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Abstract. In science, experiments are empirical observations allowing
for the arbitration of competing hypotheses and knowledge acquisition.
For a scientist that aims at learning an agent strategy, performing exper-
iments involves costs. To that extent, the efficiency of a learning process
relies on the number of experiments performed. We study in this article
how the cost of experimentation can be reduced with active learning to
learn efficient agent strategies. We consider an extension of the meta-
interpretive learning framework that allocates a Bayesian posterior dis-
tribution over the hypothesis space. At each iteration, the learner queries
the label of the instance with maximum entropy. This produces the max-
imal discriminative over the remaining competing hypotheses, and thus
achieves the highest shrinkage of the version space. We study the theoret-
ical framework and evaluate the gain on the cost of experimentation for
the task of learning regular grammars and agent strategies: our results
demonstrate the number of experiments to perform to reach an arbitrary
accuracy level can at least be halved.

Keywords: Bayesian meta-interpretive learning · Active learning
Agent-based modelling

1 Introduction

Once a honeybee has found a rich source of pollen, it shares its location with
other members of the colony by executing a particular figure called waggle dance
[16]. It guides the search for other bees toward flowers yielding nectar and pollen
and thus enhances the efficiency of the colony foraging strategy.

More broadly, strategies are general programs aimed at achieving particu-
lar goals from a multiplicity of initial states. When a scientist models animal
behaviours or other strategies, the learning process generally requires select-
ing and conducting many experiments, with associated costs. Thus, learning
efficiency relies on the sum of the costs of the performed experiments. We inves-
tigate in this work how much the experimental cost can be reduced with active
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learning to learn agent strategies. An active learner is allowed to actively choose
the experiments to perform to acquire knowledge during the learning process.
Furthermore, in real-world situations, strategies should be resource-efficient to
be beneficial for agents. Therefore, we additionally want to converge toward
efficient strategies.

(a) First observation: the bee starts at
the hive with no weight carried and
ends up at the flower carrying pollen

(c) Second observation, no matter its
outcome, it is discriminative for the
competing hypotheses of Figure 1b

(b) Two competing hypotheses for the first observation of Figure 1a

Hypothesis 1 Hypothesis 2
f(A,B):-f1(A,C),grab(C,B). f(A,B):-f2(A,C),grab(C,B).

f1(A,B):-until(A,B,at_flower,move_right). f2(A,B):-until(A,B,at_flower,f1).

f1(A,B):-ifthenelse(A,B,waggle_east,move_right,move_left).

Fig. 1. Observations of a bee behaviour

In Sect. 6, we learn a general strategy for a bee to find pollen in an envi-
ronment. Learnt strategies are logic programs built from observations of bee
behaviour. Observations are labelled as positive if the goal is fulfilled and neg-
ative otherwise. Figure 1a represents a positive observation: the waggle dance
indicates that a flower is at the right of the hive, the bee flies in this direction
and finds pollen. Several hypotheses can be inferred from it, among them the two
represented in Fig. 1b. To discriminate between them, the experiment of Fig. 1c
could be performed. The flower is now on the left, which is indicated by the
waggle dance. No matter its outcome, positive or negative, it would eliminate
one of these two hypotheses. Therefore, it is an informative query.

Meta-Interpretive Learning (MIL) has been demonstrated to be a suitable
paradigm to learn strategies since it supports predicate invention and the learn-
ing of recursive programs [22,24]. Given the observations so far, consistent
hypotheses are built from a set of metarules and the background knowledge.
A Bayesian posterior distribution is implemented over the hypothesis space [23]
and introduces a bias toward hypotheses with lowest complexity. The learner
computes at each iteration the entropies of the possible experiments given the
current hypothesis space and the prior distribution. The instance with maximum
entropy is selected: it is the most discriminative between the remaining compet-
ing hypotheses. This process is resumed and more experiments are performed
until some target accuracy is reached.

Specifically, our contributions are the introduction of a framework for learn-
ing efficient agent strategies with active learning and for reducing the associated
cost of experimentation. We describe its implementation. We also evaluate the-
oretically the expected gain in entropy, and demonstrate experimentally that
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Bayesian MIL Active Learning converges faster toward efficient agent strategies
than a passive learner in the same conditions.

