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Preface

This volume contains the invited and contributed papers for AISC 2018, the 13th
International Conference on Artificial Intelligence and Symbolic Computation, held
during September 16–19, 2018, in Suzhou, China.

For the past 26 years or so, AISC has considered artificial intelligence (AI) and
symbolic computation as two significant approaches to problem solving, especially in
mathematics. As AI has gained renewed interest, especially on the (non-symbolic)
machine-learning front, it is particularly timely to re-emphasize how the two fields
intersect with each other in a significant number of areas with respect to symbols. Thus,
the AISC conference series is an important forum when it comes to ensuring that ideas,
theoretical insights, methods, and results from traditional AI can be discussed and
showcased while fostering new links with other areas of AI such as probabilistic
reasoning and deep learning. The papers in this volume hint at these opportunities, with
(a non-exhaustive list of) topics that include: traditional domains such as theorem
proving, SAT solving, heuristic (numerical) problem solving and intelligent knowledge
management; probabilistic modeling and reasoning for word detection in Chinese texts
and proof automation; the understanding of neural models; and the analysis of
crowdsourcing. As AI assumes a transformative role in society, aside from its long-
standing role in promoting the synergies between the field and symbolic computation,
AISC may be in a unique position with regard to the investigation of areas such as
explainable AI, which many agree will require novel research in symbolic represen-
tation and reasoning. It is our hope that the community will ensure this long-running
conference series can not only perdure but gain new momentum.

For this conference, original research contributions were solicited in areas encom-
passing AI, symbolic computation, and their interactions. Two special tracks on
“Intelligent Documents” and “Collective Intelligence” were also announced. The 18
accepted papers, together with two invited ones, make up the proceedings published in
this LNAI volume. Each paper received was reviewed by three members of the Pro-
gram Committee with subreviewers, and the acceptance was based on the evaluation
with respect to relevance and significance. The conference program featured three
invited talks by Chee K. Yap, Alan Bundy, and Zhi-Hua Zhou for the main track, two
invited tutorials by James H. Davenport and Ilias S. Kotsireas, and three invited talks
by Xiaoyu Chen, Cezary Kaliszyk, and Guoliang Li for the special tracks.

We thank all the authors of submitted papers, the members of the Program Com-
mittee and external reviewers, the invited speakers and the organizers, and we
acknowledge the support of the Suzhou Institute of Beihang University, which con-
tributed to the success of the conference.

July 2018 Jacques Fleuriot
Dongming Wang
Jacques Calmet
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Automated Reasoning in the Age
of the Internet

Alan Bundy(B), Kwabena Nuamah, and Christopher Lucas

School of Informatics, University of Edinburgh, Edinburgh, UK
{A.Bundy,k.nuamah,c.lucas}@ed.ac.uk

Abstract. The internet hosts a vast store of information that we cannot
and should not ignore. It’s not enough just to retrieve facts. To make full
use of the internet we must also infer new information from old. This is an
exciting new opportunity for automated reasoning, but it also presents
new kinds of research challenge.

– There are a huge number of potential axioms from which to infer
new theorems. Methods of choosing appropriate axioms are needed.

– Information is stored on the Internet in diverse forms, e.g., graph
and relational databases, JSON (JavaScript Object Notation), CSV
(Comma-Separated Values) files, and many others. Some contain
errors and others are incomplete: lacking vital contextual details
such as time and units of measurements.

– Information retrieved from the Internet must be automatically
curated into a common format before we can apply inference to it.
Such a representation must be flexible enough to represent a wide
diversity of knowledge formats, as well as supporting the diverse
kinds of inference we propose.

– We can employ forms of inference that are novel in automated rea-
soning, such as using regression to form new functions from sets of
number pairs, and then extrapolation to predict new pairs.

– Information is of mixed quality and accuracy, so introduces uncer-
tainty into the theorems inferred. Some inference operations, such as
regression, also introduce uncertainty. Uncertainty estimates need to
be inherited during inference and reported to users in an intelligible
form.

We will report on the FRANK (Formally know as RIF: Rich Inference
Framework. We changed the name as the RIF acronym is already in use,
standing for Requirements Interchange Format.) system that explores
this new research direction.

Keywords: Query answering · Prediction · Automated reasoning
World Wide Web

This work has been funded by a University of Edinburgh studentship for the second
author and Huawei grant HIRP O20170511.

c© Springer Nature Switzerland AG 2018
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1 Introduction

We describe the FRANK (Functional Reasoning Acquires New Knowledge) sys-
tem. FRANK applies inference to knowledge sources on the World Wide Web
to derive estimates of new information and reliably assigns an uncertainty to it.
It applies deductive, arithmetic and statistical reasoning to the results of infor-
mation retrieval. We call this rich inference. An earlier description appeared in
[9]. FRANK’s main focus is on estimating the values of numeric attributes, but
it sometimes returns qualitative answers, e.g., the query “Which country will
have the largest population in Africa in 2021?” returns the name of the African
country with the maximum estimated population.

Our hypothesis is:

A combination of information retrieval with deductive, arithmetic and
statistical reasoning can be used accurately to estimate novel information
and to assign a reliable uncertainty estimate to it.

To address the issues raised in the abstract above, we have adopted the
following techniques:

– The knowledge required to answer a query is retrieved from a wide variety
of different knowledge sources on the Web. We employ APIs for each of the
common knowledge formats in order to match the knowledge sought to the
knowledge sources from which we retrieve it.

– This knowledge is then dynamically curated into a common format and stored
in a query-specific ontology. This enables our inference operations to com-
bine knowledge from diverse sources. Our common format is alists, i.e., sets
of attribute/value pairs (see Definition 1). Alists can also be interpreted as n-
ary, typed, logical relations (and sometimes also as functions), where n + 1 is
the size of the set, the compulsory Predicate attribute’s value is the predicate
of the relation and the other attribute names are the types (see Definition 1).
These pairs are both extracted from the particular knowledge item, e.g., the
Subject, Predicate and Object attributes, and also augmented with attribute
values from the source itself, e.g., the Time, Units and Uncertainty attributes.
Alists provide the flexibility we need to cope with relations of diverse type sig-
natures.

– Queries are represented as conjunctions of alists. Some of their attributes’
values will be logical variables, whose value is unknown when the query is
posed and which it is intended will be instantiated to a concrete value as
a side effect of inference. Some of the variables in the query alist will be
instantiated and returned as the answer to the query.

– FRANK’s inference constructs a search tree with both and and or branches.
Nodes are labelled with (sub-)goals represented as alists; the root node is
labelled with the original query. Arcs are labelled with inference rules that
enable a parent alist to be inferred from its child alists, i.e., inference is
backwards from the root query to the leaf facts. If the search is successful,
then the search tree will contain a proof as a subtree, which will contain
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only and branches. This proof tree will provide just those inference steps
required to prove the query. During this proof, the query’s variables will be
instantiated to provide the required answer.

– The variables associated with the leaf alists of the proof tree are instanti-
ated by matching them to facts stored in knowledge sources. The values of
variables in parent alists are calculated by applying arithmetic aggregation
operations to some of the variables in their child alists. The variables whose
instantiated values are projected from child to parent are distinguished as
projection variables (see Definition 2).

– Projected numeric values are assumed to have a Gaussian distribution and
are returned as a mean and standard deviation. The mean is regarded as the
answer and the standard deviation as an error bar on this answer. Aggre-
gation operations are applied to both mean and standard deviation as they
are inherited from leaf to root. Leaf nodes are assigned uncertainty values
associated with the knowledge source from which they are taken. Knowledge
sources are initially assigned default uncertainties, but these uncertainties
are incrementally adjusted by a Bayesian process which compares the com-
patibility of rival sources of the same knowledge. Some inference operations
also add additional uncertainty that is inherent in their nature, e.g., regres-
sion/extrapolation.

2 Alists: A Common Knowledge Format

Each node of the FRANK search tree is labelled by an association list or alist,
which is a set of attribute/value pairs1. For example, the assertion that the
population of the UK in 2011 is 63,182,000 people is represented by:

{〈Subject, UK〉, 〈Predicate, Population〉, 〈Object, 63, 182, 000〉, 〈Time, 2011〉}
(1)

Alists enable FRANK to represent relations of any arity and with whatever types
of arguments are required by the application. For example, alist (1) represents
the ternary relation:

Population(UK, 63, 182, 000, 2011)

where the type signature of Population is:

Population : Subject × Object × Time �→ Bool

So, alists can be seen just as a syntax for typed logical formula and deduction
with them as a logical inference process. All the different knowledge formats
used in the knowledge sources accessed by FRANK can be curated into alists.

1 See https://en.wikipedia.org/wiki/Association list accessed on 5.6.18. Alists are not
lists but sets, but the ‘alist’ terminology has, unfortunately, become standard.

https://en.wikipedia.org/wiki/Association_list
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2.1 Definition of Simple Alists

We can formalise a simple alist as follows:

Definition 1 (Simple Alist). A simple alist is a set of pairs {〈Ai, ai〉|1 ≤ i ≤
n}, where each Ai is an attribute and ai is its value. This will sometimes be
written as {〈A1, a1〉, . . . , 〈An, an〉} or abbreviated as A.

– We will use the notation A(t) to indicate that A contains a distinguished term
t at some unspecified redex.

– We will use the notation A[A] = a, when 〈A, a〉 ∈ A, i.e., that a is the value
of attribute A in A.

– We will use the notation A[b/a] to indicate that the values a of some
attributes A are pairwise replaced by b in an alist A.

– One attribute must be Predicate. This allows the alternative representation
of:

{〈Predicate, P, 〉, 〈A1, a1〉, . . . , 〈An, an〉}

as P (a1, . . . , an) where P : A1 × . . . × An �→ Bool.

Typical attributes are Subject, Object, Predicate, Time, etc. Values can be
names, numbers, functions, etc. Object values are often numbers, but not exclu-
sively so.

2.2 Variables in Alists

A (sub-)goal alist usually has some attribute values that are variables. Dur-
ing proof search, these variables may be instantiated. Variables in leaf alists are
instantiated by being matched against facts stored in knowledge sources. Projec-
tion variables are instantiated to values that are passed from child alists to their
parents. Each alist has an aggregation operation attribute with a function value
h, say. This function h is applied to the projection variables of the child alists
to instantiate the projection variable of the parent. This aggregation operation
is associated with the inference rule on the and branch connecting the parent
to its children. The aggregation operation enables each alist to be regarded, not
just as a relation, but also as a function from projection variables of the children
to the projection variable of the parent.

The various variables appearing in an alist are defined as follows:

Definition 2 (Projection, Auxiliary and Operand Variables). Let A be
an alist.

– Its projection variables are the variables whose values are to be projected
from it to its parents. They are prefixed with a ?, e.g., ?x denotes a projection
variable. In general, an alist may have several projection variables, so we use
vector notation to denote them all, e.g., ?x.
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– Its auxiliary variables are the variables whose values are used locally within
A, but are not projected to its parents. They are prefixed with a $, e.g., $x
denotes an auxiliary variable. In general, an alist may have several auxiliary
variables, so we use vector notation to denote them all, e.g., $x.

– Its operand variables are the variables that are used as arguments for A’s
aggregation operation h. An operand can be either a projection or an auxiliary
variable but must exist as an attribute value in A.

By distinguishing projection variables, we can also view alists as functions,
which return the value(s) of the projection variable(s) as their results. This view
of alists is crucial in formalising the propagation of projection variables (see
Sect. 5) and the treatment of nested queries (see Sect. 2.3).

A query or (sub-)goal is represented as an alist containing projection vari-
ables, e.g., if we want to ask what the population of the UK was in 2011, then
the query would be:

{〈Subject, UK〉, 〈Predicate, Population〉, 〈Object, ?p〉, 〈Time, 2011〉} (2)

where ?p is a projection variable which will be projected up.

2.3 Nested Queries and Alists

Some queries are nested, e.g., “What was the GDP in 2010 of the country pre-
dicted to have the largest total population in Europe in 2018?”. FRANK’s initial
formalisation of nested queries is to represent them as compound alists, i.e., alists
which have alists as some of their values. If alists are viewed only as relations,
then nesting one relation inside of another would be a syntax error. It does make
syntactic sense, however, if the nested alists are given their functional interpre-
tation. That is, the inner alist returns the values of its projected variables as the
value of an attribute of the outer alist. We can represent the situation abstractly
as:

{. . . , 〈Attribute1, {. . . 〈Attribute2, ?x〉, . . .}〉, . . .} (3)

where the projection variable value ?x of the attribute Attribute2 of the inner
alist becomes the value of the attribute Attribute1 of the outer alist.

For FRANK’s inference system to apply, however, such compound alists need
to be normalised into conjunctions of simple alists. In the case of compound alist
(3), normalisation gives the following conjunction of two simple alists.

{. . . 〈Attribute2, ?x〉, . . .} ∧ {. . . , 〈Attribute1, $x〉, . . .}
Note that x does not necessarily become a projection variable of the outer alist,
so we have used $x here, rather than ?x.

3 Curation and Enrichment

Curation is a bridge between the diverse knowledge source formats and the
target common format used by FRANK. The leaf alists in the search tree are
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sub-goals that must be translated into the format used by the knowledge source
being queried and then matched to the knowledge in that source. Matching
instantiates variables in the sub-goal alist. FRANK incorporates APIs for each
of the knowledge formats used by the knowledge sources that it queries. It also
incorporates information retrieval procedures for each type of knowledge source,
e.g., SQL, SPARQL, JSON, OWL.

FRANK uses a variety of KBs for (1) finding synonyms of terms in lookup
decompositions, (2) finding sub-parts of geographical entities in geospatial
decompositions and (3) retrieving facts about entities. KBs used include Word-
net [7], Geonames [11], Wikidata [12], ConceptNet [6], Google Knowledge Graph
[10], and the World Bank’s datasets on country development indicators2.

Some knowledge formats have restricted functionality, e.g., representing only
unary or binary relations, e.g., only a predicate between a subject and an
object. The leaf alist, however, may represent an n-ary relation for n > 2,
and some of these additional attributes may contain variables that must be
instantiated, e.g., units, time and uncertainty. The additional fields can often be
found as global properties of the knowledge source, e.g., a car manufacturer may
express all dimensions as centimetres, census data will record the year of the
census, FRANK will have a record of the uncertainty it currently assigns to each
knowledge source. These global properties enable variables in these additional
attributes to be given values.

4 Search and Proof Trees

FRANK’s inference can be represented as an and/or search tree. The or
branches represent the different ways in which FRANK may attempt to prove a
sub-goal. Only one of these branches needs to succeed in order for the sub-goal
to be proved. The and branches represent the different child sub-goals that all
need to be proved in order to prove the parent sub-goal. An example search tree
is given in Fig. 1.

– Each node in the search tree is a box labelled by a truncated representation of
its alist. The arcs between nodes represent inference operations. and branch-
ing is represented by a circular line connecting the branches. or branches
have no such line.

– The first word in each alist is the aggregation operation. For instance,
LOOKUP returns the value to which projection variable(s) have been instan-
tiated by information retrieval; VALUE returns the value of its unique child’s
alists’ projection variable(s); MAX returns the maximum value of the chil-
dren’s projection variables; REGRESS returns the result of extrapolating, to
a new x value, a function formed by regression on the children’s 〈x, y〉 pairs.

– FRANK always tries direct look-up first. Only if this fails does it apply an
inference operation. ⊗ represents a failure, e.g., look-up failed because no
matching fact could be found in any knowledge source.

2 https://data.worldbank.org/.

https://data.worldbank.org/
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Fig. 1. FRANK’s Search Tree for the query “Which country will have the largest
population in Africa in 2021?”

– The main inference operations used are geospatial and temporal decomposi-
tion. Geospatial decomposition breaks a Subject into parts, applies the query
to each part and then combines the results, e.g., by summing them or taking
the maximum. Temporal decomposition applies the query to different (often
older) time values, applies regression to form a function and then applies that
function to the original time.

– A successful search tree contains a proof sub-tree. This is indicated by the
dotted arc lines in Fig. 1.

– In Fig. 1, after failure to find the query’s answer by direct look-up, geospatial
decomposition is applied to apply the query directly to each African country
and then to return the country whose population is the maximum. Direct
look-up of each country’s population in 2021 fails, so temporal decomposi-
tion is applied to census data for each country from the years 1901 to 2011.
Regression is applied to this data to form a graph, which is then extrapolated
to 2021. Since the and branching rates are quite high, ellipsis has been used
to compact the search tree to readable dimensions.
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5 Inference and Aggregation

FRANK’s current inference operations are information retrieval and the geospa-
tial and temporal decomposition rules, which have been described in Sect. 4
above. Plans to extend these are outlined in Sect. 10.1. A unique property of
FRANK’s inference is its combination of deductive reasoning with statistical
reasoning. In particular, it forms functions by regression, which provides the
ability to reason about functions: second-order deduction, such as calculus.

An aggregation operation is associated with each application of an inference
operation. Aggregation propagates the values of instantiated projection variables
from child alists to parent alists, and so back to the root alist, where it becomes
the mean value of the answer to the original query.

Geospatial Decomposition: Depending on the query, the values of the chil-
dren’s projection variables can be aggregated by various arithmetic opera-
tions, such as finding: the maximum or minimum; the mean, median or mode;
the sum or product; or the number of children. If there are only two children,
then we can also find whether the first is equal to, greater than or less than
the second.

Temporal Decomposition: Each of the children’s alists returns a 〈x, y〉 pair.
Regression is applied to these values to form a function f . This f is extrapo-
lated or interpolated to a new value of x by applying this function to it and
returning the corresponding f(x) as the parent’s projection variable value.

6 Uncertainty

It is important that some measure of uncertainty is associated with the results
returned by FRANK. Knowledge obtained from the Web is of variable quality,
depending on the reliability of the source. Moreover, some of the inference oper-
ations we use, e.g., regression, contribute additional uncertainty. FRANK must
keep track of this uncertainty and report it to user, so that they know how much
to trust the result. We propose error bars as the best measure of uncertainty to
assign to the kind of numerical results estimated by FRANK.

– Probabilities do not work. For instance, the probability of ∃?p. Population
(UK, ?p, 2025) is 1, i.e., it is certain that the UK will have some population
count in 2025. What we need to know is the accuracy of the value FRANK
assigns to ?p. Due to the inherently vagueness of population counts, the prob-
ability that any one value of ?p is absolutely correct is essentially 0—or, more
accurately, the question is inherently meaningless unless we know what value
to assign to people who are in the process of dying, being born or in a vege-
tative state, etc., and what instant in time the census was taken.

– What we really need is to give a range for the answer. Error bars are a well
known way of expressing such ranges, that many people will have seen on
graphs, etc. They are also standard in numerical science.
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Gaussian distributions (also known as bell curves) are ubiquitous in many
numerical estimates. They can be defined by two measures: the mean, which
gives an average of the distribution and the standard deviation, which describes
the spread of the distribution, so is ideal to express the error bars. We have,
therefore, adopted Gaussians as our distribution of uncertainty.

We return the mean value as our estimate of the value of a numerical projec-
tion function. The width of the error bar then gives a measure of the uncertainty
associated with the mean. We use two different ways to express error bars. Firstly,
we can use the standard deviation, which gives an absolute measure of the range
of values of the projection variable that fall within the standard deviation. Sec-
ondly, we use the coefficient of variation (CoV). This is the mean divided by
the standard deviation. It gives a relative measure of the range. For instance, we
could turn the CoV into a percentage by multiplying it by 100, and then say that
the mean was, say, within 5% of the correct3 value. The CoV is ideal for prop-
agating the uncertainty from leaf to root nodes. That’s because the projection
variables vary from node to node of the proof tree. So, the standard deviations
are not comparable, but the CoVs are, so can be combined [2]. To report the
final uncertainty back to the user, though, the standard deviation is sometimes
preferable. It can be readily calculated by multiplying the CoV by the mean.
For more details about the use of uncertainty in FRANK, see [8].

Note that this measure of uncertainty only applies to real numbered values.
We are looking into measures of qualitative uncertainty as future work (see
Sect. 10.2).

7 Interface

FRANK has a simple natural language interface. This enables users to type
queries and receive answers in a restricted grammar of English via a GUI. The
natural language processing employs the spaCy: off-the-shelf NLP library [5].
The grammar restrictions are to ensure that the query can be represented as an
alist. A snapshot of FRANK’s GUI is given in Fig. 2.

– The question is typed in the query box at the top.
– This query is then translated into alist form, which is displayed in abbreviated

form in the dark box immediately below the query.
– FRANK’s answer of 30,034,356.64 is then displayed below this with a stan-

dard deviation of ±32119461.051857124 as the error bar.
– The instantiated root alist is given below this. Note that the uncertainty value

here is the CoV, not the standard deviation, which only appears in the final
answer.

– At the bottom is FRANK’s search tree, in which the nodes labels are given
as numbers to save clutter, but these can be unpacked by clicking on them.

3 Assuming that the correct value lies within one standard deviation. Since the poten-
tial range is infinite, this is a compromise between being informative and reasonable
accurate. One could, instead, use two or more standard deviations.
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Fig. 2. FRANK’s GUI for the query “What will be the population of Ghana in 2021?”

The search tree has a zoom option, so that the user can get an overview or
examine one part in more detail.

This interface is currently in an early stage of development. This will include
giving appropriate feedback to users who ask queries outwith FRANK’s gram-
mar. Eventually, we plan to deliver this interface as an open web service.

8 Evaluation

We have evaluated our hypothesis that:

A combination of information retrieval with deductive, arithmetic and sta-
tistical reasoning can be used accurately to estimate novel information and
to assign a reliable uncertainty estimate to it.
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Our evaluation has two parts. Firstly, we want to know how accurately
FRANK has estimated the answer. For instances, is the estimated answer within
one standard deviation of the true answer? Secondly, we want to know how accu-
rate our uncertainty estimates are. For instance, are the true errors proportional
to the estimated errors. For both parts of this evaluation, we need to know
the true answers. We do this by a ‘leave one out’ methodology. That is, our
queries are of known values, but we prevented FRANK from looking the values
up directly, forcing it to estimate them from other known values. We compared
FRANK’s success rate with two comparator query answering systems: Google
search and Wolfram|Alpha. These comparators were not prevented from direct
look-up4.

We randomly generated a set of 100 queries using property terms related to
the country indicators in the World Bank data-set. We used 60 of these queries
as a training set during the development of FRANK and used the remaining 40
for the test set. These 40 were grouped into four types:

Retrieval: Queries whose answers were found by direct look-up. FRANK was
not prevented from direct look-up for these queries.

Inference Queries: Simple queries where several facts needed to be combined
by inference but where regression was not needed.

Nested Queries: Compound queries that had to be normalised, but where
regression was not needed.

Prediction: Queries for which regression and extrapolation/interpolation were
required.

Table 1 shows a favourable comparison of FRANK’s percentage success rate
to two popular query answering systems: Google Search and Wolfram|Alpha5,
that also use the World Bank’s dataset. A result is counted as a success if it is
within one standard deviation of the true answer. FRANK performs better than
both its two comparators on all four query types but, as might be expected, it
did especially well when predication was required, since no prediction answers
were pre-stored.

Table 1. Evaluation results by query types, showing the percentage of queries answered
successfully

Queries Google search (%) Wolfram|Alpha(%) FRANK (%)

Retrieval 70 80 90

Aggregation queries 20 70 80

Nested queries - 50 80

Prediction 10 20 70

Average % 25 55 80

4 Mainly because we couldn’t do so, so they did have an advantage over FRANK.
5 https://www.wolframalpha.com.

https://www.wolframalpha.com
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Figure 3 is a scatter plot to compare actual error to estimated error. On the
y axis is the ratios between (a) the absolute difference between the true and
estimated values and (b) the true value. On the x axis is the estimated error
represented by the CoV. Ideally, this scatter plot would approximate a straight
line, showing that actual and estimated error were proportional. The dotted line
is the best fit straight line to these points. This is a fair fit to the data.
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Fig. 3. Comparison of estimated error against actual error

9 Related Work

We have found nothing quite like FRANK to compare it to. The best fit is
probably the first author’s previous work on the GORT system [1]. This system
solved guesstimation problems, where an approximate answer was required to a
numeric problem, e.g., “how many cars, parked bumper to bumper, would be
needed to reach from Edinburgh to Glasgow?”. It also searched the Web for facts
and inferred new information from it, but its inference operations were limited
to simple arithmetic and its error bars just showed the range of different answers
these methods had found.

Table 1 showed a favourable comparison of FRANK’s performance to two
other popular query answering systems. We plan further such comparisons, but
inference-based query answering systems, e.g., [4], have gone out of fashion since
they cannot operate at web-scale. So we did not find a lot of modern systems
against which to compare FRANK. IBM’s Watson [3] was too finely tuned to
solving questions in the game show, Jeopardy!. As a result, it could not be
directly compared to FRANK.
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Currently, the field of information retrieval6 is focused on extracting known
information from the Web. Its main research challenge is interpreting queries
in natural language (mostly, but not exclusively, English). FRANK’s simple NL
interface is described in Sect. 7, but this is not the focus of our research.

Given our focus on the inference of new information from old, Table 2 gives
a comparison of FRANK to traditional work in the automation of reasoning.

Table 2. Comparison of FRANK and automated reasoning

FRANK Automated reasoning

Lots of uncertain information A few, certain axioms

Lots of facts, few rules More rules than facts

Diverse formats Uniform format

Diverse inference operations Deductive inference

Depleted information All information present

Killer app: query answering Killer app: formal verification

10 Future Work

FRANK is still under active development and we have plans to extend it in
several directions.

10.1 Generalising Decomposition Rules

FRANK currently uses only two decomposition rules: temporal and geospatial,
but there is the potential for many more. The general form of a decomposition
rules is given in Definition 3.

Definition 3 (Decomposition Rule). A decomposition rule is an implication
of the form:

Decompose(A, τ) = [Aj |1 ≤ j ≤ m] ∧
m∧

j=1

Aj [?x]

=⇒ A[h(ε?x. A1(?x), . . . , ε?x. Am(?x))/z]

where:

– [Aj |1 ≤ j ≤ m] is a form of list composition, that we have invented, which is
analogous to set comprehension (as used in Definition 1 for instance).

6 https://en.wikipedia.org/wiki/Information retrieval (accessed 4.7.18).

https://en.wikipedia.org/wiki/Information_retrieval
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– h is the inference operation that takes the values ε?x. Aj(?x) assigned to
the projection variables ?x of the child alists Aj and calculates the value
h(ε?x A1(?x), . . . , ε?x. Am(?x)) of the operands z of the parent alist A.

– Decompose is a function that takes the parent alist A and the type of decom-
position τ and returns a list of m child alists Aj. A list, rather than a set, is
required here, as the order of the arguments to h must be specified. Vectors
would also work.

– Note that the implication is from left to right: the values of the projection
variables of the child alists determine the values of the operands of the parent
alist. But FRANK works backwards to build the proof tree from the goal alist
to the leaf node alists, whose projection variable values are then looked up on
the Web.

Different decomposition rules can be generated by varying the definition of
Decompose. For instance, Geospatial decomposition uses the partOf hierarchies
in various KBs to partition the value s of the Subject attribute in A. Currently,
FRANK only uses this for breaking geographical regions into parts. It could
equally well be applied to break a product into its components, e.g., to identify
the most costly component.

Similarly, isa hierarchies could be used to identify the sub-types of an Object.
This would be useful, say, to find the cheapest laptop meeting some minimal
conditions on speed, memory capacity, etc.

We are currently exploring the space of potential decomposition rules and
the applications they make possible.

10.2 Qualitative Uncertainty

CoVs provide a good method of assigning uncertainty to real-valued query
answers and intermediate values used in their calculation. We plan to extend
FRANK to non-numeric queries. Currently, FRANK is limited to non-numeric
queries that involve only numeric calculations during aggregation, but with a
final non-numeric answer, e.g., returning those members of a set that attain
either a maximum or a minimum value on a particular numeric attribute. For
these, we can use the CoV associated with the calculation that this value is
indeed the extreme one. For instance, if the question is: “Which country will
have the largest population in Africa in 2021?”, then, although the answer will
be a particular African country, we can assign to that answer the CoV associ-
ated with the calculation that its population is a maximum among the set of all
African countries.

In this case, all the aggregation operations involved in the proof tree were
arithmetic ones. We want to investigate how uncertainty values might be aggre-
gated for the values of non-numeric projection variables. We will probably need
a new uncertainty measure, as CoVs are associated with Gaussian distributions,
which are fundamentally numeric. We will need to combine these new uncer-
tainty measure with CoVs. We then need to associate appropriate aggregation
operations to apply to non-numeric projection variables.
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11 Conclusion

We have described the FRANK query answering system, which draws inferences
from information on the Web to discover new information, including make pre-
dictions. FRANK is focused on numerical questions.

– The Web contains a huge and rapidly growing source of information. Despite
the inherent uncertainty in this information, it is a source we can’t afford to
ignore.

– Merely retrieving known facts from the Web is to neglect most of its poten-
tial. We must infer new information from old. This is a job for automated
reasoning.

– But this job raises a new range of challenges for the automated reasoning
field.

– It is necessary to locate the axioms needed from this huge store. FRANK’s
top-down proof search identifies the kind of axioms it needed, so that
information retrieval can be used to find them.

– The information we need is stored in a diverse number of formats. In order
for automated reasoning to combine information in diverse formats, these
must all be curated into a common format. FRANK uses alists, as they
assimilate all the other formats.

– Some source formats are overly restrictive, e.g., only allowing unary or
binary predicates. Additional attribute values are often needed, e.g., time
and units. Curation must also include finding these additional attribute
values, so that they can match values in goal alists.

– The inherent uncertainty in both knowledge sources and some inference
methods must be inherited back up through the proof tree to provide the
user with an uncertainty estimation for the answer that FRANK returns.
FRANK propagates coefficients of variation: the standard deviation of the
answer normalised by the mean. CoVs provide an error bar on the answer,
which is returned as the mean. The propagated CoV is converted back
to a standard deviation for the final answer, as this provides a numeric
range in which the true answer is likely to fall.

– A user friendly interface is required for users to pose queries and receive
answers. FRANK allows uses to pose questions in a restricted grammar of
English.

– With these new challenges come exciting new opportunities.
– Information retrieval is freed from simple factoid look-up, and can infer

new information—even making predictions.
– Inference can combine deduction, arithmetic and statistics. FRANK’s

evaluation shows that this combination of inference methods can both
accurately estimate novel information and assign a reliable uncertainty
estimate to it.
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Abstract. The methodologies of computer algebra are about making
algebra (in the broad sense) algorithmic, and efficient as well. There
are ingenious algorithms, even in the obvious settings, and also mecha-
nisms where problems are translated into other (generally smaller) set-
tings, solved there, and translated back. Much of the efficiency of modern
systems comes from these translations. One of the major challenges is
sparsity, and the complexity of algorithms in the sparse setting is often
unknown, as many problems are NP-hard, or much worse.

In view of this, it is argued that the traditional complexity-theoretic
method of measuring progress has its limits, and computer algebra should
look to the work of the SAT community, with its large families of bench-
marks and serious contests, for lessons.

Keywords: Computer algebra · Benchmarking

1 Introduction

Symbolic Computation (also called Computer Algebra) is exactly what it says:
getting computers to do algebra. Having said that, this simple phrase needs
elaboration.

1.1 “Computers”

The moment a mathematician examines a modern computer, the mathematician
observes two mismatches, symbolised as int �= Z and float �= R (we might as
well have said double: the issue is with any finite precision). Both are immediate
from the fact that the computer types have a finite number of values, and the
mathematical sets an infinite number. It is superficially tempting to hope that,
though finite, there are “enough” values, but it is very rapidly seen that both
are insufficient for many non-trivial calculations, either for the answer or, much
more common, for intermediate results.

Slightly less obvious is the fact that double does not obey the laws of arith-
metic: (1 + 1020) − 1020 double−→ 0 whereas 1 + (1020 − 1020) double−→ 1. Hence the
use of floating-point arithmetic in computer algebra is relatively rare, except in
the area of lattice reduction [29], and even here substantial care is needed.

