
Improvement of Reverse Dictionary
by Tuning Word Vectors and Category

Inference

Yuya Morinaga(B) and Kazunori Yamaguchi(B)

The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
{morinaga,yamaguch}@graco.c.u-tokyo.ac.jp

Abstract. A reverse dictionary is a system that returns words based on
user descriptions or definitions. OneLook Reverse Dictionary is a com-
mercial reverse dictionary system constructed from existing dictionaries.
Hill (2016) reported another reverse dictionary system was constructed
from public dictionaries using word embeddings and that its performance
was comparable to that of OneLook Reverse Dictionary at the time of
the comparison. In this paper we report that, by selecting word vectors
suitable for a reverse dictionary and combining Convolutional Neural
Network text classification, we improved the reverse dictionary described
by Hill. It is very significant that our model can automatically construct
a reverse dictionary system from publicly available resources such that
it obtains similar scores to those obtained with OneLook Reverse Dictio-
nary in accuracy@100/1000. We also show that our model can be used as
a filter to the OneLook Reverse Dictionary to improve its performance.

Keywords: Reverse dictionary · Concept search · Word embedding
Recurrent neural network · Convolutional neural network
Text classification · WordNet

1 Introduction

A dictionary maps a word to its definition while a reverse dictionary maps a
description to the word specified by the description. Reverse dictionary applica-
tions include the tip-of-the-tongue problem [3] and the cross word problem [1].

One of the difficulties in developing a reverse dictionary is that we can not
exhaustively enumerate descriptions for a word. For example, the definition of
the word ‘brother’ in WordNet [4] is ‘a male with the same parents as someone
else’, but a reverse dictionary should be able to map the description of ‘son of
my parents’ to ‘brother’ also. To achieve this, a reverse dictionary should have
some mechanism to calculate the similarity between unseen inputs and candidate
words.

Several academic studies have proposed reverse dictionary models. Most of
previous academic researches on English reverse dictionaries, such as [5,6], use
hand-engineered features of sentences. On the other hand, [1] proposed reverse
c© Springer Nature Switzerland AG 2018
R. Damaševičius and G. Vasiljevienė (Eds.): ICIST 2018, CCIS 920, pp. 533–545, 2018.
https://doi.org/10.1007/978-3-319-99972-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99972-2_44&domain=pdf

534 Y. Morinaga and K. Yamaguchi

dictionary model based on Neural Language Model [7], which uses word embed-
dings as features. Reverse dictionary models of [1,6] are publicly available.

The Node-Graph Architecture proposed in [6] is a reverse dictionary that
searches words in a graph where nodes are words and edges are the relations
whose source nodes (words) appear in the descriptions of the target nodes
(words). In this graph, the length of a path between nodes represents the dis-
tance between the nodes and the frequency of words represents the importance of
the words. Outputs are the words that are closest to the important input words.
This reverse dictionary was claimed to outperform OneLook Reverse Dictionary1

when the vocabulary is limited to 3,000 words. However, the performance for a
larger vocabulary is not available.

The Reverse Dictionary using Word Embeddings [1] (RDWE for short) can
handle a larger vocabulary. This reverse dictionary converts the word vectors of
word2vec for an input description into a vector by a linear transformation or
a Recurrent Neural Network. This reverse dictionary was claimed to have the
performance similar to that of OneLook Reverse Dictionary at the moment of [1]
in an evaluation using the descriptions provided by users.

In this paper we improved the performance of the reverse dictionary through
the use of two techniques. First, we generated word vectors more suited to the
use of a reverse dictionary by using the dictionaries with non-ASCII characters
removed. Second, following in the Watson [8] which is the Question Answering
system employs category inference of answer, we employed a category informa-
tion to eliminate similar but irrelevant vectors. We found that words belonging
to different categories may have similar word vectors. This causes the reverse
dictionary to provide incorrect words in irrelevant categories. This problem can
be alleviated by filtering out words in the irrelevant categories.

Experiment results we obtained showed that the present OneLook Reverse
Dictionary performs better than the reverse dictionary reported in [1] and out-
performed RDWE including this work in some metrics. However, RDWE results
are quite different from those returned by OneLook Reverse Dictionary, although
the rate at which the target word is included in the top 100–1000 words is sim-
ilar in both dictionaries. Accordingly, we were able to use RDWE as an output
filter of OneLook Reverse Dictionary and in so doing we confirmed that search
performance was improved.