This article is organised as follows. Section 2 reviews some related work.
Section 3 describes the framework used in this paper together with the learning
protocol. Section 4 details a theoretical analysis. Section 5 describes the imple-
mentation. Section 6 reports experiments in learning regular grammars and bee
strategies. Finally, we conclude and discuss further work in Sect. 7.

2 Related Work

Active Learning. Active Learning is a protocol in which the learner is able to
choose the data from which it learns by accessing an oracle. It contrasts with
passive learning for which the labeled data is selected at random. The objective
in active learning is to learn a model with high accuracy while ideally making
fewer queries than the number of random data required by a passive learner
to achieve the same accuracy level. It has been widely studied for identifying
classifiers [27] and different query strategy frameworks have been introduced.

In the membership query setting, the learner is allowed to ask for the label
of any points of the instance space, even artificially generated ones [1,2]. How-
ever, newly synthesized instances may be uninterpretable by human oracles. An
alternative is stream-based selective sampling: the learner can sample from the
instance distribution and decide whether to label or discard each sample instance
[12]. A variant is to directly sample from a subpart of the instance space that is
the most informative [4]. We focus in this work on pool-based active learning:
the learner has access to a large number of initial unlabelled data points, and to
an oracle which can provide the label of any of these points on request [20].

Several measures have been suggested for evaluating the shrinkage of the
hypothesis space during the learning process and thus measuring the benefits
of active learning over passive learning. The main ones are the diameter of the
version space [11,29], the measure of the region of disagreement [13,14], the
metric entropy [18] and the size of the version space [10,21] which inspired
this paper. We will more specifically operate in a Bayesian setting [10,12] that
benefits from a prior distribution over the hypothesis space.

Active Learning have been widely used for classification, although there are
different applications: version space approaches have been considered for object
detection in computer vision [26]. Similarly, the system presented in this article is
based upon active learning for devising experiments to rule out hypotheses from
the version space. However, our approach is different from the work presented
above since we use active learning within the construction of logic programs and
for learning agent strategies in a Bayesian setting.

Decision Trees. A search strategy can be representented by a tree whose
internal nodes are experiments and whose leaves are hypotheses: minimizing the
number of queries means building a tree of minimum average size. In that case,
it has been shown that the performances of a greedy strategy are not worst than
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any other strategy for minimizing the number of label queries [10]. Moreover,
the expected depth of any binary decision tree is lower bounded by the entropy
of the prior distribution [5].

Combining Active Learning with Inductive Logic Programming. In
[28], Inductive Logic Programming (ILP) has been combined with Active Learn-
ing for two non-classification tasks in natural language processing: semantic pars-
ing and information extraction. Also, a closed loop Machine Learning system for
Scientific Discovery applications is described in [3,17]: a robot scientist is intro-
duced, it autonomously proposes and performs a sequence of experiments which
minimises the expected cost of experimentation for converging upon an accurate
hypothesis generated with ILP. Conversely, our work aims at learning efficient
agent strategies.

Learning Efficient Strategies. A general framework for learning optimal
resource complexity robot strategies is presented in [6]. It has been extended
into Metaopt [8], an ILP system that learns minimal cost logic programs by
adding a general cost function into the meta-interpreter. By contrast, our work
focuses on another aspect of the learning efficiency: we investigate how to reduced
experimental costs for learning efficient agent strategies.

Relational Reinforcement Learning. A challenge in reinforcement learning
is the exploration/exploitation trade-off. In [19], the authors present relational
exploration strategies: the generalisation of learnt knowledge over unobserved
instances in relational worlds allows a generalisation of the notion of known
states compared to propositional settings. It can also applied to largest domains.
In [25], Active Learning is used to select actions to perform for reaching states
that will enforce a revision of the current model. It is shown that the integration
of Active Learning improves learning speed: an accurate action model is obtained
after performing much less actions than when using random exploration only.

To the authors’ best knowledge, this is the first time active learning is inte-
grated with Bayesian MIL to devise a sequence of experiments to perform for
learning efficient strategies with reduced experimental costs.

