
FMUS2: An Efficient Algorithm
to Compute Minimal Unsatisfiable

Subsets

Shaofan Liu and Jie Luo(B)

State Key Laboratory of Software Development Environment,
School of Computer Science and Engineering, Beihang University,

Beijing 100191, China
{shaofanliu,luojie}@nlsde.buaa.edu.cn

Abstract. In the past few years, much attention has been given to the
problem of finding Minimal Unsatisfiable Subsets (MUSes), not only for
its theoretical importance but also for its wide range of practical applica-
tions, including software testing, hardware verification and knowledge-
based validation. In this paper, we propose an algorithm for extract-
ing all MUSes for formulas in the field of propositional logic and the
function-free and equality-free fragment of first-order logic. This algo-
rithm extends earlier work, but some changes have been made and a
number of optimization strategies have been proposed to improve its
efficiency. Experimental results show that our algorithm performs well
on many industrial and generated instances, and the strategies adopted
can indeed improve the efficiency of our algorithm.

Keywords: Minimal unsatisfiable subsets · Heuristic algorithm
Optimization strategy · SAT

1 Introduction

Given an unsatisfiable formula in Conjunctive Normal Form (CNF), a mini-
mal unsatisfiable subset (MUS) is a subset of clauses which is (1) unsatisfiable,
and (2) minimal, which means removing any one of its elements will make the
remaining set satisfiable. Different classes of algorithms have been proposed to
efficiently enumerate all or partial MUSes [1,16,19]. Early algorithms are based
on subset enumeration [3,8]. In these algorithms, the power set of the input is
enumerated in a tree structure and every subset is checked for satisfiability. A
MUS can be easily identified by definition. Another class of algorithms [2,12,17]
relies on the hitting set duality. First, all Minimal Correction Subsets (MCSes)
are computed. Then, all MUSes are obtained by computing minimal hitting sets
of these MCSes. CAMUS [12] is one of the state-of-the-art algorithms for comput-
ing all MUSes in this class. Recently, algorithms (e.g. eMUS/MARCO [11,14])
for partial MUS enumeration were proposed. These algorithms are able to pro-
duce the first MUS quickly and early, and the following MUSes are generally
produced incrementally.
c© Springer Nature Switzerland AG 2018
J. Fleuriot et al. (Eds.): AISC 2018, LNAI 11110, pp. 104–118, 2018.
https://doi.org/10.1007/978-3-319-99957-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99957-9_7&domain=pdf

FMUS2: An Efficient Algorithm to Compute MUSes 105

Most of the current algorithms rely on a SAT solver for checking the satisfi-
ability of clause sets. The advantage is that they can utilize the power of highly
optimized SAT solvers. But they also unavoidably introduce many duplicated
computations. For example, if clause set {1, 2, 3} is checked unsatisfiable, they
should check the satisfiability of {1, 2}, {1, 3}, {2, 3} for determining whether
{1, 2, 3} is indeed a MUS or not. Although many optimizations (e.g. using the
hitting set duality) for these algorithms are proposed to reduce the number of
SAT solver calls, there are still many duplicated computations. And when there
are a larger number of MUSes in the input, the number of SAT solver calls will be
enormous and the time used for duplicated computations will also be obviously
large, which will cause a decrease in efficiency.

For the consideration of the shortcoming described above for those algorithms
which are based on SAT solvers, we have adopted another approach for enumer-
ating MUSes. This paper extends our earlier work [20] on computing MUSes for
a decidable fragment of First-Order Formulas (FOL), and its main contributions
can be summarized as follows. First, in contrast to most approaches which make
use of variable assignments or an external SAT-solver to check satisfiability, this
paper proposes a “decompose-merge” algorithm inspired by the process of logi-
cal deduction in belief revision [10,13]. It first decomposes clauses of the given
formula into literals to easily identify all inconsistent relations between them,
and then assembles all literals back to the original clauses to reveal the minimal
inconsistent relations among them. Second, the proposed algorithm uses unifi-
cation to accomplish “general instantiation”. In other words, instead of instan-
tiating all variables by all feasible values, a most general inconsistent subset is
used to represent a class of instances which are equivalent under the more gen-
eral relation, which can avoid generating of excessive instances and reduce the
searching space. Another contribution of the paper is the optimization strategies
used to improve the efficiency of our algorithm. Experimental results show that
our algorithm is competitive and has the potential to be even better.

2 Preliminaries

This paper focuses on the function-free and equality-free fragment of first-order
logic (FEF for short). Satisfiability of formulae from the FEF fragment is decid-
able, because it is a special case of effectively propositional logic (EPR), also
known as the Bernays-Schönfinkel class [15] which is proved to be decidable.
Hence it is feasible to design an algorithm to compute all MUSes in the FEF
fragment.

