the compu-
tation complexity passing only a subset of best nearest neighbors to the last
classification stage.

Fig. 8. Effect of ranking on the expected success rate.

Expected success rate is measured from rate of desired class ranks at different
PHoG levels after applying the ranking approach. Labels 30, 20, 5 in Fig. 8, parts
a, b, c represent the ratio of training to testing samples. Increasing the PHoG
level affects the ranking process positively, i.e. the rank of the correct class comes
to earlier positions and graph saturates faster. Studying the relation between the
expected success rate and correct classes’ ranks indicates the minimum subset
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length that should be passed to the final classification stages. We applied different
levels of PHoG and early saturation is achieved by higher levels of PHoGs. Higher
ratio between number of training to testing samples outperforms smaller ratios.
This was shown in Fig. 8c.

4.3 Complexity Analysis

The complexity of decision trees construction is O(h) where h is the height of
the tree; equals 5 in the proposed system according to the 5 computed features
in this stage. During testing, the stage of decision tree construction results in the
number of sets that include similar database classes together. Now our database
can be stored as sets of similar classes along with their computed features that
distinguish them instead of using the raw data. This new data-mined database
has two properties. The first is that many sets may include common classes,
but each set is a unique combination of database classes together. The second
is that some sets are subsets of other bigger sets. These two properties enable
the system to build a binary tree-like model relating smaller subsets to bigger
super sets. Now the matching process can be done for new test images using
our built tree-like model with decision tree pruning to decide for the matching
set. This process is done with complexity O(log(v)) where v represents number
of constructed sets in database. The biggest set size in Fig. 6 is 423 which is
49.2% of the whole database size. The weighted average matching set size is
172.6 different classes. Complexity of KL divergence method is O(L), where L
is the number of classes in the chosen matching set of database classes. The
ranking algorithm applied in the second stage finds the worst case is the rank
of the correct class is 100 inside its matching set as shown in Fig. 8 when 5th

level PHoG is applied. Accordingly, we can pass only 100 best nearest neighbors
to the third stage instead of the 859 classes of the database. Passing only 11%
of the total database classes for final classification again reduces the recognition
complexity and increases recognition accuracy.

Finally, we tested the effect of our approach on the support vector machine
(SVM) classifier to check accuracy. The complexity of Linear SVM is O(z3) [16]
where z is the length of final subset voted for in stage 2 which equals 100 in the
worst case. Now the high SVM complexity is compensated by classifying each
test image using small set of the best nearest neighbors instead of the whole
data-set.

4.4 Comparison with Similar Systems

Table 1 shows the comparison of our approach with similar systems. Similar
systems proposed different Holistic approaches, using the whole word for training
and testing without segmentation to PAWs, the same as our approach. The
system is trained by sets a, b and c and tested on set d and achieves a recognition
rate of an average 96.4% for level 5-PHoG, 92.3% for level 3-PHoG 80% for
level 1-PHoG using the Linear SVM without considering the false set matching.
Considering the false set matching cause word error rate (WER) to be 16.6%
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Table 1. A comparison with similar systems on IFN-ENIT database.

System [IFN-ENIT] training-testing Algorithm WER

Dreuw 2011 [6] abc-d GMM-HMM 8.9%

Alkhateeb 2011 [3] abc-d Normalized intensity 10.76%

Jayech 2015 [12] abc-d MSHMM 16.9%

Al-Dmour 2016 [2] 18 classes only Surf-SVM 15%

Proposed solution abc-d PHoG-KL-SVM 3.6%

when the system is applied on 859 classes of set d, which is relatively better than
[2] who achieve 15% WER on 18 classes only of the same database.

5 Conclusions

Automatic Handwriting Recognition systems suffer from different complexities
and variations concerning different characters’ shapes and handwriting styles.
A ranking algorithm is proposed as a solution to some complications. Ranking
is done by measuring KL-divergence on PHoGs features. It was concluded that
higher level L of PHoG and bigger number of available training samples relative
to testing samples affects the applied ranking method effectively.
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Abstract. As machine learning continues to gain momentum in the
neuroscience community, we witness the emergence of novel applica-
tions such as diagnostics, characterization, and treatment outcome pre-
diction for psychiatric and neurological disorders, for instance, epilepsy
and depression. Systematic research into these mental disorders increas-
ingly involves drawing clinical conclusions on the basis of data-driven
approaches; to this end, structural and functional neuroimaging serve as
key source modalities. Identification of informative neuroimaging mark-
ers requires establishing a comprehensive preparation pipeline for data
which may be severely corrupted by artifactual signal fluctuations. We
propose a new unified data analysis pipeline for neuroimaging-based diag-
nostic classification problems using various different feature extraction
techniques, Machine Learning algorithms and processing toolboxes for
brain imaging. We illustrate the approach by discovering potential can-
didates for new biomarkers for diagnostics of epilepsy and depression
presence in simple and complex cases based on clinical and MRI data for
patients and healthy volunteers. We also demonstrate that the proposed
pipeline in many classification tasks provides better performance than
conventional ones.

Keywords: Pattern recognition · Neuroimaging data · Biomarkers
Neurology · Psychiatry · MRI · fMRI

1 Introduction

Nowadays, Pattern Recognition (PR), Machine Learning (ML), and Intelligent
data analysis techniques are used in medical research for diagnostic biomarkers
discovery and treatment outcomes prediction with the use of neuroimaging data
collected for the targeted groups of patients or healthy volunteers. To unify these
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processes, we offer a common data preprocessing and analysis pipeline for struc-
tural and functional magnetic resonance imaging (MRI) data which dramatically
reduces research time and allows a researcher to try many preprocessing/data
cleaning/feature extraction/classification options and compare results. In future,
it is planned to add a visualization step (of informative features) together with
classification results, which is highly desirable by medical community.

One challenge for the successful applications of automated diagnostics based
on pattern recognition approaches in clinical settings is to ensure the highest
possible quality of source signal employed for decision making. Cleaning the
artifactual (irrelevant to the process in question) noise incidental to scanning
deems necessary, as such fluctuations drastically hurt recognition performance,
blocking the way to the identification of neuroimaging markers for mental dis-
orders [4]. To this end, denoising schemes must be proposed, which involve the
extensive examination of spatiotemporal constituents of the source signal and
identification of the relevant components against the artifactual noise [3,28]. In
the present work, we investigate a pattern classification pipeline for mental dis-
orders featuring a denoising step, and observe consistent performance improve-
ments w.r.t. the baseline approach.

A different but important challenge is to design highly sensitive and robust
predictive models. Research indicates that the pattern of brain activity changes
associated with disorders such as depression might have limited discriminative
power, leading to performance drops for common machine learning algorithms.
Current accuracy of around 75%, thus, does not allow direct clinical application
of these models [18].

Data used in the pilot study consists of structural and functional MR-images
from 100 subjects: 25 healthy volunteers (H), 25 patients with major depressive
disorder in an acute depressive episode (D), as well as 25 epilepsy patients (E)
and 25 epilepsy patients with major depressive disorder (ED).

In summary, our contributions in this work are the following:

– We provide a short review of current fMRI applications and data cleaning
methods prior to feature extraction;

– We propose a principled noise-aware pattern recognition pipeline for neu-
roimaging tailored to pattern classification;

– Using a real MRI/fMRI dataset, we demonstrate the effectiveness of our
methodology, searching for epilepsy-specific patterns. We aim to discrimi-
nate between healthy controls, patients with epilepsy, and patients with both
epilepsy and depression.

The potential importance of the work arises from the fact that the majority
of commercial and clinical scanners are 1.5T compared to high quality 3T and 7T
research scanners. Here we prove that both structural and (low quality and short
duration) resting-state data could be enough for epilepsy/depression diagnostics.



308 M. Sharaev et al.

2 MR Data Properties, Preprocessing and Feature
Extraction

Magnetic resonance imaging (MR imaging, MRI) and its part — functional mag-
netic resonance imaging (fMRI) — use strong magnetic fields to create images
of biological tissues and physiological changes in them.

Upon acquisition, MRI data should be cleaned to eliminate the noise associ-
ated with the scanning procedure (low-level hardware artefacts such as magnetic
field inhomogeneity, radiofrequency noise, surface coil artefacts and others) and
signal processing (chemical shift, partial volume, etc.); besides there are arte-
facts associated with the scanned patient (physiological noise such as blood flow,
movements, etc.). The artefacts should be considered in accordance with the
noise origin and filtered out [9].

In addition to MRI data cleaning problem, there is another common challenge
of the brain imaging analysis related to the large dimensionality of the measured
data, which mostly depends on resolution parameters of the scanner inductive
detection coil. For instance, standard voxel sizes are within 0.5–2 mm3 in case of
structural imaging (resulting in 107 voxels for the whole brain volume). Thus, an
MRI image, composed of huge number of small sized voxels, has higher spatial
resolution and, hence, high dimensionality. To avoid the curse of the dimensional-
ity phenomenon, ML methods are usually applied to lower dimensional features
extracted from original scans by feature selection procedures. These procedures
are also included into the preprocessing stage.

2.1 Structural MRI Preprocessing and Feature Extraction

Preprocessing stage has two main goals: MRI data cleaning and avoiding the
curse of the dimensionality phenomenon caused by high dimensionality of initial
MRI data. The latter goal can be achieved by constructing lower dimensional
and biomedically interpretable brain characteristics from the initial data.

The goal of this sub-stage is to extract informative features (biomedically sig-
nificant brain characteristics, clinically meaningful features) with lower dimen-
sionality. The approach is typically realized in several steps:

– selection of an appropriate brain atlas [17] which splits the brain into the
anatomical areas (e.g. Hippocampi, cortical areas and etc.),

– 3D MRI images segmentation into disjoint sets (sub-images), consisting of
voxels, corresponding to different brain regions (Regions of Interest, ROIs),

– various characteristics calculation for each ROI.

The examples of such characteristics could be structural morphometric
parameters (volumes, thicknesses, curvatures) of the selected anatomical areas
from the MRI-image, which together form a volumetric vector. For example,
MRI processing toolbox [12] parcels MRI images into regions corresponding
to the chosen Desikan-Killiany atlas; calculates 7 volumetric characteristics
for each cortical region (NVoxels, Volume mm3, normMean, normStdDev, nor-
mMin, normMax, normRange) and 9 geometric characteristics of subcortical
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regions (NumVert, SurfArea, GrayVol, ThickAvg, ThickStd, MeanCurv, Gaus-
Curv, FoldInd, CurvInd).

For constructed objects different characteristics reflecting meaningful prop-
erties of these objects, can be computed for further use in Machine learning
studies like segments of MRI-image consisting of 3D MRI-voxels from chosen
brain areas (to be used as inputs for deep learning procedures [23]). Most often
domain-specific lower dimensional features (morphometric or functional connec-
tivity features) could be extracted from original data in specialized MRI pro-
cessing toolboxes [2].

2.2 Functional MRI Preprocessing and Feature Extraction

fMRI-Related Noise. Not depending on equipment, fMRI signal is very noisy.
As T2*-weighted image (BOLD-contrast) is a mixture of signals from many
sources, the desired signal from the neuronal activity only represents a relatively
small percentage of the variance of the signal [3]. Non-neuronal contributions
to the BOLD fMRI time series include receiver coil thermal noise, instrumental
drifts, spike-like artifactual signals induced by the hardware instabilities, rapid
and high-amplitude spikes due to the head motion. The physiological noise of
non-neuronal origin (which is essentially BOLD-signal, but of no interest) com-
prises of cardiac and respiratory noise, changes in arterial carbon dioxide con-
centration associated with varying respiration rate, vasomotor effects, changes
in blood pressure and cerebral autoregulation mechanisms [20].

Noise Identification and Suppression. Three significantly different gen-
eral approaches for noise identification and removal in fMRI data can be high-
lighted [5,28]: the first is based on using additional sensors measuring physio-
logical activities exploitation (model-based approach, [14]), the second is noise
elimination specific for each type of noise (e.g. motion correction or thermal
noise cleaning), finally the third one is data-driven using only fMRI data itself
and prior information about fMRI signal and noise. The first approach is limited
as it covers only physiological nature of the noise and can’t handle e.g. scanner
artifacts. Moreover, large amounts of data have already been collected (and are
being collected) without additional “noise” information, so the aforementioned
method cannot be useful here. Data collection with additional equipment intro-
duces additional challenges from increased experimental time to equipment cost,
MR-compatibility, and instability.

Independent Component Analysis (ICA) based technique could be viewed
as a second step as it might be applied to components extracted by PCA [26].
The resulting independent components are assumed to be either noise-related or
signal-related, each representing one of the sources in a source separation task
solved by ICA. ICA transforms source fMRI signal into a set of components with
distinct spatial and temporal structures, which further could be classified as noise
or signal. Three possible approaches to this classification can be highlighted.
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The first one is an expert-based technique: an individual with expertise in
fMRI processing must examine every component (time courses, spatial distri-
bution, and spectrum) and manually label it as either signal or noise [15,19].
[15] present a detailed guideline for evaluating and categorizing independent
components and provide examples of each component class. Expert-based cate-
gorization may be tedious and error-prone for data with low SNR ratios, e.g. for
ubiquitous medical 1.5T scanners.

Another option is to utilize a pre-trained classifier such as the one provided
by the FIX package of FSL that achieves 99% classification accuracy based on
the annotation created by human experts [28]. In this work, ICA components are
used to extract features for the machine learning methods (supervised learning
classifiers) that aim to classify noise components from signal automatically based
on labeled training data. 46 temporal and 131 spatial features are extracted and
a feature selection procedure is performed during classifier training.

Finally, the third approach is to combine the first two approaches, i.e. to
calibrate the existing model pre-trained on vast amounts of data with different
characteristics (such as the one provided by the FIX package) for the particular
problem. This requires creating a new task-oriented labeled dataset using the
expert knowledge and using transfer learning techniques known from machine
learning to ’fine-tune’ the classification model on the newly labeled data. This
approach seems to be the most promising when data quality is low and number
of patients is relatively high.

Described approaches to signal-noise separation for fMRI data might prove
useful for classification tasks in the medical domains described above, specifi-
cally epilepsy, schizophrenia, and depression diagnostics. The crucial point here
is that physiological noise having no direct relation to the neuronal activity (i.e.
signal), might still carry valuable discriminating information for the classifica-
tion task. For instance, cerebral blood flow fluctuations might reveal unobserv-
able brain states, which correlate with the target variable (disease/no disease).
Broadly speaking, two ways to approaching the classification problem exist. The
first assumes building classifier based on the hand-crafted features extracted
from the independent components (such as, for instance, described in [28]), that
could prove effective for discriminating between patients vs. healthy controls. An
alternative approach may be based on the reconstruction of the 4D fMRI signal
itself after noise elimination and its utilization as a source data for training (i.e.
data might be denoised, or its signal and noise parts investigated separately).

3 The Proposed Pipeline

The literature review has allowed us to identify established and prospective
building blocks and organize them into a unified and highly automated fMRI
processing pipeline, see [13] for detailed discussion. Our pipeline accepts raw
functional and structural scans of a subject and outputs the predicted task-
specific scores, whose meaning vary according to the application. For instance,
for a depression vs. healthy control classification task, our pipeline should score
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the patient according to a probability of depression diagnosis for him. The entire
chain of steps can be implemented in a modular way via existing or prospective
software by respecting interfaces between the modules. We note that as some
of the modules may carry computationally intensive processing, the runtime of
the pipeline may vary from minutes to several hours. We briefly describe our
proposed pipeline below.

The input to our pipeline comprises of functional and structural MRI scans.
The raw scans are passed through a standard preprocessing step, an established
low-level MRI handling stage (involving slice-time correction, motion correction,
filtering in space and time, anatomical alignment across individuals) [7], yielding
preprocessed data on the same scale and format. A second stage accepts pre-
processed scans and runs a manual denoising procedure analogous to the one
discussed in [15], producing a scan with irrelevant components excluded and an
increased SNR. The third stage of our pipeline performs correlation-based and
graph-based feature extraction for fMRI and structural morphometric parame-
ters (volumes, thicknesses, curvatures) extraction for structural MRI data, which
together form a volumetric vector. Lastly, our pipeline performs pattern recogni-
tion by making use of available implementations of conventional machine learning
approaches such as SVMs [29], neural networks [25], and decision trees combined
with imbalanced classification approaches [24], to name a few. Additionally, for
each selected combination of analysis steps it is possible to select and visual-
ize most informative structural/functional features (i.e., potentical candidates
for biomarkers) and evaluate True Positive Rate (TPR) with any fixed False
Positive Rate (FPR), which is extremely useful in medical practice.

4 Illustrative Example: Pattern Recognition for Epilepsy
Detection

4.1 fMRI-based Pattern Recognition

The purpose of this example study is to demonstrate the possible advantages
of using novel sophisticated artifact removal procedures prior to feature extrac-
tion in clinical diagnostics. The data at our disposal consisted of functional MRI
scans of four groups of subjects: 25 patients with epilepsy, 25 patients with
depression, 25 patients with both epilepsy and depression, and 25 healthy con-
trols. We aimed at finding patterns connected to epilepsy, thus discriminating
patients with epilepsy against the rest of the sample: the diagnostic question is
whether a particular subject has epilepsy (otherwise he might be healthy or have
depression). Resting-state functional MRI was collected at 1.5T EXCEL ART
VantageAtlas-X Toshiba scanner at Z.P.Solovyev Research and Clinical Center
for Neuropsychiatry1.

Raw data were preprocessed according to two different protocols:

1 Skoltech biomedical partner. Website (in Russian): http://npcpn.ru/.

http://npcpn.ru/
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1. Spectrum: standard preprocessing pipeline implemented in SPM12 includ-
ing slice-timing correction, bad-slices interpolation, motion-correction (bad
volumes interpolation), coregistration with T1 images and spatial normaliza-
tion.

2. Manual: a combination of standard pipeline with manual ICA classification
into signal and noise components by fMRI experts.

For the parcellation of the brain, we used an Automatic Anatomic Labeling
(AAL) atlas consisting of 117 regions. For each region corresponding time series
were assigned, and then a correlation matrix was computed from them. Signifi-
cant correlation values (p = 0.05, Bonferroni corrected) were set to ones, all other
values were set to zeros, yielding a binary adjacency matrix of dimensionality
117 × 117. An example of raw and binarized matrix is in Fig. 1.

Fig. 1. Visualization of fMRI patterns used for the classification task. A depicts the cor-
relation matrix, from left to right: raw, binarized (threshold = 0.15), binarized (thresh-
old = 0.4). B depicts the functionally connected brain areas according to the elements
of the correlation matrix in A.

The python library NetworkX was used to calculate features corresponding to
each region of interest, explaining the level of functional activity of the region in
terms of graph nodes.We calculated 5 metrics corresponding to each region of the
brain: clustering coefficient, degree centrality, closeness centrality, betweenness
centrality, average neighbor degree, and 2 metrics describing the graph in general:
local efficiency and global efficiency [22]. Then the standard machine learning
classifiers were applied: Support Vector Machine (SVM), Random Forests (RF),
and Logistic Regression (LR).

Each model was validated using leave-one-out approach. Four comparisons
were performed:
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Table 1. EvsH. Results on 25 epilepsy
only patients vs. 25 healthy controls
classification task.

FPR Spectrum TPR Manual TPR

10% 8% 36%

15% 8% 44%

20% 24% 68%

30% 32% 68%

Table 2. EDvsE. Results on 25 epilepsy
only patients vs. 25 epilepsy + depression
patients classification task.

FPR Spectrum TPR Manual TPR

10% 20% 16%

15% 20% 20%

20% 40% 38%

30% 44% 48%

Table 3. EvsNE. Results on 50 sub-
jects with epilepsy vs. 50 subjects with-
out epilepsy classification task.

FPR Spectrum TPR Manual TPR

10% 10% 36%

15% 22% 52%

20% 32% 60%

30% 36% 66%

Table 4. EDvsD. Results on 25 depression
only patients vs. 25 epilepsy + depression
patients classification task.

FPR Spectrum TPR Manual TPR

10% 16% 20%

15% 24% 32%

20% 28% 60%

30% 40% 60%

– EvsH. 25 epilepsy only patients vs. 25 healthy controls,
– EDvsE. 25 epilepsy only patients vs. 25 epilepsy + depression patients,
– EvsNE. 50 subjects with epilepsy vs. 50 subjects without epilepsy (including

healthy controls and subjects with depression).
– EDvsD. 25 depression only patients vs. 25 epilepsy + depression patients.

The results for each classification task are in Tables 1, 2, 3 and 4. Summary
of classification results in terms of prediction accuracy for the two competing
preprocessing pipelines is provided in Table 5.

Firstly, it can be seen that Spectrum preprocessing does not perform well
when working on simple features (functional connectivity). Next, Manual shows
relatively high performance in terms of accuracy and true positive rate, which
means that additional sophisticated data cleaning could be beneficial prior to
feature extraction for fMRI classification tasks. In all except EvsNE the clas-
sifier performance is rather high and stable after cross-validation meaning that
epilepsy-specific fMRI pattern could be found, thus in it might be hard to dis-
tinguish between complex epilepsy + depression patients possibly due to similar
brain disruptions. An additional work is needed here to construct new features
sensitive to subtle differences between patients.
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Table 5. Summary of classification results in terms of prediction accuracy for the two
competing preprocessing pipelines.