3 Theoretical Framework

3.1 Notations

Let X be the instance space, and H a concept class over the instance space
X . We consider a probability distribution ΠX over the instance space X and
a probability distribution ΠH over the hypothesis space H. We assume that
the target hypothesis H̄ is drawn from H and according to ΠH. We call Em =
{e0, ..., em} the set of examples selected up to the iteration m. The version space
Vm is the set of hypotheses H ∈ H consistent with Em, therefore Vm ⊂ H.
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3.2 Meta-Interpretive Learning (MIL)

MIL is a form of ILP [22,24]. The learner is given a set of examples E and a back-
ground knowledge B composed of a set of Prolog definitions Bp and metarules
M such that B = Bp ∪ M . The goal is to generate a hypothesis H such that
B,H |= E. The proof is based upon an adapted Prolog meta-interpreter. It first
attempts to prove the examples considered deductively. Failing this, it unifies the
head of a metarule with the goal, and saves the resulting meta-substitution. The
body and then the other examples are similarly proved. The meta-substitutions
recovered for each successful proofs are saved and can be used into further proofs
by substituting them into their corresponding metarules. For example, the first
clause of the learned hypothesis on Fig. 1 f(A,B):-f1(A,C),grab(C,B). has
been derived from the metarule chain rule detailed in Fig. 2a and by applying
the meta-substitution [f/2,f1/2,grab/2].

Two key features of MIL are that it supports predicate invention and the
learning of recursive programs. The former enables decomposition of the learned
logic program into new sub-actions. The latter allows to learn more general
programs and with shorter lengths. Both makes MIL well suited for learning
strategies.

The choice of metarules induces a declarative bias on the hypothesis space
since it determines the structure of learnable programs: an appropriate choice
helps minimising the number of clauses in the consistent hypotheses [7]. Also, the
use of higher-order Abstractions supports learning more compact programs [9].
We focus in this work on learning logic programs built from the metarules chain
rule, precondition and postcondition, whose description is available on the Fig. 2a.
Indeed, this set of metarules is enough to learn the class of dyadic logic pro-
grams investigated in this paper. The first experiment tackles the task of learn-
ing regular grammars, and metarules for finite state acceptors can be expressed
with chain rule and postcondition only, as shown on Fig. 2b. The second exper-
iment considers the task of learning agent strategies. Fluents are treated as
monadic predicates which apply to a situation, while actions are dyadic pred-
icates which transform one situation to another. We will use MetagolAI which
supports Abstractions and Inventions [9]. We use the two abstractions until/4
and ifthenelse/5 (Fig. 2b) to reduce the complexity of the learned programs:
until/4 represents a recursive call to the action Ac while some condition Cond
is not fulfilled and ifthenelse/5 expresses a choice between the actions Then and
Else based upon the realisation of the condition Cond. Similarly, these Abstrac-
tions can be expressed with the chain rule, precondition and postcondition only
as shown on the Fig. 2b.

3.3 Complexity of an Hypothesis

The hypotheses generated with MIL differ by their complexity. We distinguish
two notions of complexity for a logic program H. The textual complexity relies on
Occam’s principle and represents the length l(H) of H measured as its number
of clauses. However, textually smaller programs are not necessarily the more
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Name Metarule

chain rule P (A,B) ← Q(A,C), R(C,B).
precondition P (A,B) ← Q(A), R(A,B).
postcondition P (A,B) ← Q(A,B), R(B).

(a) General metarules

Exp. Name Metarule

1 acceptor Q(A,B) ← eq(A,B), acceptor(B).
delta Q0(A,B) ← zero(A,C), Q1(C,B).

Q0(A,B) ← one(A,C), Q1(C,B).
2 until until(A,B,Cond,Ac) ← Ac(A,B), Cond(B).

until(A,B,Cond,Ac) ← F (A,C), until(C,B,Cond,Ac).
ifthenelse Ifthenelse(A,B,Cond, Then,Else) ← Cond(A), Then(A,B).

Ifthenelse(A,B,Cond, Then,Else) ← Else(A,C), eq(C,B).