Some other references to floating point in computer algebra are these: [23,
33,34,36].
c© Springer Nature Switzerland AG 2018
J. Fleuriot et al. (Eds.): AISC 2018, LNAI 11110, pp. 19–33, 2018.
https://doi.org/10.1007/978-3-319-99957-9_2
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1.2 “to do”

While human beings know a variety of mathematical algorithms, e.g. long multi-
plication or finding the solutions of a quadratic, much manual algebraic manip-
ulation is not algorithmic, proceeding via a series of possibilities. Examples
of this are the factorisation of polynomials, even in one variable. Factoring
a quadratic is algorithmic, factoring a cubic ax3 + bx2 + cx + d reduces to
looking for a linear factor a′ ± d′ where a′ is a factor of a and d′ a factor
of d. But most people, even most professional mathematicians, will resort to
a bunch of heuristics when given a quartic such as x4 + 2x3 − x2 + 2x + 1,
and may fail to spot the factor of x2 + 3x + 1. For higher degrees, such as
x5 − 2x4 + 8x3 + 3x2 + 6x − 4 = (x3 − 3x2 + 10x − 4) · (x2 + x + 1), the problem
is probably out of range for most people.

The mathematician knows various tests, such as the Schönemann–Eisenstein
test [17] which can prove some polynomials irreducible, and shifting the poly-
nomial by x �→ x + a for suitable a can prove more irreducible polynomials to
be so, but not all [37]. Hence the output of the typical mathematician would be

three-valued:

⎧
⎨

⎩

factors
irreducible
don’t know

.

1.3 “Algebra”

Many problems of mathematics are obviously algebra: solving systems of equa-
tions, or factoring polynomials for example. Ever since Descartes, many prob-
lems of geometry can be expressed in terms of algebra, and indeed “Algebraic
Geometry” is a flourishing subject. “Geometric Theorem Proving” is a flourish-
ing branch of computer algebra, even though one has to be careful and insert
“non-trivial” or “non-degenerate” in many standard theorems for them to be
true [41].

It is also possible to regard much of traditional “calculus” as algebra. We
define differentiation (denoted by postfix ′) as a linear operator (thereby con-
verting the “sum rule” and “product rule” from theorems to axioms) from K[x]
to itself with k′ = 0 for k ∈ K and x′ = 1. The elements of K are called con-
stants. The operator ′ then extends uniquely to K(x) and its algebraic closure.
We then define the logarithm by (log θ)′ = θ′

θ (which only defines it up to an
additive constant) and exponentials by (exp θ)′ = θ′ exp θ etc. The “calculus”
question “integrate f” (where dx is implicit in our definition of differentiation)
then becomes the “algebra” question “find F with F ′ = f”. So where should we
look for F? This question also illuminates the difference between two answers
to the old chestnut “integrate e−x2

” to which the answers are either “it has no
integral” or “it’s continuous, so has an integral”. More formally, these answers
are “there is no F in the class of formulae generated from Q(x) by algebraic
closure, adding logarithm and exponentials (in any order) such that F ′ = e−x2

”
and “define F such that F ′ = e−x2

and then F is clearly the answer”.



Integration 21

Hence the output of the typical mathematician would be three-valued:⎧
⎨

⎩

I’ve found F
I can’t find F (but it might exist)
Someone has proved there’s no F

.

2 “Straightforward” Methods

As we have said, we do know some complete algorithms, e.g. multiplying two
polynomials. We know more, but when we come to program them, and therefore
run them on larger examples than we do by hand, we find some surprises.

2.1 Greatest Common Divisors

We can compute the greatest common divisor of two polynomials (over Q(x),
say) by the obvious extension of Euclid’s algorithm: keep dividing the larger
polynomial by the smaller, and replacing it by the remainder.

But this algorithm is more costly than might be expected in practice: consider
the following two polynomials1:

A(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x − 5; (1)
B(x) = 3x6 + 5x4 − 4x2 − 9x − 21. (2)

The first elimination gives A − (x2

3 − 2
9 )B, that is

−5
9

x4 +
127
9

x2 − 29
3

, (3)

and the subsequent eliminations give

50157
25

x2 − 9x − 35847
25

93060801700
1557792607653

x +
23315940650
173088067517

and, finally,

761030000733847895048691
86603128130467228900

.

Since this is a number, it follows that no polynomial can divide both A and B,
i.e. that gcd(A,B) = 1.

Just clearing fractions gives an algorithm that ends up with

7436622422540486538114177255855890572956445312500.

It turns out that a careful analysis can predict cancellations, and produce the sub-
resultant g.c.d.algorithm [14] which ends with 1954124052188—more reasonable,
but still larger than we’d expect. Modern computer algebra does better: see
Sect. 4.
1 This analysis is mostly taken from [9,10], but with one change (originally an error,

but it makes the point better): −21 instead of +21 for the trailing coefficient of B.
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2.2 Gaussian Elimination

It is easier to see the meaning of “can predict” in this setting. Consider a matrix
M whose elements are mi,j . Assuming that m1,1 �= 0 we can use row 1 to
eliminate the rest of column 1 to get a matrix M (1) whose elements are

m
(1)
i,j =

m1,1mi,j − mi,1m1,j

m1,1
, (4)

or, if we eliminate fractions,

m(1′) = m1,1mi,j − mi,1m1,j . (5)

Assuming that m
(1′)
2,2 �= 0 we can use row 2 to eliminate the rest of column 2 to

get a matrix M (2′) whose elements are

m
(2)
i,j =

m
(1′)
2,2 m

(1′)
i,j − m

(1′)
i,2 m

(1′)
2,j

m
(1′)
1,1

, (6)

or, if we eliminate fractions,

m
(2′)
i,j = m

(1′)
2,2 m

(1′)
i,j − m

(1′)
i,2 m

(1′)
2,j . (7)

Substituting (5) into (7) to get an expression for m
(2′)
i,j in terms of the original

mi,j gives a quartic. This is slightly odd, as m
(2′)
3,3 ought to be related to the

determinant of the 3 × 3 top-left corner, which is a cubic, and in fact what

we get if we substitute (4) into (6) is

∣
∣
∣
∣
∣
∣

m1,1 m1,2 m1,j

m2,1 m2,2 m2,j

mi,1 mi,2 m1,j

∣
∣
∣
∣
∣
∣
/

∣
∣
∣
∣
m1,1 m1,2

m2,1 m2,2

∣
∣
∣
∣, a cubic

quadratic

quotient of determinants, and the m1,1 has cancelled.
This might seem like a minor improvement from quartic to cubic, but in

fact these cascade, and, after eliminating n columns, the expressions are m
(n)
i,j =

degree n+1
degree n , while m

(n′)
i,j has degree 2n. We do not need to work with fractions,

though: we can indeed work with (5), (7) and their analogues, as it can be
proved [5,20] that m

((n−1)′)
n−1,n−1 always divides the m

(n′)
i,j , and the adjusted m

(n′)
i,j

have degree n + 1.

2.3 Greatest Common Divisors via Matrices

The Euclidean algorithm of Sect. 2.1 applied to f =
∑n

i=0 aix
i, g =

∑m
j=0 bjx

j

can be viewed as Gaussian elimination in the Sylvester matrix
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Syl(f, g) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

an an−1 . . . a1 a0 0 0 . . . 0
0 an an−1 . . . a1 a0 0 . . . 0
...

. . . . . . . . . . . .
. . . . . . . . .

...
0 . . . 0 an an−1 . . . a1 a0 0
0 . . . 0 0 an an−1 . . . a1 a0

bm bm−1 . . . b1 b0 0 0 . . . 0
0 bm bm−1 . . . b1 b0 0 . . . 0
...

. . . . . . . . . . . .
. . . . . . . . .

...
0 . . . 0 bm bm−1 . . . b1 b0 0
0 . . . 0 0 bm bm−1 . . . b1 b0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where there are m lines constructed with the ai, n lines constructed with the
bi. Complications arise when, as in deducing (3) from (1) and (2), the degree
drops more than expected, which is equivalent to needing to pivot in the Gaus-
sian elimination formulation, which is why the sub-resultant algorithm is more
complicated than just “divide by the previous leading coefficient”, which would
be the obvious translation of Sect. 2.2.

3 Less Straightforward Algorithms

Computer algebra has been very successful at finding algorithms where none
were previously known (or at least made explicit).

3.1 Gröbner Bases

We saw in Sect. 2.2 how to solve linear equations by a smarter version of Gaus-
sian elimination. What about nonlinear (but polynomial) equations? We can
sometimes apply linear algebra: given the three equations

x2 − y = 0 x2 − z = 0 y + z = 0,

we can subtract the first from the second to get y − z = 0, hence y = 0 and
z = 0, and we are left with x2 = 0, so x = 0, albeit with multiplicity 2. Given
the two equations

x2 − 1 = 0 xy − 1 = 0, (8)

there might seem to be no row operation available. But in fact we can subtract
x times the second equation from y times the first, to get x − y = 0. Hence the
solutions are x = ±1, y = x. In this case, it’s easy enough to verify that these
actually are solutions, and are all the solutions, but in general what are we to do?
So far this looks rather like the heuristics we saw at the end of Sects. 1.2 and 1.3.
It was the genius of Buchberger [11] to translate this into a complete algorithm,
and he and many others have produced a complete and effective theory, which
is well-treated elsewhere (e.g. [18]).
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However, a major problem can be the size of the produced Gröbner bases: it is
well known that these can be doubly-exponential in the number of variables [26],
even if the ideal is radical (has no multiple components) [13]. An alternative is the
method of triangular sets, or more precisely regular chains [22], which, instead
of producing a single base, produces a set of regular chains that between them
describe all the solutions, and this in only single exponential time [3], though it
has to be said that the distinction between d2

n

and d5n3
only manifests itself

for n > 14: currently totally impracticable. It is also not clear how rare the bad
cases are for either algorithm.

3.2 Equations etc. Over the Reals

Working over the reals is generally described as a problem of quantifier elim-
ination: given a statement such as ∃x : x2 − y = 0, produce the equivalent
unquantified statement. That this is possible at all is non-trivial [38, 1948, but
proved in 1930]. In this case the corresponding statement is y ≥ 0, which shows
that we must allow inequalities in the class of expressions we are talking about.
The first practical algorithm was due to Collins [15], and there have been many
developments since. Originally independent of the theory in Sect. 3.1, it can now
use Gröbner bases [21] or the theory of triangular sets [12].

3.3 Integration etc.

The question left over at the end of Sect. 1.3 was that of proving that there was
no integral in the allowed class of formulae if we couldn’t find one. In fact this
theory pre-dates computer algebra, and was basically discovered by Liouville
[25], but largely forgotten until computer algebra showed the need for it. For the
transcendental elementary functions (i.e. rational functions plus exp and log as
defined in Sect. 1.3) the theory is complete, and implemented in many algebra
systems. If we also allow algebraic functions, the theory is now complete, but
quite complicated and implementations tend to be partial.

There are various extensions to, for example, error functions, but we are
lacking a comprehensive extension. Hence the result of the computer algebra

system should be three-valued:

⎧
⎨

⎩

I’ve found F
I have proved there’s no F
I can’t find F (but it might exist)

, where the

third answer happens when we have an integrand outside the class of functions
for which the system has a complete algorithm. Unfortunately the user interfaces
of today seem to be unable to distinguish the last two, returning an unevaluated
integral in either case. There is surely an argument for some sort of semantic
annotation to distinguish the two.

4 Modular Methods

These were first invented [9,10] to solve the greatest common divisor (Sect. 2.1)
problem, that we seem to need larger numbers “than are reasonable”.
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4.1 G.c.d. of Univariate Polynomials

If we go back to the example of Sect. 2.1, and compute the g.c.d of A and B, but
reduce them modulo 5 to A5 and B5, and work modulo 5, we rapidly deduce that
gcd5(A5, B5) = 1. Now if C divides A and B, C5 divides A5 and B5, so C5 = 1.
But the leading coefficient of C can’t be a multiple of 5, so in fact C = 1.

So far this is a neat trick: to turn it into an algorithm requires (at least)
answering these questions.

Q1. Will it always work? The answer in fact is no: consider replacing 5 by 2
above, when gcd2(A2, B2) = x − 1.

Q2. What about leading coefficients in general?
Q3. What if the g.c.d. is non-trivial?
Q4. How big a prime should I take?

The answers to these questions are in fact quite simple.

A1. It works for any prime not dividing det(Syl(A/C,B/C)) where C is the
g.c.d., i.e. all but a finite number of primes. For these bad primes you get
too great an answer (so it can’t pretend to divide A and B over the integers),
never too small an integer.

A2. You shouldn’t use a prime that divides both leading coefficients—though in
fact many implementors avoid primes that divide either.

A3. The problem is that we only know the g.c.d. up to a multiple modulo
the prime p. For p = 5, an answer of x + 1 might actually be 2(x + 1) =
2x−1 etc. If lc stands for “leading coefficient” we know that gcd(A,B)|A, so
lc(gcd(A,B))|lc(A), so lc(gcd(A,B))| gcd(lc(A), lc(B)). Hence we multiply
A and B by gcd(lc(A), lc(B)), and look for a common factor whose leading
coefficient is precisely gcd(lc(A), lc(B)), then sort out the integer content
(the g.c.d. of all the coefficients) later.

A4. If the true g.c.d. is x+7, but I choose the prime 5, I’ll think the g.c.d. is x+2
not x+7. It is tempting to think that the coefficients of gcd(A,B) can’t be
larger than those of A, B, but the following example shows otherwise:

A = x5 + 3x4 + 2x3 − 2x2 − 3x − 1 = (x + 1)4(x − 1);
B = x6 + 3x5 + 3x4 + 2x3 + 3x2 + 3x + 1 = (x + 1)4(x2 − x + 1);

gcd(A,B) = x4 + 4x3 + 6x2 + 4x + 1 = (x + 1)4.

Nevertheless there is a bound [27]. In the case of the example of Sect. 2.1,
this Landau–Mignotte bound is 510.2, so we can take any prime greater
than twice this (to allow for ± coefficients), e.g. 1021.

We may still feel that 1021 is too big (and there are reasons later on why we
should). But clearly if we use primes smaller than the coefficients in the answer
we can’t get the right answer from a single prime. The solution is to use several
primes and the following result.
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Theorem 1 (Chinese Remainder Theorem). Two simultaneous congru-
ences X ≡ a (mod M) and X ≡ b (mod N), where M and N are relatively
prime, are precisely equivalent to one congruence X ≡ c (mod MN), and c can
be efficiently calculated as a + λM(b − a) where λM + μN = 1.

Hence we can take several primes pi, whose product is greater than twice the
Landau–Mignotte bound, and use Theorem1 to combine the g.c.d.s modulo the
pi into one modulo

∏
pi. If the pi disagree about the degree of the g.c.d., A1 says

that we must discard the pi giving higher degrees. They are definitely wrong:
the remainder may still be wrong, so we always need to check that the answer
does divide both of the inputs, and if not, try again with different primes.

If we assume that the coefficients of the answer are in fact no larger than the
input coefficients, the complexity is O(n3), where n is the greater of the degrees,
and various tricks can make this O(n2).

4.2 G.c.d. of Bivariate Polynomials

Consider two polynomials A,B ∈ K[x, y]. If after substituting the value a ∈ K
for y, we find gcd(Ay=a, By=a) = 1, and if the leading coefficients lcx(A), lcy(B)
do not vanish when we substitute y = a, we can deduce that the polynomials
are relatively prime w.r.t. x, i.e. any g.c.d. is in K[y] only. If, however, the g.c.d
is non-trivial, we can use this theorem to deduce the true result from various
different evaluations.

Theorem 2 (Chinese Remainder Theorem in K[y]). Two simultaneous
congruences X ≡ a (mod M) and X ≡ b (mod N), where a, b ∈ K[y] and M
and N are relatively prime polynomials in K[y], are precisely equivalent to one
congruence X ≡ c (mod MN), and c can be efficiently calculated as a+λM(b−a)
where λM + μN = 1.

To turn this into an algorithm requires (at least) answering these questions.

Q21. Will it always work? Not always, consider what happens when A = x − 1,
B = x − y, but y = 1.

Q22. What about leading coefficients in general?
Q23. How is a non-trivial g.c.d. computed?
Q24. How many evaluations should I take?

The answers to these questions are in fact simpler than Sect. 4.1.

A21. It works for any a not a root of det(Sylx(A/C,B/C)) where C is the g.c.d.,
i.e. all but a finite number of values. For these bad values you get too great
an answer, in terms of x-degree.

A22. You shouldn’t use a value that nullifies both leading coefficients—though
in fact many implementors avoid values that nullify either.

A23. The problem is that we only know the g.c.d. up to a multiple in K[y]. As
in A3 above, we multiply A and B by gcd(lcx(A), lcx(B)), and look for a
common factor whose leading coefficient is precisely gcd(lcx(A), lcx(B)),
then sort out the K[y] content later.
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A24. This is much simpler: degy(gcd(A,B)) ≤ min(degy(A),degy(B)), so we
take 1 + min(degy(A),degy(B)) good evaluations. Again, we discard eval-
uations that give too great an x-degree.

The complexity is again O(n2) where n = max(degx(A),degx(B)) but the depen-
dence on degy is messier because of the leading coefficients in step A23.

4.3 G.c.d. of Multivariate Polynomials

In principle the same methods apply to multivariate polynomials in k variables.
Under reasonable assumptions and suitable implementation improvements, the
complexity is O(nk+1) [10, (95)]. In practice there are significant challenges for
large multivariate polynomials.

1. Even if A and B are relatively prime, gcd(lcx(A), lcx(B)) may be an expen-
sive computation. We can check for gcd(A,B) = 1 before computing
gcd(lcx(A), lcx(B)), but then there are cases when gcd(A,B) is small but
not 1.

2. if gcd(lcx(A), lcx(B)) is large, multiplying by it may make A and B much
larger.

3. The complexity is not much larger than the maximal size of a polynomial in
k variables with degrees bounded by n. However, most multivariate polyno-
mials of high degree are sparse. This is not just a theoretical objection: the
intermediate results in these g.c.d. computations can be much larger than the
sparse results, even if the sparse results are of high degree.

4.4 Sparsity

In practice nearly all computer algebra systems use sparse storage, i.e. only
storing the non-zero terms in an expression. However traditional complexity
theory deals mostly with dense representation, i.e. counting all the zeros. This
isn’t just being näıve: sparsity has major challenges [19,32]. These are easy to
explain with univariate examples, even though they are most blatant in the
multivariate case as we have just seen. Suppose the polynomial f has degree
df and tf non-zero terms (so tf ≤ df + 1). Then the basic operations have the
following complexity properties.

h := f + g: dh ≤ max(df , dg), th ≤ tf + tg;
h := f × g: dh = df + dg, th ≤ tf × tg;
h := f/g: dh = df − dg, th ≤ df − dg + 1—consider xdf −1

x−1 ;
h := gcd(f, g): dh ≤ min(df , dg), tf ≤ max(min(tf , tg),min(df , dg) − 1).

The last follows from the neat example of [35]:

gcd(xpq − 1, xp+q − xp − xq + 1) = xp+q−1 − xp+q−2 ± · · · − 1.

Dense complexity theory measures the cost in terms of max(df , dg), but we
can see that sparse complexity theory has to measure the cost in terms of
max(tf , tg, th). Even this isn’t easy.
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Theorem 3 ([31]). It is NP-hard (in terms of tf , tg) to determine whether
gcd(f, g) = 1.

However, as [19] points out, this example involves cyclotomic polynomials (fac-
tors of xn − 1), and we may be able to do better by excluding such. Hence,
although we seem to have efficient modular algorithms in practice for comput-
ing the g.c.d. of sparse polynomials [43], it is difficult to make useful statements
about the complexity.

4.5 Other Applications

Many linear algebra problems can be solved by modular methods, and this is
particularly applicable if we only want the values of a subset of the variables,
as only these values need to be reconstructed by the Chinese Remainder The-
orem. These values may be fractions or rational functions, but it is possible to
reconstruct these by modular methods [40].

Buchberger’s algorithm (or any other) for Gröbner Bases (Sect. 3.1) can pro-
duce very large intermediate numbers, hence would seem to be crying out for the
use of modular methods. However, the answers to key questions are less helpful.

AGB1. It works for any primes that do not divide the denominator of any rational
that would occur if we did it over the integers, hence there are only a
finite number of bad primes. However, there is no simple way of deciding
which of two prmes giving differently-shaped results is the bad one, i.e.
no equivalent of “too great an answer” as in A1, though [4] gives a partial
answer.

AGB2. One clearly shouldn’t use a prime that divides any denominator, or any
leading coefficients of the input polynomials.

AGB3. If the Gröbner Base is non-trivial, it can be reconstructed from compatible
modular images by Theorem 1.

AGB4. But there are no known a priori bounds equivalent to the Landau–
Mignotte bounds. [4] again gives a partial answer to the related question
“how can I tell when I have used enough primes”.

5 p-adic (Hensel) Methods

The classic use of these methods in computer algebra is for the factorisation of
polynomials over the integers/rational numbers, for which there is no “obvious”
algorithm (see Sect. 1.2). Almost all polynomials are irreducible in the sense that

∀d > 0 lim
H→∞

|{such polynomials that factor}|
|{polynomials of degree d, coefficients ≤ H}| = 0, (9)

so we have a constant-time (or linear if we write out the answer) almost sure
algorithm that just returns “irreducible”.
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5.1 Univariate Polynomials

There are efficient algorithms for factoring polynomials modulo a prime [6,7], so
why don’t we apply these and the techniques of Sect. 4? The Landau–Mignotte
inequality will still bound the maximum size of any coefficient of any factor,
which may well be larger than the coefficients of the input polynomial: see [2]
for examples and a survey of various bounds B(f) on the factors of f .

The first difficulty is that factoring polynomials modulo a prime p1 returns
a set of factors, and modulo p2 another set of factors, and there is no way in
general of deciding which factor modulo p1 corresponds to which factor modulo
p2—of course if the factors have different degrees, then we can use the degrees to
identify matching factors, but the factors might all have the same degree. This
is inevitable: the polynomials over the integers modulo p1 (and modulo p2) and
a unique factorisation domain, but the polynomials over the integers modulo
p1p2 are not. Hence using the methods of Sect. 4 will lead to a combinatorial
explosion as we try all possibilities of combinations of factors modulo p1, p2, . . .
(and we may need many pi).

Another difficulty is that, with modular methods we knew (A1, A21) that
there were only finitely many “bad” primes where the answer modulo p did not
correspond to the answer over the integers, but here every prime can be bad: for
example x4+1 is irreducible over the integers, but factors into two quadratics or
more modulo every prime, and this is not an isolated example [37]. However, we
should note that squarefreeness of f corresponds to gcd(f, f ′) = 1, so A1 above
means that there are only finitely many bad primes for squarefreeness.

Hence the idea, due to [42] is to factor f over the integers by the following
procedure.

1. Ensure f is squarefree by computing gcd(f, f ′) etc., factoring each squarefree
component separately.

2. Factor f modulo several “good for squarefreeness” primes.
3. Choose the best p (or deduce irreducibility).
4. Lift (“Hensel’s Lemma”) the factorisation modulo p to one modulo pk for

pk > 2B(f).
5. Worry about the leading coefficients.
6. If this isn’t a factorisation over the integers, combine factors modulo pk or

otherwise deduce the factorisation over the integers

The rationale behind steps 2–3 is that an irreducible polynomial may well factor
modulo every prime chosen2, but those factorisations may be incompatible: for
example a quintic (5) might factor as (3,2) modulo one prime, but (4,1) modulo
another, and these are not compatible and imply that the polynomial must be
irreducible over the integers. So what should “several” be? Traditional wisdom
[28] is five, but recent research [30] suggests that the correct answer is seven.

There are various ways of conducting step 4: the simplest method is to pro-
ceed p, p2, p3, . . . , pk, but it might be more efficient to proceed p, p2, p4, . . . , p2

l ≥
2 The probability of a “random” irreducible polynomial f remaining irreducible mod-

ulo p is 1/ deg(f).
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2B(f), or in a hybrid fashion [1]. Step 5 is an equivalent of A3 for g.c.d.s: we
only know the factors up to units modulo pk, and, if we choose the “wrong”
versions these may not correspond to factors over the integers. The solution is
similar: if there are � factors being lifted, we multiply f by lcx(f)�−1 and insist
that every factor have leading coefficient the original lcx(f).

Step 6 is potentially the most expensive. The original solution was to try
each subset of the � factors, hence possibly 2�−1 sets (we do not need to try a set
and its complement). The famous LLL algorithm was invented [24] to avoid this:
they took a factor g of f modulo pk′

and produced the irreducible factor of f
over the integers which is divisible by g modulo pk′

. While polynomial time, this
was expensive in practice, not least because k′ was substantially greater than k.
There have been many improvements since, which are too technical to go into
here.

5.2 Bivariate Polynomials

The process for factoring polynomials in K[x, y] is similar to Sect. 5.1, as Sect. 4.2
is to Sect. 4.1: we replace working modulo p by evaluations y = a, and we use
a variant of Hensel’s Lemma to lift the factorisation of fy=a (which is a fac-
torisation of f modulo y − a) to one modulo (y − a)2, (y − a)3, etc. (quadratic
lifting is also possible, but rarely used). Again, there is no complicated question
of bounds: it suffices to work modulo (y − a)degf (f)+1.

A slight simplification is that Hilbert’s Irreducibility Theorem means that
there are infinitely many a such that the evaluation y = a preserves the factori-
sation of f . Nevertheless, there may also be infinitely many y = a that do not, so
it is still necessary to follow steps 2–3 and take several evaluations. Implemen-
tors tend to use five by analogy with [28], though this has no strong theoretical
foundation.

5.3 Multivariate Polynomials

Again this generalises in principle to multivariate polynomials. In practice there
are two major stumbling blocks. One is sparsity, as with the g.c.d. problem.
Though there has been much research in this area, it is probably fair to say that
a really good solution eludes us.

The other is the analogy of step 5, where we multiply f by lcx(f)�−1 if there
are � factors being lifted. This tends to make f both much larger and much
denser. There is an ingenious solution in [39], but again it has a price to pay in
terms of losing sparsity.

5.4 Sparsity

Again, Plaisted’s results [31] show that, even for univariates, many factorisation
problems for sparse polynomials are NP-hard, and examples such as the fac-
torisation of xn − 1 for highly composite n show that the output can be much
larger than a sparse input. There are even examples [16] that show that just the
square-free decomposition can be arbitrarily larger than the input.
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5.5 Other Uses of p-adic Methods

For simplicity we describe the univariate version, though the multivariate is sim-
ilar. It is possible to compute g.c.d.s with Hensel’s Lemma: if gp = gcdp(Ap, Bp),
then we have that Ap = gphp and we ought to be able to lift this (after imposing
leading coefficients as in Sect. 4.1) to A = gh over the integers. Hensel’s Lemma
only applies when gp and hp are relatively prime, though, and this might not be
the case. However, for random integers λ, μ, we will with high probability have
λAp + μBp = gphp with gp and hp relatively prime, so we lift this.

6 Methodologies of Reporting Research

So far we have spoken about the methodologies computer algebra uses—
improvements of straightforward algorithms (Sect. 2), advanced algorithms still
working in the same setting (Sect. 3), working modulo primes and reconstruct-
ing (Sect. 4) or working modulo a prime and then its powers (Sect. 5). There
are also questions of how research proceeds. There is little doubt that, in the
minds of most researchers, the ideal paper consists of a problem statement, a
new algorithm, a complexity analysis and a few validating examples. There are
many such great papers [10,14,24].

However, these complexity results tend to be in the dense setting, while most
practical work is done in the sparse setting. In that setting many of these prob-
lems are NP-hard (Sects. 4.4, 5.4), or have exponential or doubly-exponential
complexity (end of Sect. 3.1), though possibly only on rare cases. The SAT com-
munity, and its developments such as SMT, have wrestled with the problem of
measuring efficiency and progress when solving NP-hard problems, and their
solution is very different: lots of benchmarks and genuine contests. It is at least
arguable (and is argued in [8]) that the computer algebra community ought to
move further in this direction. However, because of (9), such benchmarks can’t
be chosen “at random”, and there is currently very little community consensus
on benchmarks.
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Abstract. In this work, we present a formal proof of an algorithm
to compute the Hermite normal form of a matrix based on our exist-
ing framework for the formalisation, execution, and refinement of linear
algebra algorithms in Isabelle/HOL. The Hermite normal form is a well-
known canonical matrix analogue of reduced echelon form of matrices
over fields, but involving matrices over more general rings, such as Bézout
domains. We prove the correctness of this algorithm and formalise the
uniqueness of the Hermite normal form of a matrix. The succinctness
and clarity of the formalisation validate the usability of the framework.
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1 Introduction

Computer algebra systems are neither perfect nor error-free, and sometimes
they return erroneous calculations [18]. Proof assistants, such as Isabelle [36]
and Coq [15] allow users to formalise mathematical results, that is, to give a
formal proof which is mechanically checked by a computer. Two examples of
the success of proof assistants are the formalisation of the four colour theorem
by Gonthier [20] and the formal proof of Gödel’s incompleteness theorems by
Paulson [39]. They are also used in software [33] and hardware verification [28].
Normally, there exists a gap between the performance of a verified program
obtained from a proof assistant and a non-verified one. However, research in
this area is filling this gap to obtain efficient and verified programs which can
be used for real applications and not just restricted to toy examples [6]. Linear
algebra algorithms are widely used in mathematics and computer software due
to their numerous applications in various fields, such as modern 3D graphics,
search engines and modern compression algorithms. In this paper, we present a
formalisation of an algorithm to compute the Hermite normal form of a matrix.
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The Hermite normal form is a well-known canonical matrix that plays an
important role in different fields. It can be used to solve algorithmic problems
in lattices [21], cryptography [45], loop optimisation techniques [40], solution
of systems of linear diophantine equations [10], and integer programming [25],
among other applications.

The paper is structured as follows. We present a brief introduction to the
Isabelle interactive theorem prover in Sect. 2. In Sect. 3 we describe the main
features of our existing framework, where algorithms over matrices can be for-
malised, executed, refined, and coupled with their mathematical meaning as well
as we introduce some benchmarks and improvements that we have carried out
in this work. As a use case, we present in Sect. 4 the main contribution of this
paper, i.e., a formal proof of an algorithm to compute the Hermite normal form
of a matrix in a general setting and the uniqueness of Hermite normal forms.
A study of related and further work is given in Sect. 5. Finally, we show the
conclusions in Sect. 6.

2 A Brief Introduction to Isabelle/HOL

Isabelle is a generic interactive proof assistant in which several logics are imple-
mented. The most used of them is HOL (Isabelle/HOL), a version of classical
higher-order logic similar to the one of the HOL System [5]. The Isabelle/HOL
type system resembles that of functional programming languages such as Haskell
[23]. There are base types (such as bool), function types representing total func-
tions (i.e. ⇒), type constructors (such as list), and type variables (such as
and ).

For instance, indicates that f is a function that maps an
element of type to a set of elements of type . Isabelle/HOL also introduces
type classes in a Haskell-like manner. A type class is just a group of types with
a common interface: all types in that class must provide the functions in the
interface. A type class not only provides an interface, but also allows to encode
properties of the types. A type being in a class B is written . Since
our formalisation is based on Isabelle/HOL, throughout the paper we present the
theorems and definitions following its syntax. Isabelle’s keywords are written in
bold. For a complete introduction on this proof assistant we refer the reader to
[37]. All our quoted developments are publicly available in the Archive of Formal
Proofs (AFP) [1,17], which is a refereed repository of formal proof libraries
developed in Isabelle.

3 Framework

In the last few years, we have completed several linear algebra developments in
Isabelle/HOL [6–8]. They are based on the HOL Analysis (HA) library where a
vector (type vec) is encoded as a function over a finite type (following the semi-
nal work by Harrison [22]) and, consequently, a matrix is represented as a vector
of vectors. More concretely, we developed a framework where linear algebra
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algorithms can be formalised, executed, refined, and coupled with their math-
ematical meaning. This framework includes, for instance, connection between
linear maps and matrices, necessary generalisations of the HA library, formal-
isation of elementary operations of matrices, formalisation of the fundamental
theorem of linear algebra, symbolic execution, a full library of algebraic struc-
tures (Bézout domains, principal ideal domains, GCD rings, etc.), connection
with the Cayley-Hamilton theorem and so on.