Formulas in FEF are represented in CNF. That is, a CNF formula is a con-
junction (AND, ∧) of one or more clauses, and each clause is a disjunction (OR,
∨) of one or more literals. A literal is an atomic formula or its negation (NOT,
¬). The syntax is shown below.

F ::= C1 ∧ · · · ∧ Cn

Ci ::= L1 ∨ · · · ∨ Lmi

Lj ::= A | ¬A

106 S. Liu and J. Luo

Following the convention of many other papers (e.g. [4,7]), a CNF formula
is treated as a (finite) set of clauses.

Here is an example formula in the FEF fragment.

Example 1. The uppercase letter X denotes a variable, while the lowercase letter
a and b denote constants.

F = (
C1

A(a)) ∧ (
C2

¬A(X) ∨ B(X)) ∧ (
C3

¬B(b)) ∧ (
C4

¬B(a))

3 Algorithm for Computing All MUSes

In this section, we will give an overview of the proposed FMUS2 algorithm for
computing all MUSes for formulas in the FEF fragment, which is an improved
version of our previous FMUS algorithm [20].

Both FMUS2 and FMUS adopt a constructive “decompose-merge” approach
to compute MUSes. First, the clauses of the given formula are decomposed into
literals and inconsistent pairs of decomposed literals are all computed, this is
the “decompose” procedure. Thus, the initial intermediate results are created,
which are sets of literals and indicate the contradictory relations among literals
of all clauses. Then, by iteratively merging these intermediate results into larger
sets, which are still unsatisfiable during the whole process, the original clauses
are restored one by one, this is the “merge” procedure. The merging operation
processes literal by literal and clause by clause. After all the literals are merged
into original clauses, the final results will contain all MUSes of the clauses in the
input formula.

FMUS2 and FMUS both use unification for instantiating clauses with the
most general unifier, but through different approaches.

Definition 1 (Most general unifier). A substitution σ is a most general uni-
fier (MGU) of two literals L1 and L2 if σ unifies them, i.e. (L1, σ) = (L2, σ),
and for any unifier σ′ of these two formulas, there exists a substitution ω such
that σ′ = ω ◦ σ.

For FMUS, MGUs are kept along with the whole procedure. There will
be a MGU for each intermediate result, which indicates how this intermedi-
ate result is unsatisfiable. For example, I = {A(a),¬A(X)[a/X]} is unsatisfi-
able if we substitute the constant a for the variable X. In other words, FMUS
uses MGUs instead of explicit instantiation. The implicit way can cause diffi-
culty for identifying whether two substitutions, which look different, are in fact
equivalent sometimes. For example, if there are I1 = {A(Y),¬A(X)[Y/X]} and
I2 = {A(Z),¬A(X)[Z/X]} among all intermediate results, they are equivalent
when the variables Y and Z are substituted by the same constant a, but they are
different when Y is substituted by a and Z is substituted by b. When the input
formula is complex, the identification will be difficult. Some redundant branches
will arise also because of its implicity.

FMUS2: An Efficient Algorithm to Compute MUSes 107

So for FMUS2, we have tried to adopt a new way to solve this problem. We
choose to explicitly instantiate the original clauses with ground term (i.e. terms
without variables). Before the instantiation, MGUs of decomposed literals are
computed, which will be used to confine the scope of instantiation and reduce
the number of instantiations. For example, if the variable X from ¬A(X) can be
substituted by constants a, b, c but only substitute the constant a for the variable
X can lead to contradiction, there is no need for replacing X with b or c. Thus
the scope of instantiation is confined.

Based on the discussion above, the basic steps of FMUS2 are listed below.

1. Preprocess. For the given CNF formula, FMUS2 first parses and decom-
poses clauses of the CNF formula into literals with labels to indicate their
origin, meanwhile overlapping bound variables are renamed to eliminate name
ambiguity.

2. Find initial contradictions. For each decomposed literal it is checked
whether there is another literal which is contradictory to it. This process
is accomplished by unification to obtain a MGU.

3. Instantiation. If there are variables in the given CNF formula, literals will
be instantiated and the MGUs already found will be used to confine the scope
of instantiation. After instantiation, the previous step of finding initial contra-
dictions will be processed again for these ground literals in newly instantiated
clauses. If there is no variable in the given CNF formula, which means the
formula is a ground formula, there is no need for instantiation.

4. Merge. After all steps above, the core process of FMUS2—the merge pro-
cess begins. Literal instances of the same clause are merged to reconstruct
instances of their original clause according to certain order, which will be
further discussed in Sect. 4.1. The principle for deciding whether two inter-
mediate results can be merged will be discussed in Sect. 4.1 too.