(b) Metarules used in the experiments

Fig. 2. Metarules considered: the class of dyadic logic program studied in this work
can be expressed with chain rule, precondition and postcondition only

efficient. The resource complexity r(H) of an agent strategy [6] represents the
amount of resources (eg: energy) consumed by the agent while executing the
strategy, and can be evaluated as the sum of the actions costs in applying H to
transform an initial state into a final state. In the following, we will combine the
textual complexity with the resource complexity to learn efficient strategies in
terms of a global complexity:

c(H) = l(H) + r(H)

3.4 Bayesian Prior Distribution

The preference for hypotheses with lowest complexity is encoded in a prior dis-
tribution which induces a bias over the hypothesis space and favors more efficient
strategies. We consider the framework described in [23]. A Bayesian prior prob-
ability is defined for any H in H from the complexity c(H) as follows and for
1
a =

∑∞
i=1

1
i2 = π2

6 normalisation constant:

ΠH({H | c(H) = k}) =
a

k2

Moreover, given a background knowledge B and a set of examples E, the likeli-
hood of E is:

p(E | B,H) =
{

1 if B,H |= E
0 else

According to Bayes’s theorem, the posterior is then given by:

p(H | B,E) =
ΠH(H)p(E | B,H)

c
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The denominator c is a normalization constant. Therefore, the posterior p(H |
B,E) is proportional to the prior ΠH(H). The MAP hypothesis HMAP is defined
as HMAP = argmax

H
(p(H | B,E)).

3.5 Active Learning

A set of N instances is initially sampled from X . The active learner conducts at
each iteration m + 1 an experiment in which it chooses the next instance em+1

among this set and observes its label returned by an oracle. This information
helps discriminating between the competing hypotheses built as described pre-
viously since it rules out some proportion of the version space Vm that is not
consistent with it. The shrinkage of the hypothesis space is measured by the
ratio ΠH(Vm+1)

ΠH(Vm) . We associate to each sampled instance e a probability pe:

p(e) =
min(ΠH({H ∈ Vm | H(e) = 1}),ΠH({H ∈ Vm | H(e) = 0})

ΠH(Vm)

This value represents the minimal reduction ratio over the version space induced
by the query of the instance e. Moreover, it was noted in [21] that in general,
the optimal query strategy is to select an instance covered by half of the the
version space. Indeed, no matter its true label, it would halve the version space.
Therefore, the query strategy chosen is to select the instance em for which p(e)
is the closest to 1

2 , that is for which the entropy ent(p(e)) is maximal:

em = argmax
e

(ent(p(e))) with ent(p(e)) = −p(e)log(p(e))−(1−p(e))log(1−p(e))

From an information-theory point of view, the expected entropy of p(em) is the
expected information gain from the label of em [15]. In that case, the instance
selected is the most informative from the learner’s point of view, since it is
the most discriminative given the current version space. However, active learn-
ing with entropy based querying strategy can be used with different kind of
hypotheses and therefore is not specific to ILP.

3.6 Learning Protocol

The learning protocol is summarised in the Figs. 3 and 4 and represents how the
learner acquires information. First, a pool of N instances is randomly sampled.
The training set is initialised with one positive instance randomly selected. At
each iteration, a fresh new set of K hypotheses consistent with the examples
of the training set is sampled. The entropy of each instance from the pool is
computed given the set of sampled hypotheses. The instance with maximum
entropy is selected. An oracle provides its label, and it is added to the training
set. This process is resumed until the maximum number of iterations is reached.
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Fig. 3. Diagram of the framework studied: active learning is integrated within the MIL
framework

Inputs: oracle O, N, K, I

1. Sample N instances from the instance space

2. Initialization: randomly select a positive initial instance

3. While the number of experiments is lower than I:

- Sample K hypotheses from the hypotheses space

- Select the instance with maximum entropy

- Query its label to the oracle O and add it to the training set

Output: hypothesis H with the lowest complexity from the sampled set

Fig. 4. Pseudo-code of the framework studied

4 Theoretical Analysis

We evaluate the instantaneous expected gain on entropy, which represents the
expected reduction of the hypothesis space at one iteration. We assume that the
target hypothesis H̄ is drawn from H. Each instance e from X is associated a
probability p(e). We consider an arbitrary probability distribution D over X at
some iteration m, that is bounded in [0, 1

2 ].