As use cases, we implemented the Gauss-Jordan algorithm, the QR decom-
position and the echelon form algorithm. All of them are available in the AFP
[1]. Thiemann and Yamada used the framework in their formalisation of Jordan
normal forms [44] (it is worth noting that they use a different representation of
vectors from the one we use, by means of functions over the natural numbers
with explicit dimensions associated to them). Also Li and Paulson reused our
generalisations of the HA library in their work on real algebraic numbers [32].
Some parts have also been moved to the standard Isabelle/HOL library.

3.1 Main Parts

The main parts of this framework are as follows:

1. Formalisation of elementary operations of matrices. We have defined them in
Isabelle/HOL using the vec representation. For instance, we show here the
definition of interchanging two rows of a matrix:

definition interchange_rows A a b = (χ i j. if i = a then A $ b $ j

else if i = b then A $ a $ j else A $ i $ j)

In the above definition, χ denotes the morphism from functions to type vec

and $ is the access operator for vec .
2. Refinements from vec to executable representations (details can be found

in [6]). We developed a natural refinement, from vec to functions over a
finite type. We also developed a refinement to immutable arrays, or iarray

to improve performance. An example of code lemma to transform from vec

to iarray follows:

lemma [code-unfold]: matrix to iarray (interchange rows A i j)

= interchange rows iarray (matrix to iarray A) (to nat i)

(to nat j)

3. Serialisations to obtain better performance when generating code to func-
tional programming languages (SML and Haskell). We have used two kinds
of serialisations:

– Immutable arrays (the efficient type used to represent vectors and matri-
ces).

– Z2, Q, and R numbers (the types of the coefficients of the matrices).
The latter ones are trivial. The first one in SML [4] was a part of the library.
Regarding the serialisation of arrays in Haskell [2], we have serialised the
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iarray Isabelle/HOL datatype to the Data.Array.IArray.array (or shorter,
IArray.array) constructor present in the standard Haskell library. Let us note
that arrays are a natural way to represent dense matrices, which are the ones
we are focusing in (we compute normal forms of matrices by means of ele-
mentary row operations). There exist also sparse representations of matrices
in Isabelle/HOL by means of lists (see for instance the work by Obua and
Nipkow [38]).

In the next subsection, we present some computational experiments that we
completed and that justify our choice of immutable arrays for generating code
of linear algebra algorithms from Isabelle/HOL specifications.

3.2 Performance

There exist different implementations of immutable arrays in Haskell, such
as IArrays (Data.Array.IArray.array) or UArrays (Data.Array.Unboxed.array).
In the case of the code generated from our Isabelle/HOL developments,
we have empirically tested that IArray.array performs slightly better than
Unboxed.array. As an example, the computation of the determinant of a
1500 × 1500 Z2 matrix by means of the code generated to Haskell from
our verified Gauss-Jordan algorithm took 6.09s using IArray.array and 6.37s
using Unboxed.array.1 A more specific Haskell module for immutable arrays is
Data.Array (where the Data.Array.array constructor is involved). As in the case
of unboxed immutable arrays, the use of Data.Array.array does not imply an
empirical advantage in terms of performance in our particular setup with respect
to Data.Array.IArray.array.

We also perform some benchmarks in order to compare the performance of
vec implemented as functions over finite domains, as immutable arrays, and
also as lists (using an existing AFP entry about an implementation of matrices
as lists of lists [42]). To do that, we define recursive functions (one for each
representation: function over finite domains, immutable arrays, and lists) which
take a rational matrix A as their input, and in each iteration interchange two
rows of A + A.

Benchmarks are carried out for 10n × 10n identity matrices, n being the
number of iterations. Concretely, we execute the previous functions in two cases:
applied to a 50 × 50 identity matrix with n = 5 and to the 100 × 100 identity
matrix with n = 10. The algorithm is applied to identity matrices to minimize
arithmetic time consumption. Table 1 shows the performance obtained when exe-
cuting them within Isabelle/HOL (by means of the simplifier, with fully symbolic
evaluation and highest confidence), and exporting code to SML by means of the
command code to obtain better performance (in the second case, part of the
code generation process is not verified, and needs to be trusted). Results show
that the case n = 5 is usable in practice with any of the three representations.
However, for bigger matrices, functions over finite domains become too slow.

1 The Isabelle file that serialises iarray to UArrays is available from our website [16].
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Immutable arrays outperform functions and lists in any case when exporting
code, as expected. It is worth noting that inside Isabelle/HOL (but not when
code is exported), iarray is just a wrapper of the type list . Thus, in the quest
for performance, immutable arrays yield reasonable performance.

Table 1. Comparative among matrix repre-
sentations.

functions iarray list

n=5 simp 241.158s - 20.860s

code 0.639s 0.159s 0.971s

n=10 code 827.673s 0.881s 1.824s

Focusing on our linear alge-
bra algorithms, the performance
obtained using functions over finite
domains makes algorithms based
on this representation unusable
in practice. For instance, the
computation of the Gauss-Jordan
algorithm over 15 × 15 matrices
is rather slow (several minutes).
Using immutable arrays the compu-
tation is done immediately.

The benchmarks and the execution examples presented throughout the paper
have been carried out in a laptop with an Intel R© CoreTM i7-4810MQ processor
with 16 GiB of RAM and Ubuntu GNU/Linux 16.04. The code developed to
carry out the benchmarks can be obtained online [16] and works for Isabelle
2017.

Mutable arrays (and imperative programming) should also be a good choice.
Nevertheless, we compared the performance of using immutable arrays and muta-
ble arrays in our formalisation of the Gauss-Jordan algorithm and obtained sim-
ilar results [6].

4 A Formalisation of the Hermite Normal Form of a
Matrix

The Hermite normal form is commonly defined for integer matrices, but it also
exists for more general matrices. Following a similar approach as the one that
we followed in the formalisation of an algorithm to compute the echelon form of
a matrix [8], we implemented an algorithm to compute the Hermite normal form
for matrices whose elements belong to a Bézout domain. Execution is guaran-
teed for matrices over any Euclidean domain, since there always exists an exe-
cutable operation for computing Bézout coefficients. This executable operation
over Euclidean domains is already implemented in the Isabelle/HOL standard
library by Eberl. One could also execute the algorithm with matrices over a
Bézout domain, as long as an executable operation to compute Bézout coeffi-
cients is provided.

4.1 Definition of Hermite Normal Form

Our formalisation of the Hermite normal form is built from many pieces. Essen-
tially we need matrices and polynomials from the standard library and from our
framework:
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– Generalisations of the HA library.
– Elementary operations over matrices, executability of the vec representation,

serialisations to obtain efficient code.
– An algorithm to compute the echelon form of a matrix.
– Ring theory (some fragments were already present in the standard library).

Let us stress that there is no unique definition of Hermite normal form in the
literature. For instance, some authors, like Newman [35], restrict their definitions
to the case of square nonsingular matrices (that is, invertible matrices). Other
authors, like Cohen [13], just work with integer matrices. Furthermore, given a
matrix A its Hermite normal form H can be defined to be upper triangular [43] or
lower triangular [35]. In addition, the transformation from A to H can be made
by means of elementary row operations [35] or elementary column operations
[13]. In this formalisation, we work as generally as possible, so we do not impose
restrictions in the input matrix (coefficients must belong to a Bézout domain
and both square and non-square matrices are accepted).

In our algorithm the transformation to the Hermite normal form is carried
out by means of elementary row operations, obtaining H as an upper triangular
matrix. This design decision will allow us to reuse our previous work. Moreover,
any algorithm or theorem using an alternative definition of Hermite normal form
(for example, in terms of column operations and/or lower triangularity) can be
moulded into the form of Definition 4.

Firstly, we have to define the concepts of complete set of nonassociates and
complete set of residues modulo µ. Let R be a commutative ring with unit.

Definition 1 (Complete set of nonassociates). An element a ∈ R is said
to be an associate of an element b ∈ R if there exists an invertible element u ∈ R
such that a = ub. This is an equivalence relation over R. A set of elements of R,
one from each equivalence class, is said to be a complete set of nonassociates.

Definition 2 (Complete set of residues). Let µ be any nonzero element of
R. Let a, b ∈ R; a is congruent to b modulo µ if µ divides a − b. This is an
equivalence relation over R. A set of elements of R, one from each equivalence
class, is said to be a complete set of residues modulo µ (or shorter, a complete
set of residues of µ).

Let us start introducing the Isabelle/HOL implementation of associated (due
to Eberl) and congruent elements (this and the following definitions are available
from file Hermite.thy of our development [17]). In the definitions, x dvd y means
that the element x divides the element y :

definition associated x y ←→ x dvd y ∧ y dvd x

definition cong a b u = (u dvd (a - b))

We easily connect Eberl’s definition of associated elements with Definition 1
and show they are equivalent.

lemma associated a b = (∃ u∈Units. a = u * b)
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Next, we define the corresponding relations of associates and congruence
introduced by the definitions. We define the relations by means of sets. Two
elements (a, b) belong to the set if they are related. Hence:

definition associated_rel = {(a, b). associated a b}

definition congruent_rel u = {(a, b). cong a b u}

We prove both of them to be reflexive, transitive, and symmetric (i.e., they
are equivalence relations over UNIV , where UNIV represents the set of all elements
of the ring).

lemma equiv UNIV associated_rel

lemma equiv UNIV (congruent_rel u)

From the definitions of associated and congruent elements, we introduce the
complete set of nonassociates and complete sets of residues modulo an element.
Authors usually avoid these definitions imposing additional conditions to the
Hermite normal form. For instance, in the particular case of integers, the residues
r modulo µ are usually chosen such that 0 ≤ r < µ (see [13]), but −µ < r ≤ 0
(see [10]) and −µ

2 < r ≤ µ
2 (see [3]) are also valid choices. Every possibility fits

selecting a complete set of nonassociates and complete sets of residues.
A function f is an associates function if for all a ∈ R, then a and f(a) are

associated. In order to obtain a complete set of nonassociates, we impose the
elements belonging to the range of f to be pairwise nonassociates. Hence, a set
S will be a complete set of nonassociates if there exists an associates function f
whose range is S.

definition ass_function f = ((∀ a. associated a (f a)) ∧
pairwise (λa b. ¬ associated a b) (range f))

definition Complete_set_non_associates S =

(∃ f. ass_function f ∧ range f = S)

Such definitions satisfy the following properties:

lemma assumes ass_function f

shows Complete_set_non_associates (range f)

lemma assumes Complete_set_non_associates S

and x ∈ S and y ∈ S and x �= y shows ¬ associated x y

A function f is a residues function if, given u ∈ R, the following conditions
hold:

1. For all a, b ∈ R, a and b are congruent modulo u if and only if f u a = f u b.
2. The elements which belong to the range of f are pairwise noncongruent mod-

ulo u.
3. For all a ∈ R, f u a and a are congruent modulo u.
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definition res_function f =

(∀ u. (∀ a b. cong a b u ←→ f u a = f u b)

∧ pairwise (λa b. ¬ cong a b u) (range (f u))

∧ (∀ a. cong (f u a) a u))

Essentially, the residue function picks out an element for each residue class.
From the latter condition it follows that the elements (such as a) above a leading
entry (such as u) can be converted to f u a by elementary operations, since there
exists k ∈ R such that f u a = a+ku. There exists a complete set of residues for
each element u ∈ R. Thus, g models a complete sets of residues if there exists a
residues function f such that each set g u is exactly the range of f u:

definition Complete_set_residues g =

(∃ f. res_function f ∧ (∀ u. g u = range (f u)))

The function satisfies the expected properties:

lemma assumes f: res_function f

shows Complete_set_residues (λu. range (f u))

lemma assumes Complete_set_residues g

and x ∈ g b and y ∈ g b and x �= y shows ¬ cong x y b

We can provide (executable) associates and residues functions involving ele-
ments over Euclidean domains:

definition ass_function_euclidean p = normalize p

definition res_function_euclidean b n= (if b=0 then n else n mod b)

In the above definitions, normalize specifies a canonical representant for each
equivalence class in the Euclidean domain. For instance, in the case of the inte-
gers, normalize corresponds to the absolute value. The functions are proven to
be associates and residues functions respectively:

lemma ass_function ass_function_euclidean

lemma res_function res_function_euclidean

We could also provide other different instances of associates and residues
functions. For instance, the minus absolute value can be used as an associates
function for integer elements:

lemma ass_function (λn::int. -abs n)

lemma range (λn::int. -abs n) = {x. x ≤ 0}

With the previous ingredients we can now introduce the definition of the
Hermite normal form.

Definition 3 (Echelon form). A matrix H ∈ Mm×n(R) is said to be in
echelon form if:
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1. All rows consisting only of 0’s appear at the bottom of the matrix.
2. For any two consecutive nonzero rows, the leading entry of the lower row is

to the right of the leading entry of the upper row.

Definition 4 (Hermite normal form). Given a complete set of nonassoci-
ates S and complete sets of residues G, a matrix H ∈ Mm×n(R) is said to be in
Hermite normal form if:

1. H is in echelon form.
2. The leading entry of every nonzero row belongs to S.
3. Let h be the leading entry of a nonzero row. Then each element above h belongs

to G h.

Our Isabelle/HOL implementation of the definition is parametrised by a
matrix A and two functions, associates and residues , which are demanded
to be associates and residues functions respectively. The operator LEAST n. P n

returns the least element n that satisfies a property P , in our case the least index
n such that A$i$n �=0 .

definition Hermite associates residues A =

(Complete_set_non_associates associates

∧ Complete_set_residues residues ∧ echelon_form A

∧ (∀ i. ¬ is_zero_row i A −→
A $ i $ (LEAST n. A $ i $ n �= 0) ∈ associates)

∧ (∀ i. ¬ is_zero_row i A −→
(∀ j. j<i −→ A$j$(LEAST n. A $ i $ n �= 0)

∈ residues (A$i$(LEAST n. A$i$n �= 0)))))

Definition 5 (Hermite normal form of a matrix). A matrix H ∈
Mm×n(R) is the Hermite normal form of a matrix A ∈ Mm×n(R) if:

1. There exists an invertible matrix P such that A = PH.
2. H is in Hermite normal form.

4.2 An Algorithm to Compute the Hermite Normal Form
of a Matrix

Any matrix over a Bézout domain can be transformed by means of elementary
operations to its Hermite normal form. A schema of the computation of the
Hermite normal form is presented in Algorithm 1. There exist more efficient
(in both computational cost and space consumption) algorithms to compute
the Hermite normal form of a matrix. Normally they are restricted to specific
domains, such as polynomial matrices [26].

We have implemented the Hermite algorithm in Isabelle/HOL iterating over
rows. That is, we have defined an operation that carries out the transforma-
tions over one row and then we have defined the Hermite algorithm folding such
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Algorithm 1. An algorithm to compute the Hermite normal form of a
matrix A
Input: A ∈ Mm×n(B) and complete sets of nonassociates and residues.
Output: A matrix H such that ∃P. A = PH, where P ∈ Mm×m(B) is

invertible and H ∈ Mm×n(B) is in Hermite normal form with respect
to the given complete sets of nonassociates and residues.

1 Transform the matrix A to its corresponding echelon form;
2 Transform each row such that its leading entry belongs to the complete set of

nonassociates, multiplying each row by an appropriate constant;
3 Transform the elements above each leading entry, i.e., such elements must

belong to the corresponding complete set of residues with respect to the leading
entry. This is done by adding to each row above the leading entry, the row of
the leading entry multiplied by a constant (that is, the transformation is carried
out by means of elementary operations).

an operation over all rows. Our Hermite algorithm relies on our previous ver-
sion of the echelon form algorithm [8]. The algorithm is parametrised by three
functions:2

– A function that computes Bézout’s identity of two elements (required for the
echelon form).

– An associates function whose range is a complete set of nonassociates.
– A residues function whose range consists of complete sets of residues.

The Hermite algorithm must be parametrised with the functions that satisfy
the required properties presented above. The proof of correctness of the algo-
rithm will assume that such functions are really Bézout, associates, and residues
functions respectively. These requirements are expressed by means of premises.

The following Isabelle functions reproduce the steps in Algorithm1. Step 1
corresponds with the function echelon form of of our previous work. Step 3 is
performed by means of Hermite reduce above starting from the proper index (one
of its parameters is the residues function). We use a primitive recursive definition
over the representation of the row-indexes as natural numbers.

primrec Hermite_reduce_above A 0 i j res = A

| Hermite_reduce_above A (Suc n) i j res =

(let i’=((from_nat n)::’rows); Aij = A $ i $ j; Ai’j = A$i’$j;

k = (((res Aij (Ai’j))-(Ai’j)) div Aij) in

Hermite_reduce_above (row_add A i’ i k) n i j res)

This function is reused in Hermite of row i , which performs Step 2 (it also
has both the associates and the residues functions as parameters).

definition Hermite_of_row_i ass res A i =

2 Neither records nor locales [9] are used for this task, although they are a valid
alternative.



REGULAR-MT 47

(if is_zero_row i A then A else

let j = (LEAST n. A $ i $ n �= 0); Aij= (A $ i $ j);

A’ = mult_row A i ((ass Aij) div Aij)

in Hermite_reduce_above A’ (to_nat i) i j res)

The function Hermite of upt row i iterates the process up to a row i.

definition Hermite_of_upt_row_i A i ass res =

foldl (Hermite_of_row_i ass res) A (map from_nat [0..<i])

Finally, Hermite of takes echelon form as starting point and applies the func-
tion Hermite of upt row i to its rows:

definition Hermite_of A ass res bezout = (let A’= echelon_form_of A bezout

in Hermite_of_upt_row_i A’ (nrows A) ass res)

The soundness of the algorithm can be split into four parts:

1. The output matrix is in echelon form.
2. Each leading entry belongs to the complete set of nonassociates.
3. Each element above a leading entry belongs to the corresponding complete

set of residues.
4. The algorithm is carried out by means of elementary row operations (there-

fore, the output matrix is the Hermite normal form of the input matrix).

Part 1 takes advantage of our previous proof about echelon forms [8], and
requires proving that Hermite of upt row i preserves echelon forms. This prop-
erty follows from the definition of Hermite reduce above , since it performs ele-
mentary row operations only above the leading coefficients of each row. Thus,
it does not alter any of the properties of the echelon form. Part 2 easily follows
from the definition Hermite of row i . The proof of Part 3 is based on the def-
inition of Hermite_reduce_above . The proof is more intricate, since we have to
prove the result for one row, and then apply inductively the result to the rest
of rows (proving that the previous ones are preserved in each iteration). The
crucial lemma for this part states that the property holds when the algorithm is
iteratively applied up to the k − th row:

lemma defines n=(LEAST n. A $ i $ n �= 0)

assumes ¬ is_zero_row i A and echelon_form A and ass_function ass

and res_function res and to_nat i < k and k ≤ nrows A and j < i

shows (Hermite_of_upt_row_i A k ass res) $ j $ n

∈ range (res (Hermite_of_upt_row_i A k ass res $ i $ n))

Finally, Part 4 is established by proving that the required steps to compute
the Hermite normal form can be expressed as invertible matrices (here we also
reuse results of our previous developments), and therefore are equivalent to ele-
mentary operations. We refer the interested reader to the file Hermite.thy of the
development for the full-detailed proofs and statements. In a modest 1400 code
lines we obtain the final theorem:
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theorem assumes ass_function ass

and res_function res and is_bezout_ext bezout

shows ∃ P. invertible P ∧ (Hermite_of A ass res bezout) = P ** A ∧
Hermite (range ass) (λc. range (res c)) (Hermite_of A ass res bezout)

In ca. 150 Isabelle/HOL code lines, we refine the algorithm to immutable
arrays and generate its SML and Haskell versions (see file Hermite IArrays.thy).

4.3 Uniqueness

Theorem 1 Fixing a complete set of nonassociates and complete sets of
residues, if A ∈ Mn×n(R) is a nonsingular matrix, then its Hermite normal
form is unique.

Let us note that the Hermite normal form of an invertible matrix is the iden-
tity matrix when the standard associates and residues functions over euclidean
domains are chosen in the algorithm, but this does not hold in general. In order
to prove Theorem 1, we follow the proof by Newman [35, Theorem II.3]. Where
Newman considers the Hermite normal form as a lower triangular matrix we
consider it upper triangular.

lemma assumes A = P ** H and A = Q ** K and invertible A

and invertible P and invertible Q

and Hermite associates residues H

and Hermite associates residues K shows H = K

The original proof comprises 28 lines [35, Theorem II.3]. The argument pro-
ceeds as follows: let us suppose that, for a given nonsingular matrix A, there
are two different upper triangular Hermite forms (wrt the same sets of asso-
ciates and residues), H and K. Then, there exists a unit matrix U such that
H = UK. U must also be upper triangular. Its diagonal elements are 1, since
hii = uiikii with both hii, kii in the same set of nonassociates. The remaining
elements of the matrix must be equal to 0. Let s ∈ {0 . . . n − 1} (any valid
row). Since the matrix is upper triangular, we consider the element us,s+j with
j ∈ {1 . . . (ncolsA − s)} (i.e., any element above the diagonal). We apply total
induction in j, and therefore we assume that us,s+1, . . . , us,s+(j−1) are equal to
0. Hence:

hs,s+j =
nrowsA∑

t=0

ustkt(s+j) (1)

=
s+j∑

t=s

ustkt(s+j) (2)

= ussks,s+j + us,s+1ks+1,s+j + · · · + us,s+jks+j,s+j (3)
= ussks,s+j + us,s+jks+j,s+j (4)
= ks,s+j + us,s+jks+j,s+j (5)
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Step 2 follows from K being upper triangular; step 4 follows from the induc-
tion hypothesis; step 5 follows from the first part of the proof (uii = 1). There-
fore, hs,s+j ≡ ks,s+j mod ks+j,s+j , from where it follows that hs,s+j ≡ ks,s+j ,
since both elements belong to the same complete set of residues of ks+j,s+j (and
hence us,s+j = 0).

This inductive reasoning, which in the original proof took 18 lines, required
88 lines in our formalisation. The proof itself is not particularly intricate, but
it demands a correct manipulation of the indexes. The complete proof took 150
lines, thanks to the strong reuse of previous results already available in the
framework. It firmly follows the book proof line by line.

4.4 Examples of Execution

We provide two examples of execution of our formalised algorithm. Both use
the standard associates and residues functions, which are defined for Euclidean
domains. Let us choose a rectangular random integer matrix A and a polynomial
matrix B.

A =

⎡

⎢⎢⎣

37 9 10 28 40 23 59 25 73 79
5 96 93 7 71 44 63 90 27 89
70 65 36 69 2 81 14 30 92 60
16 98 100 50 64 21 39 95 80 34

⎤

⎥⎥⎦ , B =
[
5x2 + 4x + 3 x − 2

2x2 − 1 x3 + 4x2 + x

]

Their Hermite normal forms are computed in Isabelle/HOL similarly:

value[code] matrix_to_list_of_list (Hermite_of M ass_function_euclidean

res_function_euclidean euclid_ext2)

Where M is a matrix in Isabelle/HOL that corresponds to A or B, depending
on the example we are executing. The function Hermite of has four parameters:
the input matrix M , the standard associates function for Euclidean domains
(ass function euclidean), the standard residues function for Euclidean domains
(res function euclidean), and the function which computes Bézout coefficients
in Euclidean domains (euclid ext2), which is required by the echelon form algo-
rithm. Let us note that the type inference will determine which version of the
associates and residues functions must be executed, depending on the type of
the input matrix. The function matrix to list of list eases outputting matri-
ces. The obtained results follow:
⎡

⎢⎢⎣

1 0 0 2126849 −2040340 −1544323 −3517370 −665650 1303207 −5664981
0 1 0 3330071 −3194626 −2417993 −5507258 −1042230 2040466 −8869838
0 0 1 1681610 −1613209 −1221033 −2781035 −526300 1030392 −4479062
0 0 0 3802428 −3647768 −2760977 −6288437 −1190065 2329900 −10127986

⎤

⎥⎥⎦

⎡

⎢⎣
1 − 44

89
+

31
89

x − 68
89

x2 +
137
89

x3 +
40
89

x4

0 − 2
5

+
4
5
x + 4x2 +

22
5
x3 +

24
5
x4 + x5

⎤

⎥⎦
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The results satisfy the expected properties (for instance, the polynomial
matrix has monic polynomials as leading entries in each row). Let us also note
the growth on the size of the elements. Both matrices are computed instantly.
Such examples can also be executed inside the logic, but they take 30 and 8
minutes respectively.

The performance of the algorithm is highly dependent on several factors.
Some of them follow from our design choices, such as the selection of associates
and residues functions, and the function to compute the Bézout identity. Some
others depend on the system configuration, such as the serialisations employed.
Finally, the chosen algorithm to compute the Hermite normal form itself can
be extremely space consuming (there exist versions that bound the size of the
intermediate entries computed [27]). With our particular version, the time to
compute the Hermite normal form of a 20×20 integer matrix with random entries
between 0 and 100 making use of the standard associates, residues, and Bézout
functions is negligible using the refinement to iarray . The resulting matrix has
elements with more than 50 digits. The same happens with a 25 × 25 integer
matrix. Memory issues appear with higher dimensions and greater elements.

5 Related and Further Work

Linear algebra has been formalised in many theorem provers: Isabelle/HOL [44],
Coq [12], Mizar [41], HOL Light [22], PVS [34], and ACL2 [19] are just a few
examples of it. On the contrary, the verification and implementation of linear
algebra algorithms have not been so widely explored, especially involving matri-
ces over rings. The most similar works have been carried out in Coq. It is worth
citing the CoqEAL development [12], which contains several linear algebra algo-
rithms formalised in Coq, such as the Sasaki-Murao [14] algorithm for computing
determinants of matrices over rings. The closest work to ours is the one done by
Cano et al. [11] also in Coq, which presents a formalisation of the Smith nor-
mal form (SNF) of a matrix. Their formalisation is restricted to explicit division
rings, such as constructive Bézout domains, whereas in our case we can work
with more abstracts structures where the existence of divisions and greatest
common divisors are known, but maybe not how to compute them. In any case,
the SNF algorithm is distinct from the Hermite normal form. SNF requires both
row and column operations and the result is a diagonal matrix. The Hermite
normal form sometimes can be view as a previous step, but is not required to
compute the SNF. The computation of the echelon form of integer matrices has
been recently formalised in ACL2 by Lambán et al. [30] as an application of
abstract single threaded objects. A formal proof of the SNF would be desirable
in Isabelle/HOL. Most of the algorithms to compute the SNF of a matrix are
based on submatrices [43]. Unfortunately, submatrices are a delicate issue in the
HA library: Since Isabelle does not feature dependent types, we cannot use the
size of the matrix in the definition of submatrix. Thiemann and Yamada already
faced this problem when formalising Jordan normal forms of matrices [44], a kind
of forms whose construction is done by means of block matrices. As a solution,
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they propose a new matrix representation which is indeed an abstraction of the
HA representation, but flexible for dimensions. We aim to formalise the Smith
normal form in Isabelle using such a representation, also connecting it to the
HA library and our framework by means of the lifting and transfer package [24]
and the new addition of local type definitions when necessary [29]. This would
also allow us to implement some decision procedures based on linear algebra
methods, such as the decision algorithm proposed by Li et al. [31].

6 Conclusions

We have presented a formalisation of the Hermite normal form of a matrix that
reuses our previous developments. The Hermite normal form of a matrix is a
well-known canonical matrix over rings. We have not only proved the correctness
of the algorithm, but we have also refined it to immutable arrays and we have
formalised its uniqueness as well. As far as we know, this is the first formalisation
of the Hermite normal form in any theorem prover, even only considering the
case of integer matrices.

The formalisation could be seen as a proof pearl because of two reasons:
we have formalised a non-trivial and well-known linear algebra algorithm in a
modest number of lines (ca. 2300, to be compared with more than 10000 that
we needed for similar results with the Gauss-Jordan algorithm) thanks to a
strong reuse of the infrastructure presented in Sect. 3; and we have focused on
obtaining the most general version by means of a parametrised algorithm. The
formalisation has been carried out involving matrices over Bézout domains and
it is not restricted to the common case of integer matrices. Furthermore, the
algorithm has been parametrised by functions so that it can compute every
definition of the Hermite normal form in the literature.
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Abstract. We study two different descriptions of incidence projective
geometry: a synthetic, mathematics-oriented one and a more practical,
computation-oriented one, based on the combinatorial concept of rank
of a set of points. Using both axiom systems, we prove that some specific
finite planes (resp. spaces) verify the axioms of projective plane (resp.
space) geometry and Desargues’ property. It requires using repeated case
analysis on all variables of some finite inductive data-types and leads to
numerous (sub-)goals in the Coq proof assistant. We thus investigate to
what extend Coq can deal with such a combinatorial explosion in the
number of cases to handle. We propose some easy-to-implement but rel-
evant proof optimizations which, combined together, lead to an efficient
way to deal with such large proofs.

Keywords: Coq · Proof automation · Combinatorial explosion
Finite inductive types · Projective geometry · Finite geometry
Desargues’ property

1 Introduction

Incidence projective geometry is one of the simplest and most expressive frame-
works used to describe some aspects of geometry. It is a good candidate for
formalization: few axioms are needed and some key geometric properties such as
Desargues’ one can be formally stated and proved correct under some specific
assumptions (see [11,12]).

The notion of incidence projective plane is mainly defined by two axioms:
two distinct points define a single line and two lines concur in a single point. A
third axiom is usually used to catch precisely the dimension of geometry. For
higher dimensions, the second axiom is a bit more complicated and defined as
the two following statements: (1) two lines concur in at most one point and (2)
Pasch’s axiom: given four different points A, B, C and D, if lines AB and CD
concur, so do lines AC and BD. Moreover, other axioms can be added to avoid
degenerate cases.

Proving properties in projective geometry or proving that some planes or
spaces are actual models of projective geometry is usually based on analyzing a
few general configurations as well as numerous degenerate cases. Using a proof
c© Springer Nature Switzerland AG 2018
J. Fleuriot et al. (Eds.): AISC 2018, LNAI 11110, pp. 54–69, 2018.
https://doi.org/10.1007/978-3-319-99957-9_4
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assistant such as Coq [3,6] makes it easier for the user to write a correct and
comprehensive proof. Indeed, Coq forces the programmer to handle each possible
case in the proof. In addition, all details of the proof must be provided, which
improves the confidence in it and allows the system to verify the proofs (by type-
checking). The drawback is that it represents a tremendous amount of work for
the proof developer. Thankfully, the Coq proof assistant and its tactic language
Ltac allow to build ad-hoc tactics to automate large parts of the proofs efficiently.

We use two equivalent formal descriptions of projective geometry: a synthetic
one and an alternative one using a matroid structure operating on points [4]. We
check to what extent each of them allows to perform tractable, readable, easy-to-
write and easy-to-process proofs. To achieve this goal, we work with some finite
models of projective geometry: pg(2, 2), also known as Fano plane, pg(2, 3) and
pg(2, 5); as well as the smallest finite projective space pg(3, 2) (see Subsect. 2.3).
As models grow bigger, we need smarter proof techniques to cope with the
inherent complexity and to keep memory usage, proof search and compile time
under control.

Related Work. Finite geometry has been studied since the late 19th century
and is intrinsically linked to the development of algebraic structures like division
rings, near fields or ternary rings. There has been a renewed interest with its
application to computational domains like cryptography or planning (see [2,5]
for a comprehensive state of the art). The theoretical aspects are out of the
scope of this paper. Rather we are interested in efficiently automating proofs
with numerous cases within the Coq proof assistant. The use of ranks to carry
out proofs in projective geometry was first introduced by Michelucci and Schreck
[14]. Our work reuses some ideas of the mathematical components library about
finite types [13] but we choose to refactor parts of it to suit our own needs.

Outline. This article is organized as follows. In Sect. 2, we present two different
ways of specifying projective geometry, directly or by using rank theory. We also
introduce some common properties (e.g. Desargues’ property) and describe some
finite models of projective geometry. In Sect. 3, we study the inherent complexity
of the finite models and describe some techniques to handle these complexity
issues properly in Coq. In Sect. 4, we present some more practical tools to help
the user to write formal proofs easily via proof structuring and automation.
Finally, in Sect. 5, we summarize our contributions and present some suitable
perspectives.

