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Sólrún Halla Einarsdóttir1(B), Moa Johansson1(B),
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Abstract. Theory exploration is a technique for automating the dis-
covery of lemmas in formalizations of mathematical theories, using test-
ing and automated proof techniques. Automated theory exploration has
previously been successfully applied to discover lemmas for inductive
theories, about recursive datatypes and functions. We present an exten-
sion of theory exploration to coinductive theories, allowing us to explore
the dual notions of corecursive datatypes and functions. This required
development of new methods for testing infinite values, and for proof
automation. Our work has been implemented in the Hipster system, a
theory exploration tool for the proof assistant Isabelle/HOL.

1 Introduction

Coinduction and corecursion are dual notions to induction and recursion that
admit the specification of potentially infinite structures and functions that oper-
ate on them. Their many applications in theoretical computer science include,
to name a few: defining and verifying behavioral equivalence of processes [21],
Hoare logic for non-terminating programs [23], total functional programming in
the presence of non-termination [29], and accounting for lazy data in functional
languages like Haskell. Recently, support for coinduction in proof assistants has
matured significantly, with powerful definitional packages and reasoning tools
[1,5,6].

In this paper, we extend a technique, called theory exploration [7], and present
a tool that automatically discovers and proves equational properties about core-
cursive functions in the proof assistant Isabelle/HOL [24], a widely used inter-
active theorem proving system featuring both automated and interactive proof
techniques. The purpose of theory exploration is to automate the discovery of
basic lemmas when, for instance, developing a new theory. The human user can
then focus on inventing and proving more complex conjectures, using the auto-
matically generated background lemmas. As an appetizer, consider this simple
example of an Isabelle theory:

codatatype (sset: ’a) Stream = SCons (shd: ’a) (stl: "’a Stream")
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primcorec smap :: "(’a ⇒ ’b) ⇒ ’a Stream ⇒ ’b Stream" where
"smap f xs = SCons (f (shd xs)) (smap f (stl xs))"

primcorec siterate :: "(’a ⇒ ’a) ⇒ ’a ⇒ ’a Stream" where
"siterate f a = SCons a (siterate f (f a))"

cohipster smap siterate — tell Hipster to explore these functions

The theory above defines the codatatype Stream of infinite sequences, the func-
tion smap that maps a function onto every element of a stream, and the function
siterate that given a function f and an initial element x generates the sequence
f(x), f(f(x)), f(f(f(x))), . . . . The verbatim output of our tool, Hipster, is as
follows:

lemma lemma_a [thy_expl]: "smap y (siterate y z) = siterate y (y z)"

by(coinduction arbitrary: y z rule: Stream.coinduct_strong)

auto

lemma lemma_aa [thy_expl]: "SCons (y z) (smap y x2) = smap y (SCons

z x2)"

by(coinduction arbitrary: x2 y z rule: Stream.coinduct_strong)

simp

lemma lemma_ab [thy_expl]: "smap z (SCons y (siterate z x2)) = SCons

(z y) (siterate z (z x2))"

by(coinduction arbitrary: x2 y z rule: Stream.coinduct_strong)

(simp add: lemma_a)

This Isabelle snippet, when pasted into the theory (simply by a mouse-click),
proves the discovered laws about smap and siterate by coinduction. The first
lemma, lemma a , may appear familiar as it describes the map-iterate property
[3]. The whole process of generation and proof took Hipster less than 10 s on
a regular laptop computer. Moreover, the generated proofs are formal proofs,
machine-checked down to the axioms of higher-order logic.

Note that at no point did the user need to supply the conjectures or proofs.
Hipster uses a specialized conjecture discovery subsystem, called QuickSpec [28],
which heuristically generates type-correct terms and uses automated testing to
invent interesting candidate lemmas. We give a brief introduction to QuickSpec
in Sect. 2, along with a lightweight introduction to coinduction.