Lemma 1. A set of N instances {x1, ...xN} is randomly sampled from the
instance space X . The active learner selects the instance xi with maximum
entropy among this sample set of size N . Then, the probability of selecting an
instance with maximal entropy on D is N times the one of a passive learner in
the same conditions.

Proof. Let’s take ε > 0, pε is set to the probability number in [0, 1
2 ] such that

a ε-proportion of the instance space has a probability greater or equal to pε.
Let’s call p(xi) the probability of the instance selected. Then p(xi) < pε if and
only if every instance from the sample set has a probability smaller than pε. The
instances being independently sampled, it can be written as following:

p(p(xi) < pε) = p(p(x1) < pε, ..., p(xN ) < pε) =
N∏

k=1

p(p(xk) < pε) = (1 − ε)N



46 C. Hocquette and S. Muggleton

Then, the probability for an active learner to select an instance with probability
at least pε is, from the binomial theorem:

pactive(p(xi) ≥ pε) = 1 − (1 − ε)N = 1 −
N∑

k=0

(
n

k

)

(−ε)k = Nε − o(ε)

By comparison, the probability for a passive learner to select an instance with
probability at least pε simply is:

ppassive(p(xi) ≥ pε) = ε

Therefore, the probability of selecting an instance with maximal entropy on D
is N times bigger for the active learner.

5 Implementation

5.1 Sampling a Set of Hypotheses

To cope with very large or potentially infinite hypothesis spaces, a set of con-
sistent hypotheses is sampled at each iteration. This sample set is used both to
measure the accuracy and to evaluate the entropies.

We use a process called Regular Sampling [23] which limits the number of
duplicates while maintaining a good sampling efficiency. A set of probability
fractions pi is generated from the first K integers and with the following two
properties: it is evenly distributed in [0, 1] and it is isomorphic to N for K infinite.
Consistent hypotheses are ordered in SLD order within the derivation tree. Sam-
ples are selected from the tree leafs and following the probability fractions gen-
erated. At each node of the tree, the different branches are given equal weights,
and are associated a cumulative posterior probability computed as the sum of
the posterior probabilities of the hypotheses on the left side. Starting from the
top node, we browse through the tree and selects at each node the branch whose
cumulative posterior probability interval [min,max] contains the sampling prob-
ability fraction pi. This latter is then updated as (pi − min)(max − min), and
the process is repeated within the sub-tree selected. At the end, Regular Sam-
pling reproduces sampling without replacement due to the distribution of the
sequence of fractions, and provides a sample set representative of the current
version space. A set of at most K hypotheses is dynamically sampled according
to this process. The first K fractions and corresponding hypotheses are gener-
ated. If all of them are inconsistent with the examples selected so far, a new set
of hypotheses is sampled from the next K natural numbers, and so forth until at
least one consistent hypothesis is returned. After removing potential duplicates,
this sampled set is saved for evaluating the accuracy and the entropies.
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5.2 Computing the Entropies

As a next step, the entropies are computed from the sampled hypotheses. For
every instance initially sampled from the instance space, we compute the propor-
tion of sampled hypotheses that predict a positive label and weight it according
to the hypotheses prior distribution. The entropy is derived from this probabil-
ity. Finally, the instance with the highest entropy is selected. If several instances
reach the maximum, one of them is selected at random.

6 Experiments

6.1 Experimental Hypothesis

This section describes two experiments for evaluating the benefits of Bayesian
Meta-Interpretive Active Learning over the speed of convergence when learning
efficient agent strategies1. Thus, we investigate the following research hypothesis:

Research Hypothesis: Bayesian Meta-Interpretive Active Learning requires a
smaller sample complexity for learning efficient agent strategies.

For the sake of comparison, we consider a passive learner which randomly selects
one instance at each iteration. Therefore, we associate to the previous research
hypothesis the following null hypothesis that we will test:

Null Hypothesis: Bayesian MIL Active Learning can not converge faster
toward efficient strategies than Bayesian MIL Passive learning.