5. Map back. If the original CNF formula is a ground formula, then the result
is all MUSes of the input. But if the original CNF formula contains variables,
one original clause may have many corresponding clause instances. Thus after
all steps above, the instance sets need to be mapped back into unsatisfiable
subsets of the original clause set. Then all MUSes of the input can be obtained
by extracting the minimal ones from the set of all those unsatisfiable subsets.

The pseudo-code for FMUS2 is shown in Algorithm1.
FMUS2 takes a set of clauses (a CNF formula) F as input, and outputs all

MUSes of F . If F is satisfiable, the output will be ∅. Lines 1–4 demonstrate the
process of decomposing clauses into literals. Every clause Ci in F is Li

1 ∨ · · · ∨
Li
mi

where mi stands for the number of literals in Ci. Lines 5 enumerates all
inconsistent pairs among decomposed literals to construct M0. Lines 6–9 show,
if F is in the field of first-order logic, all literals will be instantiated and the
initial contradictions set M0 will be computed again for L′.

The loop in lines 10–16 of FMUS2 is the most interesting but bewildering
part. In this loop, we iteratively merge clauses that contain multiple literals.
In each iteration, literals from a certain clause are merged to the original form
and the unsatisfiable subsets that contain these literals are merged to larger

108 S. Liu and J. Luo

Algorithm 1. FMUS2(F)
Input: F as a set of clauses {C1, . . . , Cn}
Output: The set of all MUSes of F
1: for i = 1 to n do
2: Decompose Ci to {Li

1, . . . , L
i
mi

}
3: end for

4: L :=

n⋃

i=1

{Li
1, . . . , L

i
mi

}
5: Find the initial inconsistent set M0 of L
6: if there are variables in L then
7: Instantiate L′ := L
8: Find the inconsistent set M0 of L′

9: end if
10: for i = 1 to n do
11: if mi > 1 then
12: Mi := Merge(i, Mi−1)
13: else
14: Mi := Mi−1

15: end if
16: end for
17: Map instances in Mn back to their corresponding clauses and obtain M ′

n

18: return M ′
n

unsatisfiable sets. Each round of iteration is based on the result of the previous
iteration. To give a clearer explanation, let us suppose that the ith clause (i.e.
Ci) is going to be merged and Mi−1 is the result of the last iteration. So clauses
C1 to Ci−1 have already been merged, and clauses Ci to Cn still appear in the
form of literals. The process of merging the ith clause is shown as Algorithm 2.
Note that when merging, all literals are in propositional logic, which means all
substitutions σ are empty now. So in Algorithm2, we do not use the symbol σ.

In the Merge process, Ni is generated by extracting elements from Mi−1

which have no intersection with literals in Ci (Line 2). Conversely, Si is a set
of mi-tuples that represent all merging options with respect to Ci (Line 3).
The jth item in each tuple (Φi

1, . . . , Φ
i
mi

) is supposed to be an element of Mi−1

that contains literal Li
j . Then M ′

i is constructed through merging all alternative
Φi
1, . . . , Φ

i
mi

(Line 6). As a result, Ni consists of unsatisfiable subsets without
Ci, while M ′

i is formed of unsatisfiable subsets which contain Ci. The operation
of MS() is to obtain those minimal elements under set inclusion. That is, if Θ =
{Θ1, . . . , Θn}, where Θ1, . . . , Θn are different sets, then MS(Θ) = {Θ′ | Θ′ ∈
Θ and there is no Θ′′ ∈ Θ such that Θ′′ ⊂ Θ′}. After all formulas are merged,
we get Mn, the set that contains all MUSes of instances of original clauses.
Finally, by processing the Map Back step that is Algorithm 1 Line 17, all MUSes
are extracted.

Since the input set consists of finite clauses, and the number of intermediate
results generated during the procedure of FMUS2 is also finite, FMUS2 must

FMUS2: An Efficient Algorithm to Compute MUSes 109

Algorithm 2. Merge(i,Mi−1)
Input: the set of all MUSes after merging i − 1 clauses of F
Output: the set of all MUSes after merging i clauses of F
1: M

′
i := ∅

2: Ni := {φ | φ ∈ Mi−1 and φ ∩ {Li
1, . . . , L

i
mi

} = ∅}
3: Si := {(Φi

1, . . . , Φ
i
mi

) | Φi
j ∈ Mi−1, L

i
j ∈ Φi

j , j ∈ [1, mi]}
4: for all (Φi

1, . . . , Φ
i
mi

) ∈ Si do
5: if (Φi

1, . . . , Φ
i
mi

) can merge then

6: M
′
i := M

′
i ∪

{
{Ci} ∪

mi⋃

j=1

(Φi
j − {Li

j})

}

7: end if
8: end for
9: Mi := MS(Ni ∪ M

′
i)

10: return Mi

terminate in finite steps. The output of FMUS2 will be the set which consists of
all MUSes of the input. Besides, FMUS2 can be altered to a partial MUS enu-
merating algorithm by simply outputting all MUSes newly found after merging
every clause. This is based on the fact that if there is a MUS {1, 3} after merging
clauses 1 to 3, {1, 3} is also a MUS of the whole set of clauses 1 to n, where
n ≥ 3.