Task Spectrum Manual

EvsH 57 ± 16% 76± 13%

EDvsE 67 ± 15% 66 ± 16%

EvsNE 54 ± 16% 73± 16%

EDvsD 58 ± 20% 66± 16%

4.2 Structural MRI-based Pattern Recognition

Structural MRI data were cleaned, preprocessing and their features were
extracted using MRI processing toolboxes [1,2] as described below (see also
Fig. 2).

Structural morphometric features were calculated from T1w images using
[12]; for more than 100 brain regions corresponding features explaining brain
structure (volumes, surface areas, thicknesses, etc.) were computed producing a
vector with 894 features for each subject.

Fig. 2. An example of brain parcellaton used for feature extraction: structural brain
MRI split into anatomical regions performed in Freesurfer 6.0 according to the Desikan-
Killiany atlas. A: coronal view, B: axial view, C: saggital view.

Next, the ML exploratory pipeline was implemented on Ipython using
scikit-learn library2 and organized as follows:

– We considered two geometrical methods for dimensionality reduction: (1)
Locally Linear Embedding, (2) Principal Component Analysis (see descrip-
tion of a weighted version in [6]).

– We considered two methods of feature selection: (1) feature selection
based on Pearson’s chi-squared test and ANOVA scoring, implemented via
SelectKBest function in scikit-learn; (2) selection of relevant features
based on a particular classification model used with Logistic Regression (LR),
K-Nearest Neighbors (KNN) and Random Forest Classifier (RFC), imple-
mented via the SelectFromModel function in scikit-learn.

2 http://scikit-learn.org/.

http://scikit-learn.org/
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Table 6. Results on EvsH task
(best model: SVM).

FPR 10% 15% 20% 30%

TPR 32% 48% 56% 68%

Table 7. Results on EDvsE task
(best model: SVM).

FPR 10% 15% 20% 30%

TPR 4% 8% 28% 32%

Table 8. Results on EvsNE task
(best model: Logistic Regression).

FPR 10% 15% 20% 30%

TPR 42% 46% 52% 66%

Table 9. Results on EDvsD task
(best model: Logistic Regression.

FPR 10% 15% 20% 30%

TPR 40% 52% 80% 80%

– We performed grid search for a number of selected features and for a number
of components in dimension reduction procedure in the sets {10, 20, 50, 100}
and {5, 10, 15, 20}, correspondingly.

Data was whitened before training. Feature reduction was performed without
double-dipping [21], therefore training and testing datasets are separated before
feature selection/dimensionality reduction. Hyper-parameters grid search was
based on cross-validation with stratification, repeated 10 times for each person
being in test.

As mentioned above, the dataset explored with the proposed pipeline con-
tains four groups of subjects. Patients from epilepsy and epilepsy with depression
groups represent cohorts with several types of epilepsy localization: temporal,
frontal, parietal, mixed and unknown cases. That allows exploration of general
patterns of epilepsy, independently to the localization, which are known to be
tacked particular subcortical regions as hippocampus. Then in other research,
the ML methods are applied to classify epilepsy with a known epilepsy local-
ization. There are two types of epilepsy being extensively explored: temporal
lobe epilepsy (TLE) or even precisely TLE with mesial temporal sclerosis (TLE-
MTS), and focal cortical dysplasia patients with TLE (TLE-FCD) [8,10,16]. In
some cases, TLE patients from these selected groups are further separated in
groups by the loci localization as right and left [11].

The results for each classification task are in Tables 6, 7, 8 and 9. Summary
of classification results in terms of prediction accuracy is provided in Table 10.
Thus, the obtained results on the in-homogenized cohort are the firstly reported
and we consider the results with the classification accuracy more than 0.7 sta-
tistically significant with .05 level of confidence on the explored cohort of 50
patients. We provide the results for EvsH classification task in Table 6. Note
that we obtain statistically significant results on structural MRI features. This
could be explained by the fact that epilepsy leads to significant changes in brain
structure, which can yield more accurate classification. Table 9 presents results
for EDvsE classification task. We conclude that model performance is not sta-
tistically significant, highlighting the difficulty of isolation of depression against
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the complex illness picture based on MRI data alone. The results for EvsNE are
in Table 8; here the model performance is comparable to ones from preselected
cohort of patients [8,10,11,16] as for EvsH case, cf. table, where TPR reaches
80% with FPR fixed at 30%.

Table 10. Summary of classification results in terms of prediction accuracy.

Task EvsH EDvsE EvsNE EDvsD

Accuracy 74.0 ± 18.0% 65.0 ± 15.0% 73.0 ± 18.0% 82.0 ± 11.0%

The most by score important features from models EvsH and EvsNE are:
Ventral Diencephalon Right, Hippocampus Left, Thalamus Left, Putamen Left,
Angular gyrus Right, Frontal gyrus Right (Superior), Paracentral lobule Left,
Postcentral gyrus Right, Precentral gyrus Left, Supra Marginal gyrus Left, Tem-
poral Pole Left. These findings are in line with current knowledge of epilepto-
genic zones and brain areas mostly affected from epileptic seizures [27] as well
as provide some new information on possible targets in epilepsy diagnostics and
treatment.

5 Conclusions

In the current work, we reviewed some approaches to neuroimaging data clean-
ing aimed at the elimination of artifacts harmful for further pattern recognition.
Based on well established and novel approaches, we proposed a principled noise-
aware pattern recognition pipeline for neuroimaging tailored to pattern classifi-
cation and showed the potential effectiveness of our proposed methodology in a
pilot classification study. Our general data preprocessing and analysis pipeline
for structural and functional MRI data could dramatically reduce research time,
thus allowing a researcher to investigate a larger variety of preprocessing, data
cleaning, feature extraction, and classification options as well as compare results
based on desired metrics. From top performing combinations of analysis steps
we obtained a number of stable structural and functional features (i.e., poten-
tial candidates for biomarkers), some of which are known and well established,
whereas some of which are new and could possibly provide new medical knowl-
edge on epilepsy mechanisms and its robust detection. We also evaluated True
Positive Rates (TPR) with different fixed False Positive Rates (FPR), which
is much more useful for clinicians than classification accuracy alone. According
to the proposed pipeline, we found the ICA-based cleaning step to be crucial
for further pattern recognition task: denoised data provides clearer and more
informative features for machine learning-based diagnostics, and yields signif-
icant improvements in finding epilepsy-specific pattern in a group of patients
with only epilepsy versus epilepsy + depression patients and healthy controls.
We strongly believe that application of pattern recognition in functional neu-
roimaging is promising for clinical diagnostics of psychiatric disorders such as
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depression and neurological diseases such as epilepsy, though the classification
performance achieved in our study may be not enough for immediate medical
applications. We don’t consider end-to-end (deep learning-based) pipeline, as we
believe deep learning-based approaches would face strict limitations with raw
data without any preprocessing due to (1) high dimensionality, (2) very low
SNR ratios, and (3) very small sample size in comparison to usual deep learning
problems.

The analyzed dataset has several obvious drawbacks: it is small and well
balanced, which is not the usual case in clinical practice. As the number of
public sources of epilepsy/depression clinical data is limited and the access to
these datasets is difficult to obtain, it is hard to compare our results with other
research groups, though several studies with similar objectives are discussed
above.

We nevertheless obtained statistically significant results for EvsH, EvsNE,
and EDvsD models. The epilepsy classification on mixed cohort EvsNE reached
FPR 30% (model sensitivity 70%), and TNR 80% (specificity 80%) is comparable
to the research conducted on pre-selected groups of patients [8,10,11,16], allow-
ing the exploration of generalized disease biomarkers which were not analyzed
with ML methods before.

Despite the limitations, the proposed approach is universal and has the poten-
tial to be implemented into clinical practice, as it is not based on high-quality
data and sophisticated ML algorithms, but could be useful in real applications
or serve as a starting point tutorial for building new MR processing pipelines.

References

1. Behroozi, M., Daliri, M.: Software tools for the analysis of functional magnetic
resonance imaging. Basic Clin. Neurosci. 3(5), 71–83 (2012)

2. Bernstein, A., Akzhigitov, R., Kondrateva, E., Sushchinskaya, S., Samotaeva, I.,
Gaskin, V.: MRI brain imagery processing software in data analysis. In: Perner, P.
(ed.) Advances in Mass Data Analysis of Images and Signals in Medicine, Biotech-
nology, Chemistry and Food Industry. Proceedings of 13th International Confer-
ence on Mass Data Analysis of Images and Signals (MDA 2018). Springer (2018)

3. Bianciardi, M.: Sources of functional magnetic resonance imaging signal fluctua-
tions in the human brain at rest: a 7 T study. Mag. Reson. Imaging 27(8), 1019–
1029 (2009)

4. Birn, R.M., Murphy, K., Handwerker, D.A., Bandettini, P.A.: fMRI in the presence
of task-correlated breathing variations. Neuroimage 47(3), 1092–1104 (2009)

5. Caballero-Gaudes, C., Reynolds, R.C.: Methods for cleaning the bold fMRI signal.
Neuroimage 154, 128–149 (2017)

6. Chernova, S., Burnaev, E.: On an iterative algorithm for calculating weighted prin-
cipal components. J. Commun. Technol. Electron. 60(6), 619–624 (2015)

7. Cohen, J.D., et al.: Computational approaches to fMRI analysis. Nature Neurosci.
20(3), 304 (2017)

8. Del Gaizo, J.: Using machine learning to classify temporal lobe epilepsy based on
diffusion MRI. Brain Behav. 7(10), e00801 (2017)



318 M. Sharaev et al.

9. Erasmus, L., Hurter, D., Naude, M., Kritzinger, H., Acho, S.: A short overview of
MRI artefacts. SA J. Radiol. 8, 13–17 (2004)

10. Fang, P., An, J., Zeng, L.L., Shen, H., Qiu, S., Hu, D.: Mapping the convergent
temporal epileptic network in left and right temporal lobe epilepsy. Neurosci. Lett.
639, 179–184 (2017)

11. Focke, N.K., Yogarajah, M., Symms, M.R., Gruber, O., Paulus, W., Duncan, J.S.:
Automated MR image classification in temporal lobe epilepsy. Neuroimage 59(1),
356–362 (2012)

12. FreeSurfer: Freesurfer toolbox - an open source software suite for processing and
analyzing (human) brain MRI images (2018). https://surfer.nmr.mgh.harvard.
edu/

13. Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E., Penny, W.D.: Statistical
Parametric Mapping: The Analysis of Functional Brain Images, vol. 8 (2007)

14. Glover, G.H., Li, T.Q., Ress, D.: Image-based method for retrospective correction
of physiological motion effects in fMRI: retroicor. Mag. Reson. Med. 44(1), 162–167
(2000)

15. Griffanti, L., et al.: Hand classification of fMRI ica noise components. Neuroimage
154, 188–205 (2017)

16. Hong, S.J., Kim, H., Schrader, D., Bernasconi, N., Bernhardt, B.C., Bernasconi,
A.: Automated detection of cortical dysplasia type II in MRI-negative epilepsy.
Neurology 83(1), 48–55 (2014)

17. Jean, T., Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain: 3-D
Proportional System: An Approach to Cerebral Imaging (1988)

18. Kambeitz, J., et al.: Detecting neuroimaging biomarkers for schizophrenia: a meta-
analysis of multivariate pattern recognition studies. Neuropsychopharmacology
40(7), 1742 (2015)

19. Kelly Jr., R.E., et al.: Visual inspection of independent components: defining a
procedure for artifact removal from fmri data. J. Neurosci. Methods 189(2), 233–
245 (2010)

20. Murphy, K., Birn, R.M., Bandettini, P.A.: Resting-state fMRI confounds and
cleanup. Neuroimage 80, 349–359 (2013)

21. Mwangi, B., Tian, T.S., Soares, J.C.: A review of feature reduction techniques in
neuroimaging. Neuroinformatics 12(2), 229–244 (2014)

22. Networkx: Networkx - software for complex networks (2018). https://networkx.
github.io/

23. Notchenko, A., Kapushev, Y., Burnaev, E.: Large-scale shape retrieval with sparse
3D convolutional neural networks. In: van der Aalst, W.M., et al. (eds.) Analysis of
Images, Social Networks and Texts, pp. 245–254. Springer International Publishing,
Cham (2018)

24. Papanov, A., Erofeev, P., Burnaev, E.: Influence of resampling on accuracy of
imbalanced classification. In: Verikas, A., Radeva, P., Nikolaev, D. (eds.) Proceed-
ings of SPIE 9875, Eighth International Conference on Machine Vision, Barcelona,
Spain, 8 December 2015, vol. 9875. SPIE (2015)

25. Prikhod’ko, P.V., Burnaev, E.V.: On a method for constructing ensembles of regres-
sion models. Autom. Remote Control 74(10), 1630–1644 (2013). https://doi.org/
10.1134/S0005117913100044

26. Rasmussen, P.M., Abrahamsen, T.J., Madsen, K.H., Hansen, L.K.: Nonlinear
denoising and analysis of neuroimages with Kernel principal component analysis
and pre-image estimation. NeuroImage 60(3), 1807–1818 (2012)

27. Richardson, E., et al.: Structural and functional neuroimaging correlates of depres-
sion in temporal lobe epilepsy. Epilepsy Behav. 10(2), 242–249 (2007)

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://networkx.github.io/
https://networkx.github.io/
https://doi.org/10.1134/S0005117913100044
https://doi.org/10.1134/S0005117913100044


Pattern Recognition Pipeline for Neuroimaging Data 319

28. Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L.,
Smith, S.M.: Automatic denoising of functional MRI data: combining independent
component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468
(2014)

29. Smolyakov, D., Erofeev, P., Burnaev, E.: Model selection for anomaly detection.
In: Verikas, A., Radeva, P., Nikolaev, D. (eds.) Proceedings of SPIE 9875, Eighth
International Conference on Machine Vision, Barcelona, Spain, 8 December 2015.
SPIE, vol. 9875 (2015)



Anomaly Pattern Recognition
with Privileged Information
for Sensor Fault Detection

Dmitry Smolyakov1, Nadezda Sviridenko1, Evgeny Burikov2,
and Evgeny Burnaev1(B)

1 Skolkovo Institute of Science and Technology, Moscow Region, Russia
{Dmitrii.Smoliakov,Nadezda.Sviridenko}@skolkovotech.ru,

E.Burnaev@skoltech.ru
2 PO–AO “Minimaks-94”, Moscow, Russia

Burikov@mm94.ru

http://adase.group

Abstract. Detection of malfunction sensors is an important problem in
the field of Internet of Things. One of the classical approaches to rec-
ognize anomalous patterns in sensor data is to use anomaly detection
techniques based on One Class Classification like Support Vector Data
Description or One Class Support Vector Machine. These techniques
allow to build a “geometrical” model of a sensor regular operating state
using historical data and detect broken sensors based on a distance to the
regular data patterns. Usually important signals/warnings, which can
help to identify broken sensors, arrive only after their failures. In this
paper, we propose the approach to utilize such data by using the privi-
leged information paradigm: we incorporate signals/warnings, available
only when training the anomaly detection model, to refine the location
of the boundary, separating the anomalous region. We demonstrate the
approach by solving the problem of broken sensor detection in a Road
Weather Information System.

Keywords: Anomaly detection · Road weather information system
Learning using privileged information · Internet of Things

1 Introduction

Complex Internet of Things sensor systems can be used to control houses, mon-
itor cars and airplanes. In particular, sensor systems can help in road condition
monitoring. Road Weather Information Systems (RWIS) are located on the slide
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lines or under the road surface and collect information about the road conditions
including temperature, pressure, humidity, etc., see details in Sect. 3.1. Some of
them even allow making video recordings. This information can be used for
road monitoring and helps in organizing deicing activities and snow removal. It
allows to increase safety of roads and decrease maintenance cost. Certain Road
Weather monitoring systems are equipped with intelligent modeling capabilities
and even allow predicting adversarial conditions. For that usually either statis-
tical [1] or physical models [2] are used. METRo is a physical model allowing
to forecast local road surface conditions based on information, collected from
sensors located under the road, and global weather forecasts [3], see Sect. 3.2 for
details. Figures 1 and 2 present examples of RWIS sensors and location of the
RWIS station on a sideway.

Fig. 1. RWIS and its sensors Fig. 2. Installed RWIS

Forecasting accuracy depends on quality of collected data. If for some reason
a sensor is broken we will not be able to make accurate predictions. This issue
explains why the problem of detecting malfunctioning sensors is so crucial.

A viable approach to detect broken sensors is to recognize anomalous patterns
in transmitted data using anomaly detection techniques based on One Class
Classification [4], for example One Class Support Vector Machine (One Class
SVM) [5] or Support Vector Data Description (SVDD) [6]. These techniques
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allow to build a model of a system regular operating state using historical data
and then detect broken sensors based on a distance to the regular data patterns.

Usually the most significant symptoms of a broken sensor can be found in
data patterns only after some period of time after the failure. To incorporate this
post-failure information, we develop an anomaly detection technique based on
Learning Using Privileged Information framework (LUPI) [7,8]. As a post-failure
information we use forecasts of the METRo model for a local region around the
considered RWIS. Such information is not available during the test phase, when
we use the trained model for anomaly detection, but can be used during the
training phase.

2 Anomaly Detection

Below we briefly describe the anomaly detection method based on One Class
SVM and its modification with using privileged information.

2.1 One Class SVM

We have a data set consisting of l points xi from a feature space X. We map
them by a function φ(·) to some kernel Hilbert space Hφ. We assume that regular
points (corresponding to a regular operating regime of a system) are located far
away from the origin of Hφ and try to separate them as much as possible from
the origin by a hyperplane w · φ(x) = ρ, defined by the normal vector w. Every
point produces the loss �(x) = max(0, ρ − (w · φ(x))). In other words, we do not
want the points to lie in one subspace with the coordinate system origin, and we
do not want them to be too close to the separating hyperplane. Value of ρ defines
at what distance we become confident in the regularity of observations. We want
to have the confidence ρ as big as possible. Also, we impose �2 regularization on
the normal vector of the separating hyperplane. Every point, which is located in
the same half-space with the origin, is labeled as anomaly.

This intuition can be summed up in an optimization problem:

νl · ‖w‖2/2 − νlρ +
l∑

i=1

ξi → min
w,ρ,ξξξ

s.t.

{
(w · φ(xi)) ≥ ρ − ξi,

ξi ≥ 0.
(1)

The problem (1) is convex. However, in this case it is easier to solve the dual
problem because it is a quadratic optimization problem.

To formulate the dual problem, we write down the Lagrangian for (1):

Lw,ξξξ,ρ,ααα,βββ = νl
‖w‖2

2
+

l∑

i=1

ξi − νlρ −
l∑

i=1

αi [(w · φ(xi)) − ρ + ξi] −
l∑

i=1

βiξi.
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From Karush Kuhn Tucker conditions we get that

∂L/∂w = νlw −
l∑

i=1

αiφ(xi) ⇒ w =
1
νl

l∑

i=1

αiφ(xi),

∂L/∂ρ = −νl +
l∑

i=1

αi ⇒
l∑

i=1

αi = νl, ∂L/∂ξi = 1 − αi − βi = 0.

We regroup the summations in the Lagrangian and apply Karush Kuhn Tucker
conditions:

Lw,ξξξ,ρ,ααα,βββ = νl
‖w‖2

2
+ ρ

(
l∑

i=1

αi − νl

)

︸ ︷︷ ︸
0

+
l∑

i=1

ξi [1 − αi − βi]︸ ︷︷ ︸
0

−
l∑

i=1

αi(w · φ(xi)).

Replacing w with 1
νl

l∑
i=1

αiφ(xi) we get that:

Lw,ξξξ,ρ,ααα,βββ = − 1
2νl

l∑

i=1

l∑

j=1

αiαj(φ(xi) · φ(xj)).

In matrix form the dual problem can be written down as follows:

− αααT Kααα → max
ααα

s.t.

{
0 ≤ ααα ≤ 1,

eTααα = νl.
(2)

Here K(x, z) = (φ(x) · φ(z)) is a kernel function representing a dot product in
Hφ, and K = {K(xi, xj)} is a kernel matrix.

The solution of the dual problem allows to write down the solution of the
primal one:

f̂(x) = (w · φ(x)) =
1
νl

l∑

i=1

αiK(x, xi).

Based on Karush Kuhn Tucker conditions we can show that for every xi, such
that 0 < αi < 1, the value of ρ can be calculated as follows: ρ = f̂(xi).

In [5] the authors demonstrated that ν is an upper bound of support vectors
fraction and a lower bound of anomaly points fraction; moreover, if l → ∞, the
fraction of points marked as anomalies converges to ν [5].

2.2 One Class SVM+

Let assume that for every element from the train set xi there exists an element
x∗

i from the privileged feature space X∗. This additional (privileged) information
is not available on the test phase, i.e. we are going to train the decision rule on
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pairs of patterns {(xi, x
∗
i )}l

i=1 ∈ X × X∗, but when making predictions during
the test phase we can use only features x ∈ X. Let us describe how to perform
Learning Using Privileged Information (LUPI) for One Class SVM.

In order to incorporate privileged information into the anomaly detection
framework, we construct the approximation ξi ≈ (w∗ · φ∗(x∗

i )) + b∗. Here φ∗(·)
is a mapping into some privileged kernel Hilbert space Hφ∗ . In fact using such
approximation we assume that thanks to the privileged patterns (x∗

1, . . . , x
∗
l ) we

can refine the location of the separating boundary w.r.t. the sample of training
objects. Also we impose a regularization on w∗.