Notation. We name axioms AXYN. A stands for axiom, X is the axiom number,
Y may take two values (P = projective, R= rank) and N denotes the dimension.
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2 Formal Specification of Projective Geometry, Rank
Theory and Finite Fields

We define two equivalent axiom systems for incidence projective geometry: one
based on the usual synthetic description, and another one based on the combi-
natorial notion of rank provided by the matroid structure of incidence projec-
tive geometry. Then, we prove, using these two specifications, that some finite
planes/spaces are models of incidence projective geometry and we study Desar-
gues’ theorem.

2.1 Axiom Systems for Incidence Projective Geometry

Incidence Geometry is a simple view of geometry, where only points and lines,
together with the incidence relation linking them are kept. Projective geometry is
obtained by assuming that two coplanar lines always meet. Incidence projective
geometry can be easily described as a small set of axioms, as shown in Coxeter’s
book [7].

Plane. The axiom system for projective plane geometry consists of five axioms
presented in Fig. 1. Axioms (A1P2) and (A2P2) deal with construction of points
and lines. Axiom (A3P2) concerns uniqueness of points and lines. Finally, axiom
(A4P2) states that each line contains at least three points; and axiom (A5P2)
expresses that there always exists two distinct lines.

(A1P2) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P2) Point-Existence : ∀ l m : Line, ∃ A : Point, A ∈ l ∧ A ∈ m

(A3P2) Uniqueness : ∀ A B : Point, ∀ l m : Line, A ∈ l ∧ B ∈ l ∧
A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P2) Three-Points : ∀ l : Line, ∃ A B C : Point,
A �= B ∧ B �= C ∧ A �= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P2) Lower-Dimension : ∃ l m: Line, l �= m

Fig. 1. Axiom system for projective plane geometry

Space and Higher Dimensions. Similarly, we define an axiom system to
capture projective space geometry in Fig. 2 by extending the previous one. The
system still contains five axioms with three of them remaining unchanged (A1P3,
A3P3, A4P3). Pasch’s axiom replaces (A2P2) and assumes that two coplanar
lines always meet. Furthermore, we modify the axiom Lower-Dimension to cap-
ture projective geometry for spaces of dimension greater or equal than 3. It is
possible to limit this to spatial geometry by adding the optional axiom (A6P3)
to constrain the dimension to be exactly 3.
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(A1P3) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P3) Pasch : ∀ A B C D : Point, ∀ lAB lCD lAC lBD : Line,
A �= B ∧ A �= C ∧ A �= D ∧ B �= C ∧ B �= D ∧ C �= D ∧
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lCD ∧ D ∈ lCD ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lBD ∧ D ∈ lBD ∧
(∃ I : Point, I ∈ lAB ∧ I ∈ lCD) ⇒
(∃ J : Point, J ∈ lAC ∧ J ∈ lBD)

(A3P3) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P3) Three-Points : ∀ l : Line, ∃ A B C : Point,
A �= B ∧ B �= C ∧ A �= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P3) Lower-Dimension : ∃ l m : Line, ∀ p : Point, p /∈ l ∨ p /∈ m

(A6P3) Upper-Dimension : ∀ l1 l2 l3 : Line, l1 �= l2 ∧ l1 �= l3 ∧ l2 �= l3 ⇒
∃ l4 : Line, ∃ P1 P2 P3 : Point, P1 ∈ l1 ∧
P1 ∈ l4 ∧ P2 ∈ l2 ∧ P2 ∈ l4 ∧ P3 ∈ l3 ∧ P3 ∈ l4

Fig. 2. Axiom system for projective space geometry

2.2 A Rank-Based Axiom Systems

Ranks are based on matroids [16] and they allow a combinatorial approach to
theorem proving in projective geometry. Matroid theory allows us to capture
and generalize the main set of properties of linear dependence in vector spaces.
When combined with a finite set of points, it captures incidence (collinearity,
coplanarity, ...) between these points without handling directly lines or planes.
It makes the computational content of projective geometry more accessible, the
price to pay being less readable statements and proofs. It is quite similar to
analytic geometry which also favors computability at the expense of readability.

A rank function is an integer-valued function on a finite set of objects E that
can be associated to a matroid if and only if the following conditions of Fig. 3
are satisfied. To illustrate rank function, we give an intuitive interpretation of
how the synthetic and rank-based descriptions correspond (see Table 1).

(A1R2-R3) nonnegative and subcardinal : ∀ X ⊆ E, 0 ≤ rk(X) ≤ |X|

(A2R2-R3) nondecreasing : ∀ X ⊆ Y, rk(X) ≤ rk(Y)

(A3R2-R3) submodular : ∀ X,Y ⊆ E, rk(X∪Y) + rk(X∩Y) ≤ rk(X) + rk(Y)

Fig. 3. Matroid properties for the rank function
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Table 1. Some rank statements and their geometric interpretations

rk{A, B} = 1 A = B

rk{A, B} = 2 A �= B

rk{A, B, C} = 2 A, B, C are collinear with at least two of them distinct

rk{A, B, C} ≤ 2 A, B, C are collinear

rk{A, B, C} = 3 A, B, C are not collinear

rk{A, B, C, D} = 3 A, B, C, D are coplanar, not all collinear

rk{A, B, C, D} = 4 A, B, C, D are not coplanar

Plane. To capture projective geometry entirely, we need to add some more
geometry-oriented axioms. These five additional axioms are presented in Fig. 4.
The first two ones establish the non-degeneracy of the rank function. The other
ones are more or less direct translations of the axioms of projective geometry.

(A4R2) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R2) Rk-Couple : ∀ P Q: Point, P �= Q ⇒ rk{P, Q} ≥ 2

(A6R2) Rk-Inter : ∀ A B C D, ∃ J, rk{A, B, J} = rk{C, D, J} = 2

(A7R2) Rk-Three-Points : ∀ A B, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R2) Rk-Lower-Dimension : ∃ A B C, rk{A, B, C} ≥ 3

Fig. 4. Rank-based axiom system for projective plane geometry

Space. Finally, we define a rank-based axiom system to describe projective
space in Fig. 5. Again, only the axioms Pasch and Lower-Dimension are modi-
fied. To restrict the dimension to 3, we add the optional axiom (A9R3).

Equivalence Proof. We recently proved [4] that the two descriptions of inci-
dence geometry presented above are equivalent:

Theorem. The axiom system based on incidence projective geometry and the
rank-based axiom system are equivalent respectively in 2D, ≥3D and 3D.

This equivalence gives us the possibility to choose the most adequate the-
ory to prove a lemma. Indeed, statements can be bilaterally translated. This
important fact allows us both to compare proofs carried out with two differ-
ent approaches but also to complete some demonstrations when one of the two
theories is not conducive to a tractable proof.
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(A4R3) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R3) Rk-Couple : ∀ P Q: Point, P �= Q ⇒ rk{P, Q} ≥ 2

(A6R3) Rk-Pasch : ∀ A B C D, rk{A, B, C, D} ≤ 3 ⇒ ∃ J,
rk{A, B, J} = rk{C, D, J} = 2

(A7R3) Rk-Three-Points : ∀ A B, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R3) Rk-Lower-Dimension : ∃ A B C D, rk{A, B, C, D} ≥ 4

(A9R3) Rk-Upper-Dimension : ∀ A B C D E, rk{A, B, C, D, E} ≤ 4

Fig. 5. Rank-based axiom system for projective space geometry

2.3 Finite Models

The first examples of incidence geometries are built with fields. For instance,
affine planes often arise from F 2, where F is a field, via a coordinate system and
projective planes from F 3 via a homogeneous coordinate system. Considering
finite fields leads to classical examples of finite geometries. For instance, Fano
spaces come from field Z/2Z.

A E F

L B J

K I C

M

G

D

H

Fig. 6. A configuration of pg(2, 3): 13 points and 13 lines (e.g. AEFG, CELM, DILF).

Finite fields of cardinality n denoted by GF (n) are called Galois fields as
they are isomorphic to the field Zp[X]/f(X) where p is a prime number, Zp

stands for Z/pZ and f is an irreducible polynomial over Zp[X]. It follows that,
k being the degree of f , such a finite field has cardinality n = pk and each line
of a corresponding affine space (resp. projective space) has cardinality n (resp.
n+1). Finite projective spaces arising from GF (n) are then denoted by pg(d, n)
where d is the dimension of the space and n the order of the underlying field.
Table 2 summarizes cardinalities and Fig. 6 represents pg(2, 3).
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Table 2. Description of several finite projective plane/space.

Point(s) Line(s) Plane(s)

pg(2, 2) 7 7 1

pg(2, 3) 13 13 1

pg(2, 4) 21 21 1

pg(2, 5) 31 31 1

pg(3, 2) 15 35 15

Forgetting the way that such spaces are built, pg(d, n) spaces offer a conve-
nient benchmark to test our strategies for mechanizing proofs in Coq. Although
we work in the context of pg(d, n), we only take into account its geometric char-
acteristics. This means that while keeping in mind the theoretical results, we do
not use coordinates in our formalization.

2.4 Desargues’ Property

It is well known that Desargues’ property (see Fig. 7) holds in any projective
space of dimension higher or equal to 3. This was formally proven in [12]. How-
ever, when considering projective planes, Desargues’ property is independent
of the axiom system of Fig. 1. This means that there exists Desarguesian and

P

Q

R

O

P ′

R′

Q′

β γ

α

Fig. 7. A configuration of Desargues’ property.
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non-Desarguesian planes. For instance, Moulton’s plane (see [11,15] for details)
or Hall’s [9] planes of order 9 are non-Desarguesian planes. Desargues’ theorem
states:

Theorem. If the three lines joining the corresponding vertices of two triangles
PQR and P ′Q′R′ all meet in a point O called the perspector1, then the three
intersections of pairs of corresponding triangle sides lie on a line αβγ. Equiv-
alently, if two triangles are perspective from a point, then they are perspective
from a line.

Now that the geometric framework is depicted, we shall investigate possi-
bilities of automation within proofs. Throughout this paper, we aim at proving
that some finite structures described using only points, lines and an incidence
relation are models of these axiom systems. When dealing with plane projective
geometry, we also analyze whether Desargues’ property actually holds.

3 Dealing with Complexity in Building Some Finite
Models of Incidence Projective Geometry

3.1 Plane

We use finite projective models to study the large-scale automation of proofs of
geometric properties. One can prove fairly easily that the axioms of projective
plane geometry hold for pg(2, 2), pg(2, 3) and pg(2, 5). In the same way, we
show that the axioms of rank theory hold for pg(2, 2) and pg(2, 3). We use these
examples to show how to manage the proof complexity in Coq.

We identify several criteria (e.g. the geometric context, the formulation of
the statements) which can strongly influence the complexity of the proofs. As
an example, we compare some proofs which have been mechanized in Coq using
both incidence projective geometry and rank theory.

Finite Model. First of all, we work on a finite domain. In this context, to carry
out geometric reasoning, it is necessary to know all the points and lines (and
planes) that describe our finite projective plane (resp. projective space). For
instance the description of pg(2, 3) contains 13 points and 13 lines (see Fig. 6) in
incidence projective geometry and looks like:

Inductive ind_Point : Set := A | B | C | ... | K | L | M.

Inductive ind_line : Set := ABCD | AEFG | AIJM | AHKL | BEHI | BGJL

| BFKM | CELM | CFHJ | CGIK | DEJK | DGHM | DFIL.

Definition Incid_bool (P:Point) (l:Line) : bool := match P with

| A => match l with

1 The perspector is the point at which the three lines connecting the vertices of two
perspective triangles concur.
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| ABCD | AEFG | AIJM | AHKL => true

| _ => false

end

[...]

end.

The description of finite models can be easily generated algorithmically by
only specifying all points and lines. In this way, the relation of incidence linking
these two objects is thus automatically created. The size of the specification of
pg(2, n) increases quickly as n grows bigger, indeed pg(2, n) has n2+n+1 points
and as many lines.

Case Analysis. In such a finite model, to prove a geometric statement requires
to check all the possible configurations of this theorem, i.e. to perform case
analysis on both points and lines. Most often a brute-force approach leads to too
many cases, which makes the proof not tractable in Coq. Let us illustrate this
case analysis issue on one of the axioms of the incidence projective geometry in
the finite projective plane pg(2, 3). For instance, the (A3P2) Uniqueness axiom:

Lemma uniqueness : forall A B :Point, forall l m : Line,
Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.

As pg(2, 3) contains 13 points and 13 lines, basic case analysis leads to 134 =
28 051 cases to be dealt with. This situation is not yet critical, such a proof is
still easily performed. It becomes more tedious when dealing with pg(2, 5) and
its 31 points and 31 lines, where 923 521 cases must be studied. For a given
n, the projective plane pg(2, n) has (n2 + n + 1)4 possible combinations to be
investigated, so such proofs are tractable only for some small n.

Formulation and Choice of Theory. A second factor strongly influencing
complexity is the formulation of statements. This question is well known and
studied in the theory of complexity especially in the problem SAT [1,17]. Cri-
teria such as the size of the clauses, number of propositions and the order of
propositions have a significant impact on the resolution time of a proof. For
example, let us consider the two definitions of intersection existence in pg(2, 3)
first using incidence geometry, and second using ranks.

Lemma point_existence : forall (l1 l2 :Line),
exists A : Point, Incid A l1 /\ Incid A l2.

Lemma rk_inter : forall A B C D : Point,
exists J, rk(triple A B J) = 2 /\ rk(triple C D J) = 2.

Case analysis in the first description generates 132 = 169 cases before pro-
viding a witness to the existential quantifier whereas in the second statement
we again face 134 = 28 051 cases. It would be necessary to create a method of
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resolution of the existential formula one hundred times faster in rank theory to
obtain the same execution time as in incidence projective geometry. So choosing
an appropriate description of a formula is utterly relevant to make the proofs
doable in practise. The best way to deal properly with the combinatorial explo-
sion caused by successive case analysis is to manage the pruning of the proof
tree as early as possible.

Proof Tree Pruning. Let us consider again the axiom of Uniqueness (A3P2)
and its proof in the finite projective plane pg(2, 3):

Lemma uniqueness : forall A B : Point, forall l m : Line,
Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.
Proof.
induction A;induction B;induction l;induction m;
try discriminate;try (left;reflexivity);try (right;reflexivity).
Qed.

Basic case analysis without pruning and quantifier management gives rise to
28 051 cases. A brute-force execution takes on a standard machine2 about 40 s
in this situation. More clever strategies are required to ensure that the proofs
remain tractable. The variable A is linked to l in the hypothesis Incid A l. It is
thus possible to prune the proof tree after the induction on line l when the point
A is not incident to the line l. Another improvement consists in solving directly
the left hand side of the goals right after the induction on B when the equality
A = B (i.e. the left side of the disjonction) holds. It is not necessary to carry on
and perform case analysis on the next variable m if the goal can be discarded
or is already verified. These two adjustments allow the proof to be built in less
than 1 s.

Lemma uniqueness : forall A B : Point, forall l m : Line,
Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.
Proof.
induction A;induction l;try discriminate;
induction B;try discriminate;try (left;reflexivity);
induction m;try discriminate;try (right;reflexivity).
Qed.

Constraining Hypothesis. Scheduling quantifiers based on assumptions can
have a strong impact on proof tree pruning. In other words, the order in which
the case analysis is performed is important. Furthermore, it is important to
consider the pruning power of each hypothesis. The idea is to use first the most
restrictive assumptions to prune as much as possible and as soon as possible
to limit the width of the proof tree. Let us consider the assumptions A �= B
and Incid A l in pg(2, 3). After performing induction on all variables, the first
2 Computer setup: Intel(R) Core(TM) i5-4460 CPU @ 3.20 GHz with 16G of memory.
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assumption allows to eliminate 7 cases out of 49 while the second one removes 28
cases out of 49. It is therefore more interesting to take the incidence hypothesis
into account to quickly eliminate goals.

Pseudo Depth-First Search. In highly-branching proofs, when the pre-
vious optimizations are not sufficient (because memory consumption is too
big), we adapt the classical breadth-first search of Coq (tac1;tac2;tac3). By
taking advantage of the right assiociativity, we carry out pseudo depth-first
search in order to limit number of cases at each level of the demonstration
(tac1;(tac2;tac3)). Finally, we work with the abstract [6] tactic to prove a
sub-goal as a separate lemma to structure huge proof terms and to facilitate
type checking.

These optimizations are independent of each others and allow to prove more
lemmas, even when the combinatorial is huge.

3.2 Space

The above-mentioned techniques are even more relevant when dealing with the
smallest projective space pg(3, 2)3. It features 15 points and 35 lines. In the same
way as in the plane, we can prove that the axioms of projective space geometry
hold for pg(3, 2). However, it is a little more challenging to prove this. Indeed,
while writing and feeding Coq with the proofs, we face strong limitations related
to memory usage. Tactics have to be carefully designed and decomposition should
be smart enough to avoid facing thousands of millions of sub-goals at the same
level. Consider for instance the statement of Pasch’ s axiom in pg(3, 2):

Lemma pasch : forall A B C D : Point, forall lAB lCD lAC lBD : Line,

all_distinct A B C D ->

Incid A lAB /\ Incid B lAB ->

Incid C lCD /\ Incid D lCD ->

Incid A lAC /\ Incid C lAC ->

Incid B lBD /\ Incid D lBD ->

(exists I : Point, (Incid I lAB /\ Incid I lCD)) ->

exists J : Point, (Incid J lAC /\ Incid J lBD).

As finite space pg(3, 2) contains 15 points and 35 lines, case analysis leads to
154×354 = 75 969 140 625 cases to be dealt with. It is thus essential to limit the
size of proof tree by eliminating as many cases as soon as possible. The order
in which we perform inductions is no longer sufficient to maintain a tractable
proof.

Proof parts usually proved using Ltac sophisticated tactics without user inter-
action need to be factorized into relevant lemmas and a careful decomposition
into several intermediate lemmas is mandatory to complete the proof. In the

3 An interactive representation of pg(3, 2) can be viewed on wolfram web site: http://
demonstrations.wolfram.com/15PointProjectiveSpace/.

http://demonstrations.wolfram.com/15PointProjectiveSpace/
http://demonstrations.wolfram.com/15PointProjectiveSpace/
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proof of Pasch’s property, we state the following intermediate lemma which pro-
vides the actual line which carries two given (distinct) points T and Z. The
function l from points computes a line which goes throught the two points T
and Z (this line is unique when we have T �= Z).

Here, the proofs-as-programs paradigm is fully exploited. Indeed, this func-
tion can be written as a simplified (non-dependent) version of the property
(A1P3) Line-existence which can be directly used as a program4. It allows us
to perform case analysis on lines without adding further cases (only one case is
correct at each step).

Similarly, a program which retrieves the points which belongs to a given line
l can easily be extracted from theorem (A4P3) Three-Points.

Lemma points_line : forall T Z : Point, forall x : Line,
Incid T x -> Incid Z x -> T<>Z -> x=(l_from_points(T,Z)).

In this way, we reduce the overall number of cases to check to 154 = 50625
cases, before performing the elimination of the existential hypothesis in Pasch’s
axiom: exists I :Point, (Incid I lAB /\ Incid I lCD).

So far we made proofs manageable by the system, but we still need to help
the user to write proofs. That is what we shall study in the next section.

4 Automating Proofs of Desargues’s Property

All the techniques presented above in order to prove that some small planes or
projective spaces are models of the projective incidence geometry can be reused
to carry out the proof of Desargues’ theorem in each of these models.

Lemma Desargues : forall O P Q R P’ Q’ R’ X Y Z X’ Y’ Z’
X’’ Y’’ Z’’ alpha beta gamma,
all_distinct O X Y Z X’ Y’ Z’ X’’ Y’’ Z’’ ->
rk(O,X,Y,Z)=2 -> rk(O,X’,Y’,Z’)=2 -> rk(O,X’’,Y’’,Z’’)=2 ->
rk(P,Q,gamma)=2 -> rk(P’,Q’,gamma)=2 -> rk(P,R,beta)=2 ->
rk(P’,R’,beta)=2 -> rk(Q,R,alpha)=2 -> rk(Q’,R’,alpha)=2 ->
rk(P,O,X,Y,Z)=2 -> rk(P’,O,X,Y,Z)=2 ->
rk(Q,O,X’,Y’,Z’)=2 -> rk(Q’,O,X’,Y’,Z’)=2 ->
rk(R,O,X’’,Y’’,Z’’)=2 -> rk(R’,O,X’’,Y’’,Z’’)=2 ->
rk(O,P,P’)=2 -> rk(O,Q,Q’)=2 -> rk(O,R,R’)=2 -> rk(O,P,Q)=3 ->
rk(O,P,R)=3 -> rk(O,Q,R)=3 -> rk(P,Q,R)=3 -> rk(P’,Q’,R’)=3 ->
( rk(P,P’)=2 \/ rk(Q,Q’)=2 \/ rk(R,R’)=2 ) ->
rk(alpha,beta,gamma)=2.

It is well-known that the projective planes pg(2, n) are Desarguesian. We
formally prove these results in Coq for pg(2, 2) and pg(2, 3). As in the previ-
ous proofs, using a naive approach leads to intractable proofs. The property of
4 Fully-specified functions can be automatically defined using the proof search capa-

bilities of Coq.
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Desargues is expressed using 10 points. The last three ones can be automatically
calculated from the first seven ones. In pg(2, 3), induction on the first 7 points
yields several billion cases to be treated without pruning.

In this case, ranks provide a much more efficient approach to handle the
numerous configurations that we need to check. It is tractable if we prune the
proof tree as much as possible during inductions on the ten points of the property.
Automating this proof relies on some geometric aspects of Desargues’ property
and on the data structure of ranks.

4.1 Automation Through Geometry

First of all, we take advantage of some symmetries in Desargues’ property. In the
first place, we use the symmetry of the problem w.r.t. the center of perspective.
By fixing this center as one of the points of the model pg(2, x) and proving
that the permutation of the points in a finite model remains a finite model, it
is possible to prove that the property of Desargues holds whatever the center of
perspective selected. Intuitively, this symmetry allows us to avoid induction on
the perspector point.

The second symmetry that we use to decompose the problem follows from
the permutation of the concurrent lines at the center of perspective. Let A be
the perspector, it is possible to fix the straight lines containing A to form the two
triangles. Subsequently, we show that every permutation of these lines always
satisfies the property.

Finally, we take advantage of the conditions of non-degeneracy to quickly
eliminate the degenerate cases of Desargues’ theorem and thus limit the combi-
natorial explosion. For example, it is possible to consider a more general theorem
where the two triangles can share at most two points in common. This theorem
leads to a contradiction in the specification of the line αβγ (some lines are con-
fused). By restricting the theorem to the case where triangles can have only one
point in common, we eliminate approximately 33% of the goals at all levels of
the demonstration.

4.2 Automation Thanks to Proof Engineering

Thanks to the rank structure, we can represent homogeneously all incidences of
our geometric context by dealing only with points. Intuitively this means that
we can avoid performing case analysis on lines without increasing the number
of cases on the points. For instance considering Desargues’ theorem, six case
analyses on lines can be removed. It becomes even more meaningful in the higher
dimensions when manipulating planes, etc.

In addition, when writing tactics with Ltac to perform simplifications (e.g.
rewriting, elimination of contradiction, attempt to solve), there is no need to con-
sider objects of several types or multiple predicates. We simply match the result
returned by the function of rank, as all propositions are of the form rk(E) = n
where E is a set of points and n is a natural number representing intuitively the
dimension of the set.
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Finally, it is better to avoid generic tactics such as auto, intuition or omega,
and to use specific lemmas which solve the goal instead. Proofs of statements of
the form rk(E) = n usually proceed by first proving separately that rk(E) ≤
n and rk(E) ≥ n, and then use omega to deduce the equality from the two
inequalities. Of course, if such a proof scheme is heavily used, running omega
becomes a bottleneck. We can instead write a simple lemma (∀n : nat, rk(E) ≤
n → rk(E) ≥ n → rk(E) = n) and apply it to conclude the proof. An single
application of apply is always significantly cheaper than calling omega. However,
the drawback is that we have a more specific proof, which may be less robust
to changes in the specification. Finding such bottlenecks can be easily achieved
using the Ltac profiler [18].

5 Conclusion

We verify that some finite planes (resp. spaces) are actually models of projective
plane (resp.space) geometry. We achieve that by using two distinct approaches, a
mathematics-oriented one and a computer-science-oriented one featuring ranks.
Overall it represents 5000 lines of specification and 2500 lines of proofs. All the
results are summarized in Table 3. For each formalization, it presents three key
figures: the number of lines of specification, the number of lines of proof as well
as the time required to compile it.

Table 3. Benchmarks for various proofs using Coq on an Intel(R) Core(TM) i5-4460
CPU @3.20 GHz with 16G of memory. CE means combinatorial explosion.

Formalization of projective geometry

Using the synthetic description Using ranks

Spec. Proof Compile time Spec. Proof Compile time

pg(2, 2) is a model 216 71 2 s 127 42 16 s

Desargues holds in pg(2, 2) 188 205 37 s 297 162 26 s

pg(2, 3) 149 46 7 s 309 77 2055 s

Desargues in pg(2, 3) 191 225 CE 2089 386 10700 s

pg(2, 5) 74 28 90 s CE

Desargues in pg(2, 5) CE CE

pg(3, 2) 267 67 4309 s CE

Desargues in pg(3, 2) Overall proof in 3D thanks to [4,12]

This provides a good stress test for Coq. Indeed, it is a small theory, but
proving that the axioms hold requires performing huge proofs with numerous
cases. Our experiments shed light on some regression in the efficiency of Coq
to perform proofs and type-check them, starting from version 8.5. This issue is
currently being addressed by the coqdev team.
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The optimizations that we propose allow to go further in the order of mag-
nitude of the planes/spaces that we can handle. Eventually, an interesting goal
would be to tackle some of Hall’s planes which feature 91 points and 91 lines.

Currently, we are working on a more comprehensive benchmark featuring
more projective planes/spaces and using various provers using the TPTP frame-
work [17]. Using brute-force, only 3 provers find a proof of Desargues’ theorem
in a suitable time of 300 s for pg(2, 2) (iprover, Vampire [10] and Z3 [8]). The
Vampire SAT seems very promising with solutions 10 times faster. However,
provers do not provide a formal checkable proof.

The Coq development is available at https://github.com/Projective
Geometry/.
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10. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-

gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

11. Magaud, N., Narboux, J., Schreck, P.: Formalizing projective plane geometry in
Coq. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS (LNAI), vol. 6301, pp.
141–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21046-
4 7

12. Magaud, N., Narboux, J., Schreck, P.: A case study in formalizing projective geom-
etry in Coq: Desargues theorem. Comput. Geom.: Theor. Appl. 45(8), 406–424
(2012)

13. Mahboubi, A., Tassi, E.: Mathematical Components. Draft (2016)
14. Michelucci, D., Schreck, P.: Incidence constraints: a combinatorial approach. Int.

J. Comput. Geom. Appl. 16(5), 443–460 (2006)
15. Moulton, F.R.: A simple non-desarguesian plane geometry. Trans. Am. Math. Soc.

3(2), 192–195 (1902)

https://github.com/ProjectiveGeometry/
https://github.com/ProjectiveGeometry/
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-21046-4_7
https://doi.org/10.1007/978-3-642-21046-4_7


Formalizing Some “Small” Finite Models 69

16. Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, Oxford (2006)
17. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.

Reason. 43(4), 337 (2009)
18. Tebbi, T., Gross, J.: A profiler for Ltac. In: Coq PL Workshop 2015 (2015)



Into the Infinite - Theory Exploration
for Coinduction
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Abstract. Theory exploration is a technique for automating the dis-
covery of lemmas in formalizations of mathematical theories, using test-
ing and automated proof techniques. Automated theory exploration has
previously been successfully applied to discover lemmas for inductive
theories, about recursive datatypes and functions. We present an exten-
sion of theory exploration to coinductive theories, allowing us to explore
the dual notions of corecursive datatypes and functions. This required
development of new methods for testing infinite values, and for proof
automation. Our work has been implemented in the Hipster system, a
theory exploration tool for the proof assistant Isabelle/HOL.

1 Introduction

Coinduction and corecursion are dual notions to induction and recursion that
admit the specification of potentially infinite structures and functions that oper-
ate on them. Their many applications in theoretical computer science include,
to name a few: defining and verifying behavioral equivalence of processes [21],
Hoare logic for non-terminating programs [23], total functional programming in
the presence of non-termination [29], and accounting for lazy data in functional
languages like Haskell. Recently, support for coinduction in proof assistants has
matured significantly, with powerful definitional packages and reasoning tools
[1,5,6].

In this paper, we extend a technique, called theory exploration [7], and present
a tool that automatically discovers and proves equational properties about core-
cursive functions in the proof assistant Isabelle/HOL [24], a widely used inter-
active theorem proving system featuring both automated and interactive proof
techniques. The purpose of theory exploration is to automate the discovery of
basic lemmas when, for instance, developing a new theory. The human user can
then focus on inventing and proving more complex conjectures, using the auto-
matically generated background lemmas. As an appetizer, consider this simple
example of an Isabelle theory:

codatatype (sset: ’a) Stream = SCons (shd: ’a) (stl: "’a Stream")

c© Springer Nature Switzerland AG 2018
J. Fleuriot et al. (Eds.): AISC 2018, LNAI 11110, pp. 70–86, 2018.
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primcorec smap :: "(’a ⇒ ’b) ⇒ ’a Stream ⇒ ’b Stream" where
"smap f xs = SCons (f (shd xs)) (smap f (stl xs))"

primcorec siterate :: "(’a ⇒ ’a) ⇒ ’a ⇒ ’a Stream" where
"siterate f a = SCons a (siterate f (f a))"

cohipster smap siterate — tell Hipster to explore these functions

The theory above defines the codatatype Stream of infinite sequences, the func-
tion smap that maps a function onto every element of a stream, and the function
siterate that given a function f and an initial element x generates the sequence
f(x), f(f(x)), f(f(f(x))), . . . . The verbatim output of our tool, Hipster, is as
follows:

lemma lemma_a [thy_expl]: "smap y (siterate y z) = siterate y (y z)"

by(coinduction arbitrary: y z rule: Stream.coinduct_strong)

auto

lemma lemma_aa [thy_expl]: "SCons (y z) (smap y x2) = smap y (SCons

z x2)"

by(coinduction arbitrary: x2 y z rule: Stream.coinduct_strong)

simp

lemma lemma_ab [thy_expl]: "smap z (SCons y (siterate z x2)) = SCons

(z y) (siterate z (z x2))"

by(coinduction arbitrary: x2 y z rule: Stream.coinduct_strong)

(simp add: lemma_a)

This Isabelle snippet, when pasted into the theory (simply by a mouse-click),
proves the discovered laws about smap and siterate by coinduction. The first
lemma, lemma a , may appear familiar as it describes the map-iterate property
[3]. The whole process of generation and proof took Hipster less than 10 s on
a regular laptop computer. Moreover, the generated proofs are formal proofs,
machine-checked down to the axioms of higher-order logic.

Note that at no point did the user need to supply the conjectures or proofs.
Hipster uses a specialized conjecture discovery subsystem, called QuickSpec [28],
which heuristically generates type-correct terms and uses automated testing to
invent interesting candidate lemmas. We give a brief introduction to QuickSpec
in Sect. 2, along with a lightweight introduction to coinduction.

Earlier versions of Hipster [14,16] supported only induction and recursive
datatypes. The main difference when we also treat codatatypes is in the test-
ing phase, when conjectures are generated. Naively testing and evaluating terms
for equivalence cannot be done in the same way as for regular datatypes, since
instances of a codatatype like Stream are infinite, so testing would not termi-
nate. Our solution to this conundrum is that for testing purposes, we generate
step-indexed observer functions for the codatatypes under consideration. These
operate on a copy of the codatatype with an extra nullary constructor, that we
return when the step-index reaches 0. The step-indexing guarantees that testing
will terminate. Section 3 describes this in more detail, along with our approach
to coinductive proof exploration.
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We evaluate our tool by testing it on several examples of codatatypes and
corecursive functions in Sect. 5. Results are encouraging: we can discover and
prove many well-known and useful properties. Similar theory exploration sys-
tems can be found in the literature [9,15,20,22], but ours is the first system
capable of discovering and proving properties of coinductive types and corecur-
sive functions. We integrate inductive and coinductive reasoning, so that in a
theory featuring both recursion and corecursion, both inductive and coinductive
proofs can be discovered even when one depends on the other. The source code
and examples are available online.1

2 Background

We give a brief introduction of coinduction for readers unfamiliar with the con-
cept, followed by an introduction to the proof assistant Isabelle/HOL and the
Hipster theory exploration system.