Earlier versions of Hipster [14,16] supported only induction and recursive
datatypes. The main difference when we also treat codatatypes is in the test-
ing phase, when conjectures are generated. Naively testing and evaluating terms
for equivalence cannot be done in the same way as for regular datatypes, since
instances of a codatatype like Stream are infinite, so testing would not termi-
nate. Our solution to this conundrum is that for testing purposes, we generate
step-indexed observer functions for the codatatypes under consideration. These
operate on a copy of the codatatype with an extra nullary constructor, that we
return when the step-index reaches 0. The step-indexing guarantees that testing
will terminate. Section 3 describes this in more detail, along with our approach
to coinductive proof exploration.
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We evaluate our tool by testing it on several examples of codatatypes and
corecursive functions in Sect. 5. Results are encouraging: we can discover and
prove many well-known and useful properties. Similar theory exploration sys-
tems can be found in the literature [9,15,20,22], but ours is the first system
capable of discovering and proving properties of coinductive types and corecur-
sive functions. We integrate inductive and coinductive reasoning, so that in a
theory featuring both recursion and corecursion, both inductive and coinductive
proofs can be discovered even when one depends on the other. The source code
and examples are available online.1

2 Background

We give a brief introduction of coinduction for readers unfamiliar with the con-
cept, followed by an introduction to the proof assistant Isabelle/HOL and the
Hipster theory exploration system.

Coinduction. Coinduction is the mathematical dual of structural induction, rely-
ing on deconstructing structures top-down instead of constructing them bottom-
up as induction does. Consider lists with elements of type a, defined by: List a
= Nil | Cons a (List a).
The inductive reading of this declaration is that it specifies everything that can
be constructed from the empty list Nil in a finite number of steps, by using the
Cons constructor to add elements. The coinductive reading is that it specifies
everything that is either Nil or can be decomposed (“destructed”) into a head
and a tail, where the tail is either Nil or something that can be destructed into
another head and tail, and so on. The latter reading encompasses not only Nil-
terminated lists, but also infinite lists built from Cons only. We say that the first
reading defines a datatype while the second defines a codatatype.

Since codata need not bottom out in a base case, proof by induction does not
apply; instead we resort to the dual notion of coinduction, which allows us to
prove equalities between elements x, y of a codatatype by exhibiting a candidate
relation R such that x R y and R is closed under destruction. For example, here
is the coinduction principle for the Stream type introduced in Sect. 1:

R s s′ ∀s1, s2
R s1 s2

shd s1 = shd s2 ∧ R (stl s1) (stl s2)
s = s′

In words: to show that s = s′, we must prove that for all pairs s1, s2 related by
R, s1 and s2 have the same heads and R-related tails. Interested readers can
find a more detailed introduction to coinduction in [27] or [13].

1 https://github.com/moajohansson/IsaHipster.

https://github.com/moajohansson/IsaHipster
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Isabelle/HOL. Isabelle/HOL is an interactive proof assistant for higher-order
logic [24]. Users write definitions and proofs in theory files, which are checked
by running them through Isabelle’s small trusted logical kernel to ensure each
step in a proof is correct. More complex proof techniques, called tactics, can
be built up using combinations of basic inference rules from the trusted kernel.
Isabelle is an interactive system, meaning that there are both automated and
semi-automated tactics available. An example of the former is the simplifier,
which performs equational reasoning automatically. An example of the latter is
Isabelle’s (co)induction tactics, which applies a (maybe user given) induction
rule to a subgoal while leaving it to the user how to prove the resulting subgoals.
Sledgehammer is a useful tool in Isabelle which allows outsourcing proofs to
fully automated external first-order (FO) or SMT-solvers [25]. When the external
provers report back, the proof is reconstructed inside Isabelle’s trusted kernel. In
our work on Hipster, we combine Isabelle’s interactive tactics with Sledgehammer
to provide automation for (co)inductive proofs.

Routine 
Reasoning

Hard Reasoning

Isabelle Theory: 
(co)datatypes, (co)functions,  

theorems, lemmas

Conjectures

QuickSpec 
(discovery)

Trivial - 
discard

Fail - retry

Proved 
- keep

QuickCheck 
(testing)

Fig. 1. The architecture of the Hipster system.

Hipster. The architecture of the Hipster system is shown in Fig. 1. Hipster out-
sources conjecture generation to the external tool QuickSpec. QuickSpec gen-
erates type-correct terms in order of size, up to a given limit. At each step, it
evaluates the terms on randomly generated test data, using the property-based
testing tool QuickCheck [8]. Based on the results of testing, terms are divided
into equivalence classes from which equational conjectures are extracted. For a
full description of QuickSpec’s conjecture generation algorithm and its heuristics
we refer the reader to [28]. The conjectures produced by QuickSpec are then read
back into the Isabelle/HOL environment for proof. The conjectures have been
thoroughly tested at this point, so we have quite good reasons to believe they
may actually be true. However, not all of them might be considered interesting
by a human. In particular, statements that have trivial proofs are rarely exciting.
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Hipster therefore takes two reasoning strategies as parameters: routine reasoning
(often just rewriting), and hard reasoning (for instance coinduction). Depending
on the exact configuration of the routine and hard reasoning strategies, we can
tweak Hipster to produce slightly different output: the conjectures that follow
from using only routine reasoning are discarded, while those proved by the hard
reasoning strategy are reported back to the user. Whenever Hipster proves a
lemma, it may use it in subsequent proofs. This means that during exploration,
its automated proof strategies become more powerful as more lemmas are found.
Should some conjecture fail to be proved by either of the proof strategies, it is
also presented to the user, who can try a manual proof.