As a result the optimization problem takes the form:

νl · ‖w‖2
2

+ γ · ‖w∗‖2
2

− νlρ +
l∑

i=1

(w∗ · φ∗(x∗
i )) + b∗ + ζi → min

w,w∗,ρ,ξξξ,ζζζ
, (3)

s.t.

{
(w · φ(xi)) ≥ ρ − (w∗ · φ∗(x∗

i )) − b∗,
(w∗ · φ∗(x∗

i )) + b∗ + ζi ≥ 0, ζi ≥ 0.

In this formulation, γ is a regularization parameter for the slack variables
approximation. We add ζi to prevent those approximations becoming negative.
Note that if γ is small and the space Hφ∗ is rich enough, the solution of (3) will
be close to the solution of (1).

As before solving the dual of (3) is easier than solving the initial problem.
In order to formulate the dual problem we write down the Lagrangian for (3):

Lw,w∗,b∗,ρ,ζζζ,ααα,βββ,ννν =
νl

2
‖w‖2 − νlρ +

γ

2
‖w∗‖2 +

l∑

i=1

[(w∗ · φ∗(x∗
i )) + b∗ + ζi] −

l∑

i=1

κiζi

−
l∑

i=1

αi [(w · φ(xi)) − ρ + (w∗ · φ∗(x∗
i )) + b∗] −

l∑

i=1

βi [(w∗ · φ∗(x∗
i )) + b∗ + ζi] .

From Karush Kuhn Tucker conditions:

∂L/∂w = νlw −
l∑

i=1

αiφ(xi) ⇒ w =
1
νl

l∑

i=1

αiφ(xi),

∂L/∂ζi = 1 − βi︸ ︷︷ ︸
δi

−κi = 0 ⇒ δi = κi ≥ 0, ∂L/∂w∗ = γw∗ −
l∑

i=1

(αi − δi)φ∗(x∗
i ),

∂L/∂ρ = −νl +
l∑

i=1

αi ⇒
l∑

i=1

αi = νl, ∂L/∂b∗ = l −
l∑

i=1

αi −
l∑

i=1

βi = 0.

Using these results we get:

Lw,w∗,b∗,ρ,ζζζ,ααα,βββ,ννν = − 1

2νl

l∑

i=1

l∑

j=1

αiαj(φ(xi) · φ(xj))

− 1

2γ

l∑

j=1

(δi − αi)(δj − αj)(φ
∗(x∗

i ) · φ∗(x∗
j )). (4)
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In matrix form the dual problem can be written down as follows:

− 1
νl

αααT Kααα − 1
γ

(ααα − δδδ)T K∗(ααα − δδδ) → max
ααα,δδδ

s.t.

{
eTααα = νl, eTδδδ = νl,

0 ≤ δδδ ≤ 1, ααα ≥ 0.
(5)

Here K∗(x∗, z∗) = (φ∗(x∗) ·φ∗(z∗)) is a kernel function representing a dot prod-
uct in some kernel Hilbert space Hφ∗ , and K∗ = {K∗(x∗

i , x
∗
j )} is a kernel matrix,

e = (1, . . . , 1) ∈ R
l. By comparing (2) and (5) we get that the second summand

in (5), containing privileged information, acts as a regularizer with the regular-
ization parameter γ.

Fig. 3. Road temperature data

The decision function can be represented as follows:

f̂(x) = (w · φ(x)) =
1
νl

l∑

i=1

αiK(x, xi).

The approximation of ξ can be represented as follows:

f̂∗(x∗) = (w∗ · φ∗(x∗)) =
1
γ

l∑

i=1

(αi − δi)K∗(x∗, x∗
i ) + b∗.

Based on Karush Kuhn Tucker conditions we get that for every pair (xi, x
∗
i ),

such that αi > 0, 0 < δi < 1, the values of ρ and b∗ can be calculated as follows:

ρ = f̂(xi) + f̂∗(x∗
i ), b∗ = −f̂∗(x∗

i ).

3 Sensor Fault Detection in Road Weather Information
Systems

Let us demonstrate the proposed approach by solving the problem of sensor fault
detection in a Road Weather Information System.
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3.1 Sensor Data

We collected data from eight RWIS stations, located in different regions of Rus-
sian Federation. Every station collects information about

– air temperature and humidity,
– wind direction, speed and gustiness,
– atmospheric pressure,
– dew point temperature,
– type and intensity of precipitation,
– road surface temperature,
– temperature in the depth of the pavement,
– amount of snow deposits on the road surface,
– presence of reagents on the surface of the road.

In Fig. 3 we provide an example of road temperature data. Sensors record
these values at irregular moments of time. Thus we pre-processed time-series by
linearly interpolating observations and obtained temperature values separated
by 30 min intervals. We also used calendar features including day d of the year
and time t of the day. To represent cyclic nature of this data we used features
based on trigonometric functions: sin(2πd

365 ), cos( 2πd
365 ), sin(2πt

24 ), cos( 2πt
24 ). We also

included lagged features to take into account information about the last three
hours. Finally we used all these features to define the input space X.

3.2 METRo Model

The data obtained from the sensors can be used to build models and systems
for road surface condition monitoring and prediction. One of the most common
“physical” model is the so-called METRo model [3]. This model calculates the
heat flow through the road surface, representing it as a sum:

R = (1 − α)S + εI − εσT 4 − H − LaE ± LfP + A,

where

– (1 − α)S is a solar radiation,
– εI is an absorbed infrared radiation,
– εσT 4 is a radiated energy,
– H is a turbulent heat flow,
– LaE is a latent heat flux,
– ±LfP is a heat change due to phase transition,
– A represents anthropomorphic sources.

The METRo model allows predicting the road surface conditions including
the probability of icing. At the moment, its effectiveness has been tested in the
Czech Republic [9], Canada [3] and USA [10]. In all of these cases they obtained
sufficient forecasting accuracy using the METRo model.
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It is important to note that in practice to get the most accurate predic-
tions the METRo model requires to know the flow of heat, associated not only
with weather conditions, but also with anthropomorphic sources; unfortunately,
it is rather difficult to simulate this quantity [11]. Another problem is that the
METRo forecast is deterministic, i.e. it is not possible to estimate forecast uncer-
tainty. Although, the Monte Carlo approach can be used, it requires solution of
the METRo equations with different initial conditions multiple times [12,13].

The described problems can be partially solved using machine learning meth-
ods. Machine learning methods allow to directly build forecasts based on the
available sensor measurements [14,15], and can be used to aggregate forecasts
obtained using physical models [16–20].

To build road condition forecasts using the METRo physical model, we also
need the global weather forecasts including information about temperature, pres-
sure, precipitation, etc. (see the METRo documentation for more details [3]).
Unfortunately, we were not able to obtain the historical information about the
global weather forecasts, and so we used real (observed) values of these parame-
ters. As a result using the METRo model we built local forecasts of such param-
eters as pressure, temperature, humidity, different road conditions, type and
amount of precipitation.

3.3 Learning Sample

The dataset was labeled manually based on sensor measurements. The fraction
of records which were measured by broken sensors varied from 2% to 15% for
different RWIS stations and types of sensors.

We use the output of the METRo model as the privileged information because
we want to detect measurements from broken sensors before the forecasting sys-
tem utilizes these measurements. Both privileged and original data was normal-
ized by subtracting its mean value and dividing by the standard deviation.

As a training data we randomly selected 20000 measurements from correctly
working sensors. As a test data we used all broken sensors’ values and other
correct measurements.

3.4 Anomaly Detection Accuracy Metric

Malfunction sensor detection is a highly imbalanced problem, and the cost of
missing a broken sensor is higher than a false alarm. In this case the classi-
fication accuracy is not the best option as a measure of the effectiveness of
anomaly detection. Precision and recall better reflect requirements of the con-
sidered application: recall is a fraction of all broken sensors that we are able to
detect; precision is the number of correctly detected broken sensors divided by
the number of all detections. We want to get both high precision and high recall
on the test sample.

One Class SVM predicts not only binary labels but also a distance to the
separating hyperplane which characterizes confidence of the prediction. This
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property allows us to select different thresholds which can lead to different trade-
offs between precision and recall. Thus as an aggregated accuracy metric we
used the Area Under the Precision-Recall Curve (AUCPR): for every possible
threshold value we calculate precision and recall and plot these values by using
recall as the abscissa axis and precision as the ordinate axis. The bigger area
under this curve is the better classifier is.

3.5 One Class SVM Parameters

In the considered case on average the actual fraction of anomalies, observed
in data, is around 0.1. Since ν is a lower bound on the fraction of anomalous
observations (see [21,22]), and our previous results showed that varying ν does
not affect AUCPR significantly (see [23,24]), we set the value of ν to 0.1.

We used the Gaussian kernel both for the original and for the privileged
features: Kσ(x, x′) = exp

{
−‖x−x′‖2

2σ2

}
. This kernel function corresponds to the

feature transformation, which maps all points to the surface of a hypersphere,
since ‖φ(x)‖2 = Kσ(x, x) = 1. This property is crucial for One Class SVM since
it builds linear decision rules.

The smaller the value of σ is, the sharper the decision rule we get, but this
also increases the risk of overfitting. Large values of σ allow to get more stable
decision rules which although can suffer from underfitting.

We fixed the width of the privileged space kernel to (2σ2) = 103, and set
the privileged space regularization parameter to γ = 10−2. We calculated deci-
sion rules and accuracy metrics for various values of the original space kernel
width from the interval [10−4, . . . , 103]. We selected this range because it contains
both small values, producing overfitted decision rules, and big values, producing
underfitted decision rules; therefore, we were able to demonstrate how the LUPI
principle can work as a regularization technique.

3.6 Results

Typical results for eight RWIS stations are presented in Table 1. AUCPR depends
on the proportion of anomalous observations, i.e. for random guessing AUCPR
does not equal to 0.5. Thus in order to estimate it correctly to get some ref-
erence value we emulated an anomaly detector: for each observation from the
test sample we generated anomaly detection score uniformly randomly in some
interval and calculated AUCPR for such predictions. Results are provided in the
column “Random guessing”. By bold font we indicated values of AUCPR for
One Class SVM+, which are different from those values for One Class SVM at
the 5% statistical significance level. We used the bootstrap procedure to test the
statistical significance.

Obtained results demonstrate that although on average the performance
is not very impressive privileged information provides statistically significant
increase in accuracy of predictions.
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Table 1. AUCPR

Station One Class SVM One Class SVM+ Random guessing

RWIS Station 1 0.12 0.14 0.04

RWIS Station 2 0.19 0.2 0.13

RWIS Station 3 0.06 0.06 0.2

RWIS Station 4 0.04 0.04 0.02

RWIS Station 5 0.17 0.19 0.04

RWIS Station 6 0.18 0.21 0.07

RWIS Station 7 0.23 0.25 0.15

RWIS Station 8 0.08 0.1 0.06

Fig. 4. Results on the validation set Fig. 5. Precision-recall on the test set

Table 2. Precision values for different recall values

Recall 0.1 0.3 0.5 0.7 0.9

One Class SVM 0.2 0.24 0.25 0.23 0.17

One Class SVM+ 0.8 0.3 0.25 0.23 0.17

Random guessing 0.14 0.14 0.14 0.14 0.14

Figure 4 demonstrates some intuition about how the LUPI principle works. In
this picture, using validation data from some RWIS station, we plotted AUCPR
for different values of the kernel width. We can see that for One Class SVM+ the
optimal kernel width is smaller than for original One Class SVM. In other words
for One Class SVM+, the optimal solution came from a richer set of decision
functions. The observed behavior illustrates the ability of privileged information
to work as a regularizer, see the discussion after the formula (5) in Sect. 2.2.

Figure 5 shows the precision-recall curve for the test set. In order to obtain
this figure, we used the best models, selected according to Fig. 4. We also pro-
vided a slice of the precision-recall curve in Table 2. The table demonstrates all
available trade-offs between coverage of failures and detection accuracy. By bold
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font we indicated precision-recall values for One Class SVM+, which are differ-
ent from those values for One Class SVM at the 5% statistical significance level.
We used the bootstrap procedure to test the statistical significance.

4 Conclusions

We demonstrated practical applicability of the LUPI principle for anomaly detec-
tion: by incorporating privileged information into the One Class SVM approach
we can improve accuracy of anomaly patterns recognition. The dependence of
AUCPR on the kernel width demonstrated that with privileged information we
can use richer hypothesis sets without the risk of overfitting. The reason that
we obtained only marginal improvement is in the fact that original One Class
SVM is not a reliable anomaly detector—experiments on numerous benchmark
datasets with ground truth that compared popular anomaly detection algorithms
find that One Class SVM ranks at the bottom (Table 1, p. 4 [25]). We note that
the top performer in [25] is the Isolation Forest algorithm [26], an ensemble of
randomized trees. Thus we can get significant improvement when incorporating
privileged information in some other more efficient anomaly detection frame-
work. This is exactly what has been recently done in [27]. Further, these results
can be improved if approaches to imbalanced classification are used [28], as well
as nonparametric confidence measures based on the conformal framework [29,30]
and their modifications for anomaly detection [31–33].

Also it is clear that the applied problem at hand presents itself quite naturally
as a time-series modeling task, since all involved quantities depend on time (see
e.g. Fig. 3). In fact, in order to capture the time-related phenomena we used some
naive and heuristic features (day, time, the trigonometric functions), see Sect. 3.1.
Thus another direction of improvement would be to consider a proper time-series
model (e.g. time-series change-point detection [34,35]), and/or a sequence pro-
cessing learning machine (e.g. recurrent neural net, hybrid SVM/hidden Markov
model) and to develop methods for incorporating privileged information in these
models.
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Abstract. Deep neural networks have become a veritable alternative
to classic speaker recognition and clustering methods in recent years.
However, while the speech signal clearly is a time series, and despite the
body of literature on the benefits of prosodic (suprasegmental) features,
identifying voices has usually not been approached with sequence learn-
ing methods. Only recently has a recurrent neural network (RNN) been
successfully applied to this task, while the use of convolutional neural net-
works (CNNs) (that are not able to capture arbitrary time dependencies,
unlike RNNs) still prevails. In this paper, we show the effectiveness of
RNNs for speaker recognition by improving state of the art speaker clus-
tering performance and robustness on the classic TIMIT benchmark. We
provide arguments why RNNs are superior by experimentally showing a
“sweet spot” of the segment length for successfully capturing prosodic
information that has been theoretically predicted in previous work.

Keywords: Speaker clustering · Speaker recognition
Recurrent neural network

1 Introduction

Automatic speaker recognition comes in many flavors, of which speaker cluster-
ing is the most unconstrained and hence the most difficult one [3,41]. It can
be defined as the task of judging if two short utterances come from the same
(previously unknown) speaker, and thus forms a suitable benchmark for the
general ability of a system to capture what makes up a voice: speaker clustering
can only be solved satisfactory by regarding all available cues in the utterances
themselves. This distinguishes speaker clustering from a more complex experi-
mental setup like e.g. speaker diarization, where engineering a complex system
of many components has a not negligible influence on the final result besides
the pure voice modeling [2]; and for example from speaker identification, where
c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 333–345, 2018.
https://doi.org/10.1007/978-3-319-99978-4_26
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more available data enables the creation of models that work well just because
of the sheer amount of collected training statistics [34]. Previous work [41] hence
suggests that the bottleneck for speaker clustering performance lies in exploit-
ing the supra-frame information present in the audio signal’s evolution in time.
This information of how single audio frames depend on each other in a speaker-
characteristic way can be identified with the prosodic features of a voice—with
its “sound”.

Recently, deep neural networks (DNN) have been successfully applied to var-
ious speaker recognition tasks [7,22,24,28,37,45], reaching and exceeding state
of the art results of classic GMM- [35] or i-vector-based [8] systems. With few
exceptions, systems based on convolutional neural network (CNN) architectures
have been used on spectrograms for their unprecedented performance on visual
recognition tasks [21]. While spectrograms encode time information of an audio
signal explicitly on the image’s horizontal axis, and CNNs can in principle learn
temporal patterns by having filters with an extent in the horizontal direction,
CNNs are per se not sequence learning models. Recurrent neural networks (RNN)
[36,38] instead are explicitly built with temporal modeling in mind [12] and have
shown exceptional performance on other audio recognition tasks [4,13,17,19].
However, RNNs have only very recently been successfully applied to the task of
speaker recognition for the first time (see Sect. 2.1). This discrepancy may be
related to the reported difficulty to train recurrent models successfully [32].

In this paper, we present a quantitative and qualitative analysis of RNNs for
speaker clustering on the TIMIT database. We demonstrate results that slightly
improve state of the art on the evaluation set of 40 speakers, while being more
robust to hyperparameter choice and model initializations than previously used
CNN models. More importantly, extensive experiments allow the conclusion that
the RNN model achieves this performance through an ability to model voice
prosody effectively1. This contributes a strong rationale with empirical evidence
to the recently published first experiments with RNNs for speaker recognition,
and provides valuable insights into the workings of deep learning approaches on
audio data. Specifically, we empirically confirm the “sweet spot” of the segment
length to capture time-dependent (prosodic) information that has been predicted
in earlier work [41]. Section 2 provides an introduction and the background to our
approach, including related work. Section 3 reports on our experimental setup
and results, before findings are discussed in Sect. 4. Section 5 finally provides
conclusions and suggestions for future work.

1 Prosody can be defined on the application level as the “use of suprasegmental fea-
tures to convey sentence-level pragmatic meanings” [20]. While we do not study the
mediation of meaning, we do claim to capture “those elements of speech that are not
[elements of] individual phonetic segments (vowels and consonants) but [...] of sylla-
bles and larger units of speech” https://en.wikipedia.org/wiki/Prosody (linguistics).

https://en.wikipedia.org/wiki/Prosody_(linguistics)
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2 Speaker Clustering with RNNs

2.1 Related Work

Speaker embeddings are fixed-size vectorial representations of a voice, formed
by the activations of neurons at higher-level layers of a neural network during
the forward pass of a respective speech utterance of that voice. Learning speaker
embeddings has been approached with different neural network architectures
such as Siamese [6], fully connected [43], and CNN [10,24,25]. Only very recently
have RNNs been used successfully [23,33,44].

While for classification problems, where the network learns to distinguish
known classes, the cross entropy is the natural choice for the loss function [11],
there is no natural choice for learning embeddings and hence there exist many
different approaches to choose a suitable loss. Garcia-Romera et al. [10] learn
embeddings through the training of a deep neural network. They consider a
learnable distance function defined in the spirit of probabilistic linear discrim-
inant analysis (PLDA) [5]. This distance function is then used as the input to
a binary cross entropy to classify if two segments come from the same speaker
or not. To account for the fact that there are more pairs of segments between
different speakers than between identical speakers, they introduce a weighting
in the loss function. Using the distance function in an agglomerative hierarchical
clustering and further refining the result with variational Bayes re-segmentation
[40], diarization error rates (DER) between 11.2% and 9.9% on the CALLHOME
corpus are achieved. While the network training and in particular the loss func-
tion of this approach is comparable to ours, the temporal information is still
extracted by a classical feed-forward neural net instead of a sequence-learning
RNN.

Cyrta et al. [33] suggest to learn the embeddings by training a recurrent
convolutional neural network for the task of speaker classification. Although they
utilize recurrent layers to retrieve temporal information, the feature extraction
is still done by convolutional layers. Furthermore, the training is done using a
surrogate classification task with the standard cross-entropy as a loss function,
and no clustering specific loss is defined. They reportedly outperform the DER
of a GMM-based baseline [27] with 30% relative improvement, and a CNN [24]
with 12% relative improvement on a novel dataset.

Li et al. [23] experiment with two architectures: a residual CNN [14], and a
RNN using gated recurrent units on top of a conv layer. Two successive training
stages are performed, initially with cross entropy loss, followed by triplet loss [39]
to minimize intra-speaker distances while maximizing inter-speaker distances.
Best results are achieved by the residual CNN with both losses. They report
an equal error rate (EER) of 1.13% and accuracy (ACC) of 96.83% for text-
independent speaker identification on the Mandarin and English UIDs dataset,
a relative improvement of EER and ACC by 50% and 60%, respectively, over
a DNN-based i-vector approach. Additionally, they show good transfer learning
capabilities from Mandarin to English speaker recognition. However, in our work,
we achieve state of the art speaker clustering performance without using an
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Fig. 1. Neural network architecture used for all experiments, including important
hyperparameters of each layer like input size, number of neurons and dropout factor.
The width T (in pixels) of each input segment is varied in our experiments.

additional convolutional network in front of the RNN or dual training, showing
the sufficiency of a recurrent architecture alone for speaker modeling.

Finally, Wang et al. [44] use long short-term memory (LSTM) cells indirectly
to convert MFCC feature vectors to embeddings that are fed into a subsequent
off-line spectral clustering [31] process. They reach an absolute DER of 12.0% on
the CALLHOME dataset, where other DNN- and i-vector based studies achieved
between 14.9% and 12.1% DER (all numbers without additional resegmenta-
tion). The approach is similar to ours in using only a RNN to extract speaker
embeddings, but differs in training (network architecture, loss function) as well
as front-end (features) and post-processing (clustering approach).