4 Optimization Strategies

In this section, we will discuss some optimization strategies used to improve the
performance of FMUS2. The strategies can be divided into two categories. One
is concerned with the order used in the merging procedure, and the other is
concerned with pruning, i.e. reducing the number of intermediate results.

4.1 Merging Strategies

For FMUS2, the merging procedure is the most important and time-consuming
part. Though different orders of merging do not affect the correctness of the
algorithm, they do affect the number of intermediate results significantly. Thus
the efficiency of the algorithm will be affected. A good order may solve an input
rapidly while a bad order may timeout for the same input. We propose a simple
heuristic merging strategy to determine the merging order.

The heuristic merging strategy is based on the theoretical maximum number
M(C) of intermediate results for each clause C when it is the first to merge.
In detail, M(Ci) =

∏mi

j=1 ni
j . The mi denotes the number of literals of Ci, and

the numbers of contradictory literals of Ci
1, · · · , Ci

mi
are ni

1, · · · , ni
mi

. In order
to rein in the potentially exponential growth of intermediate results as much
as possible, before merging, M(Ci) will be calculated for every clause and then
arranged from least to most which is the merging order. For the consideration of

110 S. Liu and J. Luo

comparison, a completely opposite order and a random order are implemented
as contrast strategies.

Except for deciding the order of merging, the heuristic strategy will also
renumber the clauses opposite to the merging order. The reasons are as follows.

While merging, we should decide whether two intermediate results can be
merged. The principle is that, when merging clause i, if two intermediate results
contains two different literals that come from the same clause j(j 	= i) separately,
they can not be merged. If they are merged, the unsatisfiability of the newly
generated intermediate result can not be maintained.

Example 2. Considering

F = {1.1x1 ∨ 1.2
x2,

2.1¬x1 ∨ 2.2¬x2}.

The x.y labels on the top of literals are identifiers. The x denotes the clause
number which this literal belongs to, and the y denotes the literal number in
clause. In particular, the x.0 label denotes the whole x-th clause.

It is obvious that F is satisfiable. Before merging, there are two interme-
diate results, I1 = {1.1x1,

2.1¬x1} and I2 = {1.2x2,
2.2¬x2}. According to the princi-

ple above, I1 and I2 can not be merged. If they are merged, the result is

I3 = { 1.0
x1 ∨ x2,

2.0¬x1 ∨ ¬x2}, which is incorrect, in other words, satisfiable.

Because we should check whether two intermediate results can be merged, we
should traverse and check all possible clauses, for which one or more literals are
contained in these two intermediate results. The larger the M(C) for a clause is,
the more likely different literals of this clause will be contained in two different
intermediate results. Thus when merging two intermediate results, the clause for
which one or more literals are contained in these two intermediate results and
M(C) is larger, will be checked first.

We give an example to show how the merging strategy works and why we
renumber the clauses opposite to the merging order.

Example 3. Considering

F = {1.1x1 ∨ 1.2¬x4,
2.1
x4 ∨ 2.2¬x3 ∨ 2.3

x2,
3.1¬x1 ∨ 3.2

x2 ∨ 3.3
x3,

4.1¬x2 ∨ 4.2
x4,

5.0¬x1}.

F is satisfiable. Before merging, there are 7 intermediate results I1 to I7.

I1 = {1.1x1,
3.1¬x1}, I2 = {1.1x1,

5.0¬x1},

I3 = { 1.2¬x4,
2.1
x4}, I4 = { 1.2¬x4,

4.2
x4},

I5 = { 2.2¬x3,
3.3
x3}, I6 = {2.3x2,

4.1¬x2}, I7 = {3.2x2,
4.1¬x2}.

Because C5 is a clause with only one literal, we just need to compute M(C1) to
M(C4).

M(C1) = n1
1 × n1

2 = 2 × 2 = 4,
M(C2) = n2

1 × n2
2 × n2

3 = 1 × 1 × 1 = 1,
M(C3) = n3

1 × n3
2 × n3

3 = 1 × 1 × 1 = 1,
M(C4) = n4

1 × n4
2 = 2 × 1 = 2.