Coinduction. Coinduction is the mathematical dual of structural induction, rely-
ing on deconstructing structures top-down instead of constructing them bottom-
up as induction does. Consider lists with elements of type a, defined by: List a
= Nil | Cons a (List a).
The inductive reading of this declaration is that it specifies everything that can
be constructed from the empty list Nil in a finite number of steps, by using the
Cons constructor to add elements. The coinductive reading is that it specifies
everything that is either Nil or can be decomposed (“destructed”) into a head
and a tail, where the tail is either Nil or something that can be destructed into
another head and tail, and so on. The latter reading encompasses not only Nil-
terminated lists, but also infinite lists built from Cons only. We say that the first
reading defines a datatype while the second defines a codatatype.

Since codata need not bottom out in a base case, proof by induction does not
apply; instead we resort to the dual notion of coinduction, which allows us to
prove equalities between elements x, y of a codatatype by exhibiting a candidate
relation R such that x R y and R is closed under destruction. For example, here
is the coinduction principle for the Stream type introduced in Sect. 1:

R s s′ ∀s1, s2
R s1 s2

shd s1 = shd s2 ∧ R (stl s1) (stl s2)
s = s′

In words: to show that s = s′, we must prove that for all pairs s1, s2 related by
R, s1 and s2 have the same heads and R-related tails. Interested readers can
find a more detailed introduction to coinduction in [27] or [13].

1 https://github.com/moajohansson/IsaHipster.

https://github.com/moajohansson/IsaHipster
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Isabelle/HOL. Isabelle/HOL is an interactive proof assistant for higher-order
logic [24]. Users write definitions and proofs in theory files, which are checked
by running them through Isabelle’s small trusted logical kernel to ensure each
step in a proof is correct. More complex proof techniques, called tactics, can
be built up using combinations of basic inference rules from the trusted kernel.
Isabelle is an interactive system, meaning that there are both automated and
semi-automated tactics available. An example of the former is the simplifier,
which performs equational reasoning automatically. An example of the latter is
Isabelle’s (co)induction tactics, which applies a (maybe user given) induction
rule to a subgoal while leaving it to the user how to prove the resulting subgoals.
Sledgehammer is a useful tool in Isabelle which allows outsourcing proofs to
fully automated external first-order (FO) or SMT-solvers [25]. When the external
provers report back, the proof is reconstructed inside Isabelle’s trusted kernel. In
our work on Hipster, we combine Isabelle’s interactive tactics with Sledgehammer
to provide automation for (co)inductive proofs.

Routine 
Reasoning

Hard Reasoning

Isabelle Theory: 
(co)datatypes, (co)functions,  

theorems, lemmas

Conjectures

QuickSpec 
(discovery)

Trivial - 
discard

Fail - retry

Proved 
- keep

QuickCheck 
(testing)

Fig. 1. The architecture of the Hipster system.

Hipster. The architecture of the Hipster system is shown in Fig. 1. Hipster out-
sources conjecture generation to the external tool QuickSpec. QuickSpec gen-
erates type-correct terms in order of size, up to a given limit. At each step, it
evaluates the terms on randomly generated test data, using the property-based
testing tool QuickCheck [8]. Based on the results of testing, terms are divided
into equivalence classes from which equational conjectures are extracted. For a
full description of QuickSpec’s conjecture generation algorithm and its heuristics
we refer the reader to [28]. The conjectures produced by QuickSpec are then read
back into the Isabelle/HOL environment for proof. The conjectures have been
thoroughly tested at this point, so we have quite good reasons to believe they
may actually be true. However, not all of them might be considered interesting
by a human. In particular, statements that have trivial proofs are rarely exciting.



74 S. H. Einarsdóttir et al.

Hipster therefore takes two reasoning strategies as parameters: routine reasoning
(often just rewriting), and hard reasoning (for instance coinduction). Depending
on the exact configuration of the routine and hard reasoning strategies, we can
tweak Hipster to produce slightly different output: the conjectures that follow
from using only routine reasoning are discarded, while those proved by the hard
reasoning strategy are reported back to the user. Whenever Hipster proves a
lemma, it may use it in subsequent proofs. This means that during exploration,
its automated proof strategies become more powerful as more lemmas are found.
Should some conjecture fail to be proved by either of the proof strategies, it is
also presented to the user, who can try a manual proof.

3 Testing Infinite Structures

Recall from Sect. 2 that Hipster’s conjecture generation subsystem, QuickSpec,
relies on being able to test terms on randomly generated values. When a
codatatype has no finite instances, as in the case of streams, QuickSpec can-
not directly check the equality of any of the generated terms, since that would
take an infinite amount of time due to their infinite size. Thus testing will not
work.

When an Isabelle user invokes Hipster on a coinductive theory, an observer
type and observer function are generated for every type under consideration.
These types and functions ensure that QuickSpec only tests a (randomly cho-
sen) finite prefix of any infinite values, using support for observational equiva-
lence. This allows Hipster to discover lemmas about codatatypes without finite
instances.

Observational Equivalence in QuickSpec. When used interactively through its
Haskell interface, QuickSpec supports observational equivalence to deal with
types that for instance have no finite instances, and thus cannot be directly
compared [28]. Note that in this case, the user must define a function for observ-
ing such a type and state that two values of the type are equivalent if all such
observations make them equal. We have extended this functionality by develop-
ing a method to automatically generate observer functions for the codatatypes
being explored and added it to the interface between Hipster and QuickSpec.

More specifically, observer functions are used as follows: For any type T ,
QuickSpec can be given an observer function of type Obs → T → Res, where Obs
can be any type that QuickSpec can generate random data for, and Res any type
that can be compared for equality. QuickSpec will then include a random value of
type Obs as part of each test case, and will compare values of type T by applying
this observer function using the random value of type Obs and comparing the
resulting values of type Res. For instance, we can define an observer function
for streams:

obsStream :: Int → Stream → List,

where obsStream n s returns a list containing the first n elements of the stream
s. If we supply this observer function to QuickSpec it will generate a random
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integer n for each test case where streams are to be observed, and assume that
two streams are equal if their first n elements are equal in every case.

Generating Observer Functions. For Hipster, we want to relieve the user of hav-
ing to define the observer function by hand, and instead generate it automati-
cally. Our method of generating observer functions is inspired by the Approxima-
tion Lemma [2,12]. Here, a so called approximation function, approx, is defined
in the same way as the recursive identity function for a given type, except that
it has an additional numeric argument which is decremented at each recursive
call. The lemma states that a = b if approx n a = approx n b for all values of n.
For the Stream type introduced in Sect. 1, the approximation function is defined
as:

approx (n + 1) xs = SCons (shd xs) (approx n (stl xs))

The function is undefined for n = 0 and therefore returns a partial structure, for
instance, if zeroes is a stream of zeroes then approx 1 zeroes evaluates to the
partial stream SCons 0 ⊥, where ⊥ represents an undefined value.

To make our solution practical we, instead of using the undefined value ⊥,
generate a new type that has the same structure as the type being observed, but
with an additional nullary constructor. For example, the generated observation
type for a stream is:

OStream a = OSCons a (OStream a) | NullConsStream

We then generate an observer function for a given type T with an observer type
ObsT in the following manner:

obsFunT ::Nat → T → ObsT

obsFunT 0 = NullConsT

obsFunT n t = approx′ n t

where approx′ is like the recursive identity function for T except that it replaces
each constructor occurring in t with the equivalent constructor for ObsT , and
the fuel parameter n is decremented at every recursive call, ensuring we will
only attempt to observe a finite prefix. As an example, an observer function for
streams using the observer type from above is shown below:

obsFunStream ::Nat → Stream a → OStream a

obsFunStream 0 = NullConsStream

obsFunStream n (SCons x xs) = OSCons x (obsFunStream (n − 1) xs)

Some care needs to be taken when decrementing the numeric fuel argument
which determines how much more of the structure should be observed, as using
n − 1 in every step results in testing being too slow for structures with larger
branching factors, such as trees. For now, we use a heuristic measure which



76 S. H. Einarsdóttir et al.

decrements n to n/#constructors − 1 in each recursive call. For OStream, this is
simply (n − 1), while for e.g. binary trees, defined:

Tree a = TNode a (Tree a) (Tree a)

with an observer type defined:

OTree a = OTNode a (OTree a) (OTree a) | NullConsTree

the fuel counter is decremented to n/2−1 for each branch, as seen in the observer
function definition below:

obsFunTree ::Nat → Tree a → OTree a

obsFunTree 0 = NullConsTree

obsFunStream n (TNode x l r) =
OTNode x (obsFunTree (n/2 − 1) l) (obsFunTree (n/2 − 1) r)

4 Automating Proofs of Coinductive Lemmas

Isabelle/HOL features a built-in coinduction tactic that applies a coinduction
principle to a goal, with the candidate relation instantiated to be the singleton
relation containing the equation in the conclusion. After applying this tactic
the user must decide how to finish the proof after the coinductive step. How-
ever, the ability to automatically prove lemmas without user involvement is
crucial in lemma discovery by automated theory exploration. Therefore we have
extended Hipster with an automated tactic for proving coinductive lemmas. In
order to do this, we must automatically determine the parameters for our call
to Isabelle/HOL’s coinduction tactic, and then automate the subgoal proofs.

Automatically Determining Parameters. Isabelle/HOL’s coinduction tactic has
parameters to set which variables are arbitrary, meaning that they appear uni-
versally quantified in the candidate relation (and hence existentially quantified
in the conclusion of the resulting subgoal). It also has an optional parameter to
specify which coinduction rule to use.

Our default setting is to set all free variables in the current goal as arbitrary.
This yields weaker proof obligations, at the expense of introducing existential
quantifiers in the goal, which is sometimes less automation-friendly since it may
require guessing an instantiation to discharge the goal. Our experience is that
setting at least some variables to arbitrary is necessary for all but the most
trivial of proofs; for the rest, the goal statements are simple enough that the
extra existentials do not cause any difficulty in practice.

The built-in coinduction tactic also has an optional parameter to specify
what coinduction rule should be used for the proof. We must again make a
tradeoff between one that can be applied to prove as wide a range of lemmas
as possible, such as coinduction up-to the codatatype’s companion function [26];
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and one that yields simple and automation-friendly subgoals, such as the (weak)
coinduction principle associated with the datatype.

For reasoning about functions defined with primitive corecursion, we find that
the strong coinduction principle generated by the datatype package works well in
practice. It allows one to close the proof by proving either equality or membership
in the candidate relation. For example, here is the strong coinduction principle
for the Stream type defined in Sect. 1:

R s s′ ∀s1, s2
R s1 s2

shd s1 = shd s2 ∧ (R (stl s1) (stl s2) ∨ stl s1 = stl s2)))
s = s′

Note that the (weak) coinduction principle shown in Sect. 2 differs by omit-
ting the right-hand side stl s1 = stl s2 of the disjunction. The extra disjunction
is lightweight enough not to confuse the simplifier, and the equality has very
important consequences: it allows equations that have previously been proven
by coinduction to be re-used in the proof, without having to include them in the
candidate relation. This allows us to automatically prove, e.g., the associativity
of append on lazy lists as seen in Sect. 5.1.

The recent AmiCo definitional package by Blanchette et al. [4] allows a form
of non-primitive corecursion where corecursive calls may be guarded by friends
in addition to constructors. A friend is a function that consumes at most one
constructor to produce a constructor. For functions with friend-guarded core-
cursive calls, the strong coinduction rule often results in an unsuccessful proof
attempt: terms on the shape required by the candidate relation tend to occur
as arguments to friends rather than at top-level. Fortunately, the AmiCo pack-
age generates a coinduction principle up-to friendly contexts covering precisely
this use case. Hence we prioritize such coinduction principles over the strong
coinduction principle whenever they are relevant, i.e., whenever the goal state
mentions a function symbol defined using non-primitive corecursion.

Proving Subgoals. After applying coinduction, Hipster’s simp_or˙sledgehammer
tactic is applied to the current proof state in an attempt to prove the remaining
subgoals and conclude the proof of the lemma. This tactic first attempts to com-
plete the proof using Isabelle’s automatic simplification procedure simp . If this
does not suffice it uses Isabelle’s automated proof construction tool Sledgeham-
mer [25] to attempt to construct a proof. Since Sledgehammer is quite powerful,
this tactic is sufficient to conclude the proofs of a wide range of lemmas.

Mixed Induction and Coinduction. In practice, theories are neither purely induc-
tive nor purely coinductive—coinductive definitions of datatypes and functions
may use auxiliary inductive definitions, and vice versa. In order to cope with
such theories, it is important that we integrate Hipster’s inductive and coinduc-
tive functionality. For conjecture discovery, this integration comes for free since
Isabelle’s code generator maps both data and codata to identical Haskell code.
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For proof search, we must decide whether to tackle our conjectures using
induction, coinduction or both. For this, we use a simple heuristic that appears
to work well in practice: if the conjecture contains a free variable whose type has
an induction principle, we invoke the inductive proof search procedure; if the
left- and right-hand sides of the conjecture are of a type that has a coinduction
principle, we invoke the coinductive proof search; if both, we try both and keep
the first successful proof attempt. This architecture allows us to find proofs of
inductive lemmas that require coinductive auxiliary lemmas, such as the fact
that append distributes over the to_llist function on finite lists (see Sect. 5).

5 Evaluation and Results

We apply Hipster to several theories of common codatatypes found in the liter-
ature: lazy lists, extended natural numbers, streams, and two kinds of infinite
trees. Our goal is to demonstrate how a user can invoke Hipster to discover use-
ful lemmas in their coinductive theory development, showing that our method
for testing infinite structures, as described in Sect. 3, is effective in discovering
coinductive properties and that our automated coinduction tactic, described in
Sect. 4, is effective in proving those properties.

We restrict each Hipster call to a small number of functions, to explore how
those functions relate to each other, rather than exploring all the functions in a
theory at once. This is how we envision typical users will interact with the tool,
since in practice it tends to yield quicker and more relevant results.

The evaluation was performed with Isabelle 2017 using Isabelle/jEdit, on a
ThinkPad X260 laptop with a 2.5 GHz Intel i7-6500U processor and 16 GB of
RAM running 64-bit Linux. The Isabelle theory files used to attain these results
are available online2.

5.1 Case Study: Lazy Lists and Extended Natural Numbers

In this section we demonstrate the results attained when using Hipster to explore
a theory of lazy lists (lists of potentially infinite length). We define some com-
mon functions for this type: lappend to append two lazy lists, a map function
lmap, iterates which generates a lazy list by iteratively applying a function to an
element, llist of which maps a standard Isabelle/HOL list to a lazy list, llength
which returns the length, and ltake which takes a given number of elements. We
also define a codatatype ENat for extended natural numbers (natural numbers
of potentially infinite size) and an addition function eplus on ENats.

We check which of the lemmas we discover are stated and proved in the
Coinductive library [18] in the archive of formal proofs3, which is a collection
of formalizations about coinductive types and functions. For the extended natu-
rals we refer to the Extended Nat theory from the Isabelle/HOL library4. Since
2 https://github.com/moajohansson/IsaHipster/tree/master/benchmark/AISC18.
3 https://www.isa-afp.org/.
4 http://isabelle.in.tum.de/library/HOL/HOL-Library/Extended Nat.html.

https://github.com/moajohansson/IsaHipster/tree/master/benchmark/AISC18
https://www.isa-afp.org/
http://isabelle.in.tum.de/library/HOL/HOL-Library/Extended_Nat.html
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the lemmas in these libraries have been collected and hand-proved by Isabelle
experts, we conclude that they must be interesting and/or useful for Isabelle
theory development.

Table 1 shows the results of exploration on this theory. The column args
shows the names of the functions explored in the particular Hipster call, Expl is
the amount of time (in seconds) spent in exploration and testing, Expl+Proof
is the amount of time (in seconds) spent in exploration, testing, and proving, #
properties shows the number of properties Hipster discovers, # library lemmas
shows how many of those properties are lemmas stated and proved in the libraries
mentioned above. For these experiments, Hipster’s routine tactic was configured
to only do simplification, and the hard tactic was our automated coinduction
and induction tactic as described in Sect. 4.

In our 13 calls to Hipster, we discover 33 coinductive or inductive properties.
Of these 33 properties, 13 are stated and proved as lemmas in Isabelle libraries,
leading us to believe that they are of interest to Isabelle users. Of the other 20,
most are rather trivial consequences of function definitions and/or other discov-
ered lemmas, which our routine tactic does not suffice to prove. Some of the dis-
covered properties may however be interesting to users despite not appearing in
the libraries, for instance that llength(lappend xs ys) = llength(lappend ys xs).

The discovered properties include the associativity of append, lappend
(lappend x y) z = lappend x (lappend y z), and that mapping preserves length,
llength (lmap f x ) = llength x . The exploration involving llist of , which maps
a standard list to a lazy list, results in lemmas showing the correspondence
between our lazy list functions and Isabelle/HOL’s built-in list functions, for
example lmap f (llist ofx) = llist of (map fx). The previous lemma is proved
by induction, demonstrating Hipster’s capabilities in exploring mixed inductive
and coinductive theories.

All of the discovered properties are proved by our automated proof tactic,
except for the commutativity of eplus. This was due to our rather short timeout
for Sledgehammer, which was just set to 10 s. in this experiment. If we allow a
30 s. timeout (which is the standard when Sledgehammer is used interactively),
a proof is found. As can be seen from Table 1, the time it takes for Hipster to
discover and prove properties varies between 2–90 s. As all calls took less than
90 s to complete, and most took less than a minute, we can see that the user
does not have to wait very long for Hipster to come up with lemmas for their
functions. We believe that for most Isabelle users, making a call to Hipster would
be much faster than writing down and proving the same lemmas manually, not
to mention coming up with them. In Table 1 we also compare the runtime of
the calls: most of the time is spent trying to prove properties (we give each call
to Sledgehammer a timeout limit of 10 s), while the time to discover and test
the properties is just a few seconds. There is however a configuration option in
Hipster for very impatient users to only do exploration, leaving the proofs to the
user altogether.
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Table 1. An overview of the results of exploring our lazy list theory.

cohipster args Expl Expl+Proof # properties # library lemmas

lappend 2.5 s 25 s 4 2

lmap 3.2 s 7 s 3 0

lappend lmap 4.1 s 17 s 1 1

llist of lappend append 4.9 s 28 s 1 1

llist of lmap map 4.9 s 21 s 1 1

llength 2.1 s 2 s 1 0

llength lmap 4.0 s 11 s 1 1

eplus 2.9 s 39 s 4 3

llength lappend eplus 5.2 s 87 s 5 1

ltake 4.1 s 76 s 7 0

ltake lmap 5.7 s 23 s 2 1

lmap iterates 4.2 s 18 s 2 1

lappend iterates 4.6 s 15 s 1 1

5.2 Case Study: Stream Laws

We already saw in Sect. 1 that Hipster can discover and prove the map-iterate
property for streams. In this section, our aim is to quantify the degree to which
Hipster discovers stream equations that a human would find interesting. That
is of course subjective, but for the purposes of this section we operationalize
“interesting” as being any of the 18 laws of Hinze’s Stream Calculus [11], which
according the author “provides an account of the most important properties of
streams”. Of the 18 laws given by Hinze, three are beyond the scope of Hipster’s
current capabilities: lambda-expressions are not supported, nor are conditional
statements with term depth >1 in the antecedent. The remaining 15 are all
equational statements. With respect to these 15 laws, we analyze Hipster’s pre-
cision (percentage of the lemmas we find that are among Hinze’s laws) and recall
(percentage of Hinze’s laws that we find).

First, we will briefly recapitulate the relevant notation. pure x denotes a
stream where every element is x. � is lifted function application, defined by
the observations hd(f � x) = (hd f) (hd x) and tl(f � x) = (tl f) � (tl x).
The interleaving of two streams x, y is written x � y. Tabulation, written
tabulate f , is the stream whose n:th element is f(n). Lookup, written lookup s n,
is the n:th element of stream s. zip x y merges two streams into a stream
of pairs. recurse is defined by the observations hd(recurse f a) = a and
tl(recurse f a) = map f (recurse f a). Unfolding satisfies hd(unfold g f a) = g a
and tl(unfold g f a) = unfold g f (f a).

The results are shown in Table 2. The lemmas’ precision, recall and time
have been explored together by invoking Hipster with every function mentioned
in each lemma; e.g., to search for laws 7–9 we invoke cohipster map zip fst snd .
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Table 2. An overview of the stream properties discovered and proved by Hipster.
Lemmas in gray are not in scope.

Property Found Precision Recall Time

1 pure id � u = u X 22% 67% 44 s

2 pure(◦) � u � v � w � u = u –

3 pure f � pure x = pure (f x) X

4 u � pure x = pure (λf. f x) � u

5 map id x = x X 50% 100% 29 s

6 map (f ◦ g) x = map f (map g x) X

7 map fst (zip s t) = s – 0% 0% 255 s

8 map snd (zip s t) = t –

9 zip (map fst p) (map snd p) = p –

10 pure a � pure a = pure a X 25% 50% 18 s

11 (s1 � s2) � (t1 � t2) = (s1 � t1) � (s2 � t2) –

12 map f (tabulate g) = tabulate (f ◦ g) X 100% 100% 87s

13 f(lookup t x) = lookup (map f t) x X 33% 100% 57s

14 recurse f a = iterate f a X 33% 100% 73s

15 map h ◦ iterate f1 = iterate f2 ◦ h ⇐= h ◦ f1 = f2 ◦ h

16 unfold hd tl x = x – 0% 0% 21s

17 unfold g f ◦ h = unfold g′ f ′ ⇐= g ◦ h = g′ ∧ f ◦ h = h ◦ f ′

18 map h (unfold g f x) = unfold (h ◦ g) f x X 50% 100% 18s

21% 60% 602 s

We also report total precision and recall over all such invocations at the bot-
tom. For these experiments, Hipster has been configured to use a Sledgehammer
timeout of 10 s, a routine tactic that does only simplification, and a hard tactic
that tries coinduction and induction, in each case followed by simplification or
sledgehammer, as described in Sect. 4.

We see that in total, Hipster discovers 9 out of the 15 properties in scope,
i.e. 60% recall. Note in particular property 13, where Hipster discovers a proof
by induction, and property 14, where Hipster discovers a proof by coinduction
up-to friendly contexts. The 21% overall precision can be improved by using
a more powerful routine tactic, such as simplification interleaved with stream
expansion.

The properties that are in scope, but not discovered, are all attributable to
QuickSpec’s heuristics for restricting the search space. Properties involving vari-
ables denoting streams of functions such as Property 2 cannot be tested, and
instantiation of type variables is restricted in ways that rule out, e.g., conjec-
tures where fst occurs as an argument to map. It seems difficult to lift these
restrictions in ways that do not make the search space intractable—this would
be an interesting direction for future work.
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5.3 Case Study: Infinite Trees

We have experimented with two different kinds of corecursive trees: A codatatype
representing an infinitely deep binary tree, and another representing an infinitely
deep rose tree, with arbitrary branching at each node. The purpose here is to
demonstrate Hipster on a different kind of codatatype than the previous case-
studies. Hipster was configured to use simplification as the routine tactic, and
as the hard tactic, either just Sledgehammer or coinduction followed by Sledge-
hammer.

Infinite Binary Trees. We define an infinite depth binary tree as follows:

codatatype ’a Tree = Node (lt: "’a Tree") (lab: ’a) (rt: "’a Tree")

We defined three functions over this codatatype: mirror (which switches the
left and right branches of each node), tmap which applies a function to each
label in the tree and tsum which sums the labels of a tree of natural numbers.
A summary of the results is given in Table 3. Hipster discovers the expected
properties about the given functions (associativity, distributivity etc.) as well
as a few additional properties which perhaps are of less interest. We note that
these are presented to the user as Isabelle’s simplifier is a rather weak tactic in
this context, while another choice for the routine tactic would have pruned out
more properties.

Table 3. Overview of properties discovered about infinite depth binary trees. Due to
space restrictions mainly properties proved by coinduction are listed, full results are
available online.

cohipster args Expl Expl+Proof Properties discovered Proved

mirror 3.4 s 39 s mirror (mirror y) = y
+ 3 more proved by
Sledgehammer

coinduction+simp

mirror tmap 4.3 s 35 s tmap z (mirror x) = mirror
(tmap z x)

coinduction+smt

mirror tsum 6.1 s 112 s tsum y x = tsum x y
tsum (tsum x y) z = tsum x
(tsum y z)
mirror (tsum y (mirror x)) =
tsum x (mirror y)
tsum (mirror x) (mirror y) =
mirror (tsum x y)
+ 2 more proved by
Sledgehammer

coinduction+smt
coinduction+smt
coinduction+smt
Sledgehammer
(using above
lemmas)
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Rose Trees: a Nested Codatatype. We also conducted an experiment with a
nested codatatype representing arbitrarily branching rose trees:

codatatype ’a RoseTree = Node (lab: ’a) (sub: "’a RoseTree list")

We defined functions mirror (reversing the list of subtrees), tmap (mapping a
function over the labels of each node) and tsum (summing the labels of a tree
of natural numbers). Note that unlike for the infinite binary trees, mirror and
tmap are not corecursive.

For this theory, we noticed that the runtimes varied a great deal from run
to run of the same command. For example, in a series of runs of Hipster on
the function mirror only, the runtime varied from as little as 21 s to as much as
125 s. This is due to how our observer function interacts with the random length
lists being generated for the branches at each node. It decreases its fuel linearly
in this case, so if the list is long observing each child tree recursively is time-
consuming. Implementing smarter observer functions, for instance taking length
of the list of a node’s child trees into account to only observe an appropriately
small subtree of each child, is future work.

Table 4. Overview of properties discovered about rose trees. Note that timings here
are from one sample run, and can vary quite a lot due to randomness in testing.

cohipster args Expl+Proof Properties discovered Proved

mirror 29 s mirror (mirror y) = y Sledgehammer

mirror tmap 102 s tmap z (mirror x) =
mirror (tmap z x)

Sledgehammer

mirror tsum 597 s tsum (mirror x) (mirror
x) = mirror (tsum x x)
tsum y x = tsum x y
tsum (tsum x y) z =
tsum x (tsum y z)
+ 4 more unproved
about tsum/mirror

Sledgehammer
no
no

As can be seen in Table 4, only a few properties are proved automatically (by
Sledgehammer, no coinduction needed). This is because our automated coinduc-
tion tactic is not flexible enough to deal with nested datatypes. We believe a
customized tactic, also able to perform some form of nested induction over the
list of branches, would do a better job, but such domain specific tactics are left
as further work at this stage.

6 Related Work

There is substantial recent work on making Isabelle/HOL more expressive for
working with codatatypes and corecursive functions [4,5]. Our extension to Hip-
ster can help Isabelle/HOL users who want to program with these new methods
discover and prove new properties about their theories.
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There has been prior work on automating coinductive proofs and reasoning.
In [17] Leino and Moskal present a method for automated reasoning about coin-
ductive properties in the Dafny verifier. CIRC [19] is a tool for automated induc-
tive and coinductive theorem proving which uses circular coinductive reasoning.
It has been successfully used to prove many properties of infinite structures such
as streams and infinite binary trees. However, none of the other systems has the
theory exploration capabilities of Hipster.

In the setting of resolution for Horn clause logic with coinductive entail-
ment, Fu et al. [10] present a method for automatically generating appropriate
candidate lemmas for proving such entailments. The application is to devise a
method for e.g. type class resolution in Haskell that is stronger than cycle detec-
tion. Whereas Hipster uses testing to generate candidate lemmas, Fu et al. uses
the structure of partial proof attempts. Given a partially unfolded resolution
tree, the candidate lemma that gets generated states that the root of the tree
is entailed by the conjunction of all leaves that mention fewer symbols than the
root. This is also unlike Hipster in that Hipster strives for lemmas that will be
generally useful for any further theory development using the types and functions
under consideration, whereas Fu et al. are interested in finding which lemmas,
were they true, could be used to prove a particular sequent.

IsaCoSy [15] and IsaScheme [22] are other theory exploration systems for
Isabelle/HOL, both of which focus on the discovery and proof of inductive prop-
erties. MATHsAiD [20] is a tool for automated theorem discovery, aimed at
aiding mathematicians in exploring mathematical theories. It can discover and
prove theorems whose proofs consist of logical and transitive reasoning as well as
induction. Hipster is the first theory exploration system capable of discovering
and proving coinductive properties. Furthermore, it is considerably faster than
IsaCoSy and IsaScheme thanks to using QuickSpec as a backend [9].

7 Conclusion

We have extended the theory exploration system Hipster with the capabilities to
discover and prove not only inductive lemmas, but also lemmas in coinductive
theories involving potentially infinite types such as streams, lazy lists and trees.
We have shown that the system can discover and prove many standard lemmas
about these codatatypes. This goes beyond the capabilities of previous theory
exploration systems, that do not consider coinduction at all.

In the long term, we envision that invoking a theory exploration system such
as Hipster will be a natural first step for the working proof engineer when devel-
oping a new theory. This nicely complements tools like Isabelle’s Sledgehammer.
In a new theory, Sledgehammer is unlikely to be of much help until we have
proven at least some basic lemmas, which is exactly what theory exploration
can automate.

There are many interesting directions for further work. As seen in the case
study on rose trees, we would benefit from specialized observation functions
and proof methods for nested (co-)datatypes. The case studies in this paper
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are mostly in the domain of lazy data in the style of functional programming.
It would be interesting to explore if we can extend our work to other uses of
coinduction. For example, discovering algebraic laws about coinductively defined
behavioral equivalences, or discovering Hoare triples about non-terminating pro-
grams. This would require developing a technique to test relations as opposed
to functions.
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FUL project, grant agreement No. 640954, which has received funding from the Euro-
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Abstract. Over the past few years, machine learning has been success-
fully combined with automated theorem provers to prove conjectures
from proof assistants. However, such approaches do not usually focus
on inductive proofs. In this work, we explore a combination of machine
learning, a simple Boyer-Moore model and ATPs as a means of improv-
ing the automation of inductive proofs in the proof assistant HOL Light.
We evaluate the framework using a number of inductive proof corpora.
In each case, our approach achieves a higher success rate than running
ATPs or the Boyer-Moore tool individually.

Keywords: Induction · Lemma selection · Theorem proving
Machine learning

1 Introduction

Over the past few years, large libraries of formalised theories have been built in
interactive theorem provers (ITPs) like Isabelle [26], HOL Light [15] and Coq [1].
Automated, first-order theorem provers (ATPs) like Vampire [23] and E [29], and
satisfiability modulo theories (SMT) solvers like Z3 [10] are increasingly being
used to facilitate the development of such libraries in large proof corpora.

In order to use such external tools effectively, machine learning (ML) infras-
tructures have been developed within several proof assistants to automatically
select hundreds of potentially relevant lemmas whenever the user tries to prove
a goal automatically. Sledgehammer [28] in Isabelle and HOL(y)Hammer [21] in
HOL Light are examples of two such ML systems.

Although recursively-defined data types such as lists are widely used in ITPs,
the ATPs and SMT solvers do not usually perform well on goals that require
inductive theorem proving [9]. However, automated methods for inductive the-
orem proving do exist. ACL2 [22], for instance, is a system that evolved from
the so-called Boyer-Moore approach (which we use in our current work) and is
successfully being used for the formalization of industrial problems. Inductive
theorem proving often requires the manual provision of suitable lemmas to help
with the inductive proof (for example as hints in ACL2). Identifying such lemmas
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is a major challenge and the system relies on human expertise and understanding
of the problem and its context.

Lemma discovery techniques, which try to automatically speculate relevant
lemmas, have been investigated as a solution [8,11]. These include, for example,
generalization, which was incorporated in the original Boyer-Moore prover but
has had relatively limited success.