2.2 Overview of Our Approach

To learn speaker embeddings, our neural network (cp. Figure 1) uses a combina-
tion of bidirectional LSTM (BLSTM) layers (L1 and L3) with additional fully
connected layers (L4, L6 and L7) right in front of the output layer L8 with cs
neurons. We chose cs to equal the number of speakers in the training set and
input the audio in form of an image (spectrogram). We chose BLSTM layers
because their awareness of previous and upcoming sequence steps, i.e., past and
future time steps in the signal. They are thus able to relate current information
to its relevant temporal context. It is shown in [24] that it is not advisable to
use the final layer trained for a surrogate task for extracting the embeddings;
we thus add three dense layers between the last BLSTM and the output to later
experiment with from where to actually extract our embeddings.

Training. We treat the cs-dimensional output vector from layer L8 as a dis-
tribution that should be similar for all spectrograms from the same speaker,
and dissimilar for spectrograms from different speakers. We train the network
to give this output by using a loss function based on the pairwise Kullback-
Leibler divergence (PKLD), as described in [15]: it enforces said within-speaker
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similarity/between-speaker dissimilarity between all possible pairs of spectro-
grams in each mini batch (see below). This helps the neural network to be fit
for clustering previously unseen speakers, as it is not specifically forcing the net-
work to learn a one-hot encoding of the speaker identity as would be the case
when using cross entropy. Rather, it ensures a voice-specific arbitrary discrete
distribution.

For each mini batch, the loss is computed as follows: first, the mini batch is
created by randomly selecting cm segments of length T · 10 ms from the training
set (a mini batch thus does not contain a fixed number of speakers). Then, each
segment within a mini batch is converted to a mel spectrogram with T time steps
(columns) according to [24] and passed forward through the network, resulting
in an output distribution at layer L8. Finally, the loss function is calculated for
all possible pairs of output distributions (p, q) within a mini batch as follows.

If the two outputs p and q are from the same speaker, the Kullback-Leibler
(KL) divergence is calculated:

KL(p ‖ q) =
cs∑

i

pi log
pi
qi

. (1)

Otherwise, if a paired output is from different speakers, the hinge loss is calcu-
lated:

HL(p ‖ q) = max(0,margin − KL(p ‖ q)) (2)

where the margin hyperparameter defines the maximum distance between two
elements of a pair. Both loss terms are combined as follows:

loss(p ‖ q) = Is · KL(p ‖ q) + Ids · HL(p ‖ q) (3)

where Is equals 1 for pairs from the same speaker and 0 for pairs from different
speakers. Inversely, Ids equals 1 for pairs from different speakers and 0 for pairs
from the same speaker. Finally, we symmetrize the loss function via:

L(p,q) = loss(p ‖ q) + loss(q ‖ p) (4)

Clustering. To perform speaker clustering on a completely disjunct set of test
speakers, the trained neural network is applied to their utterances (chopped into
T · 10 ms long segments), and the respective embeddings are extracted during a
forward pass. We experiment with different layers as potential sources to extract
the embedding vectors from, ranging from L3 to L8. Then, hierarchical agglom-
erative clustering [29] is used off-line to perform the actual clustering of these
vectors (see Fig. 2).
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Fig. 2. Schematic of the training and clustering process with our neural network: (a)
training is executed by computing the loss between all possible pairs of outputs from
L8 within a mini batch; (b) AHC clustering is fed with embeddings extracted from a
lower layer during a forward pass on the trained neural network.

3 Experimental Evaluation

The goal of these experiments is to provide support for the assumption that
RNNs capture prosodic features of a voice. The experiments are evaluated on the
TIMIT [9] corpus, which has been chosen for two reasons: (a) its cleanness, to pre-
vent detraction from the pure voice modeling aspect; and (b) to compare directly
with related work on speaker clustering [24,25,41]. Despite speaker recognition
progress in more challenging environments like meeting diarization [1] or less
constrained speaker identification [30], speaker clustering of even just 40 speak-
ers from TIMIT only recently gave reasonable results [24], while attempting to
cluster all 630 speakers failed altogether [41]. Studying pure voice modeling capa-
bility in isolation thus still seems appropriate, despite the clean studio recordings
of sufficient length in TIMIT. The code for our experiments can be found online2.

3.1 Experimental Setup

In accordance with [25], we perform all training of neural networks on the
speaker 100 50w 50m not reynolds subset of 100 TIMIT speakers3. Of these
speakers, randomly selected 80% are used as training data and 20% for validation
during the training procedure. All audio is converted to mel spectrograms of 128
pixels height (mel-scaled frequency bins). Unlike [24,25], who used a fixed input
width of 100 pixels (1, 000 ms) for the network, we experiment with different seg-
ment length below. We chose a batch size of cm = 100 in conjunction with the
Adam optimizer [16] (and unchanged standard parameters learningrate = 0.001,
β1 = 0.9, β2 = 0.999, ε = 1e−8, and decay = 0.0). All trainings run for 10, 000

2 See https://github.com/stdm/ZHAW deep voice.
3 See https://github.com/stdm/ZHAW deep voice/tree/master/common/data/speak

er lists on GitHub.

https://github.com/stdm/ZHAW_deep_voice
https://github.com/stdm/ZHAW_deep_voice/tree/master/common/data/speaker_lists
https://github.com/stdm/ZHAW_deep_voice/tree/master/common/data/speaker_lists
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Fig. 3. (a) A t-SNE visualization [26] of all single embeddings extracted from all avail-
able data of 5 TIMIT speakers, colored by speaker identity. (b) MR as a function
of training iterations for all evaluated segment lengths, evaluated every 1, 000 mini
batches on the 38 speaker evaluation set. For visual clarity, segment lengths of 300 ms
and below are faded.

mini batches. For the margin parameter of the PKLD, Hsu et al. [15] suggested
a value of 2; we determined margin = 3 to work best after grid search within
{1.5, 2, 2.5, 3} for speaker clustering tasks with N = {40, 60, 80} speakers.

Evaluation is based on the speakers 40 clustering vs reynolds list from
[41] in two stages: intermediate experiments are performed on a 38 speaker sub-
set of this list, where the 10 sentences per speaker are randomly split into 2
utterances, 8 and 2 sentences long, respectively4. Final evaluations are done in
accordance with [41] on the complete list of 40 speakers, using the first 8 sen-
tences (lexicographically ordered by filename) of each speaker to form utterance
1 and the remaining 2 sentences for the second utterance5. As in [24,25], we
finally use agglomerative hierarchical clustering (AHC) with complete-linkage
and the cosine distance between embeddings, and average multiple embeddings
per utterance prior to entering AHC for utterances longer than the segment
length. Figure 3a visually confirms this practice of averaging.

We evaluate each clustering result using the misclassification rate (MR) as
introduced by Kotti et al. [18]: MR = 1

N

∑Ncl

j=1 ej , where N is the overall number
of embeddings to cluster, Ncl the number of found clusters, and ej is defined
as the number of embeddings in cluster j that are not assigned to the correct
cluster. The unique correct cluster for any speaker is arguably the one that
fulfills the following two conditions: (a) it is the cluster with the largest number
of embeddings from this speaker; and (b) if there are also embeddings from
other speakers in this cluster, their number is smaller. However, previous work
[24,25] used a slightly more conservative definition, adding two more necessary
conditions: (c) clusters holding only one embedding cannot be correct; and (d)
4 Both changes to the setup of [41] are due to unintentional anomalies in the data

loading process that got corrected later. The missing speakers are the well-clustering
FPKT0 and FAKS0 (see Fig. 5), thus results aren’t expected to change much.

5 Evidence in the source code suggests that [24,25] used random allocation here, too.
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Fig. 4. MR on the 38 speaker evaluation set as a function of the input segment length
used for different embedding layers (L3/4/6/7/8), averaged over 2 runs. All layers
show a “sweet spot” for the segment length; the best performing layers L3–L6 have
this “sweet spot” at around 400 ms with MR = 0.0.

all embeddings in a cluster with mixed speakers are incorrect. In this paper,
we additionally report MR using the more reasonable (and likely more popular)
interpretation of correct clusters with only conditions (a)–(b).

3.2 Results

Our goal in the following experiments is to vary the input segment length avail-
able for the RNN to learn the temporal dependencies, in order to verify if a
“sweet spot” and thus evidence for prosodic feature modeling as shown by [41]
is found. To use an optimal number of training steps, we first evaluate the MR
against the number of training iterations as the first intermediate experiment.

Figure 3b shows how different networks for the varying segment lengths per-
form on the clustering task, depending on how much they have been trained in
terms of number of mini batches. Two things can be seen: first, the networks
that perform well/average/poorly after full training do so as well after shorter
training. Second, training (at least for models trained with 400 ms segments
or longer) seems to stabilize somewhat after ca. 5, 000 mini batches; it does not
appear as if longer training would have significantly altered the results presented
above nor do we observe significant overfitting. In the following, we therefore set
the number of training steps to “full” 10, 000 mini batches for all experiments,
also to avoid cherry picking of particularly well-behaving training snapshots.

Next, we study the effect of varying segment sizes for the different embedding
layers (see Fig. 4) as the second intermediate experiment. The results are averages
of two runs with independently trained networks of different random weight
initializations to account for potential instabilities in the training. With the
layers L3, L4, and L6, we achieve a perfect clustering, while the layers L7 and L8
perform much worse. For all layers, we observe the following universal behavior:
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Table 1. Comparison of model performances on the TIMIT 40 speaker evaluation set,
given in terms of MR and the more strict legacy variant.

Method MR MR (legacy)

RNN/w PKLD 2.19%
(
1.25%+2.5%+1.25%+3.75%

4

)
4.38% (average of 4 runs)

CNN/w PKLD [25] - 5%

CNN/w cross entropy [24]- 5%

ν-SVM [41] 6.25% -

GMM/MFCC [41] 12.5% -

Fig. 5. The (lower part of a) dendrogram of all 40 speakers from the evaluation set,
created with one of our best performing models (segment length 400 ms, embeddings
extracted from L3). Misclassifications arise only for speaker MCCS0.

with increasing segment size, the MR first decreases and reaches a minimum
before it rises again. The minimum or “sweet spot” is at about 400 ms for the
lower layers L3–L6 and at about 150–250 ms for the final layer L8.

Finally, we evaluate one of our best-performing network configurations (seg-
ment length 400 ms, embedding extraction from L3) on the full 40 speakers test
set to compare with previous results. Table 1 shows that the pure clustering per-
formance is slightly better in terms of the more strict “legacy” MR than the
work of Lukic et al. [24,25]. It is computed as the average over 4 independently
trained networks with identical parameter settings, showing the independence of
the result from random fluctuations in the optimization. This has to be seen in
contrast to the reported dependence of the results in [25] from optimizer hyper-
parameters and large number of training rounds. Figure 5 shows a dendrogram
of one of the best performing clusterings (MR = 0.0125) for reference.
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4 Discussion

Stadelmann and Freisleben [41] suggested that using prosodic features of a voice
is likely to improve speaker clustering performance by an order of magnitude.
They considered a temporal context lengths of 32–496 ms length as potentially
reasonable and demonstrated that an implementation using MFCCs and one-
class SVMs was able to realize parts of this potential using a context length of
130 ms, reaching MR = 0.0625 on the 40 speaker subset of TIMIT.

Our experimental results above suggest that for our RNN implementation, a
temporal context length around 400 ms is optimal, slightly increasing the state
of the art in speaker clustering performance on the 40 TIMIT speakers. Is this
due to the RNN capturing voice prosody? Perceptual experiments as in [42]
will be necessary to ultimately confirm it, but two facts suggest the successful
exploitation of these suprasegmental features: (a) RNNs are sequence learning
models, specifically designed to learn temporal context; and (b) the detected
“sweet spot” of 400 ms lies within the interval suggested in the prior work. That
the MR does not return to the high value of segment lengths below 300 ms could
be due to the fact that below the sweet spot, the network is basically missing
the necessary suprasegmental information in the signal; above 400 ms, the signal
might be dominated by speech- rather than voice-specific information, but the
network is able to learn what it shall by virtue of the properties of RNNs.

We consistently achieve top results over several independent runs without
specifically tuning the hyperparameters of the Adam optimizer or the network
architecture; we thus regard our approach as generally robust against random
influences (weight initialization, mini batch constitution, architectural choices).
We observe however a dependency on the data: some particularly well clustering
speakers like e.g. MREB0 (according to low distances in Fig. 5) where already men-
tioned by [41] to be easily clustered by humans, while on the other hand the few
misclassifications consistently involve speaker MCSS0. Finally, results fluctuate
depending on which sentences are grouped to utterances—thus, for comparabil-
ity it is important to have returned to the original experimental setup of [41] in
this paper with respect to MR definition and utterance assembly.

The results with respect to which layer we use for extracting embeddings are
interesting: we originally chose the PKLD loss function to train on a task as close
as possible to our actual goal of clustering. Related work [24] had shown that a
network learned purely for speaker identification (a surrogate task) is not ideal
for later determining the similarity of unknown voices. This could be mitigated
if an earlier than the final layer is used. The intuition behind this is that at the
final layer is too well adapted to the specific voices seen during training, whereas
the lower embeddings are more abstract. A continuation of said work [25] sug-
gested to use the PKLD to improve this issue. It is thus interesting that we
still need to extract embeddings from a lower layer—a layer farther away from
the trained task—in order to achieve optimal results for speaker clustering. This
suggests that even training for a pairwise similarity or dissimilarity of distribu-
tions is still a surrogate task far away from the actual task of speaker clustering;



Suprasegmental Features for Speaker Clustering with RNNs 343

and that learning speaker clustering end-to-end with the actual clustering task
incorporated in the loss function and network output could improve this.

5 Conclusions and Future Work

In this work, executed simultaneously to first published results on RNNs for
speaker embeddings, we demonstrated that recurrent neural networks can model
prosodic, i.e., suprasegmental, aspects of a voice. We were able to show that
specifically bidirectional LSTMs in combination with the PKLD loss function
perform better than any other machine learning approach tested so far for
speaker clustering on the TIMIT corpus and seem fit for voice modeling per se.
Furthermore, our results show a “sweet spot” for extracting temporal context
information with this kind of RNN at around 400 ms for a range of embedding
extraction layers without extensive tuning of the optimizer and other hyperpa-
rameters.

Future work will include more challenging data as VoxCeleb [30]. Addition-
ally, the following aspects in the presented approach offer room for further analy-
sis: how to better inform the clustering stage about the common bond of multiple
embeddings from the same utterance, beyond averaging; how to use deeper RNN
architectures to exploit more speaker data during training; how to scale to con-
siderable more than 40 speakers/80 utterances; how to formulate a more suitable
surrogate task for training, towards end-to-end neural clustering.
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on the MR, Benjamin Heusser and Savin Niederer for unifying the code base, and Niclas
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24. Lukic, Y., Vogt, C., Dürr, O., Stadelmann, T.: Speaker identification and clustering

using convolutional neural networks. In: MLSP (2016)
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Abstract. The existence of adversarial attacks on convolutional neural
networks (CNN) questions the fitness of such models for serious applica-
tions. The attacks manipulate an input image such that misclassification
is evoked while still looking normal to a human observer—they are thus
not easily detectable. In a different context, backpropagated activations
of CNN hidden layers—“feature responses” to a given input—have been
helpful to visualize for a human “debugger” what the CNN “looks at”
while computing its output. In this work, we propose a novel detec-
tion method for adversarial examples to prevent attacks. We do so by
tracking adversarial perturbations in feature responses, allowing for auto-
matic detection using average local spatial entropy. The method does not
alter the original network architecture and is fully human-interpretable.
Experiments confirm the validity of our approach for state-of-the-art
attacks on large-scale models trained on ImageNet.

Keywords: Model interpretability · Feature visualization · Diagnostic

1 Introduction

The success of deep neural nets for pattern recognition [35] has been a main
driver behind the recent surge of interest in AI. A substantial part of this success
is due to the Convolutional Neural Net (CNN) [5,20] and its descendants, applied
to image recognition tasks. Respective methods have reached the application
level in business and industry [38] and lead to a wide variety of deployed models
for critical applications like automated driving [2] or biometrics [46].

However, concerns regarding the reliability of deep neural networks have
been raised through the discovery of so-called adversarial examples [41]. These
inputs are specifically generated to “fool” [28] a classifier by visually appearing
as some class (to humans), but being misclassified by the network with high
confidence through the addition of barely visible perturbations (see Fig. 1). The
perturbations are achieved by an optimization process on the input: the network
weights are fixed, and the input pixels are optimized for the dual criterion of
(a) classifying the input differently than the true class, and (b) minimizing the
c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 346–358, 2018.
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changes to the input. A growing body of literature confirms the impact of this
discovery on practical applications of neural nets [1]. It raises questions on how—
and in what respect different from humans—they achieve their performance, and
threatens serious deployments with the possibility of tailor-made adversarial
attacks.

For instance, Su et al. [40] report on successfully attacking neural networks by
modifying a single pixel. The attack works without having access to the internal
structure nor the gradients in the network under attack. Moosavi-Dezfooli et al.
[27] furthermore show the existence of universal adversarial perturbations that
can be added to any image to fool a specific model, whereas transferability of
perturbations from one model to another is for example shown by Xu et al. [44].
The impact of similar attacks extends beyond classification [26], is transferable to
other modalities than images [6], and also works on models distinct from neural
networks [31]. Finally, adversarial attacks have been shown to work reliably even
after perturbed images have been printed and captured again via a mobile phone
camera [18]. Apparently, such research touches a weak spot.

On the other hand, there is a recent interest in the interpretability of AI
agents and in particular machine learning models [30,42]. It goes hand in hand
with societal developments like the new European legislation on data protection
that is impacting any organization using algorithms on personal data [13]. While
neural networks are publicly perceived as “black boxes” with respect to how they
arrive at their conclusions [15], several methods have been developed recently
to allow insight into the representation and decision surface of a trained model,
improving interpretability. Prime candidates amongst these methods are feature
visualization approaches that make the operations in hidden layers of a CNN
visible [29,37,45]. They can thus serve a human engineer as a diagnostic tool in
support of reasoning over success and failure of a model on the task at hand.

In this paper, we propose to use a specific form of CNN feature visualization,
namely feature response maps, to not only trace the effect of adversarial inputs
on algorithmic decisions throughout the CNN; we subsequently also use it as
input to a novel automated detection approach, based on statistical analysis of
the feature responses using average of image local spatial entropy. The goal is
to decide if a model is currently under attack by the given input. Our approach
has the advantage over existing methods of not changing the network architec-
ture, i.e., not affecting classification accuracy; and of being interpretable both to
humans and machines, an intriguing property also for future work on the method.
Experiments on the validation set of ImageNet [34] with VGG19 networks [36]
shows the validity of our approach for detecting various state-of-the-art attacks.

Below, Sect. 2 reviews related work in contrast to our approach. Section 3
presents the background on adversarial attacks and feature response estimation
before Sect. 4 introduces our approach in detail. Section 5 reports on experimen-
tal evaluations, and Sect. 6 concludes with an outlook to future work.
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2 Related Work

Work on adversarial examples for neural networks is a very active research field.
Potential attacks and defenses are published at a high rate and have been sur-
veyed recently by Akhtar and Mian [1]. Amongst potential defenses, directly
comparable to our approach are those that focus on the sole detection of a pos-
sible attack and not on additionally recovering correct classification.

On one hand, several detection approaches exist that exploit specific abnor-
mal behavioral traces that adversarial examples leave while passing through a
neural network: Liang et al. [22] consider the artificial perturbations as noise in
the input and attempt to detect it by quantizing and smoothing image filters.
A similar concept underlies the SqueezeNet approach by Xu et al. [43], that
compares the network’s output on the raw and filtered input, and raises a flag
if detecting a large difference between both. Feinman et al. [9] observe the net-
work’s output confidence as estimated by dropout in the forward pass [11], and
Lu et al’s SafetyNet [23] looks for abnormal patterns in the ReLU activations of
higher layers. In contrast, our method performs detection based on statistics of
activation patterns in the complete representation learning part of the network
as observed in feature response maps, whereas Li and Li [21] directly observe
convolutional filter statistics there.

On the other hand, a second class of detection approaches trains sophisticated
classifiers for directly sorting out malformed inputs: Meng and Chen’s MagNet
[24] learns the manifold of friendly images, rejects far away ones as hostile and
modifies close outliers to be attracted to the manifold before feeding them back
to the network under attack. Grosse et al. [14] enhance the output of an attacked
classifier by an additional class and retrain the model to directly classify adver-
sarial examples as such. Metzen et al. [25] have a similar goal but target it
via an additional subnetwork. In contrast, our method uses a simple threshold-
based detector and pushes all decision power to the human-interpretable feature
extraction via the feature response maps.

Finally, as shown in [1], different and mutually exclusive explanations for
the existence of adversarial examples and the nature of neural network decision
boundaries exist in the literature. Because our method enables a human inves-
tigator to trace attacks visually, it can be helpful in this debate in the future.

3 Background

We briefly present adversarial attacks and feature response estimation in general
before assembling both parts into our detection approach in the next Section.