Fig. 5. Example of target hypothesis learned and corresponding FSA, the parity
grammar

1 Code for these experiments available at https://github.com/celinehocquette/
Bayesian-MIL-active-learning.git.

https://github.com/celinehocquette/Bayesian-MIL-active-learning.git
https://github.com/celinehocquette/Bayesian-MIL-active-learning.git
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6.2 Learning Regular Grammars

We learn regular languages, which are equivalent to deterministic Finite State
Automata (FSA). Generally speaking, FSA represent sequences of actions
depending on a sequence of events and an input state. Thus, they consist of
compact ways of representing strategies. We additionally require target gram-
mars to have a generality g(H) = ΠX ({x | H(x) = 1}) between 1

3 and 2
3 such

that the initial probability for an instance to be positive is 1
2 on average. This

also ensures that trivial grammars are not considered. An example of a target
hypothesis and its corresponding automaton are represented on Fig. 5: the parity
grammar accepts any string with an even number of 0.

Materials and Methods. Target grammars are generated with Metagol, from
a set of sequences regularly sampled from Σ∗ and for Σ = {0, 1}. The number
of states n ≥ 3 is generated according to an exponential decay distribution with
mean 4. The generality of the hypothesis returned is measured against a set of
40 newly regularly sampled instances. These steps are repeated until a grammar
with generality in [13 ; 2

3 ] is returned. A new number of states is similarly generated
to bound the search space.

The metarules provided are acceptor/1 and delta/3 described previously in
Fig. 2. The complexity of the hypotheses is set to their length l(H), and the
prior is computed by 1

l(H)2 . For each target grammar, 150 training instances
are initially regularly sampled from Σ∗: a threshold on the probability fraction
used for sampling is randomly generated for each instance, thus their length is
bounded. Another 50 instances are similarly sampled for testing.

At each iteration, 50 hypotheses are regularly sampled. The accuracy is mea-
sured as the average accuracy of all sampled hypotheses over the testing set. The
results presented in the Fig. 7 have been averaged over 50 trials.

6.3 Learning a Bee Strategy

We learn the strategy introduced in section 1 and that describes a bee strategy
for finding pollen following information given by a waggle dance. The target
strategy is represented in the Fig. 6: until the bee reaches the flower, it flies in
the direction given by the waggle dance, and then grabs pollen.

f(A,B):- f2(A,C),grab(C,B).

f2(A,B):- until(A,B,at_flower,f1).

f1(A,B):- ifthenelse(A,B,waggle_east,move_right,move_left).

Target hypothesis

Fig. 6. Target hypothesis describing a bee strategy for finding pollen in an environment
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Materials and Methods. The world is a one-dimensional space of
size 10. The state of the world is described by a list of facts: posi-
tion/1,flower position/1,hive position/1 describe respectively the bee, the flower
and the hive position, waggle dance/1 gives the direction indicated by the wag-
gle dance, energy/1 and weight/1 represent the energy left for the bee and the
weight it carries. Actions are dyadic predicates that modify the state of the
world. The primitive actions are as follows: move right/2, move left/2, grab/2,
they all have a cost of one unit of energy. The metarules used are the chain rule
and two abstractions until/4 and ifthenelse/5 (Fig. 2). For any hypothesis H
with length l(H), the resource complexity r(H) is measured against the exam-
ples selected so far, and the prior of H is defined as 1

l(H)+r(H) . The maximum
length of an hypothesis is set to 3. The hive is located in the middle position of
the environment. A flower is randomly positioned, and a waggle dance indicates
if it is east or west of the hive. In the initial state, the bee is at the hive with no
pollen carried. It has some amount of energy randomly generated between 0 and
30. In the final state, it is on the flower with one or zero unit of pollen carried.
Positive examples are pairs of states for which the task of finding pollen is ful-
filled and with a positive amount of energy in the final state. Negative examples
are pairs of states for which the task is not fulfilled or resulting in a negative
amount of energy in the final state. Training and test sets are respectively made
of 20 and 40 examples, half positive and half negative. The results presented in
the Fig. 8 have been averaged over 20 trials.