The contributions of this paper are as follows:

– Improved RDWE accuracy by employing better word vectors
– Improved RDWE accuracy by employing category inference
– Improvement over a commercial reverse dictionary by employing RDWE as

a filter.

The rest of this paper is organized as follows. The models we used are
explained briefly in Sect. 2. Improvement and analysis on word vectors are
explained in Sect. 3. We describe our proposed model in Sect. 4. Section 5 shows
the experimental results we obtained. Section 6 concludes the paper with a sum-
mary of key points.
1 http://onelook.com/reverse-dictionary.shtml.

http://onelook.com/reverse-dictionary.shtml

Improvement of Reverse Dictionary by Tuning Word Vectors 535

2 Preliminary Definitions

In this section, we will briefly explain RDWE in Sect. 2.1 and a text classification
model in Sect. 2.2.

We will denote the vector for word w as vw and a description as
s = (w1, w2, ..., wn).

2.1 Distributed Representation of Sentences

The RDWE outputs words sorted by rank determined by the cosine similarity
between the vector of an input description and the vectors of the word. RDWE
based on Neural Language Model [7].

Word vectors may be learned independently from a corpus or learned simul-
taneously in adjusting RDWE parameters. [1] reported that there was almost
no difference in the results obtained for either case. In our work, we therefore
used word vectors learned from a corpus.

word2vec Add (ADD). We call the model to use the sum of the word vectors
of words in a description as word2vec add model (ADD for short). If word vectors
are given, no learning is needed in ADD. In the work we describe in this paper,
we used ADD as the baseline. In experiments we performed, we omitted word
vectors of stop words in the summation although they were not omitted in [1].
This omission improves the accuracy.

Bag of Words (BOW). The Bag of Words distributed representation model
(BOW for short) outputs a linearly transformed summation of the vectors of
input words as follows. Here, D is the dimension of v, W is a matrix of D × D,
and Aj is a D dimensional vector.

A1 = Wvw1 ,

Ai(>1) = Ai−1 + Wvwi
(= W

i∑

j=1

vwj
).

Because W is a linear transformation, An is equal to the summation of vectors
of the words in a description multiplied by W . The order of words is neglected in
this model. We learn W by the stochastic gradient method minimizing the cost
between the vector thus calculated and the correct word vector available in the
training data. As a cost function, the cosine distance and the rank loss function
are used. The rank loss function is determined as follows.

max(0, 0.1 − cos(vs, vt) + cos(vs, vrand)),

where s is a description, t is the correct word, vs is the vector for s, vrand is a
randomly selected vector not identical to vt, and cos(a, b) is the cosine similarity
function.

536 Y. Morinaga and K. Yamaguchi

Recurrent Neural Network (RNN). Recurrent Neural Network distributed
representation model (RNN for short) inputs words in a description one by one
to calculate the next vector and outputs the final vector. Here, Aj is the vector
after the j-th word in a description is processed.

A1 = φ(Wvw1 + b),
Ai(>1) = φ(UAi−1 + Wvwi

+ b),

where W and U are D × D matrices, Aj is a D-dim vector, and tanh(x) is used
as an activation function φ(x).

An is the final distributed representation representing the description
(w1, w2, ..., wn). In this model, the order of words has an effect on the final
output. W , U , and b are learned by the learning method and the cost func-
tion for RNN. LSTM (Long Short Term Memory) [9] is employed for long
backpropagation.

2.2 Text Classification Model

Reverse dictionary can be regarded as a variety of Question Answering (QA)
system, therefore QA system’s technique can be applied to. IBM’s Watson [8] is
a well-known QA system that won against two of Jeopardy’s greatest champions
in 2011. It classifies question, and judges appropriate answer type [10]. Watson’s
architecture is proprietary knowledge and specialized in Jeopardy, but still we
can take similar approach by building another category inference system.

In the following, we will explain a text classification model we employed for
our category inference system.

Convolutional Neural Network (CNN). Convolutional Neural Network text
classification model (CNN for short) [2] is used to infer a category to which a
word with the description belongs.