FMUS2: An Efficient Algorithm to Compute MUSes 111

Thus the merging order is 2, 3, 4, 1.

After merging C2, we will get I8 = { 1.2¬x4,
2.0

x4 ∨ ¬x3 ∨ x2,
3.3
x3,

4.1¬x2}. And the
set of all intermediate results is Γ = {I1, I2, I4, I7, I8}.

Then we will merge C3. I1, I7 and I8 involve L3
1, L3

2 and L3
3 separately. First

we get I9 = {1.1x1,
3.1¬x1,

3.2
x2,

4.1¬x2} by merging I1 and I7. Then we try to merge I8
and I9. Because there are literals of C1 and C4 in I8 and I9, we should check
whether I8 and I9 can be merged. Because M(C1) is larger than M(C4), we
first check literals of C1. I8 contains L1

2 and I9 contains L1
1, thus they can not

be merged. I8 and I9 will be discarded. The remaining Γ = {I2, I4}.
If we do not check opposite to the merging order, we could first check literals

of C4, and we will see that I8 and I9 both contain L4
1. Then we should also check

literals of C1. As a result, a useless check is processed.
The remaining I2 and I4 can be merged, but there is no another intermediate

result contains L4
1. Thus no MUS is found, and the original F is satisfiable.

4.2 Pruning Strategies

Two strategies are applied to prune the search space of MUSes, i.e., eliminate
useless intermediate results. The core of these two strategies is keeping every
intermediate result I minimal, in other words, I is not a superset of any other
intermediate result I2 or any already obtained MUS. If I is a superset of a
MUS, it is obvious that I can never be merged (expanded) to a MUS. If I is
a superset of another intermediate result I2, for any larger intermediate result
I ′ that contains I by merging it with some other intermediate result I3, I4, . . . ,
there will be another I ′

2 that contains I2 by merging it with the same I3, I4,
So I ′ is not minimal, and so it cannot be a MUS.

Strategy 1 focuses on eliminating useless intermediate results after merging
every literal. The merging operation processes literal by literal and clause by
clause. After merging every literal, each newly generated intermediate result will
be checked whether it is a superset of any other intermediate result that is not
used while merging this literal. And after merging every clause, each remaining
newly generated intermediate result will be checked whether it is a superset of
any already obtained MUS.

The ideal situation is that no useless intermediate result will be generated.
But Strategy 1 cannot prevent the appearance of useless intermediate results. It
can only discard them after their appearance. Though it can benefit the following
merging steps, time and space are spent to generate the useless intermediate
results and check whether they are useless. So we propose the next strategy to
partly prevent the appearance of useless intermediate results.

Strategy 2 is recording an affirmative propositions set and a negative proposi-
tions set for every intermediate result, and then these sets will be used to decide
whether two intermediate results can merge. For every intermediate result, its
affirmative propositions set is a set that contains every single affirmative propo-
sition which belongs to this intermediate result, and its negative propositions
set is a set that contains every single negative proposition which belongs to this

112 S. Liu and J. Luo

intermediate result. The single proposition means proposition contained in this
intermediate result, and not the whole clause which this proposition belongs to
is contained in this intermediate result.

While merging, the intersection of two intermediate results’ affirmative
propositions sets P ′ and the intersection of two intermediate results’ negative
propositions sets N ′ will be computed first. Then, we will find literals contained
in both intermediate results, and remove their corresponding propositions in P ′

or N ′. Finally, if P ′ and N ′ are both ∅, these two intermediate results can be
merged. If not, these two intermediate results can not be merged.

P ′ contains propositions in these two intermediate results’ affirmative propo-
sitions sets both. If it is not empty, it means there are propositions with the same
name but coming from different clauses, i.e., duplicate propositions. If we merge
these two intermediate results and get a new intermediate result I, I cannot be
minimal. Because there are duplicate propositions in I, we at least can remove
one duplicate proposition without changing the unsatisfiability of I.

Example 4 shows how Strategy 2 works.

Example 4.

F = (
1.1
x1 ∨ 1.2

x2) ∧ (
2.1¬x1 ∨ 2.2¬x2) ∧ (

3.1¬x3 ∨ 3.2¬x2) ∧ (
4.1¬x3 ∨ 4.2

x2) ∧ (
5.0
x3).

After merging the first clause, we get an intermediate result I1 with its affir-
mative propositions set ∅ and its negative propositions set {¬x1,¬x2}.

I1 = { 1.0
x1 ∨ x2,

2.1¬x1,
3.2¬x2}.

And then, we merge the second clause, i.e., merge I1 and I2 = { 2.2¬x2,
4.2
x2}.