6.4 Results and Discussion

The results are presented in Figs. 7 and 8. The learning process takes between
10 min and a couple of hours for the grammar experiment according to the com-
plexity of the target hypothesis, and around a few seconds for each run for
the bee experiment. The entropy (Figs. 7a and 8a) is smaller and less regular
for passive learning, which is above all visible for a small number of iterations
(smaller than 10). In both cases the entropy is globally decreasing as the version
space shrinks. The difference between the two curves represents the gain over the
reduction of the version space. However, the entropy is smaller to 1: the number
of hypotheses is not halved at each iteration as in the ideal case, even for active
learning. The number of sampled hypotheses is represented on Figs. 7b and 8b, it
is decreasing with the number of iterations, eventually converging to one hypoth-
esis. The decay rate gets smaller as the entropy drops, and is greater for active
learning. The complexity of the MAP hypothesis (Fig. 7c and 8c) increases with
the number of iterations both for passive and active learning. Indeed, the search
is conducted such that the least complex hypotheses consistent with the exam-
ples are preferred. Therefore, the prior of the MAP hypotheses is increasing as
the training set grows. Finally, the accuracy (Fig. 7d and 8d) increases, starting
between 0.6 and 0.7 (the default accuracy is 0.5, and the learning process starts
with one positive instance for initialisation). It eventually converges toward 1 for
the bee experiment. The convergence is longer and not guaranteed at every run
for the grammar experiment, since the hypothesis space is bounded: a number of
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(a) Entropy of the instance selected
versus the number of iterations

(b) Number of sampled hypotheses
versus the number of iterations

(c) Complexity of the sampled
hypothesis with highest prior

(d) Accuracy versus the number of
iterations

Fig. 7. Learning a regular grammar with Bayesian MIL: comparison between active
and passive learning; the convergence is faster for active learning.

states maximum is generated before the learning process. Figure 9 compares the
number of queries required to reach some accuracy level for active and passive
learning, it suggests that less iterations are required to achieve good perfor-
mances, and that experimental costs can at least be halved with active learning.
A Mann-Whitney U test indicates that the results are significant at a 0.01 level.

According to Lemma 1, the size N of the pool of instance initially sampled
should be big enough to ensure that instances with high entropy can always
be found. Increasing this number lifts up the entropy of the instance selected,
and therefore accelerate the convergence. The number K of hypotheses sam-
pled should be big enough to ensure that the sample set is representative of
the hypothesis space, and thus relies on the initial size of the version space.
Even though these results seem encouraging, the empirical evaluation has been
performed on a small domain and focuses on artificial problems. We plan to
demonstrate the scalability of this approach on real-world datasets as future
work.
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(a) Entropy of the instance selected
versus the number of iterations

(b) Number of sampled hypotheses
versus the number of iterations

(c) Complexity of the sampled
hypothesis with highest prior

(d) Accuracy versus the number of
iterations

Fig. 8. Learning a bee strategy with Bayesian MIL: comparison between active and
passive learning; the convergence is faster for active learning.

Accuracy Active learning Passive learning
0.75 5 12
0.80 7 15
0.85 11 22

(a) FSA

Accuracy Active learning Passive learning
0.80 2 3
0.90 3 6

(b) Bee experiment

Fig. 9. Number of iterations required to reach some accuracy level for active and
passive learning: experimental costs can be halved with active learning.

7 Conclusion and Future Work

This article extends previous work on Meta-Interpretive Learning by integrating
active learning for learning efficient agent strategies. We study how automated
experimentation can help reducing the experimental costs required to reach some
accuracy level. Mainly, we show over two examples that one can expect to halve
the experimental costs with active learning and compared to passive learning.
We believe that this approach is of interest in several AI domains such as robotics
or agent-based modelling and could have a wide range of applications.
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A limitation of this article is the lack of theoretical bounds on the sample
complexity, which we characterise as future work. We also want to demonstrate
the scalability of this approach by considering real-world datasets. A next step
is to use this framework to uncover novel logic programs instead of known tar-
get hypotheses, to demonstrate that it supports scientific knowledge discovery.
Another future line of work is to improve the sampling process over the instance
space. So far, instances are sampled before the learning. A fresh new sample set
of instances could be generated at each iteration, the sampling distribution being
updated given the knowledge acquired so far. Also, instances could eventually be
synthesised. Next, we want to study other query strategies. Finally, experiments
are so far the observation of a binary output for a particular set-up, which could
be extended to probabilistic observations.
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