In CNN, C is the characteristic vector and pi is the probability with which
s belongs to category i for a given input s, vwj:j+h−1 is an h × D matrix of the
concatenation of wj to wj+h−1 of D-dim vectors, and Wi is a h × D matrix.

ci,j = φ(Wivwj:j+h−1 + bi),
ci = max

j
(ci.j),

C = (c1, c2, ..., ck),

pi =
exp(ci)∑
m exp(cm)

.

This transforms a word sequence into features and the features cj are used
to yield the probability of the i-th category by softmax.

We adjusted the parameters by using the stochastic gradient on the cost
determined by the inferred probability and that in the training data. In order
to avoid the overfitting, the dropout (masking W randomly when learning) was
employed.

Improvement of Reverse Dictionary by Tuning Word Vectors 537

3 Word Vectors

3.1 Improving Word Vectors

The performance of RDWE depends on the word vectors it uses. The purpose of
this section is to get word vectors suited to RDWE. We measured the suitability
of word vectors by using ADD, i.e., the score obtained with the ADD reverse
dictionary using the word vectors.

Note that we eliminated the stop words from the search space and overlooked
stop words in the summation process. The target words were limited to those in
the WordNet vocabulary.

There are two approaches to improve the word vectors. The first is to modify
the corpus to use in the word2vec learning such as the tokenization of frequent
phrases [11]. The second is to modify the model of word2vec such as the Multi-
Sense Skip-gram model [12]. Because the second approach has potential problems
with increased learning time and search space, we used the first approach.

Table 1. ADD scores. HIL uses word vectors in the Hill’s distribution. AOC uses word
vectors freshly learned from AOC.

Word vector accuracy@1/10/100 Median

HIL 0.02/0.156/0.39 213

AOC 0.018/0.192/0.454 143

The results are shown in Table 1. The scores were calculated for the labeled
data by users included in the Hill’s data. We used the 23 GB text data collected
from the Internet (including Wikipedia)2 as the corpus.

HIL is the Hill’s corpus including sentences with non-ASCII characters. The
sentences are written in languages other than English and so they constitute
noise for learning English word vectors. In total, 16 GB were left when we
removed sentences which include non-ASCII characters from the corpus. We
call the resulting corpus as ASCII only corpus (AOC for short).

Word vectors were learned from these corpora and their performances were
measured by ADD. The test was conducted on the 500 samples obtained from
WordNet. We used the accuracy@1/10/100, which is the rate at which the target
word is in the top 1/10/100 word(s) and the median of the target word rank
according to the rank ADD assigned for the word vectors.

The purpose of this learning of word vectors is to obtain word vectors suited
for the reverse dictionary used for users’ descriptions. Therefore, the selection
of word vectors has to be done using users’ descriptions. However because the
number of available users’ descriptions was small (200), all of them were used
for the final evaluation and the selection of the word vectors was done by using
2 Collected in the first part of https://github.com/svn2github/word2vec/blob/

master/demo-train-big-model-v1.sh.

https://github.com/svn2github/word2vec/blob/master/demo-train-big-model-v1.sh
https://github.com/svn2github/word2vec/blob/master/demo-train-big-model-v1.sh

538 Y. Morinaga and K. Yamaguchi

dictionary data. Each sample consists of a description and the word described
by the description. We removed the part enclosed by parentheses because the
enclosed part often includes the defined word. The results are shown in Table 1.
The p-values of accuracy@1/10/100 and median were respectively 0.617, 0.067,
0.017, and 0.076. This means that our newly learned word vectors using AOC
are statistically significantly better at accuracy@100.

3.2 Characteristics of Word Vectors

word2vec learns vectors of words from their context words. As a result, words
with similar context have similar vectors in terms of the cosine similarity. How-
ever, they do not necessarily belong to the same ‘category.’ For example, ‘bed’
and ‘asleep’, ‘cat’ and ‘meow’, or ‘mud’ and ‘muddy’ have the similar context
resulting in the similar word vectors. This is not desirable for word vectors in
reverse dictionary applications because when the input sentence is something
like ‘an animal that...’ it is obvious that the category of the target word is an
animal (noun), but the search result may include ‘meow’ (verb).

In the work we report in this paper, we employed the lexname in WordNet
as a category. A lexname is one of 45 kinds of tags determined for each synset
such as noun.animal, verb.emotion, and so on. Note that one word may belongs
to multiple synsets and, as a result, have multiple lexnames.