In the current work, we investigate the potential use of machine learning
to select lemmas from big corpora in support of automated inductive theorem
proving. We aim to select a relatively small number of suitable lemmas that can
then be used within a Boyer-Moore based inductive theorem prover to make
progress with otherwise blocked proofs.

We incorporate proof strategies that make use of machine learning techniques
and ATPs within a Boyer-Moore style model and run these in parallel, in a new
environment we call a multi-waterfall. Our paper is organised as follows: we
introduce the Boyer-Moore model and lemma selection approaches in Sect. 2.
We present the multi-waterfall model in Sect. 3, together with the application
of lemma selection, and other changes to our Boyer-Moore implementation. We
evaluate the different strategies on corpora of inductive proofs in Sect. 4, and
discuss the results in Sect. 5.

2 Background

2.1 Recursively-Defined Data Types and Induction

Recursively-defined data types are usually used in inductive theorem proving.
For instance, a natural number is either the constant 0, or obtained by applying
the successor function s to another natural number. Inductive inference involves
the use of particular logical rules to prove properties of recursive datatypes that
are not otherwise provable [6]. The induction for natural numbers is:

P (0),∀n. P (n) =⇒ P (s(n))
∀x. P (x)

(1)

Applying this rule allows us to break a subgoal about a particular property
P of natural numbers into two new subgoals: the base case P (0) and the step
case P (s(n)), assuming P (n) for any n.

2.2 The Boyer-Moore Model

The Boyer-Moore approach [4] covers the key components of an automated the-
orem prover for inductive proofs. It revolves around the notion of a waterfall
model, as shown in Fig. 1. In this, conjectures (or proof goals) are poured from
the top and through a series of procedures, called heuristics. Each heuristic in
the waterfall tries to either prove or simplify the goal. It may also determine
that the goal is unprovable or, if neither of these is applicable, the heuristic fails.
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Initial goal

Heuristic 2

...

Heuristic 1

Heuristic 3

Proven/
Unprovable

Pool

Induction

...

Fail

Fail

Fail

Succeed

Succeed

Succeed

Fig. 1. Diagram of the waterfall model

Induction is applied automatically when all heuristics have failed (the goals
trickle down to the pool at the bottom of the waterfall). The generated sub-
goals (base and step cases) are poured over new waterfalls again. This process is
repeated recursively, until all subgoals are proven, in which case a proof of the
original goal is reconstructed, or a subgoal is determined to be unprovable.

Examples of heuristics that are relevant to this paper are the following:

– The Clausal Form heuristic: This transforms the goals to Clausal Normal
Form (CNF), which other Boyer-Moore heuristics take advantage of.

– The Simplify heuristic: This applies rewriting to the goal in order to sim-
plify or prove it using function definitions and rewrite rules. Note that termi-
nation is not guaranteed and depends on the selection of rewrite rules.

– The Generalize heuristic: A lemma speculation process which tries to
generalize a subterm in the goal.

– Automated proof procedures in HOL Light such as the model elimination
procedure MESON [16] and a simple tautology checker TAUT can also be used
as heuristics within Boyer-Moore.

Boyer-Moore uses an additional heuristic at the pool of the waterfall to choose
the appropriate induction variable based on the definitions of recursive func-
tions [4]. Note that in our implementation, this heuristic only supports primi-
tively recursive definitions [3].

Based on the above, the system configuration can be tailored to deal with
different problems. The most common customizations are the following [27]:

– The rewrite rules for the Simplify heuristic can be elaborately chosen by the
user to improve its effectiveness towards proving the subgoals.

– The order and combination of heuristics can also be adjusted for different
situations. For instance, some heuristics are unsafe and may render the goal
more complicated, or result in an infinite loop.



90 Y. Jiang et al.

For our implementation we use the Boyer-Moore system implemented in
HOL-Light [27]. An important advantage of both this particular system and
HOL Light, particularly in comparison with more sophisticated evolutions of
the Boyer-Moore approach such as ACL2, is that they are lightweight imple-
mentations with simple structures and thus allow easy, direct access to the inner
workings. This makes it easier to manipulate and adjust the Boyer-Moore water-
falls and heuristics, and analyze the effects of machine learning more thoroughly.

2.3 Theorem Proving Hammers

As we alluded to in the introduction, ITPs now incorporate so-called hammers
that act as intermediates between powerful, external ATPs and their built-in
proof procedures. With the help of machine learning, these allow users to recon-
struct complex formal proofs within ITPs with just one click. Hammers usually
consists of four parts [2]:

– A lemma selection module to filter relevant lemmas that can be used by ATPs
(see Sect. 2.4).

– A translation module that translates ITP problems to a first order syntax
acceptable to ATPs.

– Links to external ATPs that search for and output proofs.
– A proof reconstruction module that reconstructs the output of ATPs to cor-

responding ITP proofs.

Sledgehammer is the original tool that started the whole effort: it is inte-
grated into the Isabelle proof assistant that carries out lemma selection using a
combination of relevance filtering MePo [25] and Bayesian learning [24].

HOL(y)Hammer, the corresponding tool for HOL Light, also uses machine
learning for lemma selection. In our work, we incorporate elements from its latest
released version1, such as its feature extraction algorithm (see Sect. 2.4).

2.4 Machine Learning for Interactive Theorem Proving

Lemma selection is an important component of hammers as they provide the
external ATPs with the pre-proved results that may lead to a proof. This usually
involves training an ML model that can predict the relevance of proven lemmas
to new goals and then select those that look more promising. The model is
typically trained using existing proofs that have been produced interactively.
More specifically, a dependency tracking module usually records the definitions
and lemmas that have been used during interactive proofs.

In our case, we have developed our own dependency tracking tool that
improves upon the one in HOL(y)Hammer by recording additional information
such as whether a tracked theorem is a definition and the file that contains it.

Both Sledgehammer and HOL(y)Hammer use ML algorithms, such as naive
Bayes, that estimate the relevance of lemmas from the proof library based on
1 http://cl-informatik.uibk.ac.at/software/hh/hh-0.13.tgz.

http://cl-informatik.uibk.ac.at/software/hh/hh-0.13.tgz


Machine Learning for Inductive Theorem Proving 91

features generated from the statements of lemmas and the goal at hand. Such
features usually consist of strings generated from the constants, subterms, oper-
ators, and other parts of the statement [20].

For example, given the HOL-Light theorem ∀n. EV EN n ∨ ODD n, the
following features are extracted:

“num”, “fun”, “bool”, “ODD”, “EV EN”,
“Anum”, “EV EN Anum”, “ODD Anum”

(2)

In HOL(y)Hammer this is achieved in several ways. For instance, given the term
EV EN n : num (where “n : num” means the type of n is the natural numbers),
the default option normalizes the identifier of variable n to an identifier “A”
followed by the type num, i.e. “Anum”. Moreover, structural information is
kept as additional features with entire subterms, e.g. “EV EN Anum” above,
which provides more information for learning [24].

3 Methodology

As mentioned in Sect. 2, our work is based on an implementation of the Boyer-
Moore model in HOL Light. We followed an experiment-led methodology, using
the setup described in Sect. 4. The results of repeated experiments empirically
guided our decision making in order to improve and configure the system and
expand it with machine learning techniques inspired by hammers. In this section,
we summarize the key changes made to the original Boyer-Moore system.

3.1 Initial Improvements

Initial experiments were done to form a baseline against which to compare the
results of changes and additions. During these experiments we noticed and fixed
a number of issues, the most important of which are described next.

Removing CNF Heuristic. During our initial experiments, some goals
became unprovable by Boyer-Moore after the CNF heuristic was applied. For
instance, the heuristic splits the goal ¬EV EN x ⇐⇒ ODD x into 2 clauses:
EV EN x ∨ ODD x and ¬EV EN x ∨ ¬ODD x. In the original formalization,
the untransformed goal is proven independently and used as a lemma to be able
to prove these 2 clauses. This is an indication that the CNF heuristic does not
always make progress in the right direction towards a proof.

Moreover, the CNF heuristic breaks goals that contain logical equivalences
(iffs) into subgoals containing implication, leading to the generation of a number
of subgoals that is exponential to the number of equivalences encountered in the
original goal. Therefore, removing it can significantly reduce the total amount
of subgoals.

It is worth noting that removing the CNF heuristic directly affects some of the
Boyer-Moore heuristics that follow, which rely on CNF. Despite this side-effect,
our experiments showed a significant overall improvement in the performance of
Boyer-Moore without the CNF heuristic.
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Generalising Variables. When applying induction to a formula with more
than one universally quantified variable, only one is typically selected for induc-
tion, and the others are not affected [6]. For example, applying induction on
variable n in the formula ∀n m. Q(n,m) yields the following step case:

∀n′. (∀m. Q(n′,m)) =⇒ (∀m. Q(s(n′),m)) (3)

However, in Boyer-Moore the input formula is always quantifier-free, so the
step case generated is the following instead:

Q(n,m) =⇒ Q(s(n),m) (4)

This stronger subgoal may be unprovable in certain cases compared to its weaker
counterpart (3). Our solution is to generalise all variables other than the one for
induction as follows:

(∀m. Q(n,m)) =⇒ Q(s(n),m′) (5)

Applying induction then yields the same subgoal (3), though we then remove
the quantifiers again to fit to the quantifier-free environment of Boyer-Moore.

HOL Light’s Automated Procedures. During early experiments, we iden-
tified (sub)goals that could be proven by HOL Light’s automated model elimi-
nation procedure MESON. Therefore, MESON was added as a heuristic to the
waterfall.

Forced Induction. As mentioned previously, the induction heuristic in Boyer-
Moore can only handle primitively recursive function definitions. This means
Boyer-Moore failed to perform induction in terms containing any non-primitively
recursive functions as it was unable to choose an appropriate variable. We address
this problem by forcing Boyer-Moore to pick the first free variable with a recur-
sive type for induction if no other suitable selection is found by the original
heuristic. For the future, we are considering the use of machine learning tech-
niques as a more sophisticated mechanism for the selection of induction variables.

3.2 The Multi-waterfall Model

The original setup of the waterfall works in a serial, monolithic way. Each heuris-
tic is tried sequentially in a static order. However, certain proofs may require
different configurations or strategies for different subgoals. Moreover, some of
the Boyer-Moore heuristics may naturally get stuck during a proof. For exam-
ple, certain combinations of rewrite rules may cause the Simplify heuristic to
loop endlessly. This is particularly important in the context of automated lemma
selection where we have less control over looping rewrite rule sets. Using a dif-
ferent configuration might help unlock and make progress with the proof.
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In order to achieve a more flexible implementation that does not rely on
a single configuration, we introduce a Multi-waterfall model. In this, we run
multiple waterfalls with different configurations in parallel and with a preset
timeout. We then have the following possible outcomes:

1. One of the waterfalls succeeds and the corresponding (sub)goal is proven.
The proof of the (sub)goal is reconstructed and propagated upwards (as in
the standard waterfall model), ensuring soundness of the overall proof.

2. One of the waterfalls completes having generated new subgoals that reached
their pools. In this case, we apply induction to all unproven goals as in the
standard waterfall model (see Sect. 2.2). We then apply the same set of mul-
tiple waterfalls to each of the new sugboals generated by induction.

3. All the waterfalls determine the goal is unprovable, or the timeout is reached.
In this case, the whole branch of proof search fails and is discarded.

The timeout applied to each waterfall ensures that any waterfalls that take
too long are assumed to have failed and are forcibly stopped and their cor-
responding branches abandoned. This allows the other waterfalls running in
parallel to still potentially make progress towards the proof.

An example search tree with 2 waterfalls is shown in Fig. 2. The waterfalls are
run in parallel on the same goal. When a waterfall finishes, we apply induction
to any unproven subgoals in its pool, constructing new subgoals indicated by the
dashed arrows. We then start new waterfalls for each generated subgoal until all
subgoals are proven or deemed unprovable.

A full proof can be reconstructed by tracking all successful waterfalls in a
branch. This means a proof may be found by a chain of different waterfalls. In
Fig. 2, for example, the proof is reconstructed by the waterfalls enclosed in the
marked area. Notice that both types of waterfalls were used to make progress
on or prove different subgoals.

In our implementation, we spawn the waterfalls for a particular goal using
threaded concurrency. If a waterfall fully proves a goal (such as Waterfall 1” in
Fig. 2), the other waterfalls working on the same goal (such as Waterfall 2”) and
their children are forcibly stopped in order to release system resources. Waterfalls
could be tried sequentially instead, but this would dramatically increase the
time taken for a proof to complete, e.g. because the user would need to wait for
different waterfalls to timeout for each and every subgoal.

3.3 Lemma Selection for Boyer-Moore

A straightforward way to apply lemma selection in the Boyer-Moore model is to
pick rewrite rules for the Simplify heuristic or, more generally, any heuristic that
requires relevant lemmas. For this purpose, we train a classifier on the proofs
that are encountered up to the current goal (see Sect. 2.4). We then use that to
select relevant lemmas for each subgoal encountered in the waterfall.

The main issue with lemma selection in this context is that the number of
selected lemmas must be bounded. The larger the rewrite rule set, the more
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Fig. 2. Proof search with multi-waterfall

likely it is that the Simplify heuristic will loop. Selecting fewer lemmas means
that key lemmas may be classified as ‘not relevant enough’ and not be selected.

Replacing the conditional simplifying function SIMP CONV in the original
Boyer-Moore implementation with the simpler rewrite function REWRITE CONV
helped improve our results, but only slightly. The same problem was observed
with MESON as it could not handle large sets of lemmas, and timed out. For
that reason MESON is currently used on its own without lemmas.

In contrast, ATPs are good at handling large numbers of lemmas in more
ways than just simplification (see Sect. 2.3). We take advantage of this by adding
a modified version of HOL(y)Hammer (see Sect. 4.4) as a heuristic that can
directly prove a (sub)goal. We call this heuristic the ATP heuristic.

3.4 Direct Induction

It is quite common in manual inductive proofs for the reasoning to begin with
induction before any simplification or other proof steps. In Boyer-Moore such
proofs may get stuck waiting for the ATP or Simplify heuristics and eventually
timing out and failing, whereas applying induction directly could help unlock the
proof. Moreover, some goals in our initial experiments were being rewritten to a
form that caused Boyer-Moore to either choose a wrong variable for induction or
have more complicated subgoals after induction (for example because complex
definitions were expanded unnecessarily) and fail.

For these reasons, we constructed a new configuration of the waterfall with
no heuristics, but instead induction is applied directly. Including this in our
multi-waterfall model (see Sect. 3.2) enables proofs where this waterfall is used
first, so that induction is applied directly, then another waterfall uses heuristics
to prove the subgoals, thus mimicking the manual proofs mentioned above.
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4 Experiment Set-Up

4.1 Datasets

In order to evaluate our work, we use proven theorems about recursively-defined
data types. We note here that the IsaPlanner benchmark [19], which has been
used by some to test automated inductive theorem provers [8,9], is unsuitable
in our case for the following reasons:

1. Many of the definitions use case-expressions, which are not currently sup-
ported by HOL Light.

2. The available version2 contains many theorems that are part of the recursive
definitions of the corresponding functions, and so can be proven trivially.

3. In the evaluation of HipSpec, 67 theorems were proven without using any aux-
iliary lemmas, and more than 10 were proven using only rewriting. Therefore,
lemma selection would not have any impact in these examples.

Instead, we chose the following corpora for testing3:

1. The core list library in HOL Light, which we refer to as List(core).
2. An additional list library used in the formalization of Hilbert’s Foundations

of Geometry [30]. We refer to this as List(hilbert).
3. A polynomials library in HOL Light with properties about real polynomials

represented as lists of coefficients. We refer to this as Poly.

The size of the test data is shown in Table 1. Note that conjunctions have
been split, meaning that a theorem (or definition) P ∧ Q is automatically split
into P and Q as separate goals (or definitions).

Table 1. Size of the testing data

Definitions Theorems Inductive

List(core) 44 97 73 (75.26%)

List(hilbert) 22 115 80 (69.57%)

Poly 20 123 67 (54.47%)

Note that the number of inductive proofs is a lower bound, obtained by
tallying the proofs containing the string “INDUCT”. In our current datasets we
did not observe any inductive proofs that were not captured in this way, but
this is not necessarily true for other libraries. Since induction can be applied
in various ways in HOL Light (e.g. by matching different induction rules), it
is somewhat difficult to automatically determine the exact number of inductive
proofs.
2 https://github.com/tip-org/benchmarks/tree/master/original/isaplanner.
3 https://github.com/zidongtuili/BM test.

https://github.com/tip-org/benchmarks/tree/master/original/isaplanner
https://github.com/zidongtuili/BM_test
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4.2 Experiments

In order to show that the Boyer-Moore model is a good starting point for induc-
tive theorem proving, a comparison between Boyer-Moore and a simple “induc-
tion then rewriting” proof strategy was made. Such a strategy is commonly used
in manual proofs for a large number of (relatively simple) inductive theorems.
We will refer to it as Ind simp.

We then performed the following experiments using the methods described
in Sect. 3:

1. Original: Running the original Boyer-Moore implementation as a baseline.
2. Initial: Running Boyer-Moore with the changes from Sect. 3.1.
3. Multi-waterfall: Running the multi-waterfall model described in Sect. 3.2,

using the three waterfalls shown in Table 2. More specifically, we used a
waterfall with the ATP heuristic, a standard waterfall with the Simplify and
MESON heuristics, and a waterfall with direct induction (see Sect. 3.4).

4. ATP: The combination of lemma selection with the ATP heuristic outside
Boyer-Moore, i.e. without induction, so that we evaluate and compare the
performance of ATPs on inductive proofs independently.

Table 2. Heuristic settings for three waterfalls

Heuristic Waterfall 1 Waterfall 2 Waterfall 3
Simplify ×
MESON ×
Other Heuristics × ×
HOL(y)Hammer ×
Induction × × ×

Note that in the experiments without lemma selection (Original and Initial),
the built-in rewrite rules and definitions in Boyer-Moore are used.

4.3 Metrics

For each experiment we evaluate the total success rate as n/m where n is the
total number of theorems proven and m is the total number of tested theorems.
We also consider the inductive success rate in the same way for the subset of
inductive theorems tested.

4.4 Environment

Two ATPs were used in our experiments: Vampire 4.14 and Epar (a wrapper of
E included in HOL(y)Hammer) [31]. Sparse Näıve Bayes, as the only ML algo-
4 http://www.cs.miami.edu/tptp/CASC/J8/.

http://www.cs.miami.edu/tptp/CASC/J8/
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rithm included in the source code of HOL(y)Hammer, was used as the learning
algorithm. We ported their optimised implementation from Mash5 [24].

We set the timeout for each waterfall to 30 s, which is a reasonable time that
a user would wait for the system as well as the default timeout of Sledgehammer
and HOL(y)Hammer [20,24]. For lemma selection we select the top 256 most
relevant lemmas, which is the value at which the success rate of Vampire and
Epar is known to drop significantly [20]. Such parameters cannot be optimized
globally as each goal may require different values (the user could tinker with
the values in an interactive setting). We believe that the current settings are
reasonable for the automated evaluation of our implementation, and further
optimisations can be tested in future experiments.

In order to run multiple waterfalls in parallel, a multi-core machine was used
with 2 Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00 GHz (40 threads in total)
with 64 GB RAM. Note that the actual CPU load varies for different problems
and is relatively low in most cases.

5 Evaluation

5.1 Results

The comparison between the original implementation of Boyer-Moore and Ind
simp is shown in Table 3. Ind simp is weaker overall than Boyer-Moore. Boyer-
Moore only failed on 2 theorems proven by Ind simp mainly due to the issue
with the CNF heuristic mentioned in Sect. 3.1.

Table 3. Success rate of Ind simp and the original Boyer-Moore.

List(core) List(hilbert) Poly

Ind simp 24.74% 13.04% 8.94%

Original 41.24% 14.78% 13.01%

The results of the rest of the experiments are shown below in Table 4.

Table 4. Success rates of the different configurations

Total Induction

List(core) List(hilbert) Poly List(core) List(hilbert) Poly

Original 41.24% 14.78% 13.01% 36.99% 8.75% 11.94%

Initial 52.58% 20.00% 14.63% 45.21% 17.50% 13.43%

Multi-waterfall 57.73% 63.48% 40.65% 46.58% 62.50% 37.31%

ATP 25.77% 36.52% 24.39% 5.48% 30.00% 10.45%

5 https://github.com/seL4/isabelle/blob/master/src/HOL/Tools/Sledgehammer/
sledgehammer mash.ML.

https://github.com/seL4/isabelle/blob/master/src/HOL/Tools/Sledgehammer/sledgehammer_mash.ML
https://github.com/seL4/isabelle/blob/master/src/HOL/Tools/Sledgehammer/sledgehammer_mash.ML
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Initial generally outperformed Original, which was still able to prove some the-
orems that Initial failed on though, due to the failure of some heuristics that
rely on CNF.

Performance was increased in Multi-waterfall compared to Initial at a differ-
ent scale for each of the 3 sets, as shown in Table 4. This indicates that the orig-
inal Boyer-Moore’s built-in lemmas are enough to prove theorems in List(core),
while lemma selection is more effective for corpora that contain more difficult
theorems and a larger variety of useful lemmas.

ATPs performed relatively poorly on inductive theorems (which significantly
affected their total success rate as well). However, ATPs had a high success rate
in List(hilbert). This shows that with appropriate lemma selection, ATPs can
indeed be powerful enough to prove inductive problems.

Figure 3 shows a Venn diagram representation of the theorems proven by
Initial, Multi-waterfall, and ATP, demonstrating the percentage of theorems
that could only be proven by some of the methods, but not the others. Multi-
waterfall could prove many theorems that none of the other methods could. This
reveals the enhanced potential of combining lemma selection and Boyer-Moore.

In List(core)and List(hilbert), Multi-waterfall failed to prove some theorems
that were proven by Initial. This is mainly due to the lack of conditional rewriting
(see Sect. 3.3). Moreover, some theorems were proven by ATP but not Multi-
waterfall, because Multi-waterfall requires quantifier-free goals as input. This
affects how the goals are translated to the ATP format, particularly for higher
order (i.e. function) variables, and thus impacts the performance of ATPs.

7.55%

18.40%

12.26%

1.42%

15.09%

15.09%

Init

Multi-waterfall

ATP

(a) List(core) & List(hilbert)
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11.38%

6.50%

1.63%

15.45%

7.32%
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Multi-waterfall

ATP

(b) Poly

Fig. 3. Coverage of proven theorems by different methods in Table 4

Examining failed proofs in Multi-waterfall, we discovered that in many cases
the wrong variable was chosen for induction, particularly when 2 or more induc-
tion steps are used in a proof (at least 25% of the time in each data set). Other
failed proofs can be attributed to missing key lemmas during lemma selection.
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5.2 Examples

An example of an inductive theorem is DROP DROP from List(hilbert) shown in
Fig. 4. It is worth comparing the manual proof to the one generated by Boyer-
Moore. With the push of a button, a theorem with a complex manual proof
containing 3 induction steps can be proven by Multi-waterfall automatically in
only 2 induction steps. The corresponding proof script for the new proof is auto-
matically generated and verified in HOL Light. Also note that HOL(y)Hammer
was unable to find a proof on its own, neither when supplied with the same
lemmas used in Multi-waterfall nor with its own selection of 256 lemmas.

DROP DROP: ∀n,m, xs : DROP (n+m)=DROP n (DROP m xs)
Manual proof:

INDUCT_TAC THEN REWRITE_TAC [ADD_CLAUSES;DROP]

THEN INDUCT_TAC THEN ASM_REWRITE_TAC [LENGTH;ADD_CLAUSES;DROP]

THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [LENGTH;ADD_CLAUSES;DROP]

THEN REWRITE_TAC [GSYM ADD] THEN ASM_REWRITE_TAC [DROP;ADD_CLAUSES]

Proof generated by Boyer-Moore Multi-waterfall :

REPEAT GEN_TAC THEN REWRITE_TAC[conj 0 ADD_AC] THEN

IND_MP_TAC [‘xs:(a)list‘] list_INDUCT THEN CONJ_TAC THEN

CONV_TAC (REPEATC (DEPTH_FORALL_CONV RIGHT_IMP_FORALL_CONV)) THEN

(REPEAT GEN_TAC) THENL [REWRITE_TAC[conj 1 DROP];

IND_MP_TAC [‘m:num‘] num_INDUCTION THEN CONJ_TAC THEN

CONV_TAC (REPEATC (DEPTH_FORALL_CONV RIGHT_IMP_FORALL_CONV)) THEN

(REPEAT GEN_TAC) THENL [REWRITE_TAC [conj 0 DROP;conj 0 ADD];

SIMP_TAC[conj 1 ADD;conj 2 DROP];];]

Fig. 4. User and Boyer-Moore proofs for DROP DROP

An example of a failed proof is the LENGTH REVERSE theorem shown in Fig. 5.
It has a short manual proof with only one induction step and was proven by
Initial, but not by Multi-waterfall. Further investigation showed that when trying
to prove a particular subgoal, although lemma selection included the 6 lemmas
that were sufficient for the proof, ATPs still failed to find it (even after being
allowed to run for 60 s, i.e. double the time). In our later experiments, a list
of 13 theorems (including definitions and common rewrite rules for lists) can
easily prove many subgoals when used on their own, but not as part of a large
selection. This shows that a small group of carefully picked lemmas can be more
effective than a large number of automatically selected lemmas. This explains
why Multi-waterfall failed to prove some theorems that Initial proved.
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LENGTH REVERSE: ∀xs. LENGTH (REVERSE xs) = LENGTH xs
Manual proof:

LIST_INDUCT_TAC THEN ASM_REWRITE_TAC

[LENGTH;REVERSE;LENGTH_APPEND] THEN ARITH_TAC

Fig. 5. User proof for LENGTH REVERSE

6 Related Work

There is a number of other systems for the automation of inductive proofs.
Isaplanner [11] is a generic framework for proof planning in Isabelle with lemma
speculation techniques [12] that try to derive and prove useful lemmas from a
goal. HipSpec [7] uses a bottom-up approach to generate lemmas that can be used
to prove inductive properties of Haskell programs. Cruanes [9] is another system
which supports structural induction with an extension to superposition-based
provers. TacticToe [13,14] is a very recent effort that attempts to learn from
human (manual) proofs and uses a Monte Carlo Tree Search [5] as it attempts
to construct a proof. Based on a timeout of 60 s, a (very high) success rate of
79.5% is reported when it comes to reproving the theorems in the HOL4 list
library. It should be instructive to compare the performance of our approach on
the same corpus.

We should also note that there has been some work on combining machine
learning techniques with inductive theorem proving in ACL2 [17,18]. The
approaches are different from ours in the following ways:

– We apply lemma selection at each subgoal independently, while ACL2(ml)
generally applies its search only at the beginning on the whole goal. Our fine-
grained approach is possible thanks to the simplicity and accessibility our
HOL Light test bed (in contrast to the complicated structure of ACL2).

– Unsupervised learning (clustering), which focuses on the similarity between
goals and theorems, was used in ACL2(ml).

– The features used in ACL2(ml) are based on the structure of the formulae,
which makes them suitable for selecting lemmas with a desired structure and
then mutating them into a simple form of analogical reasoning.

7 Conclusion

Experiments with three corpora containing a large number of inductive proofs
have demonstrated that the integration of machine learning in a Boyer-Moore
model can greatly improve its ability to prove complex inductive theorems. The
combination of powerful ATPs with lemma selection techniques and the Boyer-
Moore strategies and heuristics for inductive proofs have allowed us to auto-
matically prove a large number of theorems that neither system could prove
independently.
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This effective combination was enabled by a new multi-waterfall model that
allows multiple proof strategies to be used in parallel to prove different sub-
goals. This model is configurable with respect to the time out and number of
selected lemmas, which can be changed to improve its effectiveness, particularly
in an interactive setting. However, improvements in the user interaction and
feedback provided by the Boyer-Moore tool (perhaps with ideas from ACL2)
seem paramount in order to achieve even higher proof success.

The model can also be extended with more than the currently suggested
three waterfalls, so as to incorporate additional strategies and techniques in the
future. For example, we could add more types or combinations of heuristics,
incorporate case splitting, and include better support for non-recursive types.

Our future work will also focus on further uses of machine learning in this
setting, for example as a mechanism to select an appropriate induction variable.

We believe our approach is a generic solution for the use of machine learn-
ing within proof strategies for automated inductive theorem proving. Using our
Multi-waterfall model as a skeleton to develop such inductive proof strategies
has the potential to greatly enhance the current capabilities of existing systems
without sacrificing their individual effectiveness.
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Abstract. In the past few years, much attention has been given to the
problem of finding Minimal Unsatisfiable Subsets (MUSes), not only for
its theoretical importance but also for its wide range of practical applica-
tions, including software testing, hardware verification and knowledge-
based validation. In this paper, we propose an algorithm for extract-
ing all MUSes for formulas in the field of propositional logic and the
function-free and equality-free fragment of first-order logic. This algo-
rithm extends earlier work, but some changes have been made and a
number of optimization strategies have been proposed to improve its
efficiency. Experimental results show that our algorithm performs well
on many industrial and generated instances, and the strategies adopted
can indeed improve the efficiency of our algorithm.

Keywords: Minimal unsatisfiable subsets · Heuristic algorithm
Optimization strategy · SAT

1 Introduction

Given an unsatisfiable formula in Conjunctive Normal Form (CNF), a mini-
mal unsatisfiable subset (MUS) is a subset of clauses which is (1) unsatisfiable,
and (2) minimal, which means removing any one of its elements will make the
remaining set satisfiable. Different classes of algorithms have been proposed to
efficiently enumerate all or partial MUSes [1,16,19]. Early algorithms are based
on subset enumeration [3,8]. In these algorithms, the power set of the input is
enumerated in a tree structure and every subset is checked for satisfiability. A
MUS can be easily identified by definition. Another class of algorithms [2,12,17]
relies on the hitting set duality. First, all Minimal Correction Subsets (MCSes)
are computed. Then, all MUSes are obtained by computing minimal hitting sets
of these MCSes. CAMUS [12] is one of the state-of-the-art algorithms for comput-
ing all MUSes in this class. Recently, algorithms (e.g. eMUS/MARCO [11,14])
for partial MUS enumeration were proposed. These algorithms are able to pro-
duce the first MUS quickly and early, and the following MUSes are generally
produced incrementally.
c© Springer Nature Switzerland AG 2018
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Most of the current algorithms rely on a SAT solver for checking the satisfi-
ability of clause sets. The advantage is that they can utilize the power of highly
optimized SAT solvers. But they also unavoidably introduce many duplicated
computations. For example, if clause set {1, 2, 3} is checked unsatisfiable, they
should check the satisfiability of {1, 2}, {1, 3}, {2, 3} for determining whether
{1, 2, 3} is indeed a MUS or not. Although many optimizations (e.g. using the
hitting set duality) for these algorithms are proposed to reduce the number of
SAT solver calls, there are still many duplicated computations. And when there
are a larger number of MUSes in the input, the number of SAT solver calls will be
enormous and the time used for duplicated computations will also be obviously
large, which will cause a decrease in efficiency.

For the consideration of the shortcoming described above for those algorithms
which are based on SAT solvers, we have adopted another approach for enumer-
ating MUSes. This paper extends our earlier work [20] on computing MUSes for
a decidable fragment of First-Order Formulas (FOL), and its main contributions
can be summarized as follows. First, in contrast to most approaches which make
use of variable assignments or an external SAT-solver to check satisfiability, this
paper proposes a “decompose-merge” algorithm inspired by the process of logi-
cal deduction in belief revision [10,13]. It first decomposes clauses of the given
formula into literals to easily identify all inconsistent relations between them,
and then assembles all literals back to the original clauses to reveal the minimal
inconsistent relations among them. Second, the proposed algorithm uses unifi-
cation to accomplish “general instantiation”. In other words, instead of instan-
tiating all variables by all feasible values, a most general inconsistent subset is
used to represent a class of instances which are equivalent under the more gen-
eral relation, which can avoid generating of excessive instances and reduce the
searching space. Another contribution of the paper is the optimization strategies
used to improve the efficiency of our algorithm. Experimental results show that
our algorithm is competitive and has the potential to be even better.