3.1 Adversarial Attacks

The main idea of adversarial attacks is to find a small perturbation for a given
image that changes the decision of the Convolutional Neural Network. Pioneering
work [41] demonstrated that negligible and visually insignificant perturbations
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Fig. 1. Examples of different state-of-the-art adversarial attacks on a VGG19 model:
original image and label (left), perturbation (middle) and mislabeled adversarial exam-
ple (right). In the middle column difference of zero is encoded white and maximum
difference is black because of visual enhancement.

could lead to considerable deviations in the networks’ output. The problem of
finding a perturbation η for a normalized clean image I ∈ R

m, where m is the
image width × height, is stated as follows [41]:

min
η

‖ η ‖2 s.t. C (I + η) �= � ; I + η ∈ [0, 1]m (1)

where C (.) presents the classifier and � is the ground truth label. Szegedy
et al. [41] proposed to solve the optimization problem in Eq. 1 for an arbi-
trary label �′ that differs from the ground truth to find the perturbation. How-
ever, box-constrained Limmited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) [10] is alternatively used to find perturbations satisfying Eq. 1 to improve
computational efficiency. Optimization based on the L-BFGS algorithm for find-
ing adversarial attacks are computational inefficient compared with gradient-
based methods. Therefore, we use a couple of gradient-based attacks, a one-pixel
attack, and boundary attack to compute adversarial examples (see Fig. 1).

Fast Gradient Sign Method (FGSM) [12] is a method suggested to compute
adversarial perturbations based on the gradient ∇IJ(θ, I, �) of the cost function
with respect to the original image pixel values:

η = ε sign(∇IJ(θ, I, �)) (2)

where θ represents the network parameters and ε is a constant factor that con-
strains the max-norm l∞ of the additive perturbation η. The ground truth label



350 M. Amirian et al.

is presented by � in Eq. 2. The sign function is Eq. 2 computes the elementwise
sign of the gradient of the loss function with respect to the input image. Opti-
mizing the perturbation in Eq. 2 in a single step is called Fast Gradient Sign
Method (FGSM) in the literature. This method is a white box attack, i.e. the
algorithm for finding the adversarial example requires the information of weights
and gradients of the network.

Gradient attack is a simple and straightforward realization of finding adver-
sarial perturbations in the FoolBox toolbox [33]. It optimizes pixel values of an
ori ginal image to minimize the ground truth label confidence in a single step.

One pixel attack [40] is a semi-black box approach to compute adversarial
examples using differential evolution [39]. The algorithm is not white box since
it does not need the gradient information of the classifier; however, it is not fully
black box as it needs the class probabilities. The iterative algorithm starts with
randomly initialized parent perturbations. The generated offspring compete with
their parent at each iteration, and the winners advance to the next step. The
algorithm stops when the ground truth label probability is lower than 5%.

DeepFool [28] is a white box iterative approach in which the closest direction to
the decision boundary is computed in every step. It is equivalent to finding the
corresponding path to the orthogonal projection of the data point onto the affine
hyperplane which separates the binary classes. The initial method for binary
classifiers can be extended to a multi-class task by considering it as multiple
one-versus-all binary classifications. After finding the optimal updates toward the
decision boundary, the perturbation is added to the given image. The iterations
continue with estimating the optimal perturbation and apply it to the perturbed
image from the last step until the network decision changes.

Boundary attack is a reliable black-box attack proposed by Brendel et al. in [3].
The iterative algorithm already starts with an adversarial image and iteratively
optimize the distance between this image and the original image. It searches for
an adversarial example with minimum distance from the original image.

3.2 Feature Response Estimation

The idea of visualizing CNNs through feature responses is to find out which
region of the image leads to the final decision of the network. Computing feature
responses enhances the interpretability of the classifier. In this paper, we use
this visualization tool to track the effect of the adversarial attacks on a CNN’s
decision as well as to detect perturbed examples automatically.

Erhan et al. [8] used backpropagation for visualizing feature responses of
CNNs. This is implemented by evaluating an arbitrary image in the forward
pass, thereby retaining the values of activated neurons at the final convolutional
layer, and backpropagating these activations to the original image. The feature
response has higher intensities in the regions that cause larger values of activation
in the network (see Fig. 2). The information of max-pooling layers in the forward
pass can further improve the quality of visualizations. Zeiler et al. [45] proposed
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Fig. 2. Effect of adversarial attacks on feature responses: original image and feature
response (left), perturbed versions (right).

to compute “switches”, the position of maxima in all pooling regions, and then
construct the feature response using transposed convolutional [7] layers.

Ultimately, Springenberg et al. [37] proposed a combination of both methods
called guided backpropagation. In this approach, the information of “switches”
(max-pooling spatial information) is kept, and the activations are propagated
backwards with the guidance of the “switch” information. This method leads to
the best performance in network innards visualization, therefore we use guided
backpropagation for computing feature response maps in this paper.

4 Human-Interpretable Detection of Adversarial Attacks

After reviewing the necessary background in the last Section, we will now
present our work on tracing adversarial examples in feature response maps, which
inspired a novel approach to automatic detection of adversarial perturbations in
images. Using visual representations of the inner workings of neural network in
this manner additionally provides a human expert guidance in developing deep
convolutional networks with increased reliability and interpretability.

4.1 Tracing Adversarial Attacks in Feature Responses

The research question followed in this work is to obtain insight into the rea-
sons behind misclassification of adversarial examples. Their effect in the feature
response of a CNN is for example traced in Fig. 2. The general phenomenon



352 M. Amirian et al.

Fig. 3. Input, feature response and local spatial entropy for clean and perturbed
images, respectively.

observed in all experiments is the broader feature response of adversarial exam-
ples. In contrast, Fig. 2 demonstrates that the network looks at a smaller region
of the image—is more focused—in case of not manipulated samples.

The adversarial images are visually very similar to the original ones. However,
they are not correctly recognizable by deep CNNs. The original idea which trig-
gered this study is that the focus of CNNs changes during an adversarial attack
and lead to the incorrect decision. Conversely, the network makes the correct
decision once it focuses on the right region of the image. Visualizing the feature
response provides this and other interesting information regarding the decision
making in neural networks: for instance, the image of the submarine in Fig. 2
can be considered a good candidate for an adversarial attack since the CNN
is making the decision based on an object in the background (see the feature
response of the original submarine in Fig. 2).

4.2 Detecting Adversarial Attacks Using Spatial Entropy

Experiments for tracing the effect of adversarial attacks on feature responses thus
suggested that a CNN classifier focuses on a broader region of the input if it has
been maliciously perturbed. Figure 2 demonstrates this connection for decision
making in case of clean inputs compared with manipulated ones. The effect
of adversarial manipulation is visible in the local spatial entropy of the gray-
scale feature responses as well (see Fig. 3). The feature responses are initially
converted to gray scale images, and local spatial entropies are computed based
on transformed feature responses as follows [4]:

Sk = −
∑

i

∑

j

hk(i, j) log2(hk(i, j)) (3)
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Fig. 4. (a) Distribution of average local spatial entropy in clean images (green) ver-
sus adversarial examples (red) as computed on the ImageNet validation set [34]. (b)
Receiver operating characteristic (ROC) curve of the performance of our detection
algorithm on different attacks. (Color figure online)

where Sk is the local spatial entropy of a small part (patch) of the input image
and hk represents the normalized 2D histogram value of the kth patch. The
indices i and j scan through the height and width of the image patches. The
patch size is 3×3 and the same as the filter size of the first layer of the used CNN
(VGG19 [36]). The local spatial entropies of corresponding feature responses
are presented in Fig. 3, and their difference for clean and adversarial examples
suggests a likely chance to detect perturbed images based on this feature.

Accordingly, we propose to use the average local spatial entropy of an image
as the final single measure to decide whether an attack has occurred or not. The
average local spatial entropy S̄ is defined as:

S̄ =
1
K

∑

k

Sk (4)

where K is the number of patches on the complete feature response and Sk

shows the local spatial entropy as defined in Eq. 3 and depicted in the last row
of Fig. 3. Our detector makes the final decision by comparing the average local
spatial entropy from Eq. 4 with a selected threshold, i.e., we use this feature to
measure the spatial complexity of an input image (feature response).

5 Experimental Results

To confirm the value of our final metric in Eq. 4, we first perform experiments
to visually compare the approximated distribution of the averaged local spatial
entropy of feature responses in clean and perturbed images. We use the validation
set of ImageNet [34] with more than 50, 000 images from 1, 000 classes and again
the VGG19 CNN [36]. Perturbations for this experiment are computed only
via the Fast Gradient Sign Attack (FGSM) method for computational reasons.
Figure 4(a) shows that the clean images are separable from perturbed examples
although there is some overlap between the distributions.

Computing adversarial perturbations using evolutionary and iterative algo-
rithms is demanding regarding time and computational resources. However, we



354 M. Amirian et al.

Table 1. Numerical evaluation of detection performance on the three different adver-
sarial attacks. Column two gives the amount of tested attacks and elapsed approx. run
time. Success of an adversarial attack is given if a perturbation changes the predic-
tion. Columns four and five show average confidence values of the true (ground truth)
and wrong (target) class after successful attack, respectively. The last columns show
detection rates for different false positive rates.

Adversarial attack #Images
(run time
[days])

Success
rate

Ground
truth
confidence

Target
class
confidence

False positive rate

1% 5% 10%

FGSM [12] 50, 014 (3) 0.925 0.022 0.588 0.954 0.974 0.983

Gradient attack [33] 50, 014 (15) 0.499 0.052 0.371 0.922 0.954 0.969

One pixel attack [40] 50, 014 (32) 0.620 0.037 0.463 0.917 0.951 0.966

DeepFool [28] 47, 858 (42) 0.606 0.041 0.446 0.936 0.963 0.976

Boundary attack [3] 4, 013 (17) 0.940 0.023 0.583 0.934 0.960 0.972

Table 2. Performance of similar adversarial attack detection methods. The Area Under
Curve (AUC) is the average value of all attacks in the third and last row.

Method Dataset Network Attack Performance

Recall Precision AUC

Uncertainty
density
estimation [9]

SVHN [17] LeNet [19] FGSM - - 0.890

Adaptive noise
reduction [22]

ImageNet (4
classes)

CaffeNet DeepFool 0.956 0.911 -

Feature
squeezing [43]

ImageNet-1000 VGG19 Several
attacks

0.859 0.917 0.942

Statistical
analysis [14]

MNIST Self-designed FGSM
(ε = 0.3)

0.999 0.940 -

Feature
response (our
approach)

ImageNet
validation

VGG19 Several
attacks

0.979 0.920 0.990

would like to apply the proposed detector to a wide range of adversarial attacks.
Therefore, we have drawn a number of images from the validation set of Ima-
geNet for each attack and present the detection performance of our method in
Fig. 4. The selection of images is done sequentially by class and file name up to
a total number of images per method that could be processed in a reasonable
amount of time (see Table 1). We base our experiments on the FoolBox bench-
marking implementation1, running on a Pascal-based TitanX GPU.

1 https://github.com/bethgelab/foolbox.

https://github.com/bethgelab/foolbox


Trace and Detect Adversarial Attacks on CNNs 355

Fig. 5. Successful adversarial examples created by DeepFool [28] for binary and ternary
classification tasks are only possible with notable visible perturbations.

Figure 4b presents the Receiver Operating Characteristics (ROC) of the pro-
posed detector, and numerical evaluations are provided in Table 1. Our detection
method performs better for gradient-based perturbations compared to the sin-
gle pixel attack. Furthermore, Table 1 suggests that the best adversarial attack
detection performance is achieved for FGSM and boundary attack perturbations,
where the network confidences are changed the most. This observation suggests
that the proposed detector is more sensitive to attacks which are stronger in
fooling the network (i.e., change the ground truth label and target class confi-
dence more drastically). By using feature responses, we detect more than 91%
of the perturbed samples with a low false positive rate (1%).

In general, it is difficult to directly compare different studies on attack detec-
tors since they use a vast variety of neural network models, datasets, attacks and
experimental setups. We present a short overview of the performances of current
detection approaches in Table 2. Our approach is most similar to the methods
of Liang et al. [22] and Xu et al. [43]. The proposed detector in this paper out-
performs both based on the presented results in their work; however, we cannot
guarantee identical implementations and parameterizations of the used attacks
(e.g., subset of used images, learning rates for optimization of perturbations).
Similarly, adaptive noise reduction in the original publication [22] is applied
to only four classes of the ImageNet dataset and defended a model based on
CaffeNet, which differs from our experimental setup.

6 Discussion and Conclusion

The presented results demonstrate that the reality of adversarial attacks: improv-
ing the robustness of CNNs is necessary. However, we conducted further prelim-
inary experiments on binary (cat versus dog [32]) and ternary (among three
classes of cars [16]) classification tasks as proxies for the kind of few-class clas-
sifications settings frequently arising in practice. They suggest that it is more
challenging to find adversarial examples in such a setting without plenty of “other
classes” to pick from for misclassification. Figure 5 illustrates these results.

In this paper, we have presented an approach to detect adversarial attacks
based on human-interpretable feature response maps. We traced the effect of
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adversarial perturbations on the visual focus of the network in original images,
which inspired a simple yet robust approach for automatic detection. This pro-
posed method is based on thresholding the averaged local spatial entropy of the
feature response maps and detects at least 91% of state-of-the-art adversarial
attacks with a low false positive rate on the validation set of ImageNet. However,
the results are not directly comparable with methods in the literature because
of the diversity in the experimental setups and implementations of attacks.

Our results verify that feature response are informative to detect specific
cases of failure in deep CNNs. The proposed detector applies to increase the
interpretability of neural network decisions, which is an increasingly important
topic towards robust and reliable AI. Future work, therefore, will concentrate on
developing reliable and interpretable image classification methods for practical
use cases based on our preliminary results for binary and ternary classification.

Acknowledgements. We are grateful for the support by Innosuisse grant 26025.1
PFES-ES “QualitAI”.
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Abstract. With advances in neural network architectures for computer
vision and language processing, multiple modalities of a video can be used
for complex content analysis. Here, we propose an architecture that com-
bines visual, audio, and text data for video analytics. The model lever-
ages six different modules: action recognition, voiceover detection, speech
transcription, scene captioning, optical character recognition (OCR) and
object recognition. The proposed integration mechanism combines the
output of all the modules into a text-based data structure. We demon-
strate our model’s performance in two applications: a clustering module
which groups a corpus of videos into labelled clusters based on their
semantic similarity, and a ranking module which returns a ranked list of
videos based on a keyword. Our analysis of the precision-recall graphs
show that using a multi-modal approach offers an overall performance
boost over any single modality.

Keywords: Multi modal video analytics · LSTM · CNN

1 Introduction

Recently, there has been considerable focus on trying to extract relevant infor-
mation from video content, rather than just the metadata [2,8]. Understanding
semantic content greatly improves access to video corpora through improved
searching and ranking. Trying to extract relevant information using a single
modality like the image or audio is prone to errors, either because of lack of
accuracy of the processing algorithm or because of lack of underlying infor-
mation in the modality under consideration. Fusing information from multiple
modalities helps in providing more relevant results for video analytics. In this
paper, we propose a novel way to integrate the information from a wide spec-
trum of information sources in a video. We will demonstrate our approach in
two applications: ranking of videos in response to a search query, and clustering
a corpus of videos based on semantic similarity.
c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 359–370, 2018.
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Even recent state-of-the-art techniques for video analytics either focus on
extracting key frames from a video [7,15] or provide a textual summary of the
video [10]. Since these approaches rely on visual information only and also focus
on key subjects in the frame, they miss out on much of the contextual information
that could be provided by the audio and background text.

2 Approach

Our approach addresses the shortcomings of the current state of the art by uti-
lizing the information available in all the modalities in a video, i.e. the individual
frames, audio and text. To our knowledge, this is the first time that a technique
has been proposed which combines such a wide spectrum of information sources.
Each of the independent modules operates on the input video after which the
outputs from each module is combined into a text-based data structure.

We developed and tested the independent modules and will describe each of
them in detail in this section.

2.1 Action Recognition

To recognize actions in videos, we combined deep learning based semantic seg-
mentation approaches with recurrent neural networks. A high level overview of
the bounding box detection network is given in Fig. 1. The first layers fulfill the
function of semantic image segmentation. For this, we use the DeepLap-MSc-
COCO-LargeFOV network provided by the University of California, Los Ange-
les [1]. Output activations from intermediate layers (as low level representation)
as well as the pixel-wise output probabilities are fed into a long short-term mem-
ory (LSTM) layer [5]. The LSTM layer forms the recurrent part of the network
and binds several frames together. The output of the network given a frame
at time t therefore not only depends on the current frame, but also on previ-
ously read frames. At the top, a softmax output layer is used with cross-entropy
training to recognize an action happening in the video frames.

For the textual representation, we divide the image into a pyramid: not only
is the entire frame classified, but also the top-left, top-right, bottom-left, and
bottom-right zoomed-in sum-frame, as seen in Fig. 2. Thus, each frame has five
potential outputs, which are simply written in a line. If no action can be detected
(the output activation of the no-action node is the largest activation), the output
from that sub-frame is simply the empty string ε.

2.2 Voiceover Detection

The voiceover detection system is a neural network which evaluates whether the
sound (such as voiceover text or music) in the video is added in a clean post-
processing step or part of the original recording, captured at the same time (and
with the same device) that recorded the video.



VADER3 361

Fig. 1. High level overview of the action recognition neural network

Fig. 2. The action recognition module is executed five times in parallel on each frame
to cover actions at different scales.

The neural network designed to detect voiceover text is outlined in Fig. 3.
Given the video’s audio track, we extract a sequence of 13 Mel-frequency cepstral
coefficients (MFCC) [14] with a frame rate of 25 ms frame width and a step size of
20ms. A larger step size than normally found in the literature allows for a faster
processing and simpler model. Each group of 10 consecutive MFCC samples
is recognized in a feed-forward neural network (with hidden layers of size 128,
64, 32, 16, 8, and 2) in a binary classification. The averaged binarized value is
returned as the voiceover score, i.e., the fraction of time steps in which the yes
output node has a larger activation than the no output node.

2.3 Speech Recognition

After comparison and research into the state of the art within the field, we settled
upon using the Google Cloud Speech API1. From an input video, our module
extracts the audio track and performs an API call to the Google cloud server.
The length of the audio file accepted by Google is limited, so for longer audio
transcriptions, we split the audio track into smaller segments with one second

1 https://cloud.google.com/speech/.

https://cloud.google.com/speech/
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Fig. 3. A high-level overview of the voiceover detection system.

overlap. The returned transcription was directly used as textual representation,
without any further processing. For more information about the Google Cloud
Speech API, we refer to its documentation2.

2.4 Automated Scene Captioning

Image and video captioning have seen much work in the past decade. As is typi-
cal in computer vision, an early emphasis was on still images rather than video.
We used an encoder-decoder model where the image or video is first encoded
into a semantically-rich embedding space and then the embedded representa-
tion is decoded using LSTM architectures. We leveraged the open source code
associated with [16] for our application.

2.5 Text Detection and Recognition (OCR) and Object Recognition

For text detection, we initially tried a text specific object proposal algorithm
described in [3]. Ultimately, we settled on using the OCR module in the Google
Vision API3 since it gave superior results.

For object recognition, we leverage the current state of the art CNNs to detect
objects of interest in our database. We also evaluated other architectures includ-
ing YOLO [12], DenseNet [6] and Resnet [4], but the Inception V3 architecture
[13], released by Google performed much better in our tests.

2.6 Language Model Based Video Similarity

As explained in the Introduction, the previously introduced modules are run in
parallel on an input video. Each of the modules returns a textual description of
the different aspects of the video, such as speech, actions, objects, etc. The tex-
tual outputs are concatenated, cleaned, and normalized in the following manner:
The URLs are first extracted and saved as words in the dictionary. The remain-
ing text is transformed to lowercase. The Python NLTK word stemmer4 is then
2 https://cloud.google.com/docs/.
3 https://cloud.google.com/vision/docs/ocr.
4 http://www.nltk.org/api/nltk.stem.html.

https://cloud.google.com/docs/
https://cloud.google.com/vision/docs/ocr
http://www.nltk.org/api/nltk.stem.html
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applied to each word. We then save in a hash table, all word stemming transfor-
mation for a reverse lookup that is used later. Stop words from the NLTK stop
word list5 are removed. All the resulting words are then added to the dictionary.
Finally, a token <UKN> symbolizing an unknown out-of-vocabulary word is added
to the dictionary.

2.7 Video Ranking and Retrieval

All text documents created from the video database are represented as a bag-of-
words. Similarities are computed using vector similarities between two frequency-
inverted document frequency (tf-idf) [11] vectors of those bag-of-words. This
provides a unified view for videos (which results in a matrix of pairwise dis-
tances) for arbitrary text queries. A query is transformed into a bag-of-words
through the same steps outlined above. Words not occurring in the videos in the
database are mapped onto the <UKN> word. Afterwards the vector similarities
to all vectors in the database are computed and ranked. This provides a fast
and robust method to retrieve videos that correspond to any arbitrary query. A
sample demonstration is shown in Fig. 4.

2.8 Clustering

The pairwise video distances derived from the NLP-based text dissimilarities
lend themselves well to hierarchical clustering, in our case agglomerative bottom-
up clustering with single-linkage cluster distances. Starting from each video as
a cluster of its own, a threshold is gradually increased (x-axis). As soon as that
threshold is larger than the distance between two clusters, they merge into a
new cluster, until finally all elements are part of one cluster.

The quality of the clustering is not easily measured by its own because it is
not clear what a good cluster is without extensive ground truth. For the two
main clusters, graduation speeches and TV commercials, we have an implicit
ground truth given, but not at a finer level. Furthermore, there are ambiguous
outliers. For example, consider a TV commercial with text in Spanish and a
questions such as, “Are English language graduation speeches closer to English
TV commercials than Spanish TV commercials to English TV commercials?”
Since there is no clear answer to that, we jointly evaluate the clustering accuracy
combined with the semantic cluster labels introduced next.