The affirmative propositions set of I2 is {x2}, and the negative propositions set
is {¬x2}. The proposition ¬x2 appears in both I1 and I2, but it comes from
different literals of different clauses (clause 2 and clause 3). So we choose not to
merge I1 and I2.

If we merge I1 and I2, we will get an intermediate result I3.

I3 = { 1.0
x1 ∨ x2,

2.0¬x1 ∨ ¬x2,
3.2¬x2,

4.2
x2}.

I3 is a superset of another intermediate result I4 = { 3.2¬x2,
4.2
x2}. According to the

reason described above, I3 will be discarded.
As a result, this strategy prevents I1 and I2 merging, instead of merging and

discarding the newly generated intermediate result. Because it will not carry out
the merging and discarding process, which needs to traverse the intermediate
result set to decide whether one should be discarded or not, runtime will be
saved. When the original formula becomes complex, the situation similar to
Example 4 will occur many times. So a lot of runtime will be saved.

FMUS2: An Efficient Algorithm to Compute MUSes 113

5 Experiments

In this section, a series of experiments are performed to evaluate the general
performance of FMUS2 by comparing it with the state-of-the-art algorithms
and verify the effectiveness of the heuristic merging and pruning strategies we
adopted. All experiments were performed on a Ubuntu 16.04 LTS Linux server
with an Intel Xeon E5-4607 v2 2.6 GHz CPU and 15 GB main memory. Timeout
is set to 300 s for all test cases. For timeout instances, we use the Penalized
Average Runtime (PAR-10) [9], where a timeout counts 10 times the time limit.
That is, the runtime for every timeout instance is set to 3000 s.

5.1 Performance

As mentioned earlier, the FEF fragment is a special case of EPR. Since many
implementations of MUS enumeration algorithms only deal with propositional
logic, we shall first evaluate the performance of FMUS2 on FEF by comparing
its performance on industrial benchmarks with one of the state-of-the-art partial
MUSes enumerators—MARCO [11], which support enumerating MUSes in the
EPR fragment by using Z3 [5] as a SAT-solver. In this experiment, MARCO and
Z3 are both open source and the version of MARCO is 2.0.1. The evaluation
is performed on 100 instances from the EPR division of the TPTP Problem
Library [18]. The majority of instances considered are originally from realistic
problems, including geometry, puzzles, and software verification.

Figure 1 shows the the runtime of FMUS2 and MARCO for each instance.
The x-coordinate represents the number of solved instances, and the y-coordinate

0 20 40 60 80 100
Number of Instances

0.01

0.1

1

10

100
300

A
cc

um
ul

at
iv

e
R

un
tim

e(
s)

MARCO
FMUS2

Fig. 1. Comparing FMUS2 against MARCO on industrial benchmarks.

114 S. Liu and J. Luo

represents the accumulative runtime spent by MARCO or FMUS2 when solv-
ing these instances. The line for FMUS2 is always below the line for MARCO,
which implies that FMUS2 is faster than MARCO in general for these instances.
Although FMUS2 does not spend less time than MARCO for every instance, the
accumulative runtime, in other words, the average runtime for FMUS2 is less
than MARCO (the average runtime for FMUS2 and MARCO are 2.230 s and
1.460 s respectively).

The experimental results also reveal that FMUS2 is still not optimized
enough to compete with methods which utilize highly optimized SAT-solvers
when dealing with large-scale formula sets which have complex inconsistency
relations between clauses of formulas, i.e. hard instances for FMUS2.

Since FMUS2 is a complete MUSes enumeration algorithm, we shall do a
further comparison with one of the state-of-the-art complete MUSes enumera-
tion algorithm CAMUS [12]. Because CAMUS only supports propositional logic
and the above industrial instances for comparing with MARCO are relatively
scattered and smaller in their scales, randomly generated benchmarks in propo-
sitional logic are adopted to further comparison on large-scale instances. Note
that in this experiment, MARCO uses its built-in SAT solver—MiniSAT [6].

The randomly generated benchmarks are divided into classes such that all
instances in each class have the same number of formulas, which can be found in
https://github.com/luojie-sklsde/MUS Random Benchmarks. Each class con-
tains 200 unsatisfiable formulas, denoted as the form “musx-y”, where the first
number x stands for the number of clauses of instances in this class and the
second number y stands for the average number of literals in each instance. For
example, class “mus400-798” is composed of instances (formulas) containing 400
clauses, where the average number of literals in these instances is 798. Although
the number of clauses (i.e. x) is fixed in each class, the number of literals within
clauses can vary (so y is an average number), which allows us to simulate as
many cases as possible.

Table 1 shows experimental results of CAMUS, MARCO and FMUS2 on the
randomly generated benchmarks.