2 Preliminaries

This paper focuses on the function-free and equality-free fragment of first-order
logic (FEF for short). Satisfiability of formulae from the FEF fragment is decid-
able, because it is a special case of effectively propositional logic (EPR), also
known as the Bernays-Schönfinkel class [15] which is proved to be decidable.
Hence it is feasible to design an algorithm to compute all MUSes in the FEF
fragment.

Formulas in FEF are represented in CNF. That is, a CNF formula is a con-
junction (AND, ∧) of one or more clauses, and each clause is a disjunction (OR,
∨) of one or more literals. A literal is an atomic formula or its negation (NOT,
¬). The syntax is shown below.

F ::= C1 ∧ · · · ∧ Cn

Ci ::= L1 ∨ · · · ∨ Lmi

Lj ::= A | ¬A
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Following the convention of many other papers (e.g. [4,7]), a CNF formula
is treated as a (finite) set of clauses.

Here is an example formula in the FEF fragment.

Example 1. The uppercase letter X denotes a variable, while the lowercase letter
a and b denote constants.

F = (
C1

A(a)) ∧ (
C2

¬A(X) ∨ B(X)) ∧ (
C3

¬B(b)) ∧ (
C4

¬B(a))

3 Algorithm for Computing All MUSes

In this section, we will give an overview of the proposed FMUS2 algorithm for
computing all MUSes for formulas in the FEF fragment, which is an improved
version of our previous FMUS algorithm [20].

Both FMUS2 and FMUS adopt a constructive “decompose-merge” approach
to compute MUSes. First, the clauses of the given formula are decomposed into
literals and inconsistent pairs of decomposed literals are all computed, this is
the “decompose” procedure. Thus, the initial intermediate results are created,
which are sets of literals and indicate the contradictory relations among literals
of all clauses. Then, by iteratively merging these intermediate results into larger
sets, which are still unsatisfiable during the whole process, the original clauses
are restored one by one, this is the “merge” procedure. The merging operation
processes literal by literal and clause by clause. After all the literals are merged
into original clauses, the final results will contain all MUSes of the clauses in the
input formula.

FMUS2 and FMUS both use unification for instantiating clauses with the
most general unifier, but through different approaches.

Definition 1 (Most general unifier). A substitution σ is a most general uni-
fier (MGU) of two literals L1 and L2 if σ unifies them, i.e. (L1, σ) = (L2, σ),
and for any unifier σ′ of these two formulas, there exists a substitution ω such
that σ′ = ω ◦ σ.

For FMUS, MGUs are kept along with the whole procedure. There will
be a MGU for each intermediate result, which indicates how this intermedi-
ate result is unsatisfiable. For example, I = {A(a),¬A(X)[a/X]} is unsatisfi-
able if we substitute the constant a for the variable X. In other words, FMUS
uses MGUs instead of explicit instantiation. The implicit way can cause diffi-
culty for identifying whether two substitutions, which look different, are in fact
equivalent sometimes. For example, if there are I1 = {A(Y ),¬A(X)[Y/X]} and
I2 = {A(Z),¬A(X)[Z/X]} among all intermediate results, they are equivalent
when the variables Y and Z are substituted by the same constant a, but they are
different when Y is substituted by a and Z is substituted by b. When the input
formula is complex, the identification will be difficult. Some redundant branches
will arise also because of its implicity.
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So for FMUS2, we have tried to adopt a new way to solve this problem. We
choose to explicitly instantiate the original clauses with ground term (i.e. terms
without variables). Before the instantiation, MGUs of decomposed literals are
computed, which will be used to confine the scope of instantiation and reduce
the number of instantiations. For example, if the variable X from ¬A(X) can be
substituted by constants a, b, c but only substitute the constant a for the variable
X can lead to contradiction, there is no need for replacing X with b or c. Thus
the scope of instantiation is confined.

Based on the discussion above, the basic steps of FMUS2 are listed below.

1. Preprocess. For the given CNF formula, FMUS2 first parses and decom-
poses clauses of the CNF formula into literals with labels to indicate their
origin, meanwhile overlapping bound variables are renamed to eliminate name
ambiguity.

2. Find initial contradictions. For each decomposed literal it is checked
whether there is another literal which is contradictory to it. This process
is accomplished by unification to obtain a MGU.

3. Instantiation. If there are variables in the given CNF formula, literals will
be instantiated and the MGUs already found will be used to confine the scope
of instantiation. After instantiation, the previous step of finding initial contra-
dictions will be processed again for these ground literals in newly instantiated
clauses. If there is no variable in the given CNF formula, which means the
formula is a ground formula, there is no need for instantiation.

4. Merge. After all steps above, the core process of FMUS2—the merge pro-
cess begins. Literal instances of the same clause are merged to reconstruct
instances of their original clause according to certain order, which will be
further discussed in Sect. 4.1. The principle for deciding whether two inter-
mediate results can be merged will be discussed in Sect. 4.1 too.

5. Map back. If the original CNF formula is a ground formula, then the result
is all MUSes of the input. But if the original CNF formula contains variables,
one original clause may have many corresponding clause instances. Thus after
all steps above, the instance sets need to be mapped back into unsatisfiable
subsets of the original clause set. Then all MUSes of the input can be obtained
by extracting the minimal ones from the set of all those unsatisfiable subsets.

The pseudo-code for FMUS2 is shown in Algorithm1.
FMUS2 takes a set of clauses (a CNF formula) F as input, and outputs all

MUSes of F . If F is satisfiable, the output will be ∅. Lines 1–4 demonstrate the
process of decomposing clauses into literals. Every clause Ci in F is Li

1 ∨ · · · ∨
Li
mi

where mi stands for the number of literals in Ci. Lines 5 enumerates all
inconsistent pairs among decomposed literals to construct M0. Lines 6–9 show,
if F is in the field of first-order logic, all literals will be instantiated and the
initial contradictions set M0 will be computed again for L′.

The loop in lines 10–16 of FMUS2 is the most interesting but bewildering
part. In this loop, we iteratively merge clauses that contain multiple literals.
In each iteration, literals from a certain clause are merged to the original form
and the unsatisfiable subsets that contain these literals are merged to larger
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Algorithm 1. FMUS2(F )
Input: F as a set of clauses {C1, . . . , Cn}
Output: The set of all MUSes of F
1: for i = 1 to n do
2: Decompose Ci to {Li

1, . . . , L
i
mi

}
3: end for

4: L :=

n⋃

i=1

{Li
1, . . . , L

i
mi

}
5: Find the initial inconsistent set M0 of L
6: if there are variables in L then
7: Instantiate L′ := L
8: Find the inconsistent set M0 of L′

9: end if
10: for i = 1 to n do
11: if mi > 1 then
12: Mi := Merge(i, Mi−1)
13: else
14: Mi := Mi−1

15: end if
16: end for
17: Map instances in Mn back to their corresponding clauses and obtain M ′

n

18: return M ′
n

unsatisfiable sets. Each round of iteration is based on the result of the previous
iteration. To give a clearer explanation, let us suppose that the ith clause (i.e.
Ci) is going to be merged and Mi−1 is the result of the last iteration. So clauses
C1 to Ci−1 have already been merged, and clauses Ci to Cn still appear in the
form of literals. The process of merging the ith clause is shown as Algorithm 2.
Note that when merging, all literals are in propositional logic, which means all
substitutions σ are empty now. So in Algorithm2, we do not use the symbol σ.

In the Merge process, Ni is generated by extracting elements from Mi−1

which have no intersection with literals in Ci (Line 2). Conversely, Si is a set
of mi-tuples that represent all merging options with respect to Ci (Line 3).
The jth item in each tuple (Φi

1, . . . , Φ
i
mi

) is supposed to be an element of Mi−1

that contains literal Li
j . Then M ′

i is constructed through merging all alternative
Φi
1, . . . , Φ

i
mi

(Line 6). As a result, Ni consists of unsatisfiable subsets without
Ci, while M ′

i is formed of unsatisfiable subsets which contain Ci. The operation
of MS() is to obtain those minimal elements under set inclusion. That is, if Θ =
{Θ1, . . . , Θn}, where Θ1, . . . , Θn are different sets, then MS(Θ) = {Θ′ | Θ′ ∈
Θ and there is no Θ′′ ∈ Θ such that Θ′′ ⊂ Θ′}. After all formulas are merged,
we get Mn, the set that contains all MUSes of instances of original clauses.
Finally, by processing the Map Back step that is Algorithm 1 Line 17, all MUSes
are extracted.

Since the input set consists of finite clauses, and the number of intermediate
results generated during the procedure of FMUS2 is also finite, FMUS2 must
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Algorithm 2. Merge(i,Mi−1)
Input: the set of all MUSes after merging i − 1 clauses of F
Output: the set of all MUSes after merging i clauses of F
1: M

′
i := ∅

2: Ni := {φ | φ ∈ Mi−1 and φ ∩ {Li
1, . . . , L

i
mi

} = ∅}
3: Si := {(Φi

1, . . . , Φ
i
mi

) | Φi
j ∈ Mi−1, L

i
j ∈ Φi

j , j ∈ [1, mi]}
4: for all (Φi

1, . . . , Φ
i
mi

) ∈ Si do
5: if (Φi

1, . . . , Φ
i
mi

) can merge then

6: M
′
i := M

′
i ∪

{
{Ci} ∪

mi⋃

j=1

(Φi
j − {Li

j})

}

7: end if
8: end for
9: Mi := MS(Ni ∪ M

′
i )

10: return Mi

terminate in finite steps. The output of FMUS2 will be the set which consists of
all MUSes of the input. Besides, FMUS2 can be altered to a partial MUS enu-
merating algorithm by simply outputting all MUSes newly found after merging
every clause. This is based on the fact that if there is a MUS {1, 3} after merging
clauses 1 to 3, {1, 3} is also a MUS of the whole set of clauses 1 to n, where
n ≥ 3.

4 Optimization Strategies

In this section, we will discuss some optimization strategies used to improve the
performance of FMUS2. The strategies can be divided into two categories. One
is concerned with the order used in the merging procedure, and the other is
concerned with pruning, i.e. reducing the number of intermediate results.

4.1 Merging Strategies

For FMUS2, the merging procedure is the most important and time-consuming
part. Though different orders of merging do not affect the correctness of the
algorithm, they do affect the number of intermediate results significantly. Thus
the efficiency of the algorithm will be affected. A good order may solve an input
rapidly while a bad order may timeout for the same input. We propose a simple
heuristic merging strategy to determine the merging order.

The heuristic merging strategy is based on the theoretical maximum number
M(C) of intermediate results for each clause C when it is the first to merge.
In detail, M(Ci) =

∏mi

j=1 ni
j . The mi denotes the number of literals of Ci, and

the numbers of contradictory literals of Ci
1, · · · , Ci

mi
are ni

1, · · · , ni
mi

. In order
to rein in the potentially exponential growth of intermediate results as much
as possible, before merging, M(Ci) will be calculated for every clause and then
arranged from least to most which is the merging order. For the consideration of
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comparison, a completely opposite order and a random order are implemented
as contrast strategies.

Except for deciding the order of merging, the heuristic strategy will also
renumber the clauses opposite to the merging order. The reasons are as follows.

While merging, we should decide whether two intermediate results can be
merged. The principle is that, when merging clause i, if two intermediate results
contains two different literals that come from the same clause j(j 	= i) separately,
they can not be merged. If they are merged, the unsatisfiability of the newly
generated intermediate result can not be maintained.

Example 2. Considering

F = {1.1x1 ∨ 1.2
x2,

2.1¬x1 ∨ 2.2¬x2}.

The x.y labels on the top of literals are identifiers. The x denotes the clause
number which this literal belongs to, and the y denotes the literal number in
clause. In particular, the x.0 label denotes the whole x-th clause.

It is obvious that F is satisfiable. Before merging, there are two interme-
diate results, I1 = {1.1x1,

2.1¬x1} and I2 = {1.2x2,
2.2¬x2}. According to the princi-

ple above, I1 and I2 can not be merged. If they are merged, the result is

I3 = { 1.0
x1 ∨ x2,

2.0¬x1 ∨ ¬x2}, which is incorrect, in other words, satisfiable.

Because we should check whether two intermediate results can be merged, we
should traverse and check all possible clauses, for which one or more literals are
contained in these two intermediate results. The larger the M(C) for a clause is,
the more likely different literals of this clause will be contained in two different
intermediate results. Thus when merging two intermediate results, the clause for
which one or more literals are contained in these two intermediate results and
M(C) is larger, will be checked first.

We give an example to show how the merging strategy works and why we
renumber the clauses opposite to the merging order.

Example 3. Considering

F = {1.1x1 ∨ 1.2¬x4,
2.1
x4 ∨ 2.2¬x3 ∨ 2.3

x2,
3.1¬x1 ∨ 3.2

x2 ∨ 3.3
x3,

4.1¬x2 ∨ 4.2
x4,

5.0¬x1}.

F is satisfiable. Before merging, there are 7 intermediate results I1 to I7.

I1 = {1.1x1,
3.1¬x1}, I2 = {1.1x1,

5.0¬x1},

I3 = { 1.2¬x4,
2.1
x4}, I4 = { 1.2¬x4,

4.2
x4},

I5 = { 2.2¬x3,
3.3
x3}, I6 = {2.3x2,

4.1¬x2}, I7 = {3.2x2,
4.1¬x2}.

Because C5 is a clause with only one literal, we just need to compute M(C1) to
M(C4).

M(C1) = n1
1 × n1

2 = 2 × 2 = 4,
M(C2) = n2

1 × n2
2 × n2

3 = 1 × 1 × 1 = 1,
M(C3) = n3

1 × n3
2 × n3

3 = 1 × 1 × 1 = 1,
M(C4) = n4

1 × n4
2 = 2 × 1 = 2.



FMUS2: An Efficient Algorithm to Compute MUSes 111

Thus the merging order is 2, 3, 4, 1.

After merging C2, we will get I8 = { 1.2¬x4,
2.0

x4 ∨ ¬x3 ∨ x2,
3.3
x3,

4.1¬x2}. And the
set of all intermediate results is Γ = {I1, I2, I4, I7, I8}.

Then we will merge C3. I1, I7 and I8 involve L3
1, L3

2 and L3
3 separately. First

we get I9 = {1.1x1,
3.1¬x1,

3.2
x2,

4.1¬x2} by merging I1 and I7. Then we try to merge I8
and I9. Because there are literals of C1 and C4 in I8 and I9, we should check
whether I8 and I9 can be merged. Because M(C1) is larger than M(C4), we
first check literals of C1. I8 contains L1

2 and I9 contains L1
1, thus they can not

be merged. I8 and I9 will be discarded. The remaining Γ = {I2, I4}.
If we do not check opposite to the merging order, we could first check literals

of C4, and we will see that I8 and I9 both contain L4
1. Then we should also check

literals of C1. As a result, a useless check is processed.
The remaining I2 and I4 can be merged, but there is no another intermediate

result contains L4
1. Thus no MUS is found, and the original F is satisfiable.

4.2 Pruning Strategies

Two strategies are applied to prune the search space of MUSes, i.e., eliminate
useless intermediate results. The core of these two strategies is keeping every
intermediate result I minimal, in other words, I is not a superset of any other
intermediate result I2 or any already obtained MUS. If I is a superset of a
MUS, it is obvious that I can never be merged (expanded) to a MUS. If I is
a superset of another intermediate result I2, for any larger intermediate result
I ′ that contains I by merging it with some other intermediate result I3, I4, . . . ,
there will be another I ′

2 that contains I2 by merging it with the same I3, I4, . . . .
So I ′ is not minimal, and so it cannot be a MUS.

Strategy 1 focuses on eliminating useless intermediate results after merging
every literal. The merging operation processes literal by literal and clause by
clause. After merging every literal, each newly generated intermediate result will
be checked whether it is a superset of any other intermediate result that is not
used while merging this literal. And after merging every clause, each remaining
newly generated intermediate result will be checked whether it is a superset of
any already obtained MUS.

The ideal situation is that no useless intermediate result will be generated.
But Strategy 1 cannot prevent the appearance of useless intermediate results. It
can only discard them after their appearance. Though it can benefit the following
merging steps, time and space are spent to generate the useless intermediate
results and check whether they are useless. So we propose the next strategy to
partly prevent the appearance of useless intermediate results.

Strategy 2 is recording an affirmative propositions set and a negative proposi-
tions set for every intermediate result, and then these sets will be used to decide
whether two intermediate results can merge. For every intermediate result, its
affirmative propositions set is a set that contains every single affirmative propo-
sition which belongs to this intermediate result, and its negative propositions
set is a set that contains every single negative proposition which belongs to this
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intermediate result. The single proposition means proposition contained in this
intermediate result, and not the whole clause which this proposition belongs to
is contained in this intermediate result.

While merging, the intersection of two intermediate results’ affirmative
propositions sets P ′ and the intersection of two intermediate results’ negative
propositions sets N ′ will be computed first. Then, we will find literals contained
in both intermediate results, and remove their corresponding propositions in P ′

or N ′. Finally, if P ′ and N ′ are both ∅, these two intermediate results can be
merged. If not, these two intermediate results can not be merged.

P ′ contains propositions in these two intermediate results’ affirmative propo-
sitions sets both. If it is not empty, it means there are propositions with the same
name but coming from different clauses, i.e., duplicate propositions. If we merge
these two intermediate results and get a new intermediate result I, I cannot be
minimal. Because there are duplicate propositions in I, we at least can remove
one duplicate proposition without changing the unsatisfiability of I.

Example 4 shows how Strategy 2 works.

Example 4.

F = (
1.1
x1 ∨ 1.2

x2) ∧ (
2.1¬x1 ∨ 2.2¬x2) ∧ (

3.1¬x3 ∨ 3.2¬x2) ∧ (
4.1¬x3 ∨ 4.2

x2) ∧ (
5.0
x3).

After merging the first clause, we get an intermediate result I1 with its affir-
mative propositions set ∅ and its negative propositions set {¬x1,¬x2}.

I1 = { 1.0
x1 ∨ x2,

2.1¬x1,
3.2¬x2}.

And then, we merge the second clause, i.e., merge I1 and I2 = { 2.2¬x2,
4.2
x2}.

The affirmative propositions set of I2 is {x2}, and the negative propositions set
is {¬x2}. The proposition ¬x2 appears in both I1 and I2, but it comes from
different literals of different clauses (clause 2 and clause 3). So we choose not to
merge I1 and I2.

If we merge I1 and I2, we will get an intermediate result I3.

I3 = { 1.0
x1 ∨ x2,

2.0¬x1 ∨ ¬x2,
3.2¬x2,

4.2
x2}.

I3 is a superset of another intermediate result I4 = { 3.2¬x2,
4.2
x2}. According to the

reason described above, I3 will be discarded.
As a result, this strategy prevents I1 and I2 merging, instead of merging and

discarding the newly generated intermediate result. Because it will not carry out
the merging and discarding process, which needs to traverse the intermediate
result set to decide whether one should be discarded or not, runtime will be
saved. When the original formula becomes complex, the situation similar to
Example 4 will occur many times. So a lot of runtime will be saved.



FMUS2: An Efficient Algorithm to Compute MUSes 113

5 Experiments

In this section, a series of experiments are performed to evaluate the general
performance of FMUS2 by comparing it with the state-of-the-art algorithms
and verify the effectiveness of the heuristic merging and pruning strategies we
adopted. All experiments were performed on a Ubuntu 16.04 LTS Linux server
with an Intel Xeon E5-4607 v2 2.6 GHz CPU and 15 GB main memory. Timeout
is set to 300 s for all test cases. For timeout instances, we use the Penalized
Average Runtime (PAR-10) [9], where a timeout counts 10 times the time limit.
That is, the runtime for every timeout instance is set to 3000 s.

5.1 Performance

As mentioned earlier, the FEF fragment is a special case of EPR. Since many
implementations of MUS enumeration algorithms only deal with propositional
logic, we shall first evaluate the performance of FMUS2 on FEF by comparing
its performance on industrial benchmarks with one of the state-of-the-art partial
MUSes enumerators—MARCO [11], which support enumerating MUSes in the
EPR fragment by using Z3 [5] as a SAT-solver. In this experiment, MARCO and
Z3 are both open source and the version of MARCO is 2.0.1. The evaluation
is performed on 100 instances from the EPR division of the TPTP Problem
Library [18]. The majority of instances considered are originally from realistic
problems, including geometry, puzzles, and software verification.

Figure 1 shows the the runtime of FMUS2 and MARCO for each instance.
The x-coordinate represents the number of solved instances, and the y-coordinate
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Fig. 1. Comparing FMUS2 against MARCO on industrial benchmarks.
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represents the accumulative runtime spent by MARCO or FMUS2 when solv-
ing these instances. The line for FMUS2 is always below the line for MARCO,
which implies that FMUS2 is faster than MARCO in general for these instances.
Although FMUS2 does not spend less time than MARCO for every instance, the
accumulative runtime, in other words, the average runtime for FMUS2 is less
than MARCO (the average runtime for FMUS2 and MARCO are 2.230 s and
1.460 s respectively).

The experimental results also reveal that FMUS2 is still not optimized
enough to compete with methods which utilize highly optimized SAT-solvers
when dealing with large-scale formula sets which have complex inconsistency
relations between clauses of formulas, i.e. hard instances for FMUS2.

Since FMUS2 is a complete MUSes enumeration algorithm, we shall do a
further comparison with one of the state-of-the-art complete MUSes enumera-
tion algorithm CAMUS [12]. Because CAMUS only supports propositional logic
and the above industrial instances for comparing with MARCO are relatively
scattered and smaller in their scales, randomly generated benchmarks in propo-
sitional logic are adopted to further comparison on large-scale instances. Note
that in this experiment, MARCO uses its built-in SAT solver—MiniSAT [6].

The randomly generated benchmarks are divided into classes such that all
instances in each class have the same number of formulas, which can be found in
https://github.com/luojie-sklsde/MUS Random Benchmarks. Each class con-
tains 200 unsatisfiable formulas, denoted as the form “musx-y”, where the first
number x stands for the number of clauses of instances in this class and the
second number y stands for the average number of literals in each instance. For
example, class “mus400-798” is composed of instances (formulas) containing 400
clauses, where the average number of literals in these instances is 798. Although
the number of clauses (i.e. x) is fixed in each class, the number of literals within
clauses can vary (so y is an average number), which allows us to simulate as
many cases as possible.

Table 1 shows experimental results of CAMUS, MARCO and FMUS2 on the
randomly generated benchmarks.

Table 1. Comparing among CAMUS, MARCO and FMUS2

Benchmarks CAMUS MARCO FMUS2

NTO Nbest TAve NTO Nbest TAve NTO Nbest TAve

mus100-200 25 10 379.344 12 0 183.483 3 187 45.798

mus200-401 121 0 1822.921 76 0 1150.496 16 184 242.506

mus400-798 194 0 2911.875 182 0 2736.391 34 166 511.340

mus600-1200 200 0 3000 200 0 3000 56 144 841.770

mus800-1601 200 0 3000 200 0 3000 64 136 961.467

mus1000-2002 200 0 3000 200 0 3000 69 131 1035.995

https://github.com/luojie-sklsde/MUS_Random_Benchmarks
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The first column of Table 1 are different classes of the benchmarks, followed
by statistical runtime data for CAMUS, MARCO and FMUS2. NTO is the num-
ber of instances which are timeout after 300s, Nbest is the number of instances
which get the best runtime among the 3 approaches, and TAve is the average
runtime (in seconds) of all instances. The bold number in each row represents
the best results among different approaches. It is clear that FMUS2 outperforms
CAMUS and MARCO in all three numbers, i.e. NTO, Nbest, and TAve. FMUS2
has the smallest number of timeout instances in all six classes and gets the best
runtime for most of instances in each class of benchmarks, which means the
performance of FMUS2 is stable among different instances. Based on a detailed
analysis of the experimental data, we find that FMUS2 is especially efficient
when dealing with instances that contain multiple MUSes, which are exactly the
ideal targeting input of the MUSes enumeration problem.

The performance experiment shows the competitive power of FMUS2, that
is, FMUS2 can perform better than the state-of-the-art algorithms MARCO and
CAMUS in some industrial and randomly generated cases.

5.2 Effectiveness of the Optimization Strategies

To evaluate whether the strategies are effective or not, we carried out a series of
experiments. Table 2 shows experimental results of FMUS2 and FMUS on the
same benchmarks with Table 1.

Table 2. Comparing FMUS2 with FMUS on randomly generated benchmarks

Benchmarks FMUS FMUS2

NTO Nbest TAve NTO Nbest TAve

mus100-200 3 2 46.713 3 195 45.798

mus200-401 19 3 287.875 16 182 242.506

mus400-798 36 0 542.194 34 166 511.340

mus600-1200 57 1 860.813 56 143 841.770

mus800-1601 68 1 1026.261 64 135 961.467

mus1000-2002 71 0 1070.605 69 131 1035.995

The result shows that these optimizations adopted are effective in this ran-
domly generated benchmark.

To evaluate the impact of different merging strategies on the performance of
the proposed FMUS2 algorithm, a series of experiments are performed on the
industrial benchmarks from TPTP Problem Library.

Table 3 shows statistical data of experimental results. Note that the contrast
merging strategy adopts an opposite strategy to the heuristic merging strat-
egy. In Table 3, NTO, TAve are the same as Table 1, while T ′

Ave is the average
runtime of all instances which are solved in time. From the average runtime
data, we can see that different merging strategies greatly affect the performance
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Table 3. Statistical data for different merging strategies on industrial benchmarks

Benchmarks Random Heuristic Contrast

NTO TAve T ′
Ave NTO TAve T ′

Ave NTO TAve T ′
Ave

TPTP instances (100) 6 185.685 6.047 0 1.460 1.460 9 271.479 1.626

of our algorithm. It is obvious that the heuristic strategy yields the best per-
formance overall, especially obvious when timeout instances are also counted.
Hence, adopting the proposed heuristic merging strategy greatly improves the
performance of FMUS2 on practical problems in general, which we view as a
reasonable metric of its effectiveness.

However, there are still some cases where the heuristic merging strategy
is beaten by the random strategy, and the runtime for some instances can be
shortened, which means there is still a lot of potential for further optimizing of
the heuristic merging strategy. Figure 2 demonstrates the change of the numbers
of intermediate results for different merge orders while running the “HWV003-
3” instance from TPTP. The x-axis represents the number of merged clauses,
and the y-axis represents the number of intermediate results during each after
each merging. More specifically, there are 61 clauses that need to be merged in
this test case, thus the y-value becomes zero when the x-value increases to 61,
indicating the end of the merging. The line labeled with order3 represents the
status of our current heuristic merging strategy. On the one hand, a slight change
to order3 can result in order4, which maintains a large amount of intermediate
results from merging 26 clauses to merging 54 clauses such that the runtime
increases dramatically. Further change to order4 can lead to the merge order
order5, which triggers a visible explosion of intermediate results and run out
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of memory at the end. This is one of main reasons for the timeout of some
instances in these benchmarks. On the other hand, changes to order3 may also
lead to merge orders such as order2 and order1 which is the best merge order
we obtained for the HWV003-3 instance. Hence there is still much room left
for the optimization of the merging strategy, especially when dealing with hard
instances for FMUS2.

6 Conclusions

In this paper, we proposed a “decompose-merge” algorithm to enumerate all
minimal unsatisfiable subsets for a CNF formula in the field of propositional
logic and FEF fragment of first-order logic. A heuristic merging strategy and
two pruning strategies are adopted to improve the performance of the algo-
rithm. Experimental results show that our algorithm FMUS2 is competitive,
and can perform better on some industrial and randomly generated cases when
compared with two other state-of-the-art MUS enumerating algorithms. And the
optimization strategies adopted has proved to be effective.

For future work, further improvements to FMUS2 will be one of our focuses.
As mentioned above, there are still some weaknesses in FMUS2 when dealing
with hard instances, i.e. large-scale formulas which have a complex inconsistency
relations between clauses. The experimental results also show that the current
heuristic merging strategy can be optimized. There is still a lot of room to
improve. For instance, it would be interesting to explore better merging strategies
and techniques to intelligently select a strategy according to the characteristics
of the input set. Besides, we would like to investigate whether our algorithm can
be applied to larger fragments of first-order logic in future work.
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Abstract. This paper presents a method of deciding extended modal
formulas that arise, in particular, when reasoning about transforma-
tions of relational structures and graphs. The method proceeds by first
unwinding a structure that is an over-approximation of potential models,
and then selecting effective models with the aid of a SAT solver.

Keywords: Automated theorem proving · Modal logic
Graph transformations · Program verification

1 Introduction

Modal logics have a relatively long history in computer science, and nevertheless,
they are still an active research area. This is due to the wide spectrum of variants
and possible application areas of modal logics. Basic modal logics have mainly
been conceived for reasoning about possibility and necessity or related modali-
ties, such as obligation and knowledge. Temporal logics such as LTL and CTL are
variants that can capture properties of a system at different time instants and,
thus, characterize how a system may evolve as time passes. An important prac-
tically relevant application is the verification of concurrent and reactive systems.
Description Logics, used as the foundation of semantic databases and knowledge
representation formalisms, have been recognized to be variants of modal logics.

The work presented here has arisen out of an effort to verify graph trans-
formations, which are themselves important for reasoning about processes that
modify graph-like structures, for example pointer-manipulating imperative pro-
grams. We will discuss this application area and resulting proof problems in
Sect. 2. The essential feature of the formulas to be verified is that they give rise
to models that are genuine graph and not tree structures, which is a considerable
complication. The logic used in this paper will be defined in Sect. 3.

We here restrict our attention to propositional multi-modal logics. Syntac-
tically, they are made up of propositional formulas to which modal operators
indexed by binary relations, traditionally �r and ♦r, can be applied. Seman-
tically, these formulas are interpreted in Kripke structures, i.e.sets of possible
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worlds linked by binary accessibility relations. In each of these worlds, different
combinations of elementary predicates may hold.

When it comes to proofs methods, several approaches are possible:

– Many modal logics can easily be embedded into first order logic, so that one
can use first-order provers for attempting a proof. This approach is rather
straightforward and easily adaptable to different variants of modal logic, but
it has a severe drawback: many modal logics have pleasant meta-theoretic
properties, such as the finite model property, and many of them are decidable.
But there are no guarantees that a standard first-order prover will come to a
halt when started on the translation of a modal logic formula. Indeed, it can
be expected that the difficulties to be discussed in this article, like containing
the number of worlds created during model exploration, have an analogy in
first-order proof search, like preventing the generation of useless instances of
universally quantified formulas.

– Tableaux are a standard method for trying to construct a model of a formula.
They proceed by decomposing connectors until only elementary propositions
are left and it is evident whether a model exists or not. Modal operators
complicate the picture, because they lead to the creation of new worlds, or to
copies of formulas from one world into another, and it is not evident that this
procedure stops, in particular in the presence of graph structures. In Sect. 4,
we will sketch tableau methods with the purpose of highlighting their difficul-
ties, and for preparing the ground for the state space generation techniques
to be introduced subsequently.

– SAT solvers have become impressively efficient for finding models of propo-
sitional proof problems. The difficulty consists in deriving a propositional
formula corresponding to a modal formula, and this is the main topic of this
paper. Our approach works in two phases: we traverse the modal formula a
first time. By exploring the structure of modal operators in the formula, we
derive an over-approximation of the graph that will yield the Kripke struc-
ture. Using this graph structure, we can traverse the modal formula a second
time, in order to generate a propositional formula that can then be submitted
to the SAT solver and determine the propositions true in each world.

Related work: There have been previous efforts to use SAT solvers for deciding
modal [6] and description logics [10], and SMT solvers to come to terms with
number restrictions in description logics [7]. As compared to the work considered
here, the models constructed only have tree form, which is makes state space
generation (cf. Sect. 5.2) substantially simpler. In [1], state space generation and
model checking are interleaved, whereas we generate the potential state space
in one run and then search for a possible model. There is a growing interest
in quantifier instantiation [9] in conjunction with SAT/SMT solvers; the modal
operators considered here pose the problem of quantifier instantiation (and the
number of instances to be considered) in a specific context. There exist enumer-
ative techniques, using bounded model checking, that are for example used in
the Alloy analyzer [8] but that, contrary to the work presented here, are not
complete.
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Fig. 1. An example transformation (Color figure online)

2 Intended Application

Our intention is to verify programs for graph transformations, automatically
and in a sound and complete fashion. The idea is best illustrated by an exam-
ple program, as in Fig. 1a. The program consists of executable code (in black)
and pre- and post-conditions (in blue, marked with pre: and post:). The pre-
conditions describe the shape an input graph is assumed to have; the post-
conditions describe the shape after the transformation.