2.9 Semantic Labeling

After creating the clusters, we want to automatically generate cluster labels using
the semantic information extracted from the individual modules. This is done
using mutual information [9]. In a nutshell, considering the textual description of
a video, we identify those words, whose occurrence (or lack thereof) serves best

5 https://raw.githubusercontent.com/nltk/nltk data/gh-pages/packages/corpora/
stopwords.zip.

https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/stopwords.zip
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/stopwords.zip
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Fig. 4. The output for the query word “Carbonara”. In the top video on the right
the query word was detected by multiple modules (OCR and Object Recognition)
resulting in a higher score. In the second video, the word was only detected by the
Object recognition module.

to predict whether or not a video is part of a cluster. Mathematically speaking,
consider the mutual information of two random variables X, and Y :

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
pX,Y (x, y)

pX(x)pY (y)
(1)

where pX,Y is the joint probability distribution of X and Y , and pX and pY are
the marginal probability distribution of X and Y . In our case, given a cluster
C and a document D, XC is a random variable to indicate membership in a
cluster (XC = 1) or not (XC = 0), and YW indicates the occurrence of a word
W (YW = 1) or the lack of it (YW = 0). Hence, p(XC) is the probability of
a document being part of the cluster C, p(YW = w) is the probability of a
document containing the word W , and pXC ,YW

(XC , YW ) is the probability of a
document being a member (or not) of cluster C while containing the word W
(or not). The mutual information becomes

I(XC , YW ) =
∑

c=0,1

∑

d=0,1

p(XC = c, YW = w) log
pXC ,YW

(XC = c, YW = w)
pXC

(XC = c)p(YW = w)
(2)

The values pXC ,YW
(XC = 0, YW = 0), pXC ,YW

(XC = 0, YW = 1), pXC ,YW
(XC =

1, YW = 0), and pXC ,YW
(XC = 1, YW = 1) as well as p(XC = 0), p(XC = 1),
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Fig. 5. A cluster of videos and a ranked list of labels with the largest mutual infor-
mation. Labels are word stems extracted during the pre-processing phase, which can
result in multiple word instances as a label, e.g., ceremony, ceremonial, ceremonies.

p(YW = 0), and p(YW = 1) can be efficiently estimated for a given cluster and
word either by counting the entire set or a randomly sampled set of document.

For each cluster, we consider the ten words with the highest mutual infor-
mation. The mutual information is a measure by how much a cluster becomes
predictable upon knowledge of the occurrence of a word. This is symmetric in
both directions, where the existence or non existence of a word can provide
information about the cluster. Therefore, we compute the mutual information
between each cluster and word. Any word whose occurrence is negatively corre-
lated with a cluster is appended with the prefix “NOT”. Figure 5 shows a cluster
of videos and the labels, and Fig. 6 shows all videos in a forced-directed graph,
segmented into four clusters of at least two videos each, as well as a few singular
videos.

Fig. 6. An example where the threshold is set so that clusters arise with more than
one video each.
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3 Experimental Evaluation

3.1 Dataset

We manually annotated videos from YouTube belonging to two categories, Com-
mercials and Graduation Ceremonies. The former consists of advertisements for
phones, shoes, restaurants, and various other products or services. The ground
truth included the object category, brand, a brief description of the activity and
the text in the video. This category consists of 44 videos. The Graduation Cer-
emonies category consists of commencement ceremonies of various schools and
colleges around the country. The labels includes the school name, the grade,
date, and whether it is indoor or outdoor. We had 22 videos in this category.
We selected them due to the readily available data and the diversity of content
within these categories. The modules developed were tested on these datasets
but can be applied to any video corpus.

3.2 Clustering and Labeling

We evaluated the cluster and the semantic labeling jointly using the following
protocol. First, we took the list of the most important semantic keywords of all
clusters, i.e., the list of all words that have the highest mutual information for
at least 10 clusters. Those are the 53 labels shown in Fig. 7. For all videos in the
database, we manually decided for each label whether it is an appropriate label
or not. At times the labeling was ambiguous—for example, the label “room”
can be seen in nearly all videos or “clock” is an object that may appear in the
background in many videos. Also, for example, negative labels, such as “NOT
loaf,” are not easy to assign if a frame of an Olive Garden commercial shows
a loaf of bread somewhere, yet the focus of the commercial is not the loaf. We
handled all these ambiguities by letting the person annotating the video decide
subjectively whether the label is appropriate or not. The large number of labels
and commercials resulted in more than 3000 label decisions, and thus some inac-
curacy in a few of the labels should not change the results significantly. In the
next step, we created a rule-based system to decide whether a video should be
part of a cluster or not. Given the list of keywords by the cluster labels, we
consider for each video a binary vector of label relevancy. For example, a cluster
might have the labels “olive/oliver, garden/gardens, mashed, consomme” then
for an Olive Garden commercial focusing on pasta, the “olive/oliver” and “gar-
den/gardens” labels are relevant, but not the “mashed” and “consomme” labels.
Hence, the relevancy vector v would be (1, 1, 0, 0). This needs to be reduced to
a single yes/no-value to decide whether the video belongs to the cluster or not.

The Min rule assigned the minimal value mini{vi} to the relevance score of
the video. In other words, a video is considered relevant under the Min rule, if all
of the labels apply to the video. The Median rule assigned the rounded median
value �median{vi}� to the relevance score of the video. In other words, a video
is considered relevant under the Median rule, if at least half of the labels apply
to the video. The Max rule assigned the value maxi{vi} to the relevance score
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Fig. 7. The labels that occur in the semantic labelling of at least 10 cluster. Note that
the stemming joins different to the same stem, such as “graduat”. Since “graduat” is
not an English word, thus the returned label is the combination of all words mapped
to it. The labels also include proper names, URLs, etc.

of the video. In other words, a video is considered relevant under the Max rule,
if at least one of the labels applies to the video.

Figure 8 shows three recall-precision plots, for the three different rules. Each
disk in the plot is one cluster. The Min, Median, and Max rule determine which
videos should be part of the cluster. This is compared to the actual members of
the cluster. From that we can compute the number of True Positives (TP), False
Positives (FP), True Negatives (TN), and False Negatives (TN), which in turn
is used to compute the precision of a cluster P and its recall R. Precision is a
measure of a cluster’s purity, the higher the precision, the less irrelevant videos
are in the cluster. Recall gives the fraction of relevant videos being found. The
larger the recall, the more videos that should be part of the cluster, are actually
part of it.

The stricter the rule, the fewer videos should be member of a cluster. Some-
times, no video in the database should be part of a cluster, hence True Positive
and False Negative must be 0, and the recall is undefined. In those cases, we do
not plot any disk at all.

3.3 Individual Modules

In this subsection, we compare the performances of the individual modules with
the combined analysis that take all modules into account.

Figure 9 shows three separate recall-precision plots for different cluster evalu-
ation rules. A setting where half of the labels of a cluster must apply to video for
it to be relevant appears similar to how a human user would evaluate correctness,
but we include the extremes below for comparison.

A more detailed picture of the Median evaluation rule is shown in Fig. 10.
Each circle represents a given cluster threshold. The size of the circle represents
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Fig. 8. Recall-Precision plots for all clusters given the three rules that determine
whether a video should be part of a cluster. Each disk indicates one cluster, with
the diameter of the disk indicating the size of the cluster while the color indicates the
threshold.

Fig. 9. Average precision and average recall values for the clusters generated using the
individual modules (in color) and the combined system (grey). Evaluation of the cluster
is done using the strict Min rule in the left plot, the more realistic Median rule in the
central plot and using the relaxed Max rule in the right plot. (OCR= Optical Char-
acter Recognition, Meta = Video title and description, AST = Automatic Speech Tran-
scription, ASC = Automatic Scene Captioning, AR= Action Recognition, OR= Object
Recognition, All = Combined analysis) (Color figure online)

the number of clusters at that threshold. The black circles are from integrating
together all the analyses. Note that all the black circles are towards the upper
right corner, as desired (high precision and high recall). Certain individual anal-
yses have high precision but fail to consistently accomplish both precision and
recall.

For example, we can see that highly informative modules such as OCR return
results with outstanding precision, yet they lack the power to find all videos,
as can be seen by the comparatively low average recall value. Combining the
modules gives a clear advantage as it finds more relevant videos, even at the cost
of introducing some noise to the clusters.
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Fig. 10. Recall-Precision for all cluster created when considering only individual mod-
ules (in color) compared to a combined analysis (grey). Cluster ground truth is given
by the Median decision rule. (Color figure online)

4 Conclusion

In this paper, we presented a mechanism for combining information from dif-
ferent modalities for video analytics. The visual, audio and textual informa-
tion present in the video was converted into a combined text document. Latent
Semantic Analysis was then used to compute a similarity metric between a cor-
pus of documents, each document representing a video. We demonstrated two
applications of our video analytics platform in this paper: (1) Video retrieval
and ranking based on a keyword search and (2) Clustering of a corpus of videos
based on semantic similarity of video contents. Our analysis show that combin-
ing the different modalities improves the overall robustness and performance of
the system.
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Abstract. Last decade advances in Deep Learning methods lead to sen-
sible improvements in state of the art results in many real world applica-
tions, thanks to the exploitation of particular Artificial Neural Networks
architectures. In this paper we present an investigation of the application
of such kind of structures to a Video Surveillance case of study, in which
the special nature and the small amount of available data increases the
difficulties during the training phase.

The analyzed scenario involves the protection of Automatic Teller
Machines (ATM), representing a sensitive problem in the world of both
banking and public security. Because of the critical issues related to this
environment, even apparently small improvements in either accuracy or
responsiveness of surveillance systems can produce a fundamental contri-
bution. Even if the experimentation has been reproduced in an artificial
scenario, the results show that the implemented architecture is able to
classify depth data in real-time on an embedded system, detecting all
the test attacks in a few seconds.

Keywords: Deep Learning · Convolutional Neural Networks
Recurrent Neural Networks · Computer Vision · Bank security
Embedded systems · Depth images

1 Introduction

In recent years the global digitalization and the consolidation of information
technologies sensibly changed our daily life and the way we interact together,
both at local and global level. This digital revolution is also changing how users
access banks and financial services, turning a relationship based on the peer-to-
peer trust into a mainly online service, with sporadic human interactions. Such
mutation and the resulting change in the bank branch structure obviously affect
the criminal behavior related to this environment. In this scenario, ATMs are an
easy target for fraud attacks, like card skimming/trapping, cash trapping, mal-
ware and physical attacks. Assaults based on explosives are a rising problem in
Europe and many other parts of the world. A report from the EAST association
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shows a rise of 80% of such attacks between the first six months of 2015 and 2016.
This trend is particularly worrying, not only for the stolen cash, but also for the
significant collateral damages to buildings and equipment [1]. Sectorial inter-
national studies [2] show that despite the use of explosives and other physical
assaults continue to spread, in the long term the attacks will focus on the cyber
and logical approaches. In fact, ATM malware and logical security attacks were
reported by seven countries in Europe during the year 2017. Moreover, statistics
from ABI (Italian Banking Association) show a sensible increase of attacks to
the ATMs in opposition to a reduction to bank branches robberies. This is due
both to the juridical categorization of the committed crime and to the lower
amount of money that can be stolen in a robbery. Indeed, security systems are
in general concentrated on the branch rather than on the ATM area, which is
usually located outside of the buildings. This also allows perpetrators to perform
the assaults during nightly hours. An important issue to consider about these
gestures is related to the collateral effects. In fact, the violence necessary in such
attacks often lead to serious physical damages to buildings and objects in the
neighborhood of the targeted area; this is when considering the best scenario,
where no human is involved.

After these premises it is clear how can be fundamental to develop technolo-
gies capable of preventing in some way this kind of situation. Crucial features of
such a system are the low rate of false alarms and effective promptness in detect-
ing the potential risk, both to alarm the interested control systems and, in the
first place, to try to automatically discourage the underway criminal action with
some deterrents. In this paper we propose ATMSense, an automatic surveil-
lance system, based on video stream analysis of depth frames, that can run on
Low Power Single Board Computer. This approach allows a feasible installation
of the system in order to analyze the actions performed in front of the ATM,
while preserving the privacy of customers. Even if the tests are carried out on
data recorded in our laboratory, the goodness of the obtained results lays the
groundwork for an in-depth experimentation on the field. The results show that
the implemented architecture is able to classify depth data in real-time on an
embedded system, detecting all the test attacks in a few seconds.

Since the acquired Depth images are processed by an Artificial Neural Net-
works (ANNs) in order to predict the nature of the running situation, the sci-
entific contributions of the paper regards mainly the application of ANNs to
the specific task under the framework of Action Recognition. However, we think
that even the investigation of the behavior of different kind of architectures can
be of interested. Indeed, we will show that, even if static Convolutional Neural
Networks (CNNs) can achieve good results even basing the prediction on a sin-
gle frame, the global responsiveness of the system can be improved by adding a
LSTM modules or 3-D convolutions. In the composition of such architectures,
even some issues related to the training process could be of interest, involving
the mixing of different type of techniques like data augmentation and multi-stage
learning.
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2 Related Works

2.1 Video Surveillance and Action Recognition

Recent advances in Deep Learning techniques and, in particular, in those
approaches dedicated to Computer Vision [4,5] lead to a cutting-edge improve-
ment in Image and Video Analysis algorithms. Even if methodologies for Video
Surveillance and, more in general, for Action Recognition [6] based on differ-
ent approaches had been investigated in the past, allowing us to reach good
results in restricted scenarios, Deep Learning methods can provide state-of-the-
art achievements, at least in the short term. As remarkable examples, different
methods have been proposed in order to modify the basic CNNs structure when
dealing with sequential input frames coming from video streams, such as 3-
Dimensional convolutional filters [7] or temporal pooling [8]. Other interesting
application involve the combination of Convolutional and Long-Short Term Mod-
ules (LSTM) [9] both for supervised classification tasks [10] and for unsupervised
next-frame prediction [11].

Taking in account these results and the possibility of fast and portable pro-
totyping of such algorithms, it seems reasonable to follow this direction and to
go towards technologies that should be even more widespread and consolidated
in the future. Moreover, such approaches should also allow us a direct scalability
when facing new kind of specific situation and typologies of attacks.

2.2 ATM

As ATMs started to play a central role in the customers services [12], many
works have been developed trying to improve the security of these interactions.
Several systems designed to deal with identity thefts [13–15], interactions with
forged documents and certificates [16] and the detection of specific dangerous
situations [17,18] had been developed through the investigation and the integra-
tion of various hardware devices. However, the most common approach is the
analysis by surveillance cameras trying to recognize those actions characteriz-
ing a potential critical scenario [19]. In other cases, more specific systems had
been oriented towards face detection and tracking [20] or to the recognition of
partially occluded faces and bodies [21,22].

In our approach, we head towards a quite new technology like the images
analysis throughout depth cameras, which is, at the best of our knowledge,
unexplored. This should allow us to join the representation capabilities of videos
processing and the need for customer privacy protection, both for ethical and
juridical reasons.

3 ATMSense

ATMSense is intended to discriminate people’s behaviour exhibited in front of
an ATM, in order to detect risky situations at an early stage. The sensor used
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Fig. 1. Images acquired from the employed depth cameras. At the top, images from
the long-range camera, while at the bottom frames from the short-range ones. In the
left column we shown raw images as they are acquired, in the right one the output
after noise removal and background subtraction.

to analyze the scene is the Intel RealSense depth camera. Using depth images
instead of the RGB ones provides great advantages: we can avoid dealing with
personal data and privacy issues; frames are unaffected by lighting conditions;
from a computational point of view, we can rely on a slight improvement by
reducing the input channels from three to one. Depth images are processed on
a Low Power Single Board Computer with image processing techniques and
Convolutional/Recurrent Neural Networks. We found that an SBC with an Intel
N3710 processor (1.6 GHz) with 4 Gb RAM is capable of running the system on
CPU at the provided frame rate of 6 fps. Again, we would like to specify that
ATMSense is designed as a supporting surveillance device. Indeed, ATMs are
usually monitored from a Surveillance Control Room, but it is not possible to
keep under control all the installed machines, so that the assault detection is
often late enough to not allow to prevent at least an initial damage. Hence, the
predictions provided by our system can be exploited to focus the attention on
potential dangerous situations and allow to security agents to promptly take
appropriate actions.
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3.1 Depth Cameras

Intel RealSense is a family of depth cameras proving several video streams:
RGB, depth and infrared. Our experimentation focused on two camera models:
a short-range (SR) and a long-range (LR) cameras. LR cameras are intended to
be placed above the ATM, focusing the whole interested scene in a portion of
machine neighborhood. SR cameras can be placed in the ATM chassis, so that the
images are restricted to a small area around the ATM keyboard area. Examples
of acquired frames are shown in Fig. 1. As we can observe, SR raw images are
less affected by external noise. However, final performances are similar for both
cameras. The short-range camera should be embedded in new ATMs, the long-
range fits better as an external plugin for already installed ATMs. Whichever
camera is employed, the depth video stream is used to classify what is going on
in the ATM area. For debugging purposes RGB streams can be collected, but
they are not used, neither for the system training, nor for the runtime.

In fact, relying on the RGB stream would create a dependency on factors
that we do not want to depend on, like light conditions. Moreover, dealing with
faces and other personal images can be an issue for the privacy laws. Having only
a low-resolution shape of the person does not allow the personal identification.

3.2 Image Pre-processing

Depth images collected from the cameras are preprocessed before the classifica-
tion. In this phase we want to remove both the noise and the background objects.
The noise is intrinsic in the camera sensor and is reduced using a cascade of stan-
dard image processing filters (i.e. median filtering, erosion, depth clipping and
so on). This technique leads to the generation of one video frame starting from 5
frames read from the depth camera. Although the dynamics of the system scales
down from 30 fps to 6 fps, the information necessary to classify the images is
preserved. The background suppression is related to the environment in which
the ATM is located, and includes the device itself. The background is subtracted
(using kNN based techniques) making the solution independent from the ATM
machines and environments.

The difference between the original image read from the camera and the
cleaned version is visible in Fig. 1 for both the camera versions.

3.3 Deep Neural Networks

Starting from what reported in Sect. 2.1, we decided to drive our experimentation
on different Deep Learning architectures. However, in order to characterize the
main features and to outline an initial baseline for the analyzed scenario, we avoid
to exploit hand-crafted techniques too specific for the task. At the moment, the
problem is faced as a supervised 2-class classification task, even if we would like
to explore different approaches in the future (see Sect. 6).

The tested architectures are a classic Multi-Layer Perceptron (Mlp), a stan-
dard Convolutional Neural Network (Cnn), a CNN with 3-D convolutional
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filters (Cnn3D), a Multi-Layer Perceptron combined with an LSTM module
(Lstm) and network assembling Convolutional layers with an LSTM module
(Cnn+Lstm). All the models are described in Table 1. The Rectifier Linear
Unit (ReLU) is maintained as activation function for all the layers, except from
the LSTM one, which exploits the Hyperbolic Tangent. The output layers of all
the architectures exploit the Softmax function to force a probabilistic scoring
within the classes, paired with the Cross-Entropy loss function. All the networks
are optimized through the AdaDelta learning methods [23].

All the technical choices, such as the number of units, convolutional filters,
type of pooling and optimization algorithms have been selected after an initial
experimental analysis, which however does not shown essential improvements
in order to prefer one particular direction. Hence, we decide to assemble the
proposed architectures by relying on general common practices. The number
of units in the different layers have been selected in order to be large enough
to produce good results, while keeping the number of parameters as small as
possible (for example, we tested MLP with more parameters and layers without
obtaining remarkable improvements).

Table 1. General layer description of tested architectures. FC notation stands for
Fully-connected layers.

Mlp Lstm Cnn Cnn+Lstm Cnn3D

FC (2048 HU) FC (1024 HU) Conv (32 × 5 × 5) Conv (32 × 5 × 5) Conv (32 × 3 × 5 × 5)

FC output Lstm (512 HU) Conv (32 × 5 × 5) Conv (32 × 5 × 5) Conv (32 × 3 × 5 × 5)

Softmax Drop-out (p = 0.1) Max-pooling Max-pooling Max-pooling

FC (1024 HU) Conv (64 × 5 × 5) Conv (64 × 5 × 5) Conv (64 × 3 × 5 × 5)

FC output Conv (64 × 5 × 5) Conv (64 × 5 × 5) Conv (64 × 3 × 5 × 5)

Softmax Max-pooling Max-pooling Max-pooling

Conv (128 × 5 × 5) Lstm (512 HU) Conv (128 × 3 × 5 × 5)

Max-pooling Drop-out (p = 0.1) Max-pooling

FC (1024 HU) FC (1024 HU) FC (1024 HU)

FC output FC output FC output

Softmax Softmax Softmax

4 Experiments

The real working environment has been reproduced in our laboratory by
installing ATMSense on a dismissed ATM provided by Monte dei Paschi di
Siena Bank. The dataset has been built by recording and tagging depth videos
in which different people stage withdrawals and attacks, replicating the actions
the thieves do, thanks to the knowledge of the Security Department of the bank.
As a prototype, we taped the SR camera to the ATM frame, and we installed
the LR camera on the top of a support above the ATM. With both the cameras
connected, we recorded 132 depth videos simulating both the Withdrawal and
the Attack scenarios, representing the two classes to be discriminated by the
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system. However, we reported only the results on the LR camera data, since
the final performances are similar. To improve variability and generalization,
these videos have been staged by several actors in different sessions, using dif-
ferent light conditions (which only slightly affect the acquired images). Videos
have been manually labelled frame by frame. Background profiling has been car-
ried out by recording 25 videos without any kind of interaction with the ATM.
In the training phase, pre-processed videos (as stated in Sect. 3.2) are split, as
reported in Table 2, among train and test sets. To reduce the computational
cost, the images, acquired at 640 × 480 pixels resolution, are down-sampled
to 80 × 60 pixels. Hence, the dataset is generated by separating and shuffling
sequences of consecutive frames, together with the correspondent labels. In this
way we obtained about 250,000 and 30,000 labeled samples for training and test
respectively. A part of the training data has been used to built validation set to
implement Early Stopping during the optimization process. All the experimenta-
tion has been carried out within the Keras [25] framework with Tensorflow [26]
backend, while for the Image Processing part we exploited the OpenCV [27]
package.