Figure 1 shows the distribution of word vectors visualized in 2-dimensional
MDS using the cosine distance between word vectors. From this figure, we see
that the word vectors of these two categories overlap considerably. Roughly
speaking, one third of the target words do not have any common categories
with more than half of the nearest 100 words of the words. As this shows, a
considerable number of words close to the calculated word vector fall in wrong
categories.

4 Proposed Model

The distributed representation of the target word is calculated from the dis-
tributed representation of the words in an input sentence as in [1]. As shown in
Sect. 3.2, words similar to the distributed representation may belong to wrong
categories. By using the category of the target word, we can eliminate the obvi-
ously irrelevant words from the ranked result and improve the accuracy. Even
though the category of the target word is not given, we can infer its category. In
our work, we employed the CNN [2] for this.

The CNN result is the distribution on categories. If we use a small number
of categories, the chance that the correct category is included is small. Once it is
included the rank of the target word in the ranked result is high, but otherwise,
we will miss the target word in the ranked list. Therefore, there is a trade-off
between the precision and recall. We propose to control the trade-off by the
estimated probability of selected categories. Let us assume that the probabilities
of the target word tq of an input sentence q belongs to the categories c1, c2, ..., cn

Improvement of Reverse Dictionary by Tuning Word Vectors 539

Fig. 1. 2-dimensional MDS of word vectors: 100 sample words each in noun.event
(above) and verb.change (below).

Fig. 2. Reverse dictionary using word embeddings and category inference (RDWECI)
(our proposal)

540 Y. Morinaga and K. Yamaguchi

are pc1 ≥ pc2 ≥ ... ≥ pcn
3. Let us also assume that the probabilities belonging

to categories are independent. Then, the probability that tq does not belong to
any of the top m categories is

∏m
i=1(1− pci). By employing m0 categories where

m0 = arg min
m

∏m
i=1(1 − pci) < k, we can keep this failure rate as low as k.

Finally, we rank only words which are in the m0 categories.
Our algorithm is summarized below.

Input: input sentence q, failure-rate k.
1. Calculate the distributed representation of vq of q.
2. Calculate the probabilities pcq1 ≥ pcq2 ≥ ... ≥ pcqn on categories with which the

target word of q belong to the categories.
3. Determine the top m0 categories cq1, ..., c

q
m0

for k.
4. Rank words belonging to the categories cq1, ..., c

q
m0

according to the cosine
similarity with the word vector of the words and vq.

Output: Top 1/10/100 word(s) in the ranked words.

The whole architecture is shown in Fig. 2. We call this model RDWECI.

5 Experiment

5.1 Data

Training Data. For training Hill’s reverse dictionary model, we used the word
and description pairs obtained from Wordnik API4. We accessed the word and
description pairs from Wordnik API according to a word list distributed by Hill,
removed remaining HTML tags such as “” from the obtained data.
The results were about 540,000 word and description pairs and used in Sect. 5.2.

For training the text classification model, we used the lexname and definition
pairs for each synset of WordNet. The results were about 120,000 category and
definition pairs and is used in Sect. 5.3.

As to word vectors, we used HIL and AOC in Sect. 3.

Test Data and Evaluation Metrics. For the evaluation, we used the 200
word and description pairs in the data distributed by Hill.

For evaluation metrics, we used accuracy@1/10/100 and median.
Because we could search only a word whose category is defined in WordNet,

our search space included the 90,000 words of the WordNet whose word vectors
were available. This is broader than the 66,000 words space used by Hill.

Because about 80 words in the Hill’s corpus are not included in AOC, the
search space was slightly different between HIL and AOC.

For evaluating the text classification model, we used the above data and
WordNet’s seen and unseen data. The WordNet’s data consists of the lexname

3 In our experiment, n = 45.
4 http://developer.wordnik.com.

http://developer.wordnik.com

Improvement of Reverse Dictionary by Tuning Word Vectors 541

and definition pairs for each synset of WordNet in Sect. 5.1. In calculating the
accuracy, we considered the result was correct when the top category inferred was
included in the categories to which one of the synsets of the word is assigned in
WordNet. If the WordNet data is used, because the description defines a synset,
we used the category of synset as the correct one. One definition in the WordNet
corresponds to one synset having one category (lexname). Each of Hill’s data is a
pair of a word and its description, and the word may belong to multiple synsets
and categories. Thus, for the evaluation using the Hill’s data, we considered the
result was correct if one of the categories to which the target word belongs is
named.

5.2 Reverse Dictionary Model

Training. The reverse dictionary model is trained as Sect. 2.1. As to word
vectors, we used those in HIL and AOC as in Sect. 3.1. We tried two types of
networks: BOW and RNN, and two types of cost functions: cosine and rankloss.
We used the implementation by Hill5.

Evaluation. In this section, we conducted the evaluation of the trained reverse
dictionary model by the data in Sect. 5.1. The results are shown in Figs. 3 and
4 in Sect. 5.4.

In general, the scores for AOC were better than those for HIL. As to networks
and cost functions, BOW rankloss was the best. RNN was better in accuracy@1,
but not so for other metrics. This may be the result of the overfitting by RNN
which is more complex and flexible than BOW.

5.3 Text Classification Model

Training. As to CNN in Sect. 2.1 we used the implementation in the Harvard
NLP6. As to word vectors, we used HIL and AOC as in Sect. 3.1.

Evaluation. The accuracy of the trained model was 93% (HIL)/94% (AOC)
for the trained WordNet definitions, 83% (HIL)/84% (AOC) for the WordNet
definitions not included in the training data, and 70% (HIL)/70% (AOC) for the
Hill’s evaluation data.

5.4 Evaluation of RDWECI

We evaluated RDWECI proposed in Sect. 4 by combining the models in Sects. 5.2
and 5.3. The results are shown in Figs. 3 and 4.

5 https://github.com/fh295/DefGen2.
6 https://github.com/harvardnlp/sent-conv-torch.

https://github.com/fh295/DefGen2
https://github.com/harvardnlp/sent-conv-torch

542 Y. Morinaga and K. Yamaguchi

Fig. 3. Accuracy for various models and parameters for AOC. CNN is our model and
others are Hill’s model. Error bars show the standard deviations.

Fig. 4. Median for various combinations and parameters for AOC. CNN is our model
and others are Hill’s model. Error bars show the standard deviations.

For the failure-rate in Sect. 4, we tried 1 and 0.01. This failure-rate
was chosen as follows. We tested the model with failure-rate = 1/0.5/0.4/0.3/
0.2/0.1/0.05/0.01/0.001 using the dictionary data and the best score is obtained
at failure-rate = 0.01. Therefore, in the following, we will use 0.01 as the failure-
rate. For comparison, we use 1 as the failure-rate, because with failure-rate = 1
only the top category is used and this is the other extreme. In order to avoid
overfitting, we didn’t use the test data for this tuning.

Improvement of Reverse Dictionary by Tuning Word Vectors 543

In the realization of the Hill’s experiment in [1], BOW rankloss
using Hill’s distributed data performed best resulting in accuracy@1/10/
100 = 0.06/0.325/0.61 and median = 50. According to RDWECI, CNN 0.01
BOW rankloss AOC performed best marking accuracy@1/10/100 = 0.09/
0.43/0.74 and median = 20. The difference between Hill’s model and ours best
are statistically significant in accuracy@10 (p = 1.59 × 10−2), accuracy@100
(p = 2.20 × 10−3), and median (p = 4.40 × 10−3).

5.5 OneLook Reverse Dictionary

Evaluation of OneLook Reverse Dictionary. OneLook Reverse Dictionary
is the commercial reverse dictionary system. One can search words from their
description from 1,061 dictionaries.

The score of the OneLook Reverse Dictionary was reported as accu-
racy@10/100 = 0.38/0.587 and median = 18.5, similar to the performance of Hill’s
BOW/RNN models.

We used data included in Hill’s distribution in Sect. 5.1 for this and the next
evaluation.

The scores of our RDWECI were higher than those of Hill’s BOW/RNN
model, and the OneLook Reverse Dictionary at the moment of [1].

We evaluated the score of the OneLook Reverse Dictionary on Oct.16,
2017. The results were accuracy@1/10/100 = 0.34/0.55/0.76 and median = 5 and
accuracy@1/10/100 = 0.33/0.54/0.76 and median = 6.

OneLook Reverse Dictionary Enhanced by the Distributed Represen-
tation and Category Inference. OneLook Reverse Dictionary and RDWECI
have different architectures and only 10–15% words are common in the top
1000 words lists of them. OneLook Reverse Dictionary performs well for accu-
racy@1/10 but RDWECI performs relatively well for accuracy@100/1000; the
accuracy@100/1000 of OneLook Reverse Dictionary is 0.76/0.87 and that of
RDWECI is 0.74/0.89.

From this observation, we constructed the following algorithm to combine
the bests.

Input: Input sentence q.
1. Calculate the top 1,000 words m by RDWECI for q.
2. Search the top 1,000 words r by OneLook Reverse Dictionary for q.
3. Remove words from r which are not in m.
Output: r

As shown in Table 2, the combination improved the score.
In this combination, the BOW and RNN did not perform any better than

ADD. This may be because ADD is not so flexible in providing the target word
at a higher rank, but it is robust enough to keep it in the top words list.

7 accuracy@1 was not reported in [1].

544 Y. Morinaga and K. Yamaguchi

Table 2. OneLook Reverse Dictionary Enhanced by the Distributed Representation
and Category Inference (1) ADD, (2) CNN 0.01 add, (3) BOW rankloss, (4) CNN 0.01
BOW rankloss. All word vectors are from AOC.

Model accuracy@1/10/100 Median

OneLook 0.34/0.55/0.76 5

(1) + OneLook 0.36/0.62/0.81 4

(2) + OneLook 0.38/0.63/0.82 3

(3) + OneLook 0.35/0.60/0.80 4

(4) + OneLook 0.36/0.61/0.82 3

6 Conclusion

In the work we described in this paper, we improved the accuracy of the reverse
dictionary of [1] by selecting better word vectors and introducing category infer-
ence. Our best model performs similarly to OneLook Reverse Dictionary accord-
ing to accuracy@1000. This is very significant because OneLook Reverse Dictio-
nary is a commercial and dedicated system while our system is built using only
category information as natural language knowledge and public dictionaries. We
showed that we can also use RDWECI as a filter to improve the OneLook Reverse
Dictionary. Various subjects for future work remain. First, we would like to use
multi-sense word vectors in the reverse dictionary. By capturing more precise
meanings of words by using such vectors in an input sentence, we may be able to
improve reverse dictionary performance. Second, we would like to build a reverse
dictionary model more suitable to be used as filter of OneLook Reverse Dictio-
nary. As a filter to the OneLook Reverse Dictionary, our model with category
inference shows only a marginal improvement to ADD. By employing a more
suitable function to improve accuracy@1000, we may find a filter more suited to
OneLook Reverse Dictionary.

References

1. Hill, F., Cho, K.H., Korhonen, A., Bengio, Y.: Learning to understand phrases by
embedding the dictionary. Trans. Assoc. Comput. Linguist. 4, 17–30 (2016)

2. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1746–1751 (2014)

3. Schwartz, B.L., Metcalfe, J.: Tip-of-the-tongue (TOT) states: retrieval, behavior,
and experience. Mem. Cogn. 39(5), 737–749 (2011)

4. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

5. Shaw, R., Datta, A., VanderMeer, D., Dutta, K.: Building a scalable database-
driven reverse dictionary. IEEE Trans. Knowl. Data Eng. 25(3), 528–540 (2013)

6. Thorat, S., Choudhari, V.: Implementing a reverse dictionary, based on word def-
initions, using a node-graph architecture. In: Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics, pp. 2797–2806 (2016)

Improvement of Reverse Dictionary by Tuning Word Vectors 545

7. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

8. Ferrucci, D., et al.: Building Watson: an overview of the DeepQA project. AI Mag.
31(3), 59–79 (2010)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Lally, A.: Question analysis: how Watson reads a clue. IBM J. Res. Dev. 56(3.4),
2:1–2:14 (2012)

11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

12. Neelakantan, A., Shankar, J., Passos, R., Mccallum, A.: Efficient nonparametric
estimation of multiple embeddings per word in vector space. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1059–1069 (2014)

	Improvement of Reverse Dictionary by Tuning Word Vectors and Category Inference
	1 Introduction
	2 Preliminary Definitions
	2.1 Distributed Representation of Sentences
	2.2 Text Classification Model

	3 Word Vectors
	3.1 Improving Word Vectors
	3.2 Characteristics of Word Vectors

	4 Proposed Model
	5 Experiment
	5.1 Data
	5.2 Reverse Dictionary Model
	5.3 Text Classification Model
	5.4 Evaluation of RDWECI
	5.5 OneLook Reverse Dictionary

	6 Conclusion
	References