Table 1. Comparing among CAMUS, MARCO and FMUS2

Benchmarks CAMUS MARCO FMUS2

NTO Nbest TAve NTO Nbest TAve NTO Nbest TAve

mus100-200 25 10 379.344 12 0 183.483 3 187 45.798

mus200-401 121 0 1822.921 76 0 1150.496 16 184 242.506

mus400-798 194 0 2911.875 182 0 2736.391 34 166 511.340

mus600-1200 200 0 3000 200 0 3000 56 144 841.770

mus800-1601 200 0 3000 200 0 3000 64 136 961.467

mus1000-2002 200 0 3000 200 0 3000 69 131 1035.995

https://github.com/luojie-sklsde/MUS_Random_Benchmarks

FMUS2: An Efficient Algorithm to Compute MUSes 115

The first column of Table 1 are different classes of the benchmarks, followed
by statistical runtime data for CAMUS, MARCO and FMUS2. NTO is the num-
ber of instances which are timeout after 300s, Nbest is the number of instances
which get the best runtime among the 3 approaches, and TAve is the average
runtime (in seconds) of all instances. The bold number in each row represents
the best results among different approaches. It is clear that FMUS2 outperforms
CAMUS and MARCO in all three numbers, i.e. NTO, Nbest, and TAve. FMUS2
has the smallest number of timeout instances in all six classes and gets the best
runtime for most of instances in each class of benchmarks, which means the
performance of FMUS2 is stable among different instances. Based on a detailed
analysis of the experimental data, we find that FMUS2 is especially efficient
when dealing with instances that contain multiple MUSes, which are exactly the
ideal targeting input of the MUSes enumeration problem.

The performance experiment shows the competitive power of FMUS2, that
is, FMUS2 can perform better than the state-of-the-art algorithms MARCO and
CAMUS in some industrial and randomly generated cases.

5.2 Effectiveness of the Optimization Strategies

To evaluate whether the strategies are effective or not, we carried out a series of
experiments. Table 2 shows experimental results of FMUS2 and FMUS on the
same benchmarks with Table 1.

Table 2. Comparing FMUS2 with FMUS on randomly generated benchmarks

Benchmarks FMUS FMUS2

NTO Nbest TAve NTO Nbest TAve

mus100-200 3 2 46.713 3 195 45.798

mus200-401 19 3 287.875 16 182 242.506

mus400-798 36 0 542.194 34 166 511.340

mus600-1200 57 1 860.813 56 143 841.770

mus800-1601 68 1 1026.261 64 135 961.467

mus1000-2002 71 0 1070.605 69 131 1035.995

The result shows that these optimizations adopted are effective in this ran-
domly generated benchmark.

To evaluate the impact of different merging strategies on the performance of
the proposed FMUS2 algorithm, a series of experiments are performed on the
industrial benchmarks from TPTP Problem Library.

Table 3 shows statistical data of experimental results. Note that the contrast
merging strategy adopts an opposite strategy to the heuristic merging strat-
egy. In Table 3, NTO, TAve are the same as Table 1, while T ′

Ave is the average
runtime of all instances which are solved in time. From the average runtime
data, we can see that different merging strategies greatly affect the performance

116 S. Liu and J. Luo

Table 3. Statistical data for different merging strategies on industrial benchmarks

Benchmarks Random Heuristic Contrast

NTO TAve T ′
Ave NTO TAve T ′

Ave NTO TAve T ′
Ave

TPTP instances (100) 6 185.685 6.047 0 1.460 1.460 9 271.479 1.626

of our algorithm. It is obvious that the heuristic strategy yields the best per-
formance overall, especially obvious when timeout instances are also counted.
Hence, adopting the proposed heuristic merging strategy greatly improves the
performance of FMUS2 on practical problems in general, which we view as a
reasonable metric of its effectiveness.

However, there are still some cases where the heuristic merging strategy
is beaten by the random strategy, and the runtime for some instances can be
shortened, which means there is still a lot of potential for further optimizing of
the heuristic merging strategy. Figure 2 demonstrates the change of the numbers
of intermediate results for different merge orders while running the “HWV003-
3” instance from TPTP. The x-axis represents the number of merged clauses,
and the y-axis represents the number of intermediate results during each after
each merging. More specifically, there are 61 clauses that need to be merged in
this test case, thus the y-value becomes zero when the x-value increases to 61,
indicating the end of the merging. The line labeled with order3 represents the
status of our current heuristic merging strategy. On the one hand, a slight change
to order3 can result in order4, which maintains a large amount of intermediate
results from merging 26 clauses to merging 54 clauses such that the runtime
increases dramatically. Further change to order4 can lead to the merge order
order5, which triggers a visible explosion of intermediate results and run out

0 10 20 30 40 50 61
The Number of Merged Clauses

0

0.5

1

1.5

2.1

Th
e

N
um

be
r o

f I
nt

er
m

ed
ia

te
 R

es
ul

ts 104

order1
order2
order3
order4
order5

Fig. 2. Variation trends of intermediate results for different merge orders.