Since we would like to exploit the temporal order of data, we tested our
architectures in three configurations. In the static one, a single frame is pro-
vided as input to the networks. Hence, we tested two dynamic configurations
by composing the input as a sequence of 5 or 10 video frames. Of course, tem-
poral architectures (Lstm, Cnn+Lstm, Cnn3D) are not tested in the static
configuration, while frames are concatenated in the dynamic settings in order to
deal with static networks (Mlp, Cnn). Because of the relatively small amount
of training data, we also tested all the configurations on an augmented dataset,
generating 5 input samples from each original one. Apart from standard trans-
formations as rotation, horizontal flip, blurring and translation, we also apply
z-axis translation. Indeed, each pixel express, in fact, the vertical distance from
the camera and these translations should help to lose dependencies on camera
distance and actors height. This techniques is not only useful in the classic sense
to improve generalization on our data, but we hope that it could be also useful
to make the system less dependent on the specific ATM environment and to
increase the flexibility when installing it in different machines.

Results of the F1 score are reported in Table 3. Even if, all the tested archi-
tectures obtain high scores, DL methods reach best performances and show to
obtain more benefits from data augmentation. Since Cnnobtains good perfor-

Table 2. Number of videos recorded to assemble the dataset

Videos Total samples

Withdrawal Attack

Train 54 42 250,000

Test 18 18 30,000

Total 72 60 280,000
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mances even when dealing with a single input frame, while LSTM modules could
have problems with gradient back-propagation, we exploited the fact that the
first part of the architectures is the same and tried to help the Cnn+Lstm opti-
mization by initializing the weights from the ones learned by Cnn in its best
configuration. Nevertheless, this procedure does not lead to any improvements
(p-Cnn+Lstm).

Apart from the predictions quality of each model, we are also interested
in the capability of a system to actually detect an attack with a reasonable
promptness and, at the same time, in its stability in order not to provide too
much false alarms. Hence, we set an evaluation in a more practical configuration,
considering the predictions over a window of frames and raising an alarm only
when all the predictions inside the window are positive. Even if we could have
carried out a more systematic analysis on the window length and the alarm
threshold (AUC, ROC, Precision-Recall curve etc.), we would like to find a way
to reduce the False Positive Rate and to compare the architectures promptness
in an homogeneous configuration. Hence, we fixed the length of the window to 20
frames, allowing to all the architectures to detect, sooner or later, every attack
in the test videos. In Table 4 and Fig. 2 we reported the number of False Positive
Rates (FPR) for each architecture, plus the average (Avg.) and the standard
deviation (Std.) among all the measures of times employed by each model to
detect an attack since its beginning. From these statistics, we can see that the
effect of data augmentation is useful not only to improve F1-score but also the
promptness and the stability of the predictions, even if the measures are related
in some way.

In addition to a better F1-score, DL approach and temporal models shown
in general a better promptness and, moreover, a lower variability in the reaction
times. This could be interpreted as an index of stability and, thus, reliability of
the system itself. In general we could point out Cnn3Das the best model in all
the reported measures. The fact that to consider the sequential order of data did
not lead to remarkable performance enhancements could be addressed mainly to
two issues. The first one is, as already said, related to the size of the training
data. Indeed, the optimization of recurrent modules requires in general a wider
statistics on the real phenomenon, as we can see from the general performance
decay when employing sequences of 10 frames as input. The second one is the
fact that each input frame is generated by averaging 5 original frames. Even
if we mainly exploit this technique in order to clean data, the produced static
samples contain an intrinsic dynamic statistics which is often employed in Action
Recognition [6].
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Fig. 2. Comparison on False Positive Rate (bars color) with average (Avg.) and stan-
dard deviation (Std.) of attack detection times among all the tested architectures.
Avg. and Std. are reported on top and bottom bars respectively, for each model in
each training configuration: varying the length of the input sequences in {1, 5, 10} and
with original (Normal) data or by performing data augmentation (Augmented). (Color
figure online)

Table 3. Evaluation of F1-score on each model in each training configuration.

F1-score (%)

Architecture Sequences length Data augmentation

1 5 10

Mlp 92.93 92.02 91.40 None

94.51 93.63 92.94 5×
Lstm - 93.40 92.91

- 93.58 93.72

Cnn 93.77 90.91 89.83

95.04 95.18 92.63

Cnn+Lstm - 92.26 89.81

- 95.52 93.78

p-Cnn+Lstm - 90.39 91.50

- 95.48 93.48

Cnn3D - 92.38 86.56

- 95.55 94.46
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Table 4. Assault detection statistics: for each settings we reported the False Positive
Rates (in percentage), the average (Avg.) time of detection on Attack videos from the
beginning of the assault, and the standard deviation (Std.) on these times.

Assault detection statistics

Architecture Sequence length Data
augmentation

1 5 10

FPR(%) Avg. Std.

Mlp 0.21 5.77 5.96 0.35 5.22 4.46 0.63 5.83 4.28 None

0.33 4.73 4.39 0.43 4.41 1.39 1.10 4.83 0.10 5×
Lstm - - - 0.53 4.24 0.63 0.78 5.80 4.21

- - - 0.48 4.00 0.10 0.98 5.12 1.24

Cnn 0.18 4.73 4.35 0.66 4.39 1.32 1.03 5.27 1.22

0.18 5.13 4.65 0.40 4.27 1.12 1.44 4.82 0.10

Cnn+Lstm - - - 0.26 5.59 3.14 0.58 5.21 1.06

- - - 0.35 4.28 0.85 0.79 5.17 1.18

p-Cnn+Lstm - - - 0.31 4.62 2.03 0.52 5.83 2.23

- - - 0.48 4.33 0.80 0.83 5.17 1.24

Cnn3DCnn3D - - - 0.18 4.74 1.62 0.64 5.76 2.09

- - - 0.37 4.09 0.40 0.60 4.95 0.51

5 Conclusions

In this work we propose an application of Automatic Video Analysis to improve
the surveillance and the security on ATMs. From laboratory tests, the system
can detect attacks very quickly, both when the depth camera is integrated into
the ATM itself, and when it is installed nearby. Moreover, the approach employs
off-the-shelf technologies of a total cost which is quite inexpensive when com-
pared with an ATM cost or with the potential financial and general damages.
The software solution is general for the approach, even if an additional data
collection and a re-training phase will be necessary, depending on particular
needs of specific situations. Although the current solution is customized for a
single mode of assault, the obtained results allowed us a short terms scheduling
of a more real experimentation phase on the field. Indeed, the very fast attack
detection time will allow to the Surveillance Control Room to promptly inter-
vene, raising a reasonable amount of false alarms. In this work, we also verified
that standard and specific data augmentation techniques could be exploited to
improve the models performances within all the proposed measures.

6 Future Works

Detection accuracy in a real-world scenario could be improved by collecting fur-
ther data, statistically enlarging the events analyzed by the system and, hence,
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helping the DL methods to better generalize, instead of over-fit on training
examples. The depth footage recorded for the training is focused on explosive-
based attacks. New videos could be recorded with the perspective to detect
additional kind of ATM assaults, providing a more complete surveillance equip-
ment. The downside of having more depth videos is the need of manually tagging
the frames. A complementary approach could be to introduce by Novelty Detec-
tion [28] algorithms. As an example, the solution we proposed in [29] to bank
branch Audio-Surveillance can be redesigned in this scenario. This algorithm
would be totally unsupervised, and capable of detecting any kind of anomaly
which comes from unexpected users behavior. An arbiter would take as input
the outputs of both the algorithms, and rule a final decision.
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Abstract. In this work we investigate the use of deep neural networks
for object detection in floor plan images. Object detection is important
for understanding floor plans and is a preliminary step for their conver-
sion into other representations.

In particular, we evaluate the use of object detection architectures,
originally designed and trained to recognize objects in images, for rec-
ognizing furniture objects as well as doors and windows in floor plans.
Even if the problem is somehow easier than the original one in the case of
this research the datasets available are extremely small and therefore the
training of deep architectures can be problematic. In addition to the use
of object detection architectures for floor plan images, another contribu-
tion of this paper is the creation of two datasets that have been used for
performing the experiments covering different types of floor plans with
different peculiarities.

Keywords: Floor plan analysis · Object detection
Convolutional neural networks · Transfer learning

1 Introduction

Detecting and recognizing objects in floor plans is an essential task for the under-
standing of these graphical documents. Our research on this topic is part of the
overall task of understanding of graphical documents for generating accessible
graphical documents for visually impaired people [4,13]. A comprehensive per-
ception of a floorplan is crucially important for blind people, allowing them to
find their path as they face a new building. It is important to clarify that floor-
plans available in real estate websites or other floorplans in other websites are
nearly always in image format even if they have been produced with CAD tools.
CAD files are in general only available to their authors and not distributed.
Object detection in natural images is basically defined as finding the location
of objects in one image and labeling them. In many cases, the object location
is based on the identification of the bounding box surrounding it. Also in this
application the identification of the object bounding box is sufficient for our pur-
poses. Starting from widely studied architectures based on convolutional neural
networks, a few object detectors have been recently proposed, such as: Faster
R-CNN [17], R-FCN, Multibox, SSD [11] and YOLO [16].
c© Springer Nature Switzerland AG 2018
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1.1 Previous Work

As in several domains also the document analysis community faced a growing
use of deep learning in recent research. When looking to the use of deep learning
in the area of graphics recognition there are a limited, but interesting research
works. Among various techniques object detectors have been used to address
various problems in document analysis. Symbol detection in on-line graphical
documents is proposed in [9] where the authors use Faster R-CNN do address the
task. In particular, the work addresses the recognition of mathematical expres-
sions and flowcharts in handwritten documents by using the Tensorflow Object
Detection API [8]. Another application of the latter API is related to handwrit-
ten music object detection [14] where the Faster R-CNN is used to recognize
musical symbols. In both papers the number of training items is relatively high
and the results are evaluated only considering the accuracy of the model with-
out taking into account the recall. Other authors used Faster R-CNN for page
layout identification [18], for comic character face detection [15], and for arrow
localization on handwritten industrial inspection sheets [5].

One recent effort to extract structural information from floor plan images is
described in [2] where the authors parse floor plan images to estimate the size of
the rooms for interactive furniture fitting. They first perform wall segmentation
by using a fully convolutional neural network, subsequently they detect objects
using a Faster R-CNN, and finally, they do optical character recognition to obtain
the rooms dimensions. One interesting feature of this work is the combination
of three methods to achieve the overall floor plan understanding. Unfortunately,
very few details are provided in the paper about the use of Faster R-CNN for
object location. Moreover, the floor plan dataset created by the authors only
contains the ground-truth about the wall position.

In the work described in [6] the authors address the floor plan understanding
by segmenting walls, windows, and doors. One of the main focuses of the paper is
to address images with different notations (e.g. for walls or for furniture objects).
The proposed techniques are tested on four floor plan datasets (named CVC-FP)
which are freely accessible to the public. As discussed also in Sect. 3 the CVC-FP
dataset only contains objects of 6 classes: sink, toilet, shower, bath, door,
and window, without include furniture objects.

From the point of view of the neural architecture one important paper for this
work is [7] where the authors evaluate and compare different object detection
architectures. The goal of [7] is to identify the most successful architectures and
support users when choosing one architecture on the basis of various perspec-
tives: speed, memory, and accuracy. To this end, the authors in [7] implement
some modern convolutional detectors: Faster R-CNN, R-FCN and SSD in a
unified framework, as a part of the Tensorflow Object Detection API [8]. The
authors pre-trained the architectures on several datasets, but the best perfor-
mance were achieved by pre-training with the COCO dataset [10].

In this work we explore the use and adaptation of the Tensorflow Object
Detection API [8] to identify floor plan objects in two datasets that have been
built to address this task.
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The rest of the paper is organized as follows. In Sect. 2 we describe the archi-
tecture of the Faster R-CNN model considered and provide some information
about how we modified it in order to obtain information about the recall of the
system. In Sect. 3 we analyze the peculiarities of the floor plan datasets that
we built and used in the experiments discussed in Sect. 4. Our conclusions and
pointers for future work are in Sect. 5.

2 The Architecture

In this research we work with the widely used Tensorflow Object Detection
API [8] for an easy comparison of alternative architectures. We initially eval-
uated one COCO-pre-trained Single Shot Detector with MobileNets that we
fine-tuned with floor plan images. We selected this architecture because it is a
small and flexible model that has the benefit of fast training times compared
to larger models, while it does not sacrifice much in terms of accuracy. In these
preliminary tests we also compared the SSD with Faster R-CNN with ResNet
50 and with ResNet 101. After these preliminary experiments it turned out that
Faster R-CNN performs significantly better than SSD. Moreover, comparing the
performance of ResNet 50 with ResNet 101 on the floor plan datasets, there was
no real difference. We therefore used Faster R-CNN with ResNet 50 as a basis
model for our work.

Faster R-CNN is one of the most accurate and fast neural object detectors
proposed so far. The internal structure of the network is as follows (see Fig. 1):
first, the image is passed through some convolutional layers to produce several
feature maps. Then, the main component of Faster R-CNN, the region proposal
network (RPN), uses a 3 × 3 sliding window and takes the previous feature
maps as input. The output of the RPN is a tensor in a lower dimension. At this
stage, each window location generates some bounding boxes, based on fixed-ratio
anchor boxes (e.g. 2.0, 1.0, 0.3) and an “objectness” score for each box. These are
the region proposals for the input image which provide approximate coordinates
of the objects in the image. The “objectness” scores, if above a given threshold,
determine which region proposal can move forward in the network. Subsequently,
the good regions pass through a pooling layer, then a few fully-connected layers,
and finally a softmax layer for classification and a regressor for bounding box
refinement.

As previously mentioned to perform our experiments we use the Tensorflow
Object Detection API. This is an open source framework, built on top of the
widely used Tensorflow library, that takes care of the training and evaluation
of the different architectures implemented. One interesting feature of the API is
that it makes it easy to train different models on the same dataset and compare
their performance. In addition to the average precision performance per category,
we extended the API to calculate the number of false negatives as well as the
average recall per class.
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Fig. 1. The internal architecture of the Faster R-CNN as a single, unified network for
object detection (Image from [17]).

2.1 False Negative Calculation

By default, the Tensorflow Object Detection API supports the PASCAL Visual
Object Classes (VOC) 2007 [3] detection metric. This metric is designed to
evaluate visual object detection and recognition models, which helps machine
learning researchers have standard evaluation procedures.

In the detection metric, for a detection bounding box to be a true positive,
three conditions must be true:

– The area of the intersection of the detected bounding box Bd and the ground
truth bounding box Bgt over the union area of the two bounding boxes must
be greater than 0.5, according to the following equation:

ri =
area(Bd ∩ Bgt)
area(Bd ∪ Bgt)

> 0.5 (1)

– The class label of the detection bounding box and the ground truth bounding
box must be the same.

– The probability of the object’s recognition must be greater than some specific
thresholds. In most cases, and also in this work, we consider the object as
found if the probability is higher than 0.50.

To find false negative detections we first matched all the detections to objects
in the ground truth. True/false positives are determined and detections matched
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to difficult boxes are ignored. In the next stage the ground truth objects that
have not been detected are determined as false negatives.

After computing the true positives and false negatives number for each cate-
gory it is easy to calculate the average recall in addition to the average precision
computed by the API: Recall = TP

TP+FN .

Fig. 2. Object class distribution of the d1 dataset.

3 The Floor Plan Datasets

In order to evaluate the object detection in floor plans we obviously need one
or more labeled datasets. In the past decade, some datasets have been proposed
for evaluating research on floor plan analysis. The SESYD dataset [1] contains
synthetic floor plans where furniture objects are randomly placed on a few fixed
floor plan layouts. Even if this approach for dataset generation is very interesting,
the actual dataset contains only ten floor plan layouts and the objects come
from a limited number of categories (for instance, there is only one model for
the bed). Moreover, the generated floor plans are somehow unrealistic with very
small beds or similar mistakes. Another dataset widely used for this research
has been proposed in [12]. This dataset contains 90 actual floor plans provided
by one architectural firm. While more realistic than the others, these floor plans
contain only few objects and therefore are not suitable for the research carried
out in this work.

In order to work with realistic images we first created one small dataset
(referred to as d1 ) using the images that show up in Google’s image search. This
dataset consists of 135 images of variable size containing objects in 15 classes
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and a total of 4973 objects (in the experiments we considered 2697 objects in
the training set, 1165 objects in the validation set, and 1111 objects in the test
set). In Fig. 4 we show one example of floor plan in this collection, while Fig. 2
shows the distribution of objects in the different classes. Of course some types of
objects are not present in all the images, for instance the floor plan of an office
might not have any bed in it. Among all the classes, the oven is the rarest one
and the door is the most frequent one.

The second dataset that we gathered is called d2. This dataset contains Mid-
dle Eastern floor plans, with object shapes different from the ones in d1. Another
important feature is that the floor plans in d2 come from one architectural firm
and are therefore more homogeneous in their content. The d2 dataset consists
of 300 images, but only 160 images have been labeled so far. The 160 images
contain objects in 12 classes and a total of 7788 (in the experiments we con-
sidered 4535 objects in the training set, 1457 objects in the validation set, and
1796 objects in the test set). In Fig. 5 we show one example of floor plan in this
collection, while Fig. 3 shows the distribution of objects in the different classes.
As a particular property of these floor plan datasets, it is worth to note that
the images are mostly grayscale and contain simple shapes. As we will see in the
experimental part this property has a positive effect on the performance of the
model, compared to datasets that contain images with more complex features
and more noise. The dataset d1 has the greatest imbalance in the number of
objects in each class. Moreover, images in d1 have more diversity. For example,
almost none of the objects in d2 are filled with color, while in d1 all the floor
plans are painted, for presentation purposes.

Fig. 3. Object class distribution of the d2 dataset (Color figure online)
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4 Experiments

The Faster R-CNN is first trained on the d1 dataset, which contains 135 images.
As mentioned earlier, this dataset is substantially diverse and contains random
non-standard images collected from the Internet.

Table 1. Final evaluation results

Dataset Objects False negatives Mean average precision Mean average recall

Val Test Val Test Val Test

d1 1111 411 445 0.32 0.31 0.60 0.56

d2 1796 87 102 0.83 0.86 0.92 0.92

Final evaluation results of the d1 dataset after 46916 training steps, and the d2
dataset after 18550 training steps.

In the first experiments performed on a smaller dataset with the default
configuration of the API the results on the validation set were not satisfying
with a maximum mean average precision of about 0.26. To aid generalization, we
threw in a few of data augmentation options. In particular we considered random
horizontal flip, random vertical flip, random rotation 90, and random
RGB to gray. These options are provided by the Tensorflow Object Detection
API. In addition to data augmentation we also changed the scales and aspect
ratios of anchor generator in order to take into account the peculiarities of the
floor plan objects.

With the above mentioned modified configuration we also ran our experi-
ments on the d2 dataset. After stopping the training considering the validation
set, the mean average precision and recall on the test set for both datasets are
shown in Table 1. Details about the performance achieved for each class are
reported in Table 2.

Taking into account the features of the two datasets it is not surprising that
the best results are achieved on the d2 dataset with a mean average precision of
0.86, and a mean average recall of 0.92. Part of the difference in performance is
probably related to the special nature of the dataset: compared to d1, the objects
are cleaner, less diverse and not different across images other than rotation and
scale. As it turns out, the performance of the model is not too much affected
by an imbalanced dataset (d2 ). For instance the model achieves 0.80 average
precision for the couch class that is the less frequent one. At the same time
the model achieved 0.93 average precision for the door class which has at least
10 times more samples than the couch class. Concerning the average recall it
is very interesting to notice that the test images had zero false negatives for
the hot-plate and bed classes. On the basis of the superior performance of the
network on the d2 dataset we wanted to explore more in details the possibility of
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doing some transfer learning of this network to improve the performance on the
d1 dataset. As we can see in Table 3 by finetuning on the d1 dataset one network
previously trained on the d2 dataset we achieve a 0.39 mean average precision
and 0.69 mean average recall. This is better than the previously mentioned
results obtained by finetuning on the d1 dataset one network previously trained
on the COCO dataset.