3 Testing Infinite Structures

Recall from Sect. 2 that Hipster’s conjecture generation subsystem, QuickSpec,
relies on being able to test terms on randomly generated values. When a
codatatype has no finite instances, as in the case of streams, QuickSpec can-
not directly check the equality of any of the generated terms, since that would
take an infinite amount of time due to their infinite size. Thus testing will not
work.

When an Isabelle user invokes Hipster on a coinductive theory, an observer
type and observer function are generated for every type under consideration.
These types and functions ensure that QuickSpec only tests a (randomly cho-
sen) finite prefix of any infinite values, using support for observational equiva-
lence. This allows Hipster to discover lemmas about codatatypes without finite
instances.

Observational Equivalence in QuickSpec. When used interactively through its
Haskell interface, QuickSpec supports observational equivalence to deal with
types that for instance have no finite instances, and thus cannot be directly
compared [28]. Note that in this case, the user must define a function for observ-
ing such a type and state that two values of the type are equivalent if all such
observations make them equal. We have extended this functionality by develop-
ing a method to automatically generate observer functions for the codatatypes
being explored and added it to the interface between Hipster and QuickSpec.

More specifically, observer functions are used as follows: For any type T ,
QuickSpec can be given an observer function of type Obs → T → Res, where Obs
can be any type that QuickSpec can generate random data for, and Res any type
that can be compared for equality. QuickSpec will then include a random value of
type Obs as part of each test case, and will compare values of type T by applying
this observer function using the random value of type Obs and comparing the
resulting values of type Res. For instance, we can define an observer function
for streams:

obsStream :: Int → Stream → List,

where obsStream n s returns a list containing the first n elements of the stream
s. If we supply this observer function to QuickSpec it will generate a random
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integer n for each test case where streams are to be observed, and assume that
two streams are equal if their first n elements are equal in every case.

Generating Observer Functions. For Hipster, we want to relieve the user of hav-
ing to define the observer function by hand, and instead generate it automati-
cally. Our method of generating observer functions is inspired by the Approxima-
tion Lemma [2,12]. Here, a so called approximation function, approx, is defined
in the same way as the recursive identity function for a given type, except that
it has an additional numeric argument which is decremented at each recursive
call. The lemma states that a = b if approx n a = approx n b for all values of n.
For the Stream type introduced in Sect. 1, the approximation function is defined
as:

approx (n + 1) xs = SCons (shd xs) (approx n (stl xs))

The function is undefined for n = 0 and therefore returns a partial structure, for
instance, if zeroes is a stream of zeroes then approx 1 zeroes evaluates to the
partial stream SCons 0 ⊥, where ⊥ represents an undefined value.

To make our solution practical we, instead of using the undefined value ⊥,
generate a new type that has the same structure as the type being observed, but
with an additional nullary constructor. For example, the generated observation
type for a stream is:

OStream a = OSCons a (OStream a) | NullConsStream

We then generate an observer function for a given type T with an observer type
ObsT in the following manner:

obsFunT ::Nat → T → ObsT

obsFunT 0 = NullConsT

obsFunT n t = approx′ n t

where approx′ is like the recursive identity function for T except that it replaces
each constructor occurring in t with the equivalent constructor for ObsT , and
the fuel parameter n is decremented at every recursive call, ensuring we will
only attempt to observe a finite prefix. As an example, an observer function for
streams using the observer type from above is shown below:

obsFunStream ::Nat → Stream a → OStream a

obsFunStream 0 = NullConsStream

obsFunStream n (SCons x xs) = OSCons x (obsFunStream (n − 1) xs)

Some care needs to be taken when decrementing the numeric fuel argument
which determines how much more of the structure should be observed, as using
n − 1 in every step results in testing being too slow for structures with larger
branching factors, such as trees. For now, we use a heuristic measure which
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decrements n to n/#constructors − 1 in each recursive call. For OStream, this is
simply (n − 1), while for e.g. binary trees, defined:

Tree a = TNode a (Tree a) (Tree a)

with an observer type defined:

OTree a = OTNode a (OTree a) (OTree a) | NullConsTree

the fuel counter is decremented to n/2−1 for each branch, as seen in the observer
function definition below:

obsFunTree ::Nat → Tree a → OTree a

obsFunTree 0 = NullConsTree

obsFunStream n (TNode x l r) =
OTNode x (obsFunTree (n/2 − 1) l) (obsFunTree (n/2 − 1) r)

4 Automating Proofs of Coinductive Lemmas

Isabelle/HOL features a built-in coinduction tactic that applies a coinduction
principle to a goal, with the candidate relation instantiated to be the singleton
relation containing the equation in the conclusion. After applying this tactic
the user must decide how to finish the proof after the coinductive step. How-
ever, the ability to automatically prove lemmas without user involvement is
crucial in lemma discovery by automated theory exploration. Therefore we have
extended Hipster with an automated tactic for proving coinductive lemmas. In
order to do this, we must automatically determine the parameters for our call
to Isabelle/HOL’s coinduction tactic, and then automate the subgoal proofs.

Automatically Determining Parameters. Isabelle/HOL’s coinduction tactic has
parameters to set which variables are arbitrary, meaning that they appear uni-
versally quantified in the candidate relation (and hence existentially quantified
in the conclusion of the resulting subgoal). It also has an optional parameter to
specify which coinduction rule to use.

Our default setting is to set all free variables in the current goal as arbitrary.
This yields weaker proof obligations, at the expense of introducing existential
quantifiers in the goal, which is sometimes less automation-friendly since it may
require guessing an instantiation to discharge the goal. Our experience is that
setting at least some variables to arbitrary is necessary for all but the most
trivial of proofs; for the rest, the goal statements are simple enough that the
extra existentials do not cause any difficulty in practice.

The built-in coinduction tactic also has an optional parameter to specify
what coinduction rule should be used for the proof. We must again make a
tradeoff between one that can be applied to prove as wide a range of lemmas
as possible, such as coinduction up-to the codatatype’s companion function [26];
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and one that yields simple and automation-friendly subgoals, such as the (weak)
coinduction principle associated with the datatype.

For reasoning about functions defined with primitive corecursion, we find that
the strong coinduction principle generated by the datatype package works well in
practice. It allows one to close the proof by proving either equality or membership
in the candidate relation. For example, here is the strong coinduction principle
for the Stream type defined in Sect. 1:

R s s′ ∀s1, s2
R s1 s2

shd s1 = shd s2 ∧ (R (stl s1) (stl s2) ∨ stl s1 = stl s2)))
s = s′

Note that the (weak) coinduction principle shown in Sect. 2 differs by omit-
ting the right-hand side stl s1 = stl s2 of the disjunction. The extra disjunction
is lightweight enough not to confuse the simplifier, and the equality has very
important consequences: it allows equations that have previously been proven
by coinduction to be re-used in the proof, without having to include them in the
candidate relation. This allows us to automatically prove, e.g., the associativity
of append on lazy lists as seen in Sect. 5.1.

The recent AmiCo definitional package by Blanchette et al. [4] allows a form
of non-primitive corecursion where corecursive calls may be guarded by friends
in addition to constructors. A friend is a function that consumes at most one
constructor to produce a constructor. For functions with friend-guarded core-
cursive calls, the strong coinduction rule often results in an unsuccessful proof
attempt: terms on the shape required by the candidate relation tend to occur
as arguments to friends rather than at top-level. Fortunately, the AmiCo pack-
age generates a coinduction principle up-to friendly contexts covering precisely
this use case. Hence we prioritize such coinduction principles over the strong
coinduction principle whenever they are relevant, i.e., whenever the goal state
mentions a function symbol defined using non-primitive corecursion.

Proving Subgoals. After applying coinduction, Hipster’s simp_or˙sledgehammer
tactic is applied to the current proof state in an attempt to prove the remaining
subgoals and conclude the proof of the lemma. This tactic first attempts to com-
plete the proof using Isabelle’s automatic simplification procedure simp . If this
does not suffice it uses Isabelle’s automated proof construction tool Sledgeham-
mer [25] to attempt to construct a proof. Since Sledgehammer is quite powerful,
this tactic is sufficient to conclude the proofs of a wide range of lemmas.