FMUS2: An Efficient Algorithm to Compute MUSes 117

of memory at the end. This is one of main reasons for the timeout of some
instances in these benchmarks. On the other hand, changes to order3 may also
lead to merge orders such as order2 and order1 which is the best merge order
we obtained for the HWV003-3 instance. Hence there is still much room left
for the optimization of the merging strategy, especially when dealing with hard
instances for FMUS2.

6 Conclusions

In this paper, we proposed a “decompose-merge” algorithm to enumerate all
minimal unsatisfiable subsets for a CNF formula in the field of propositional
logic and FEF fragment of first-order logic. A heuristic merging strategy and
two pruning strategies are adopted to improve the performance of the algo-
rithm. Experimental results show that our algorithm FMUS2 is competitive,
and can perform better on some industrial and randomly generated cases when
compared with two other state-of-the-art MUS enumerating algorithms. And the
optimization strategies adopted has proved to be effective.

For future work, further improvements to FMUS2 will be one of our focuses.
As mentioned above, there are still some weaknesses in FMUS2 when dealing
with hard instances, i.e. large-scale formulas which have a complex inconsistency
relations between clauses. The experimental results also show that the current
heuristic merging strategy can be optimized. There is still a lot of room to
improve. For instance, it would be interesting to explore better merging strategies
and techniques to intelligently select a strategy according to the characteristics
of the input set. Besides, we would like to investigate whether our algorithm can
be applied to larger fragments of first-order logic in future work.

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China (Grand No. 61502022) and State Key Laboratory of Software Develop-
ment Environment (Grand No. SKLSDE-2017ZX-17).

References

1. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In: Quim-
per, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 35–44. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33954-2 3

2. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30557-6 14

3. de la Banda, M.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable
subsets. In: Proceedings of the 5th ACM SIGPLAN International Conference on
Principles and Practice of Declaritive Programming, pp. 32–43. ACM (2003)

4. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

https://doi.org/10.1007/978-3-319-33954-2_3
https://doi.org/10.1007/978-3-540-30557-6_14
https://doi.org/10.1007/978-3-540-30557-6_14

118 S. Liu and J. Luo

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

7. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. Found.
Artifi. Intell. 3, 89–134 (2008)

8. Hou, A.: A theory of measurement in diagnosis from first principles. Artif. Intell.
65(2), 281–328 (1994)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the empirical evaluation of
competing algorithm designs. Ann. Math. Artif. Intell. 60(1–2), 65–89 (2010)

10. Li, W., Shen, N., Wang, J.: R-calculus: a logical approach for knowledge base
maintenance. Int. J. Artif. Intell. Tools 4(01n02), 177–200 (1995)

11. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

12. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)

13. Luo, J., Li, W.: R-calculus without the cut rule. Sci. China Inf. Sci. 54(12), 2530–
2543 (2011)

14. Previti, A., Marques-Silva, J.: Partial MUS enumeration. In: AAAI (2013)
15. Ramsey, F.P.: On a problem of formal logic. In: Gessel, I., Rota, G.C. (eds.) Classic

Papers in Combinatorics. MBC, pp. 1–24. Springer, Boston (2009). https://doi.
org/10.1007/978-0-8176-4842-8 1

16. Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable
cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0 15

17. Stern, R.T., Kalech, M., Feldman, A., Provan, G.M.: Exploring the duality in
conflict-directed model-based diagnosis. In: AAAI, vol. 12, pp. 828–834 (2012)

18. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 59(4), 483–502 (2017)

19. Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal unsat-
isfiable subsets. In: European Conference on Artificial Intelligence 2012 (ECAI
2012) (2012)

20. Xie, H., Luo, J.: An algorithm to compute minimal unsatisfiable subsets for a decid-
able fragment of first-order formulas. In: 2016 IEEE 28th International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 444–451. IEEE (2016)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-0-8176-4842-8_1
https://doi.org/10.1007/978-0-8176-4842-8_1
https://doi.org/10.1007/978-3-642-21581-0_15

	FMUS2: An Efficient Algorithm to Compute Minimal Unsatisfiable Subsets
	1 Introduction
	2 Preliminaries
	3 Algorithm for Computing All MUSes
	4 Optimization Strategies
	4.1 Merging Strategies
	4.2 Pruning Strategies

	5 Experiments
	5.1 Performance
	5.2 Effectiveness of the Optimization Strategies

	6 Conclusions
	References