Table 2. Performance by category

Class Average
recall(Val)

Average
recall(Test)

Average
precision(Val)

Average
precision(Test)

d1 d2 d1 d2 d1 d2 d1 d2

armchair 0.92 0.97 0.50 0.95 0.21 0.92 0.21 0.92

bathtub 0.72 N/A 0.80 N/A 0.57 N/A 0.57 N/A

bed 0.56 1.00 0.70 1.00 0.47 0.98 0.47 0.98

bidet 0.57 N/A 0.54 N/A 0.11 N/A 0.11 N/A

chair 0.58 0.68 0.44 0.76 0.12 0.50 0.12 0.62

couch 0.75 0.80 0.52 0.88 0.46 0.52 0.48 0.80

door 0.63 0.97 0.63 0.95 0.60 0.94 0.60 0.93

hot plate 0.67 0.97 0.52 1.00 0.40 0.92 0.39 0.96

night table 0.65 0.93 0.34 0.81 0.37 0.86 0.37 0.79

oven 0.12 N/A 0.55 N/A 0.01 N/A 0.01 N/A

shower 0.55 0.97 0.71 0.93 0.19 0.90 0.16 0.90

sink 0.57 0.95 0.47 0.94 0.28 0.80 0.28 0.85

table 0.58 0.94 0.46 0.98 0.33 0.86 0.33 0.93

wc 0.45 1.00 0.65 0.95 0.13 0.79 0.13 0.78

window 0.58 0.91 0.54 0.88 0.49 0.87 0.48 0.85

Average precision and recall calculated by category, for the d1 and d2
dataset after 46916 and 18550 training steps, respectively.

Table 3. More transfer learning

Dataset Objects False
negatives

Mean average
precision

Mean average
recall

COCO - d1 1111 445 0.31 0.60

d2 - d1 1111 368 0.39 0.69

The final evaluated results of the pre-trained models that is fine tuned on
dataset d1.
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Fig. 4. An inference result of the model trained on the d1 dataset. False negatives
have black bounding boxes and detection bounding boxes are colorful. Note how new
shapes and colors in this test image damage the performance of the model. (Color
figure online)

4.1 Discussion

From the experiments performed on the two datasets we can notice that by
using convolutional object detectors, the recognition performance are not too
much influenced from class imbalance in the training set.

The only exception is related to the oven class from dataset d1 whose
extremely low performance are probably due to the very low sample size and
the variability of the appearance of this object in the dataset. On the other
hand, the door and window classes are responsible for 52% of the false negatives
in d1 validation set, while they make up 58% of the object samples. In these two
classes the model performs relatively well in terms of average precision, but it
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Fig. 5. Example of results of the model trained on the d2 dataset.

is not capable of detecting many objects. At first this result might contradict
the intuition that more samples led to better performance. However it is impor-
tant to recall that the performance of the model in one class heavily depends on
the diversity of object samples. It is useful to remark that in the case of doors
and walls the objects are connected to the walls while other objects are usually
more isolated in the rooms. The diversity of walls and doors is therefore higher
with respect to other classes because of the variable context. Another source of
errors for windows is the higher variability of the aspect-ratio with respect to
other objects that in most cases are simply scaled and rotated, in particular in
dataset d2 where reasonable performance on the dataset is obtained. Regarding
the three most frequent classes in d2 armchair, door, and window, it can be
seen from Table 2 that the model is nearly perfect in terms of average precision
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and the class bed (whose items are more regular) achieves an average precision
of 98%.

5 Conclusions

In this work two different floor plan datasets have been created to cover differ-
ent architectures and drawing conventions of floor plans from all over the world.
The performance of an object detector which is originally designed for detecting
objects in natural images was tested to identify objects in the floor plans in these
datasets. The floor plan has an essential misrepresentation issue in terms of the
sample size of objects. To better analyze the performance, false negative objects
of each class have individually been counted in order to find out whether the
detection results suffer from differences in the number of samples for each class.
We noticed that the performance of the model in a class heavily depends on
the diversity of object samples, object rotation and scale somehow outweighing
the role of sample size. It is interesting also to notice how a network that pre-
trained from another domain (COCO pre-trained Faster-RCNN with Res Net
50) can perform well on the floor plan datasets using just a one hundred images.
To further improve the results on this task, it is recommended to either col-
lect larger datasets to cover different graphical conventions, or implement data
augmentation techniques more suitable for the object detection in floor plans.
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Abstract. In this work we propose one deep architecture to identify text
and not-text regions in historical handwritten documents. In particular
we adopt the U-net architecture in combination with a suitable weighted
loss function in order to put more emphasis on most critical areas. We
define one weighted map to balance the pixel frequency among classes
and to guide the training with local prior rules. In the experiments we
evaluate the performance of the U-net architecture and of the weighted
training on one benchmark dataset. We obtain good results using global
metrics improving global and local classification scores.

Keywords: Convolutional Neural Networks · Page segmentation
Loss functions

1 Introduction

Understanding handwritten historical documents is a challenging task that
includes several sub-problems. One of the first steps is to segment and extract
text lines which could be recognized in subsequent phases to understand the
document content. The layout analysis of handwritten documents can be very
difficult, because of the variable layout structure, the presence of decorations,
different writing styles and degradations due to the aging of the document. In the
last years different techniques have been proposed to address this task [3,10,13].
In particular, to extract text lines from handwritten documents we can consider
two types of related problems. Considering the page segmentation task the tar-
get is to split a document image into regions of interest [3]. On the other hand
the text line extraction stage allows to localize and extract the text lines directly
from the document image [1]. These approaches extract regions of interest which
are considered as text lines and often provide similar results when considering
handwritten documents. To clarify the goal of text extraction from historical
document we show in Fig. 1 one example from one benchmark dataset together
with the ground truth of the page.

Among several solutions proposed to solve this task some use assumptions
to simplify the approach. In [8] the authors assume that for each text line there
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is one path from one side of the image to the other that crosses only one text
line. Based on this assumption, they trace the text line after the blurred image
transformation extracting directly the text lines.

Later, it has been proposed another solution [5] where the authors are able
to extract text line from handwritten pages using Hough transform and the page
structure as prior knowledge.

In the last years, many different CNN architectures have been presented to
solve several computer vision tasks. One important task is the semantic segmen-
tation of images whose goal is to classify pixels from different categories and
subsequently to extract homogeneous regions. One interesting solution adopts
Fully Convolutional Networks [12] composed only by convolution and pooling
operations used to learn representations based on local spatial input to compute
pixel-wise predictions. The FCNs with respect to CNNs architectures do not use
fully connected layers and use upsampling layers as deconvolution operations.

In this paper we address the page segmentation using one Fully Convolutional
Network with a weighting of the pixels used to compute the training loss designed
to address our task. In this way, we aim at classifying with better results some
areas of the image that are more critical to perform the text line extraction,
without using dedicated post processing techniques. The main contributions of
this paper are the use of the FCN to perform text segmentation and the design
of the weighting schema.

The rest of the paper is organized as follows. In Sect. 2 a brief review of related
works in semantic and page segmentation tasks. Then, in Sect. 3 we describe
the architecture used to perform page segmentation. The proposed weighting is
presented in Sect. 4. Experimental results are discussed in Sect. 5 and concluding
remarks are in Sect. 6.

2 Related Works

In the field of document analysis, page segmentation task has gained a lot of
attentions during the time. Several solutions use artificial neural networks as well
as Convolutional Neural Networks which have been applied successfully to this
task showing best results compared to handcrafted features solutions [3,9]. In the
work [9] the authors use CNNs to extract text lines from historical documents
classifying the central pixel from extracted image patch. After one suitable post-
processing phase, using the watershed transform, it is possible to extract the
text lines and also provide a page segmentation.

Instead, in [3] the authors propose to use a Convolution Network for the pixel
labeling task. Using a superpixel algorithm to extract coherent patches, they are
able to perform page segmentation using a trained CNN model to predict the
semantic class for each extracted patch.

We recently proposed one solution [1] to detect text lines on the basis of
the assumption that for each text line it is possible to define one separator line
and one median line. The median line is the middle line between the top profile
of the text and the bottom profile, while the separator line is the middle line
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Fig. 1. One document example from the dataset and its ground truth image. The
background area is in red, decoration in blue and text in green. (Color figure online)

between two consecutive median lines in the text area. In [1] we used one suit-
able Convolutional Network to separate the text line areas from the document
background.

Fully Convolutional Networks are largely adopted in semantic segmentation
field. One adapted version of FCN named U-net [11] has been applied to biomed-
ical image segmentation outperforming previous methods for cell tracking chal-
lenge by a large margin. Always in biomedical research area, it has been pro-
posed a novel deep contour-aware network [2] to solve the gland segmentation
task. This model is able to segment gland and separate the clustered objects
into individual ones training a unified multi-task learning framework.

In scene parsing, using Pyramid Scene Parsing Network [15] is possible to
merge together local and global representation defining a pyramid pooling mod-
ule. In this way the authors prove as a global prior representation could improve
the final segmentation result.

A Fully Convolution Network has been also used for page segmentation [14]
where the neural network is used to provide a pixel-wise classification followed
by post processing techniques to split a document image into regions of interest.
The main focus is not the extraction of text lines, but the pixel classification
and therefore the metrics used are related to semantic segmentation.
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Recently, a very challenging dataset has been introduced by [7] where the
authors evaluate various end-to-end FCN architectures to segment handwritten
annotation in historical documents.

3 Network Architecture

In this work we address the page segmentation using one Fully Convolution
Network that is trained directly on document image (large) patches to learn
a pixel-wise classification model which is able to segment different regions of
interest in the input image. The documents addressed in our experiments have
three different semantic classes: background, text and decoration. An example
of one input image with its ground truth can be seen in Fig. 1.

Several architectures have been proposed to address the semantic segmenta-
tion. In this work we propose a neural network which is strongly inspired by the
U-net [11] model. By inspecting the architecture in Fig. 2 we can notice the U-
shaped model where the first part consists in a contracting path and the second
consists in an expansive path.

The contracting path consists of many encoding operations composed by
convolution operators with kernel 3 × 3, stride 1, and max-pooling operator
with kernel 2 × 2 stride 2, respectively. In this way the model is able to learn a
data representation based on many local transformations computed by sequential
convolution and pooling operations. In particular, for each transformation layer,
we have two convolution operation followed by a pooling operation. The number
of filters for each transformation layer is variable and we adapted these values
to our problem. In particular, in the first layer we have 32, in the second 64, in
the third 128, in the forth 256, and in the last 512 filters.

The expansive path consists of several decoding operations composed by
upsampling and convolution operators. Having a look to Fig. 2, for each decoding
step the features are concatenated with the computed feature maps from the
contracting path (with the same shape). Still in the same decoding layer two
convolution operations with kernel 3×3 and stride 1 are applied to the previously
computed features. The expansive path proposes the same number of filters for
each decoding layer, but in reverse order with respect to the contracting path.
All the convolution operators use Rectified Linear Units (ReLUs) as activation
function. In the final layer one single 1 × 1 convolution linear operator is used
to map the last features into the number of desired output channels.

In order to map the features into a classification score we use the Softmax
operator to predict the probability score related to the semantic segmentation.
In particular, we compute pixel-wise classification scores to determine a class for
each input pixel. In the basic approach we use the cross-entropy loss function to
train the model from random weights initialized using the technique proposed
by [6]. This loss function is then modified in order to take into account the
peculiarities of the problem addressed in this paper.

To build the training set we randomly crop several patches with a fixed
shape from each document image. To maximize the differences between training
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Fig. 2. The model architecture. Different transformations are depicted in different col-
ors. The Input Layer is identified in gray, Convolutional Layers in white, Max Pooling
in yellow, green for Upsampling Layers, blue for Combination Layers and red for the
Softmax. (Color figure online)

patches the maximum overlap between patches is set to 25%. Like in [1] during
the test phase, we systematically extract document patches from the input image
with an overlap of 50%. For each pixel the final prediction is the average of
the probability scores computed by the neural network for all the overlapping
probability maps as illustrated in Fig. 3.

4 Weighting the Loss

In page segmentation there are several issues which make it difficult to obtain
good performances. One significant problem is the unbalanced pixel class distri-
bution. Having a look to Fig. 1 we can see that the pixel distribution is highly
unbalanced for background pixels with respect to the foreground pixels (consid-
ering foreground as text and decoration parts). We can notice also that some
background pixels are very important to segment text lines. Often the text lines
are very close to each other and in this case some misclassification errors of
pixels between two text lines could give rise to significant problems for properly
segmenting contiguous text lines.

The model is trained using a categorical cross entropy. One possibility to give
different cost values to the input during the training is to add one weighted map
to the loss function

WCE = −
∑

x∈Φ

w(x) log pq(x)(x) (1)

where Φ ⊂ Z
2 is the set of pixel positions, q : Φ → 1, . . . , K maps input pixels

to the class label of the predicted distribution p (K is the number of classes),
w : Φ → R

+ is the weight function that maps each pixel x to a suitable weight.
Considering Eq. 1, we define a weighted map function w(x) which assigns a

cost to each pixel considering the class frequency and the contribution which
could provide in the segmentation task. In particular, considering the set of
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Fig. 3. Moving a sliding window over the input image, we compute a pixel-wise clas-
sification score for each patch. The results are combined by averaging the scores of
overlapping patches.

pixels Φ in the training mini-batch that are used to compute the loss function,
we define a weight map to balance the class frequency and also to put more
attention in specific areas which are useful to segment different regions properly.
The weight map therefore includes two aspects of the document, the background
and foreground areas. Formally, the weighted map assigns to a pixel x one weight
balancing the pixel class frequency with a factor α and managing the background
pixels with a predefined weight mask β(x) (described in Sect. 4.1), such that:

w(x) =

{
α x ∈ Φf

β(x) x ∈ Φb

(2)

where the foreground pixels Φf ⊂ Φ represent the text and the decoration areas,
while Φb ⊂ Φ represent the background pixels.

Considering Φ the set of pixels for each mini-batch, the foreground pixel
frequency is a variable number (usually |Φf | < |Φb|). In order to balance the
foreground areas we apply a factor α as |Φb|

|Φf | computed for each mini-batch.
Having a pixel weight related to the class frequency we can balance the loss
function improving the training.

As previously mentioned, not all background pixels have the same importance
with respect to the overall performance. In particular, misclassification errors
between contiguous text lines could give rise to improper segmentation of the
text lines. To address this problem, we define one training rule weighting more
the background pixels between different regions (text lines or decorations). This
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Fig. 4. Creation of the weighted mask of a ground truth page. In the third image, after
merging the GT for region 1 and region 2 we can see pixels closer to both regions give
a larger contribution to the weight mask. (Color figure online)

topological constraint is a rule which could be defined directly into the weighted
map (Eq. 2) defining a weighed mask β(x) for the background area as described
in the following.

4.1 Weighting Background Pixels

The weighted mask β(x) gives more emphasis on background pixels consider-
ing the distance between two contiguous lines. The background pixels have a
classification cost inversely proportional to the distance between two contiguous
text lines. To this purpose, the weight mask assigns to each background pixel
one value considering the distance to the nearest line (a larger distance gives a
smaller value and vice versa). For the others background pixels, the weight mask
β(x) returns a fixed (neutral) weight value.

To compute the weight mask β(x) we first transform the ground truth image
from three class to a two class representation by merging text and decorator as
foreground and the rest are background pixels. Considering this representation,
taking a text region per time, we compute the distance transform which designs
level curves from the region borders to a defined maximum distance d. An exam-
ple of these level curves is shown in Fig. 4 (region one) where the level curve value
(in false colors) decreases when increasing the distance from the region border.

These level curves encode one information useful to consider the distance
to the nearest regions. Iteratively, computing a level curve for each region and
summing-up these values we can produce an overall weight mask. In this way,
when the regions are close each other, the level curves are summed providing
a larger value when the regions are closer. The largest value is obtained when
the distance between two regions is only one pixel. We force the range of values
for the level curves to be between 0 and 1. By using a factor λ to multiply α
(Sect. 4) we obtain mask values larger than foreground weights.

Considering a binary representation I of the ground truth image, for each
region ri at time i, we compute the level curves on the basis of the distance
transform distd(ri) limiting this representation until a max distance d. We can
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consider the area around all the region borders with a maximum distance d as
a dilation operation with kernel d.

In this way, the mask for an image with N regions is:

β(x) =

{
1 + λα

2d · (
∑N

i distd(ri)) x ∈ dilated(I)
1 otherwise

(3)

where dilated is the morphological dilation operator with kernel d useful to con-
sider the area where the weight mask has a variable number. For the remaining
pixels in the page the weight mask maps pixels to a neutral value.

We illustrate in Fig. 4 the approach to compute the weight mask. Starting
from a ground truth image we compute a binary representation with foreground
regions and background. For each region, we compute the distance curve levels
as dist(ri) which are sequentially summed with the next region representations.
The final result is the computed mask for all the pixels x ∈ dilated(I) which
are the critical pixels where we want to put more emphasis during the training
to learn background representation. To provide a better idea about the critical
pixels, in Fig. 5 we highlighted in red the critical pixel areas.

5 Experiments

In this section we describe the experiments performed to test the proposed model
to segment historical document images. The tests have been made on the Saint
Gall dataset that consists of handwritten manuscript images that contain the
hagiography Vita sancti Galli by Walafrid Strab. The manuscript has been most
likely written by one single hand in Carolingian script with ink on parchment.
Carolingian minuscules are predominant, but there are also some upper script
letters that emphasize the structure of the text and some richly ornamented
initials. Each page is written in a single column that contains 24 text lines. Alto-
gether, the Saint Gall database includes 60 manuscript pages [4]. The database is
freely downloadable and it is provided with layout descriptions in XML format.
The document images in the original dataset have an average size of 3328×4992
pixels.

We evaluate the model performance using four metrics applied to semantic
segmentation proposed by [12]. These measures are based on pixel accuracy and
region intersection over union (IU). In particular, we evaluate the performance
using: pixel accuracy, mean pixel accuracy, mean IU, and frequency weighted IU
(f.w. IoU).

Let nij be the number of pixels of class i predicted to belong to class j
(in total there are ncl classes), and ti =

∑
j nij be the total number of pixels of

class i. We can express the measures as:

– Pixel accuracy

pix.acc. =
∑

i nii∑
i ti

(4)
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Fig. 5. Given a input page, we can define the critical pixel areas (red) around the
semantic regions found into the ground truth representation. (Color figure online)

– Mean accuracy

mean.acc =
1

ncl

∑

i

nii

ti
(5)

– Mean IoU (Intersection over Union)

mean.IoU =
1

ncl

∑

i

nii

ti +
∑

j(nji − nii)
(6)

– Frequency weighted IoU

f.w.IoU =
1∑
k tk

∑

i

tinii

ti +
∑

j(nji − nii)
(7)

The previous metrics are used to define a global evaluation for whole pages.
To better evaluate the performance, we also define one local pixel accuracy
considering only the area around the foreground regions. In Fig. 5 we depict
in red the area around foreground regions where the local pixel accuracy is
computed. This area is important to extract text lines because misclassification
pixels in it could give rise to a wrong layout analysis.

In the experiments we trained the proposed model learning the parameters
by Stochastic Gradient Descent algorithm and using the extracted patches from
the original training pages as train set. The training dataset if composed by
several patches of size 256×256 pixels randomly extracted from the input pages.
Overall the training dataset contains 299, 756 patches. The different methods are
compared evaluating the models on the test set pages.

In Table 1 we report the results for page segmentation on the Saint gall
dataset and compare with previous results on the same dataset reported by
Chen et al. [3]. The proposed model obtains good results with respect to [3] also
by using the standard cross entropy loss. We improve only the mean IoU by
using the proposed weighted loss. These metrics evaluate the page segmentation
globally, but as we previously mentioned some misclassification errors have more
importance in the final segmentation results.
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Table 1. Results for overall performance measures.

Model pix.acc. mean.acc. mean.IoU f.w.IoU

Baseline (CE Loss) 98.07 95.12 90.80 96.27

Weighted (CE Loss) 98.03 94.75 90.88 96.18

Chen et al. [3] 98 90 87 96

Table 2. Results for critical pixel classification and text lines extraction [9].

Model Critical pixel accuracy DR RA FM

Baseline (CE Loss) 95.65 77.81 83.48 80.55

Weighted (CE Loss) 96.25 81.28 86.18 83.65

Fig. 6. Different results obtained with one model trained using cross entropy loss and
one with weighted cross entropy loss.

The results reported in Table 2 detail the critical pixel accuracy. This measure
is useful to evaluate the model behavior after the training done using different
losses. Using the weighted loss we can obtain better results which could be useful
to extract text line directly after the page segmentation.

For a qualitative evaluation of results we show in Fig. 6 one part of one page
and two results, one from a model trained with cross entropy loss and the other



Historical Handwritten Document Segmentation by Using a Weighted Loss 405

from a model trained with the proposed weighted loss. We can notice that the
model trained with the weighted map is able to better segment different text
lines.

In order to evaluate the trained models with the measure proposed by [9] the
model trained by weighted loss obtains Detection Rate (DR) and Recognition
Accuracy (RA) respectively better than the model trained by cross entropy loss.
Comparing these scores in Table 2 the model trained by the proposed approach
is able to extract more accurate text lines than the baseline model.

6 Conclusions

In this work we addressed the segmentation of handwritten historical documents
by means of deep architectures. We presented one approach to weight a cross
entropy loss to improve the results in particular in critical regions. By weighting
the pixels to obtain a balanced loss and putting more emphasis on the back-
ground pixel around text lines, we obtained better classification results more
suitable to extract text line as a post-processing of the classification based on
neural networks.

In the future research we will from one side address more challenging datasets
and from the other side we will exploit the pixel classification produced by the
model discussed in this paper. In particular, we will compare the performance
using other FCNs architecture to explicitly extract the text-lines from document
pages.
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