The pre-condition states that the graph has a node a belonging to concept A
(for this terminology, see Sect. 3; roughly, concepts are like types or classes) and
that a has at least 3 successors with relation R which also belong to concept A.
This latter requirement is expressed by a: (>= 3 R A). A typical input graph
is displayed in Fig. 1b, where the successors of a are not named, but only their
concept membership is shown. The program selects non-deterministically a node
n linked to a with relation R and that is also of concept A. It then deletes the
arc between a and n and removes a from concept A. The post-condition to be
satisfied in the end states that a does not belong to concept A and a has at least 2
R-successors of concept A, which is correct for the input graph Fig. 1b, However,
when running our verifier, it comes up with the counterexample of Fig. 1c, which
is a graph also satisfying the pre-condition but violating the post-condition after
completing the transformation.

We do not spell out the details of the program verification methodology here,
see for example [5]. For our purposes, it suffices to say that correctness statements
of the program (and in part also selection conditions as in the select statement)
are formulas of a Description Logic, an extension of ALCQ whose main ingredi-
ents are individual variables (such as a), relations (R) and concepts (simple ones
such as A and complex ones such as (>= 3 R A), called number restrictions).
The logic to be presented in Sect. 3 does not include number restrictions, see
there. The example also highlights the fact that for our verification purposes,
dealing with genuine graph structures is essential.
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3 Logic

The logic considered in this paper can be understood as an extension of descrip-
tion logic ALC [2] or, alternatively, as an extension of a multi-modal logic. It
consists of a hierarchy of three syntactic categories: Concepts C (see Fig. 2a)
are Boolean combinations of set expressions built up from elementary concepts.
Facts fact (see Fig. 2b) correspond to set membership statements of the form
i : C or being an instance of a role i r i. Differently said, we can reason with
unary and binary relations (concepts resp. roles). On the last level of the hier-
archy, there are formulas fm, which are Boolean combinations of facts.

The syntax is not minimal. Role complement i (¬r) i has been introduced for
stating clash conditions in the tableau calculus, see Sect. 4. We often require for-
mulas to be in negation normal form, obtained by recursively pushing negations
inside, thereby swapping Boolean connectives, such as ¬(C �D) = ¬C �¬D and
modal operators, such as ¬(♦r C) = (�r ¬C), or by feeding them into the next
level of the syntactic hierarchy, such as ¬(x : C) = (x : ¬C).

Fig. 2. Syntax of the logic

For defining the semantics, we assume an interpretation to be a quadruple
consisting of (1) a domain of elements ΔI ; (2) an interpretation function map-
ping elementary concepts c to sets cI of elements; (3) an interpretation function
mapping roles r to sets of pairs rI of elements; and (4) an interpretation function
mapping individual variables x to elements xI . We use this notion of interpreta-
tion both for quantifier-free first-order formulas with unary and binary predicate
symbols, as introduced in Sect. 5.3, and for the modal logic of this section. Inter-
pretations are extended to concepts as defined in Fig. 3a: The concept construc-
tors ¬,�,� are translated by their set-theoretic counterparts; ♦r C is interpreted
as the set of elements having an r-successor with property C, and �r C as the
set of elements all of whose r-successors have property C. Facts are interpreted
to produce a truth value (see Fig. 3b); the extension to formulas (not shown) is
then straightforward.
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Fig. 3. Semantics

As usual, a model is an interpretation satisfying a formula. An alternative
view on models is as graphs such as the one in Fig. 1c, where nodes are tagged
uniquely by variable names and decorated by the elementary concepts which
are true for the corresponding variable, and directed arcs decorated by relation
names.

4 Tableau Methods

We give an overview of the tableau method, with a particular emphasis on the
way the modal operators are handled. We will see shortly that ♦ permits to
“generate new worlds”, and that there is a subtle interplay between ♦ and �
that the SAT method will have to simulate. We will first describe the calculus
in Sect. 4.1 and then state essential properties in Sect. 4.2.

4.1 Calculus

The procedure manipulates a tableau, which is a set A of formulas. The formulas
in A are decomposed depending on their shape, according to the rules in Fig. 4,
giving rise to a new tableau A′. This process is formally modelled by a transition

relation A f
↪−→A′. This relation is non-deterministic, as witnessed by the rules

disjC and disjF. All formulas in A are supposed to be in negation normal
form, an invariant maintained by the procedure; for this reason, there are no
explicit rules for negated formulas.

We briefly comment on the rules: The rules for decomposing binary connec-
tives (conjC/disjC for concepts and conjF/disjF for formulas) are standard
for tableau procedures and directly reflect the semantics. For example, conjC
states that if x is member of the intersection of concepts C1�C2, then it is mem-
ber of each of C1 and C2. The side conditions of the rule ensure the termination
of the calculus.

The modal rules are best explained with the graph view of models: the state-
ment x : (♦rC) expresses that node x in the graph has an r-successor marked C.
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Fig. 4. Tableau rules

Provided such a node does not yet exist, we create a new node z, an arc (x r z)
and mark node z with C. In this case, we also record the variable that has been

created in the transition relation: A
(z,f)

↪−−−→ A ∪ {z : C, x r z}. The statement
x : (�rC) postulates that all r-successors of x are marked with C, i.e. for all
existing arcs (x r y), the nodes y are marked with C. The applicability condition
ensures that not all r-successors of x are already marked, because then we would
not make progress.

The aim of the procedure is to derive a contradiction, called a clash: A tableau
A contains a clash if, for C a concept, r a role and x, y individual variables,
(x : ⊥) ∈ A or {x : C, x : ¬C} ⊆ A or {(x r y), (x (¬r) y)} ⊆ A. For determining
whether an initial tableau A is satisfiable, the tableau procedure explores all
complete tableaux reachable via the rule relation (a tableau is complete if no
further rule is applicable). If all complete reachable tableaux contain a clash,
then the initial tableau is unsatisfiable; otherwise, there is a complete clash-free
tableau from which a model of the original tableau can be derived.

We note that most of the rules can only be applied at most once to a partic-
ular formula, which blocks the rule for further application. The �C rule is the
only exception – and the essential difficulty of the calculus: application of other
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x : (�r((♦rC1) �
(♦rC2))) � ♦rC3

y : C3, (♦rC1)� (♦rC2)

z : C1 v : C2

(a)

x : �r((♦rC1) � (♦rC2))

x1 : C1, ((♦rC1) � (♦rC2)) x2 : C2, . . .

x11 : C1 x12 : C2 x21 : C1 x22 : C2

(b)

Fig. 5. (a) See Example 1. (b) See Example 2

rules in the tableau can lead to the generation of new arcs (x r z) that may
trigger rule �C again. We consider two examples to illustrate the situation.

Example 1. The first example is of the kind typically considered in the literature
for Description Logics. The aim is to ascertain whether a concept C is consistent,
which can be done by verifying that the tableau {x : C} is satisfiable. An instance
of this situation is the following: A0 = {x : (�r((♦rC1) � (♦rC2))) � ♦rC3}.

Decomposing the conjunction yields A1 = A0 ∪{x : �r((♦rC1)� (♦rC2)), x :
♦rC3}. Applying the ♦C rule introduces a new variable y, such that A2 =
A1∪{(x r y), y : C3}. With the �C rule, we get A3 = A2∪{y : (♦rC1)�(♦rC2)}.
Another round of decompositions and ♦C rule applications gives the complete,
satisfiable tableau A4 = A3 ∪ {(y r z), z : C1, (y r v), v : C2}.

It should be noted that the resulting graph is a tree (see Fig. 5a, here anno-
tated with atomic and composite concepts), and an easy induction shows that
this is indeed so for all models derived from an initial tableau of the form {x : C}.
Furthermore, from the syntax tree of the original concept, one can read off the
structure of the resulting model: Each direct ♦r subtree in the syntax (direct =
not separated by a modal operator) gives potentially rise to a new child node in
the model, and these are the only children. It is therefore possible to index the
generated nodes by positions in the original formula. This is the approach taken
in [6] to identify all nodes in the model to be generated.

Example 2. The initial tableau A = {(x r x), x : �r((♦rC1) � (♦rC2))} already
starts out with a partial model (the node x with a self-loop) that is not tree-
shaped. Without the arc (x r x), the tableau would be complete; with it, we apply
the �C rule and add x : (♦rC1) � (♦rC2) to the tableau. Decomposition and
rule ♦C yield two nodes x1 : C1 and x2 : C2 and arcs (x r x1) and (x r x2). This
triggers the �C rule twice, and we obtain x1 : (♦rC1) � (♦rC2) and similarly
for x2. After a renewed decomposition, we obtain still another set of nodes
x11, x21 : C1 and x12, x22 : C2.
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There are two main differences compared to Example 1: Indeed, the resulting
model is not a tree (see Fig. 5b) but, in a sense, tree-like: all the newly generated
nodes only have one parent; and the new nodes cannot be indexed by the syn-
tactic structure of the formula in a straightforward way. In the node generating
algorithm of Sect. 5.2, we have therefore avoided to do so.

4.2 Properties

We sketch soundness and completeness arguments for the tableau calculus (which
are relatively standard) and present more in detail a novel termination result that
will also be instrumental for the discussion in Sect. 5.2.

Let us designate by A ∗
↪−→A′ that tableau A′ is reachable by a sequence of

applications of tableau rules from tableau A. Let
+

↪−→ be the strict part of
∗

↪−→.

Theorem 1 (Soundness). The tableau calculus is sound: if A ∗
↪−→A′ and A′ is

satisfiable, then so is A.

Proof. The proof is by induction on the derivation, showing that each rule appli-
cation does not create new models. ��

Theorem 2 (Completeness). The tableau calculus is complete: if A′ is unsat-
isfiable for all A′ with A ∗

↪−→A′, then so is A.

Proof. The proof is by induction on the derivation, showing that the model
property is preserved by at least one of the alternatives of each derivation. ��

As far as termination of the calculus is concerned, the situation is consider-
ably more complex for graph-like structures than for tree structures, as motivated
in the above examples. When starting with a proof problem x : C, a tableau
derivation generates a tree with new nodes of the form x′ : C ′, where C ′ is
a strict subconcept of C. The well-foundedness of the subconcept order is the
essential ingredient for the termination argument in the case of tree structures.

However, in a graph structure with nodes x1 : C1 and x2 : C2 and relation
(x1 r x2), the node x2 may be decorated with more complex concepts C than
C2 in the course of the proof, for example if C1 is �rC, with C more complex
than C2.

The termination argument developed here uses the notion of bound, which is a
set of formulas with which a variable can potentially be decorated. In contrast,
the annotation of a variable x in a tableau A is the set {C . (x : C) ∈ A}
with which the node is actually annotated. To take a simple example, the node
decorated with x : (A � B) � C will be bounded by the set {(A � B) � C,A �
B,A,B,C}. After a decomposition with the conjC rule, additional annotations
will be x : A � B and x : C, all of which remain within the bounds.

We will define an order on pairs (bound, annotation) as follows: (b1, a1) <
(b2, a2) := (finite(b2) ∧ b1 ⊆ b2 ∧ b2 ⊇ a1 ∧ a1 ⊃ a2). In a tableau proof, when
deriving a new node from an existing node, the bound may become smaller
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(b1 ⊆ b2) whereas the actual annotation should increase (a1 ⊃ a2) and come
closer to the former bound without exceeding it (b2 ⊇ a1). It can be shown that
this order is well-founded. With these ingredients, we can now state and prove
that the tableau rules do not permit infinite derivations:

Theorem 3 (Termination). Relation
+

↪−→ is well-founded.

Proof. We begin by defining a variant of the calculus that, apart from for-
mulas, also manages bounds. In the initial tableau, all the variables have the
same bound, viz. the set of all subconcepts occurring in the tableau. In gen-
eral, nodes keep their bounds as the result of a rule application; the only
exception is the ♦C rule, which is the only rule that creates new nodes. If
x is the node that the ♦C rule is applied to and it has a bound containing
modal operators �r1B1, . . . ,�rmBm,♦s1D1, . . . ,♦snDn, then the new node z
that is generated (cf. Fig. 4) will have a bound that is the subconcept-closure of
{B1, . . . , Bm,D1, . . . , Dn}.

We now define the potential of a node x as the pair

– (bound, annotation) of node x with the order defined above;
– number of facts x : ♦rC in the tableau to which the rule ♦C is still applicable;

endowed with a lexicographic order. The potential of a formula is the tuple

– size of the formula, defined as the number of formula constructors of the
syntax trees, where facts have size 0;

– node potential of the node x for facts of the form x : C;

endowed with a lexicographic order. The potential of a tableau is then the mul-
tiset of the potentials of the formulas it contains.

Obviously, the rules conjF and disjF decrease the potential of a tableau, by
decreasing the potential of a formula. The rules conjC and disjC decrease the
potential of a node, by increasing the annotation component while keeping the
bound constant. The ♦C rule replaces the potential of node x by two smaller
potentials (the node x with the number of ♦C decreased, and the node z with
lower bounds). The �C rule, when applied to a node x linked to a node y (cf.
Fig. 4), will increase the annotation of node y. It may at the same increase the
number of possible ♦C applications of y, but the net effect is to decrease the
potential of y. ��

5 Translation to Propositional Logic

5.1 Principles

As has been seen in Sect. 4, a tableau interleaves decomposition of formulas and
generation of new variables corresponding to nodes of the model. The disjunctive
rules are non-deterministic. In practice, different strategies exist for exploring
these alternatives, among them depth-first search with backtracking or breadth-
first search. In both cases, there is a risk of duplicate work, i.e.of testing over
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and over again which combination among a set of mutually incompatible choices
(such as x : C or x : ¬C) leads to a satisfiable formula.

The principal hypothesis of our approach is that it is more efficient to lay
out the whole space of possible worlds in a first step. A central ingredient for
this is the notion of node, which is the representative of a variable x in a tableau
and which collects all the concept membership information x : C1, . . . x : Cn

available in a tableau. For this, we generate in parallel all the nodes a tableau
procedure might create, and then carry out the combinatorial exploration by a
procedure optimized for that purpose, namely a SAT solver.

The node generation phase (Sect. 5.2) mimics the tableau algorithm, as far
as the modal operators are concerned: for ♦, this means to create new successor
nodes, and for �, enrich nodes with new concepts, and this is repeated until
reaching a fixpoint. In this process, we have to memorize which instances have
already been created, and various other information. In all of the following dis-
cussion, we assume formulas, facts and concepts in negation normal form.

Terminology: Before describing the structure of nodes, we fix some terminology.
The set of subconcepts of a concept C is defined as consisting of C and recursively
of all immediately constituent subconcepts of C. The set of Boolean subconcepts
is the set of all subconcepts except for those below modal operators. Thus, the
set of Boolean concepts of �rC1�(C2�♦r(C3�C4)) is {�rC1, C2, ♦r(C3�C4)}.

We denote y as a successor instance of a fact x : �rC
′ if y is an r-successor

of x and y : C ′. We now describe the record structure node that contains this
information. It consists of the fields

– name: a unique identifier for the node, whose precise structure is immaterial.
– new : a list of newly added subconcepts that still have to be processed.
– old : keeps track of subconcepts that already have been processed; necessary

for ensuring termination.
– somec: in principle, a list of Boolean ♦-subconcepts of the initial concept C of

this node, i.e. the Boolean subconcepts of C that have the form ♦rC
′. Instead

of storing a list of concepts ♦rC
′, we record a list of tuples (r, C ′).

– allc: in principle, a list of Boolean �-subconcepts of the initial concept C of
this node, i.e. the Boolean subconcepts of C that have the form �rC

′. As for
♦, instead of a list of concepts �rC

′, we record a list of tuples (r, C ′).

A note on syntax: The description of the algorithms presented in the follow-
ing has been derived from an implementation in Ocaml, from which we have
borrowed the syntax for lists: [] for the empty list and :: for consing. Duplicate-
free concatenation is written ∪. We enumerate record components within banana
brackets, and write record updates as r�c := v� (update of component c of record
r with value v). Selection of component c of record r is written as r.c. Adding
an element e to a component c in a record r is written as r�c+ = e�, shorthand
for r�c := {e} ∪ r.c�.
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Fig. 6. Computing the node set

5.2 Generating the Set of Nodes

Nodes of a Concept. We now present function Nc() which computes the set
of nodes for a concept. The function manipulates a work list of nodes (record
structure node) that still have to be processed; once a node is finished, it is
added to the list of nodes whose processing is complete. Manipulating the work
list amounts to manipulating in turn the nodes that will make up the Kripke
structure. Apart from recursing over the list of nodes, we also consider the new
subconcepts of the current node, which corresponds to decomposing the concepts
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of the current node. We also keep track of the relations between these nodes, with
a relation represented as a list of triples (r, x, y): relation name r, source x and
target y node identifier. Thus, altogether, function Nc() takes as arguments a list
of completed nodes nds, a list of relations rels between nodes, and the worklist
wns. The function returns the list of completed nodes and the relations.

The function can be written straightforwardly as a tail-recursive function,
but in order to better distinguish the different patterns, we present the func-
tion in a rule format in Fig. 6. Our actual implementation differs in one detail:
the implemented function takes an additional counter for keeping track of node
names. To avoid clutter, we assume here that generation of fresh names happens
behind the scenes.

Rules: Let us now comment on the rules.

– End and Rel are the cases when the worklist is empty. For deciding what to
do, we split the existing node set nds into a set of definitely finished nodes
nds′ and nodes wns′ that have to be reprocessed. If wns′ is empty, we are done
(End) and return the nodes and relations accumulated so far. Otherwise, we
relaunch (Rel) the function with the new worklist. The auxiliary function
partition allc instances will be described further below.

– PopN transfers a worklist node with an empty new component to the list of
completed nodes, because it contains no more concepts to be processed.

– The remaining rules all assume that the new list of the current node wn is
not empty, and manipulate its first element. If this first element is ♦rc, there
are two cases:

• Sk♦: there already exists an r-successor node containing C attached to
the current node ((r, C) ∈ wn.somec). This corresponds to the situation
when the tableau rule ♦C is not applicable; in this case, we skip ♦rC and
continue with the rest of the new list.

• Dec♦: no such successor exists. This is the case when the rule ♦C is
applicable, and we decompose the operator. So assume that the current
node has name x, then function create somec successor generates a node
nnd with a fresh name, say z, and a relation nrel = (r, x, z). We memorize
that we now have an appropriate r-successor of concept C for node x, so
that we do not create one again (the case handled by Sk♦). The new
node and the modified current node are added to the worklist.

– Dec�: decomposition of the box is applied if the first element is �rC. Nothing
interesting happens at this point: we record in the allc component that the
current node has a � modal operator. It is during partitioning with function
partition allc instances that this information will be propagated.

– SkB and DecB for handling Boolean connectors. Let us look at conjunction
C1 � C2 first. The skip rule SkB corresponds to the case when the ConjC
tableau rule is not applicable (we write C εwn for C ∈ wn.new∪wn.old), and
the concept c = C1 � C2 is simply marked as old. Otherwise, the decompose
rule DecB adds C1 and C2 to the new nodes, in analogy to the ConjC rule.
Perhaps surprizingly, disjunction is handled the same way, corresponding to
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following simultaneously two different evolutions of the tableau as of rule
DisjC. The fact the set of concepts accumulated in a node now possibly
becomes inconsistent is not relevant at this stage and will be taken care of by
formula translation in Sect. 5.3.

Partition Instances. Without giving a full definition, we now describe the idea
of function partition allc instances. To motivate the special treatment reserved
to the � operator, let us remark that all the rules of the tableau calculus remain
inhibited after one application to a particular instance; only the �C rule is an
exception, where an application to instance x : �rC can be reactivated whenever
a new link to a node y is created. So partition allc instances(nds, rels) does the
following: For each node x of nds with x : �rC as recorded in the allc field, and
for each relation (r x y) in rels, it checks whether y : C (i.e.concept C is in the
old field of node y). If this is so, node y remains inactive. Otherwise, C is added
to the new component of y, and node y is put back into the worklist.

Nodes of a Formula. Function Nc() is by far the most complex function. The
analogous function on formulas, Nf (nds, rels, fm), traverses formula fm recur-
sively, gathering all the nodes and relations it finds. For a fact x : C, it either
creates a node x and adds concept C to its new list, or simply adds C to new if
node x already exists. We will write Nf (fm) instead of Nf ([], [], fm).

5.3 Translating Concepts and Formulas

Given a formula, once we have computed an over-approximation of the nodes
and relations of the Kripke structure of this formula, we can translate it to
propositional logic. Checking the satisfiability of this translated formula either
demonstrates its unsatisfiability (in which case the original formula is unsatisfi-
able as well) or yields a model.

We now define this translation, first with function Tc() for concepts which
takes as additional argument the set of nodes nds which are a (not necessarily
strict) superset of the nodes of the model to be constructed. The translation
rules are displayed in Fig. 7.

The rules for �,⊥ and elementary (positive or negative) concepts c are
straightforward. The rules for conjunction and disjunction reflect the seman-
tics of the respective connective. As to the translation of the modal operators ♦
and �, remember that the set of nodes nds represents an over-approximation of
the domain of the model to be constructed. For both operators, we project out
the names of the nodes, to obtain the set Y of all node names. We then quantify
existentially resp. universally over this set. This reflects the semantics of the
operators (cf. Fig. 3a) with (x ∈ (♦r C)I) = ∃y ∈ ΔI . (x, y) ∈ rI ∧ y ∈ CI

and (x ∈ (�r C)I) = ∀y ∈ ΔI . (x, y) ∈ rI −→ y ∈ CI . The translation of
formulas, Tf (nds, fm), is then a recursive function traversing formula fm, such
that Tf (nds, (x : C)) = Tc(nds, x, C). Both Tc() and Tf () are defined by simple
structural recursion, so their termination is evident.
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Fig. 7. Translating concepts to propositional logic

6 Soundness and Completeness

We summarize the essential steps of our verification framework and then demon-
strate that it effectively provides a decision procedure for the formulas defined
in Sect. 3. Given a formula fm:

– Generate the set of nodes and use these to translate the formula to proposi-
tional logic: Tf (Nf (fm), fm).

– Submit the resulting formula to a SAT solver which will either state its unsat-
isfiability or provide a model, yielding a model of the original formula.

Lemma 1 (Termination of node generation). Nf () and Nc() terminate.

Proof. Nf () is a simple structurally recursive function whose termination is
immediate. For Nc(), we can essentially use the concept of potential introduced
for the proof of Theorem 3, and show that recursive calls of the function lead to
a decrease in the multiset of potentials of nds. ��

We first show that the translation function Tc() preserves models, under cer-
tain circumstances. To get an intuition, take the formula x : (♦rc)∧x : (♦r(¬c)).
It stipulates that x has a successor y1 where c holds, and a successor y2 where
¬c holds. The formula, translated to predicate logic, is (

∨
y∈Y .r(x, y) ∧ c(y)) ∧

(
∨

y∈Y .r(x, y) ∧ ¬c(y)). This formula is only satisfiable for a set Y consisting of
at least two nodes, thus if y1 and y2 are not forced to be the same. We conclude
that Tc() preserves models if the node set nds that is a parameter of Tc() is “suf-
ficiently large”. In a sense, the main difficulty of the soundness and completeness
result resides in showing that Nc() expands to a universe with enough elements.
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Lemma 2 (Model preservation of translation)

1. If I is a model of Tc(nds, x, C), then also of x : C.
2. Let I be a model of x : C, and let there be an injective mapping from ΔI into

nds. Then there exists a model I ′ of Tc(nds, x, C).

Analogous results hold for the translation function Tf ().

Proof.

1. A model of Tc(nds, x, C) immediately gives a model of x : C (cf. semantics
in Fig. 3a).

2. We construct inductively a model I ′ whose domain ΔI′ is a superset of ΔI .
The cases where the concept C is a constant or an elementary concept are
immediate. The case of disjunction is easy. For the case of a conjunction
C1�C2, the construction inductively yields two models I ′

1 and I ′
2 of C1 and

C2 respectively which might be mutually incompatible (as seen in the above
example). By a remapping of variables, we can construct two models that
coincide on the interpretation of x and otherwise map variables to disjoint
elements of ΔI . By joining these two models into a single interpretation I ′,
we obtain a model of the translation of C1 � C2.

As to the modal operators: Let I be a model of x : ♦rC
′, so xI ∈ ΔI and

there exists yI ∈ ΔI such that (xI , yI) ∈ rI ∧ yI ∈ CI . Let m be the
injective mapping from ΔI into nds. The interpretation of the translated
formula

∨
y∈Y r(x, y)∧Tc(nds, y, C ′) is possibly over a larger domain (the set

Y may contain more elements than ΔI), so we decide to interpret any I ′(y)
for y in the image of m as I(m−1(y)), and any other y arbitrarily. Similarly,
relation r(x, y) for y in the image of m is interpreted as for I and as false
otherwise. This interpretation satisfies the translated formula. The argument
for the � operator is analogous.

��
Theorem 4 (Soundness). The proof method, when applied to a formula fm,
is sound: A model found by the solver for Tf (fm) is also a model of fm.

Proof. We assume that the SAT solver is sound, so a model that the solver claims
to be one for Tf (fm) is indeed one. With Lemma 2(1), we thus obtain a model
of fm. Remark that this is independent of the correctness of Nc() and Nf (). ��
Theorem 5 (Completeness). The proof method, when applied to a formula
fm, is complete: Whenever there exists a model for fm, then the solver will find
one for Tf (Nf (fm), fm).

Proof. Suppose fm has a model. According to Theorems 2 and 3, starting from
tableau A = {fm}, there exists a terminating run A ∗

↪−→A′ such that A′ permits
to construct a model I of fm with domain ΔI = vars(A′). It is easy to show
that Nc() returns a set of nodes nds such that vars(A′) ⊆ nds. According to
Lemma 2(2), there exists a model I ′ of Tf (nds, fm), and since the solver is
assumed to be complete, it will find a model of Tf (nds, fm). ��
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7 Conclusions

We have presented a decision procedure for an extension of a modal logic that is
particularly appropriate for reasoning about graphs and their transformations,
and thus constitutes an essential increase of expressivity w.r.t. logics restricted
to tree models.

The approach described here has been implemented in a prototype in Ocaml,
using alternatively CVC4 [3] or veriT [4] as SAT solvers. The prototype shows a
good response time for formulas from the application scenario it is intended for,
but it has not been exercised on performance benchmarks. The models obtained
by this method are sometimes surprizing, yielding (often very compact) genuine
graphs where a tree model would also exist. Sometimes, however, the model
contains a great number of nodes that are spurious in the sense that already a
subgraph would be a model. This indicates a potential for optimizations. Further
work to be considered are more expressive logics, for example including number
restrictions (as in Sect. 2) or particular properties of relations, like transitivity.
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Abstract. Origami geometry is based on a set of 7 fundamental folding
operations. By applying a well-chosen sequence of the operations, we are
able to solve a variety of geometric problems including those impossible
by using Euclidean tools. In this paper, we examine these operations
from spatial qualitative point of view, i.e. a common-sense knowledge of
the space and the relations between its objects. The qualitative spatial
representation of the origami folds is suitable for human cognition when
practicing origami by hand. We analyze the spatial relations between the
parameters of the folding operations using some existing spatial calculus.
We attempt to divide the set of possible values of the parameters into
disjoint spatial configurations that correspond to a specific number of
fold lines. Our analyses and proofs use the power of a computer algebra
system and in particular the Gröbner basis algorithm.

Keywords: Origami geometry · Huzita-Justin folding operations
Region Connection Calculus · Relative distance

1 Introduction

Origami is the art of paper folding and can serve as framework for solving geo-
metric problems. Seven fundamental operations have been defined by Huzita [8]
and Justin [9] to show how to fold the origami and make variety of geometric
objects and in particular objects that require solving cubic equations. Origami
is simple as only hands are involved in the folding process, affordable as paper
is abundant and powerful as it solves problems unsolvable by using straightedge
and compass. These advantages give grounds for incorporating origami in a les-
son of geometry. Are the fundamental operations of origami geometry suitable
for human (or a pupil) cognition?
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Research on the fundamental origami operations focused on their possibilities
or increasing their power [1,10,11]. However, anyone who has ever struggled with
the challenge of making a geometrical origami object by hand, is familiar with
the difficulty of applying the 6th operation. The operation goes as follow (as
originally stated by Huzita).

(6) Given two distinct points and two distinct lines, you can fold super-
posing the first point onto the first line and the second point onto the
second line at the same time.

The 6th operation requires superposing two points on two lines simultane-
ously. We invite the reader to try it with a piece of paper. Martin advised to use
a transparent paper or to fold in front of a lightbulb [12]. Others hinted that
the fold includes sliding a point on a line to bring the other point on the other
line [14].

A diagram in Euclidean geometry or a shape in origami geometry is, in the
first place, a collection of spatial objects such as lines, points, segment lines,
circles, etc. The spatial knowledge is given by relations that describe a common
sense understanding of the space and its objects. Examples of such relations are
on, inside, outside, to the left, to the right, etc. These relations are rudimentary
in the sense they can be described by the naked eye without further calculations
or reasoning and thus suitable for human cognition. We attempt at providing a
qualitative representation of the fundamental fold operations.

In this paper, we build on the first author’s previous work [7]. The paper
[7] analyzes the fundamental fold operations by identifying the degenerate cases,
enumerating the cases where some operations can be derived from others, among
other things. The degenerate cases are configurations of points and lines on the
origami where the fold operation is not well-defined because of infinite possibili-
ties. By excluding these cases, the fold operation has a finite number of solutions
and thus well defined. In this paper, we further develop this analysis. We divide
the origami space into disjoint configurations that give an exact number n of fold
lines, where 0 ≤ n ≤ 3. To that end, we present a mapping of the spatial rela-
tions and the fold operations into algebraic terms. We also present a systematic
proof strategy to show the statements on the number of fold lines.

The rest of the paper is organized as follows. We first introduce origami
geometry based on the fundamental fold operations in Sect. 2. Then, in Sect. 3,
we explain the various qualitative calculi that we use. The spatial configuration
of well definedness are listed in Sect. 4 and the configurations on the number of
solutions are explained in Sects. 5 and 6. Finally, in Sect. 7, we conclude.

2 Origami Spatial Objects and Their Construction

2.1 Origami Shape

We work with a square origami paper. By hand, we can fold the origami paper
and make a crease. A crease leaves a trace on the origami paper, a line segment
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Fig. 1. An origami geometric shape: lines AK and AJ are trisectors of ∠EBA

whose endpoints are on the edges of the origami square paper. The extension of
the line segment of a crease is a line that we call fold line. The intersection of two
non-parallel fold lines is an origami point that can be outside the origami square.

An origami construction is a sequence of folds (and unfolds). When the collec-
tion of points and lines, constructed by folds, have a geometric meaning, we say
that we constructed an origami geometric shape. For instance, the origami geo-
metric shape in Fig. 1 depicts two line trisectors AK and AJ of angle ∠EAB.
The remaining points and line segments on the origami, e.g. F , G, H, I, are
constructed during the intermediate steps and used to make the trisectors.

2.2 Origami Fold

How to obtain a meaningful origami shape such as the one in Fig. 1? We need,
foremost, a rigorous definition of the origami folds in the way Euclid’s Elements
define constructions with a compass and a straightedge. Let O be an origami
square �ABCD. An origami shape is obtained by applying the following funda-
mental fold operations [8,9].

(O1) Given two distinct points P and Q, fold O along the unique line that
passes through P and Q.

(O2) Given two distinct points P and Q, fold O along the unique line to super-
pose P and Q.

(O3) Given two distinct lines m and n, fold O along a line to superpose m and n.
(O4) Given a line m and a point P , fold O along the unique line passing through

P to superpose m onto itself.
(O5) Given a line m, a point P not on m and a point Q, fold O along a line

passing through Q to superpose P and m.
(O6) