
Problem Domain Knowledge Driven
Generation of UML Models

Ilona Veitaite(&) and Audrius Lopata

Kaunas Faculty, Institute of Applied Informatics, Vilnius University, Kaunas,
Lithuania

{Ilona.Veitaite,Audrius.Lopata}@knf.vu.lt

Abstract. The main scope of the article is to present how the quality of stored
problem domain information in Enterprise model (EM) is significant and
important in Unified Modelling Language (UML) models generation process
from Enterprise model. The generation process is explained by top-level
transformation algorithm, which is presented in details and depicted by using
algorithm’s step by step description. The importance of information quality and
fullness is represented by the example of Business Rule element’s, which is
stored in Enterprise model, significance for different UML models.

Keywords: UML � Unified Modelling Language � Enterprise model
Transformation algorithm � Knowledge-based IS engineering

1 Introduction

There have been and still are pretty many efforts for the analysis of UML models
generation from different knowledge-based models, merging and uniting different
modelling languages, frameworks and patterns and even generation from natural lan-
guage specifications [2–4, 9].

The Enterprise meta-model (EMM) is considered to be the significant conceptual
structure for problem domain knowledge acquisition for the aims of IS development.
This meta-model handles Enterprise model structure, and therefore, Enterprise model
stores knowledge that is needed for whole IS development process and can be used in
all IS development life cycle phases [5–8].

In recent years UML models are having a rising regard from. It is a very daring
objective for analysis of UML models since the knowledge about an enterprise system
is distributed within several model approaches. UML models are preserved to decrease
the confusion of the problem with the increase of enterprise turnovers. By operating
UML models, knowledge from Enterprise model can be efficiently represented and can
be used in all phases of IS development life cycle [10, 11, 13].

© Springer Nature Switzerland AG 2018
R. Damaševičius and G. Vasiljevienė (Eds.): ICIST 2018, CCIS 920, pp. 178–186, 2018.
https://doi.org/10.1007/978-3-319-99972-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99972-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99972-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99972-2_14&domain=pdf

2 Generation of UML Models Using Enterprise Meta-model

Enterprise meta-model is formally defined enterprise model structure, which consists of
a formalized Enterprise model in line with the general principles of control theory
(Fig. 1). Enterprise model is the main source of the necessary knowledge of the par-
ticular problem domain for IS engineering and IS re-engineering processes [6, 7].

All UML models: static and dynamic can be generated using Enterprise model
transformation algorithms. Particular UML model must be selected for generation
process, after this selection, the initial – starting element of this particular UML model
must be identified from Enterprise model. Therefore, all related elements must be
identified according the initial element and all these related elements must be linked
regarding constraints i.e. business rules, obligatory for particular UML model type
which was selected in the beginning [1, 12].

This kind of system definition is quite tangled, because most of the information
from the Enterprise model overlays in the UML models and expresses the same matters
just in different approaches, as it is explained in the next chapter. Therefore identifi-
cation of particular UML model for generation process has high significance, because
of regarding this selection relies generated element value for system development
process [1, 16].

Fig. 1. Enterprise meta-model class diagram [6, 7]

Problem Domain Knowledge Driven Generation of UML Models 179

The algorithm of UML model generation using Enterprise model is presented in the
Fig. 2:

• Step 1: Particular UML model for generation from Enterprise model process is
identified and selected.

• Step 2: If the particular UML model for generation from Enterprise model process is
selected then algorithm process is continued, else the particular UML model for
generation from Enterprise model process must be selected.

• Step 3: First element from Enterprise model is selected for UML model, identified
previously, generation process.

• Step 4: If the selected Enterprise model element is initial UML model element, then
initial element is generated, else the other Enterprise model element must be
selected (the selected element must be initial element).

• Step 5: The element related to the initial element is selected from Enterprise model.
• Step 6: The element related to the initial element is generated as UML model

element.
• Step 7: The element related to the previous element is selected from Enterprise

model.
• Step 8: The element related to the previous element is generated as UML model

element.

Fig. 2. The top level algorithm of UML models generation using normalised EMM

180 I. Veitaite and A. Lopata

• Step 9: If there are more related elements, then they are selected from Enterprise
model and generated as UML model elements one by one, else the link element is
selected from Enterprise model.

• Step 10: The link element is generated as UML model element.
• Step 11: If there are more links, then they are selected from Enterprise model and

generated as UML model elements one by one, else the Business Rule element is
selected from Enterprise model.

• Step 12: The Business Rule element is generated as UML model element.
• Step 13: If there are more Business Rules, then they are selected from Enterprise

model and generated as UML model elements one by one, else the generated UML
model is updated with all elements, links and constraints.

• Step 14: Generation process is finished.

3 Business Rule Element’s Variations

Design methods of information systems refers the settlement of systems engineering
actions, i.e. in what manner, how, and which UML model to use in the information
system development process and how to fulfil the process. Many of them are based on
different types of models depicting varying aspects of the system properties. Signifi-
cance of every UML model element can be defined particularly, but more important is
the fact that every model is the projection of the system (Fig. 3). Business Rule element
from Enterprise model can indicate different view of the system in different UMLmodel.

Below there are presented generated UML model elements after transformation
algorithm’s 11 and 12 steps: Business Rule element generation from Enterprise model
in UML dynamic part models.

In case of UML Use Case models, which describe a series of actions that some
system or systems should or can implement in contribution with one or more external
users of the system [15], from EM Business Rule elements can be generated three UML
Use Case elements (Table 1): Extend, Include, Association [14, 15].

Fig. 3. Business Rule element in EM and in UML model. The transformation algorithm’s 11
and 12 steps

Problem Domain Knowledge Driven Generation of UML Models 181

In case of UML Activity model, which shows flow of control or object flow with
emphasis on the sequence and conditions of the flow [15], from EM Business Rule
elements can be generated all types of UML Activity Control Nodes elements
(Table 2).

In case of UML State machine model, which is used for modelling discrete beha-
viour through finite state transitions [15], from EM Business Rule elements can be
generated one UML State machine model element: Pseudostate (Table 3), and also state
machines can be used to express the usage protocol of part of a system as UML Protocol
State machine, and in this case, from EM Business Rule elements can be generated one
UML Protocol State machine model element: Protocol Transition (Table 4).

Table 1. UML Use Case model elements [14, 15]

EM
element

UML Use Case
model element

Description

Business
Rule

Extend Extend is a directed relationship that specifies how and
when the behaviour defined in usually supplementary
(optional) extending use case can be inserted into the
behaviour defined in the extended use case

Include Use case include is a directed relationship between two
use cases which is used to show that behaviour of the
included use case is inserted into the behaviour of the
including use case

Association Each use case represents a unit of useful functionality that
subjects provide to actors. An association between an
actor and a use case indicates that the actor and the use
case somehow interact or communicate with each other

Table 2. UML Activity model elements [14, 15]

EM
element

UML Activity
model element

Description

Business
Rules

Control Nodes Used to coordinate the flows between other nodes. It
includes: initial, flow final, activity final, decision, merge,
fork, join

Table 3. UML State Machine model elements [14, 15]

EM
element

UML State Machine
model element

Description

Business
Rule

Pseudostate An abstract node that encompasses different types of
transient vertices in the state machine graph

182 I. Veitaite and A. Lopata

In case of UML Sequence model, which focuses on the message interchange
between objects (lifelines) [15], from EM Business Rule elements can be generated five
UML Sequence model elements (Table 5): Execution Specification, Combined Frag-
ment, Interaction Use, State Invariant and/or Destruction Occurrence.

In case of UML Timing model, which shows interactions when a primary scope of
the model is to reason about time [15], from EM Business Rule elements can be
generated three UML Time model elements (Table 6): Duration Constraint, Time
Constraint, Destruction Occurrence.

Table 4. UML Protocol State Machine model elements [14, 15]

EM
element

UML State Machine
model element

Description

Business
Rule

Protocol Transition Used for the protocol state machines which specifies a
legal transition for an operation

Table 5. UML Sequence model elements [14, 15]

EM
element

UML Sequence
Model element

Description

Business
Rules

Execution
Specification

Represents a period in the participant’s lifetime

Combined
Fragment

Defines a combination (expression) of interaction
fragments. A combined fragment is defined by an
interaction operator and corresponding interaction
operands

Interaction Use Allows to use (or call) another interaction
State Invariant Represents a runtime constraint on the participants of the

interaction
Destruction
Occurrence

Represents the destruction of the instance described by
the lifeline

Table 6. UML Timing model elements [14, 15]

EM
element

UML Timing
Model element

Description

Business
Rules

Duration
constraint

Refers to a duration interval. The duration interval is
duration used to determine whether the constraint is
satisfied

Time Constraint Refers to a time interval. The time interval is time
expression used to determine whether the constraint is
satisfied

Destruction
Occurrence

Represents the destruction of the instance described by the
lifeline

Problem Domain Knowledge Driven Generation of UML Models 183

In case of UML Interaction Overview model, which identifies interactions through a
variant of activity models in a way that sustains overview of the control flow [15], from
EM Business Rule elements can be generated five Interaction Overview model elements
(Table 7): Duration Constraint, Time Constraint, Interaction Use, Control Nodes.

This wide group of elements can be generated because UML Interaction Overview
model coordinates elements from activity and interaction models [15]:

• from the activity model: initial node, flow final node, activity final node, decision
node, merge node, fork node, join node;

• from the interaction models: interaction, interaction use, duration constraint, time
constraint.

All these UML models elements descriptions shows, how much knowledge about
problem domain is stored in Enterprise model, how much information behind the EM
Business Rule element is saved and also, how important that this stored information’s
quality and fullness should match all the different UML models approaches, so that
suitable UML model could be generated.

4 Conclusions

The first part of the article handles with defining Enterprise model concept and with
detailed explanation of Unified Modelling Language model generation from Enterprise
model transformation algorithm, which is depicted by steps.

In the next part there are presented the Business Rule element’s variations in
different UML models, which were generated from Enterprise model, and how the
quality of the business problem information, stored in knowledge-based Enterprise
model makes the impact on these variations.

Table 7. UML Interaction Overview model element [14, 15]

EM
element

UML Interaction
Overview model
element

Description

Business
Rules

Duration Constraint Refers to a duration interval. The duration interval is
duration used to determine whether the constraint is
satisfied

Time Constraint Refers to a time interval. The time interval is time
expression used to determine whether the constraint
is satisfied

Interaction Use Allows to use (or call) another interaction
Control Nodes Used to coordinate the flows between other nodes. It

includes: initial, flow final, activity final, decision,
merge, fork, join

184 I. Veitaite and A. Lopata

The described Business Rule element’s example shows that if the high quality
information stored in Enterprise model, then it is enough for UML models generating
process. There is possible to confirm, that each element of each UML dynamic model
can be generated from the Enterprise model using transformation algorithms only if
high quality of the information in Enterprise model is ensured.

References

1. Butleris, R., Lopata, A., Ambraziunas, M., Veitaitė, I., Masteika S.: SysML and UML
models usage in knowledge based MDA process. Elektronika ir elektrotechnika 21(2), 50–
57 (2015). Print ISSN: 1392-1215, Online ISSN: 2029-5731

2. Čyras, V.: Intelektualios sistemos. Vilnius: Vilniaus universitetas, Matematikos ir
informatikos fakultetas, Programų sistemų katedra, 116 p. (2017)

3. Evensen, K.D., Weiss, K.A.: A comparison and evaluation of real-time software systems
modeling languages. In: AIAA Infotech@Aerospace 2010, 20–22 April 2010, Atlanta,
Georgia (2010)

4. IEEE Computer Society: Guide to the Software Engineering Body of Knowledge SWEBOK.
Version 3.0. (2014). Paperback ISBN-13: 978-0-7695-5166-1

5. Gudas, S.: Enterprise knowledge modelling: domains and aspects. Technol. Econ. Dev.
Econ. Baltic J. Sustain., 281–293 (2009)

6. Gudas, S.: Architecture of knowledge-based enterprise management systems: a control view.
In: Proceedings of the 13th world Multiconference on Systemics, Cybernetics and
Informatics (WMSCI 2009), vol. 3, pp. 161–266, Orlando, Florida, USA, 10–13 July
2009. ISBN -10: 1-9934272-61-2 (Volume III). ISBN -13: 978-1-9934272-61-9 (Volume
III)

7. Gudas S.: Informacijos sistemų inžinerijos teorijos pagrindai. Vilniaus universiteto leidykla
(2012). ISBN 978-609-459-075-7

8. Gudas, S., Lopata A.: Meta-model based development of use case model for business
function. Inf. Technol. Control 36(3) (2007). ISSN 1392 – 124X 2007

9. Küster, T., Lützenberger, M., Heßler, A., Hirsch, B.: Integrating process modelling into
multi-agent system engineering. multi-agent and grid systems (2012). https://www.
researchgate.net/publication/220535349_Integrating_process_modelling_into_multi-agent_
system_engineering

10. Lopata, A., Veitaite, I., Gudas, S., Butleris, R.: CASE tool component – knowledge-based
subsystem. UML diagrams generation process. Transformations Bus. Econ. 13(2B) (32B),
676–696 (2014). ISSN: 1648 - 4460

11. Lopata, A., Ambraziūnas, M., Gudas, S., Butleris, R.: The main principles of knowledge-
based information systems engineering. Electron. Electr. Eng. 11(1)(25), 99–102 (2012).
ISSN 2029-5731

12. Lopata, A., Ambraziūnas, M., Gudas, S.: Knowledge based MDA requirements specification
and validation technique. Transformations Bus. Econ. 11(1)(25), 248–261 (2012)

13. Lopata, A., Ambraziūnas, M., Gudas, S.: Knowledge-based MDA requirements specification
and validation technique. Transformations Bus. Econ. 11(1(25)), 248–260 (2012). ISSN
1648-4460

14. OMG UML: Unified Modelling Language version 2.5. Unified Modelling (2018). http://
www.omg.org/spec/UML/2.5

Problem Domain Knowledge Driven Generation of UML Models 185

https://www.researchgate.net/publication/220535349_Integrating_process_modelling_into_multi-agent_system_engineering
https://www.researchgate.net/publication/220535349_Integrating_process_modelling_into_multi-agent_system_engineering
https://www.researchgate.net/publication/220535349_Integrating_process_modelling_into_multi-agent_system_engineering
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5

15. UML diagrams (2018). https://www.uml-diagrams.org/
16. Veitaitė, I., Ambraziūnas, M., Lopata, A.: Enterprise model and ISO standards based

information system’s development process. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS
2014. LNBIP, vol. 183, pp. 73–79. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-11460-6_7

186 I. Veitaite and A. Lopata

https://www.uml-diagrams.org/
http://dx.doi.org/10.1007/978-3-319-11460-6_7
http://dx.doi.org/10.1007/978-3-319-11460-6_7

	Problem Domain Knowledge Driven Generation of UML Models
	Abstract
	1 Introduction
	2 Generation of UML Models Using Enterprise Meta-model
	3 Business Rule Element’s Variations
	4 Conclusions
	References