Mixed Induction and Coinduction. In practice, theories are neither purely induc-
tive nor purely coinductive—coinductive definitions of datatypes and functions
may use auxiliary inductive definitions, and vice versa. In order to cope with
such theories, it is important that we integrate Hipster’s inductive and coinduc-
tive functionality. For conjecture discovery, this integration comes for free since
Isabelle’s code generator maps both data and codata to identical Haskell code.
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For proof search, we must decide whether to tackle our conjectures using
induction, coinduction or both. For this, we use a simple heuristic that appears
to work well in practice: if the conjecture contains a free variable whose type has
an induction principle, we invoke the inductive proof search procedure; if the
left- and right-hand sides of the conjecture are of a type that has a coinduction
principle, we invoke the coinductive proof search; if both, we try both and keep
the first successful proof attempt. This architecture allows us to find proofs of
inductive lemmas that require coinductive auxiliary lemmas, such as the fact
that append distributes over the to_llist function on finite lists (see Sect. 5).

5 Evaluation and Results

We apply Hipster to several theories of common codatatypes found in the liter-
ature: lazy lists, extended natural numbers, streams, and two kinds of infinite
trees. Our goal is to demonstrate how a user can invoke Hipster to discover use-
ful lemmas in their coinductive theory development, showing that our method
for testing infinite structures, as described in Sect. 3, is effective in discovering
coinductive properties and that our automated coinduction tactic, described in
Sect. 4, is effective in proving those properties.

We restrict each Hipster call to a small number of functions, to explore how
those functions relate to each other, rather than exploring all the functions in a
theory at once. This is how we envision typical users will interact with the tool,
since in practice it tends to yield quicker and more relevant results.

The evaluation was performed with Isabelle 2017 using Isabelle/jEdit, on a
ThinkPad X260 laptop with a 2.5 GHz Intel i7-6500U processor and 16 GB of
RAM running 64-bit Linux. The Isabelle theory files used to attain these results
are available online2.

5.1 Case Study: Lazy Lists and Extended Natural Numbers

In this section we demonstrate the results attained when using Hipster to explore
a theory of lazy lists (lists of potentially infinite length). We define some com-
mon functions for this type: lappend to append two lazy lists, a map function
lmap, iterates which generates a lazy list by iteratively applying a function to an
element, llist of which maps a standard Isabelle/HOL list to a lazy list, llength
which returns the length, and ltake which takes a given number of elements. We
also define a codatatype ENat for extended natural numbers (natural numbers
of potentially infinite size) and an addition function eplus on ENats.

We check which of the lemmas we discover are stated and proved in the
Coinductive library [18] in the archive of formal proofs3, which is a collection
of formalizations about coinductive types and functions. For the extended natu-
rals we refer to the Extended Nat theory from the Isabelle/HOL library4. Since
2 https://github.com/moajohansson/IsaHipster/tree/master/benchmark/AISC18.
3 https://www.isa-afp.org/.
4 http://isabelle.in.tum.de/library/HOL/HOL-Library/Extended Nat.html.

https://github.com/moajohansson/IsaHipster/tree/master/benchmark/AISC18
https://www.isa-afp.org/
http://isabelle.in.tum.de/library/HOL/HOL-Library/Extended_Nat.html


Into the Infinite - Theory Exploration for Coinduction 79

the lemmas in these libraries have been collected and hand-proved by Isabelle
experts, we conclude that they must be interesting and/or useful for Isabelle
theory development.

Table 1 shows the results of exploration on this theory. The column args
shows the names of the functions explored in the particular Hipster call, Expl is
the amount of time (in seconds) spent in exploration and testing, Expl+Proof
is the amount of time (in seconds) spent in exploration, testing, and proving, #
properties shows the number of properties Hipster discovers, # library lemmas
shows how many of those properties are lemmas stated and proved in the libraries
mentioned above. For these experiments, Hipster’s routine tactic was configured
to only do simplification, and the hard tactic was our automated coinduction
and induction tactic as described in Sect. 4.

In our 13 calls to Hipster, we discover 33 coinductive or inductive properties.
Of these 33 properties, 13 are stated and proved as lemmas in Isabelle libraries,
leading us to believe that they are of interest to Isabelle users. Of the other 20,
most are rather trivial consequences of function definitions and/or other discov-
ered lemmas, which our routine tactic does not suffice to prove. Some of the dis-
covered properties may however be interesting to users despite not appearing in
the libraries, for instance that llength(lappend xs ys) = llength(lappend ys xs).

The discovered properties include the associativity of append, lappend
(lappend x y) z = lappend x (lappend y z), and that mapping preserves length,
llength (lmap f x ) = llength x . The exploration involving llist of , which maps
a standard list to a lazy list, results in lemmas showing the correspondence
between our lazy list functions and Isabelle/HOL’s built-in list functions, for
example lmap f (llist ofx) = llist of (map fx). The previous lemma is proved
by induction, demonstrating Hipster’s capabilities in exploring mixed inductive
and coinductive theories.

All of the discovered properties are proved by our automated proof tactic,
except for the commutativity of eplus. This was due to our rather short timeout
for Sledgehammer, which was just set to 10 s. in this experiment. If we allow a
30 s. timeout (which is the standard when Sledgehammer is used interactively),
a proof is found. As can be seen from Table 1, the time it takes for Hipster to
discover and prove properties varies between 2–90 s. As all calls took less than
90 s to complete, and most took less than a minute, we can see that the user
does not have to wait very long for Hipster to come up with lemmas for their
functions. We believe that for most Isabelle users, making a call to Hipster would
be much faster than writing down and proving the same lemmas manually, not
to mention coming up with them. In Table 1 we also compare the runtime of
the calls: most of the time is spent trying to prove properties (we give each call
to Sledgehammer a timeout limit of 10 s), while the time to discover and test
the properties is just a few seconds. There is however a configuration option in
Hipster for very impatient users to only do exploration, leaving the proofs to the
user altogether.
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Table 1. An overview of the results of exploring our lazy list theory.

cohipster args Expl Expl+Proof # properties # library lemmas

lappend 2.5 s 25 s 4 2

lmap 3.2 s 7 s 3 0

lappend lmap 4.1 s 17 s 1 1

llist of lappend append 4.9 s 28 s 1 1

llist of lmap map 4.9 s 21 s 1 1

llength 2.1 s 2 s 1 0

llength lmap 4.0 s 11 s 1 1

eplus 2.9 s 39 s 4 3

llength lappend eplus 5.2 s 87 s 5 1

ltake 4.1 s 76 s 7 0

ltake lmap 5.7 s 23 s 2 1

lmap iterates 4.2 s 18 s 2 1

lappend iterates 4.6 s 15 s 1 1

5.2 Case Study: Stream Laws

We already saw in Sect. 1 that Hipster can discover and prove the map-iterate
property for streams. In this section, our aim is to quantify the degree to which
Hipster discovers stream equations that a human would find interesting. That
is of course subjective, but for the purposes of this section we operationalize
“interesting” as being any of the 18 laws of Hinze’s Stream Calculus [11], which
according the author “provides an account of the most important properties of
streams”. Of the 18 laws given by Hinze, three are beyond the scope of Hipster’s
current capabilities: lambda-expressions are not supported, nor are conditional
statements with term depth >1 in the antecedent. The remaining 15 are all
equational statements. With respect to these 15 laws, we analyze Hipster’s pre-
cision (percentage of the lemmas we find that are among Hinze’s laws) and recall
(percentage of Hinze’s laws that we find).

First, we will briefly recapitulate the relevant notation. pure x denotes a
stream where every element is x. � is lifted function application, defined by
the observations hd(f � x) = (hd f) (hd x) and tl(f � x) = (tl f) � (tl x).
The interleaving of two streams x, y is written x � y. Tabulation, written
tabulate f , is the stream whose n:th element is f(n). Lookup, written lookup s n,
is the n:th element of stream s. zip x y merges two streams into a stream
of pairs. recurse is defined by the observations hd(recurse f a) = a and
tl(recurse f a) = map f (recurse f a). Unfolding satisfies hd(unfold g f a) = g a
and tl(unfold g f a) = unfold g f (f a).

The results are shown in Table 2. The lemmas’ precision, recall and time
have been explored together by invoking Hipster with every function mentioned
in each lemma; e.g., to search for laws 7–9 we invoke cohipster map zip fst snd .
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Table 2. An overview of the stream properties discovered and proved by Hipster.
Lemmas in gray are not in scope.

Property Found Precision Recall Time

1 pure id � u = u X 22% 67% 44 s

2 pure(◦) � u � v � w � u = u –

3 pure f � pure x = pure (f x) X

4 u � pure x = pure (λf. f x) � u

5 map id x = x X 50% 100% 29 s

6 map (f ◦ g) x = map f (map g x) X

7 map fst (zip s t) = s – 0% 0% 255 s

8 map snd (zip s t) = t –

9 zip (map fst p) (map snd p) = p –

10 pure a � pure a = pure a X 25% 50% 18 s

11 (s1 � s2) � (t1 � t2) = (s1 � t1) � (s2 � t2) –

12 map f (tabulate g) = tabulate (f ◦ g) X 100% 100% 87s

13 f(lookup t x) = lookup (map f t) x X 33% 100% 57s

14 recurse f a = iterate f a X 33% 100% 73s

15 map h ◦ iterate f1 = iterate f2 ◦ h ⇐= h ◦ f1 = f2 ◦ h

16 unfold hd tl x = x – 0% 0% 21s

17 unfold g f ◦ h = unfold g′ f ′ ⇐= g ◦ h = g′ ∧ f ◦ h = h ◦ f ′

18 map h (unfold g f x) = unfold (h ◦ g) f x X 50% 100% 18s

21% 60% 602 s

We also report total precision and recall over all such invocations at the bot-
tom. For these experiments, Hipster has been configured to use a Sledgehammer
timeout of 10 s, a routine tactic that does only simplification, and a hard tactic
that tries coinduction and induction, in each case followed by simplification or
sledgehammer, as described in Sect. 4.

We see that in total, Hipster discovers 9 out of the 15 properties in scope,
i.e. 60% recall. Note in particular property 13, where Hipster discovers a proof
by induction, and property 14, where Hipster discovers a proof by coinduction
up-to friendly contexts. The 21% overall precision can be improved by using
a more powerful routine tactic, such as simplification interleaved with stream
expansion.

The properties that are in scope, but not discovered, are all attributable to
QuickSpec’s heuristics for restricting the search space. Properties involving vari-
ables denoting streams of functions such as Property 2 cannot be tested, and
instantiation of type variables is restricted in ways that rule out, e.g., conjec-
tures where fst occurs as an argument to map. It seems difficult to lift these
restrictions in ways that do not make the search space intractable—this would
be an interesting direction for future work.
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5.3 Case Study: Infinite Trees

We have experimented with two different kinds of corecursive trees: A codatatype
representing an infinitely deep binary tree, and another representing an infinitely
deep rose tree, with arbitrary branching at each node. The purpose here is to
demonstrate Hipster on a different kind of codatatype than the previous case-
studies. Hipster was configured to use simplification as the routine tactic, and
as the hard tactic, either just Sledgehammer or coinduction followed by Sledge-
hammer.

Infinite Binary Trees. We define an infinite depth binary tree as follows:

codatatype ’a Tree = Node (lt: "’a Tree") (lab: ’a) (rt: "’a Tree")

We defined three functions over this codatatype: mirror (which switches the
left and right branches of each node), tmap which applies a function to each
label in the tree and tsum which sums the labels of a tree of natural numbers.
A summary of the results is given in Table 3. Hipster discovers the expected
properties about the given functions (associativity, distributivity etc.) as well
as a few additional properties which perhaps are of less interest. We note that
these are presented to the user as Isabelle’s simplifier is a rather weak tactic in
this context, while another choice for the routine tactic would have pruned out
more properties.

Table 3. Overview of properties discovered about infinite depth binary trees. Due to
space restrictions mainly properties proved by coinduction are listed, full results are
available online.

cohipster args Expl Expl+Proof Properties discovered Proved

mirror 3.4 s 39 s mirror (mirror y) = y
+ 3 more proved by
Sledgehammer

coinduction+simp

mirror tmap 4.3 s 35 s tmap z (mirror x) = mirror
(tmap z x)

coinduction+smt

mirror tsum 6.1 s 112 s tsum y x = tsum x y
tsum (tsum x y) z = tsum x
(tsum y z)
mirror (tsum y (mirror x)) =
tsum x (mirror y)
tsum (mirror x) (mirror y) =
mirror (tsum x y)
+ 2 more proved by
Sledgehammer

coinduction+smt
coinduction+smt
coinduction+smt
Sledgehammer
(using above
lemmas)
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Rose Trees: a Nested Codatatype. We also conducted an experiment with a
nested codatatype representing arbitrarily branching rose trees:

codatatype ’a RoseTree = Node (lab: ’a) (sub: "’a RoseTree list")

We defined functions mirror (reversing the list of subtrees), tmap (mapping a
function over the labels of each node) and tsum (summing the labels of a tree
of natural numbers). Note that unlike for the infinite binary trees, mirror and
tmap are not corecursive.

For this theory, we noticed that the runtimes varied a great deal from run
to run of the same command. For example, in a series of runs of Hipster on
the function mirror only, the runtime varied from as little as 21 s to as much as
125 s. This is due to how our observer function interacts with the random length
lists being generated for the branches at each node. It decreases its fuel linearly
in this case, so if the list is long observing each child tree recursively is time-
consuming. Implementing smarter observer functions, for instance taking length
of the list of a node’s child trees into account to only observe an appropriately
small subtree of each child, is future work.

Table 4. Overview of properties discovered about rose trees. Note that timings here
are from one sample run, and can vary quite a lot due to randomness in testing.

cohipster args Expl+Proof Properties discovered Proved

mirror 29 s mirror (mirror y) = y Sledgehammer

mirror tmap 102 s tmap z (mirror x) =
mirror (tmap z x)

Sledgehammer

mirror tsum 597 s tsum (mirror x) (mirror
x) = mirror (tsum x x)
tsum y x = tsum x y
tsum (tsum x y) z =
tsum x (tsum y z)
+ 4 more unproved
about tsum/mirror

Sledgehammer
no
no

As can be seen in Table 4, only a few properties are proved automatically (by
Sledgehammer, no coinduction needed). This is because our automated coinduc-
tion tactic is not flexible enough to deal with nested datatypes. We believe a
customized tactic, also able to perform some form of nested induction over the
list of branches, would do a better job, but such domain specific tactics are left
as further work at this stage.

6 Related Work

There is substantial recent work on making Isabelle/HOL more expressive for
working with codatatypes and corecursive functions [4,5]. Our extension to Hip-
ster can help Isabelle/HOL users who want to program with these new methods
discover and prove new properties about their theories.
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There has been prior work on automating coinductive proofs and reasoning.
In [17] Leino and Moskal present a method for automated reasoning about coin-
ductive properties in the Dafny verifier. CIRC [19] is a tool for automated induc-
tive and coinductive theorem proving which uses circular coinductive reasoning.
It has been successfully used to prove many properties of infinite structures such
as streams and infinite binary trees. However, none of the other systems has the
theory exploration capabilities of Hipster.

In the setting of resolution for Horn clause logic with coinductive entail-
ment, Fu et al. [10] present a method for automatically generating appropriate
candidate lemmas for proving such entailments. The application is to devise a
method for e.g. type class resolution in Haskell that is stronger than cycle detec-
tion. Whereas Hipster uses testing to generate candidate lemmas, Fu et al. uses
the structure of partial proof attempts. Given a partially unfolded resolution
tree, the candidate lemma that gets generated states that the root of the tree
is entailed by the conjunction of all leaves that mention fewer symbols than the
root. This is also unlike Hipster in that Hipster strives for lemmas that will be
generally useful for any further theory development using the types and functions
under consideration, whereas Fu et al. are interested in finding which lemmas,
were they true, could be used to prove a particular sequent.

IsaCoSy [15] and IsaScheme [22] are other theory exploration systems for
Isabelle/HOL, both of which focus on the discovery and proof of inductive prop-
erties. MATHsAiD [20] is a tool for automated theorem discovery, aimed at
aiding mathematicians in exploring mathematical theories. It can discover and
prove theorems whose proofs consist of logical and transitive reasoning as well as
induction. Hipster is the first theory exploration system capable of discovering
and proving coinductive properties. Furthermore, it is considerably faster than
IsaCoSy and IsaScheme thanks to using QuickSpec as a backend [9].

7 Conclusion

We have extended the theory exploration system Hipster with the capabilities to
discover and prove not only inductive lemmas, but also lemmas in coinductive
theories involving potentially infinite types such as streams, lazy lists and trees.
We have shown that the system can discover and prove many standard lemmas
about these codatatypes. This goes beyond the capabilities of previous theory
exploration systems, that do not consider coinduction at all.

In the long term, we envision that invoking a theory exploration system such
as Hipster will be a natural first step for the working proof engineer when devel-
oping a new theory. This nicely complements tools like Isabelle’s Sledgehammer.
In a new theory, Sledgehammer is unlikely to be of much help until we have
proven at least some basic lemmas, which is exactly what theory exploration
can automate.

There are many interesting directions for further work. As seen in the case
study on rose trees, we would benefit from specialized observation functions
and proof methods for nested (co-)datatypes. The case studies in this paper
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are mostly in the domain of lazy data in the style of functional programming.
It would be interesting to explore if we can extend our work to other uses of
coinduction. For example, discovering algebraic laws about coinductively defined
behavioral equivalences, or discovering Hoare triples about non-terminating pro-
grams. This would require developing a technique to test relations as opposed
to functions.
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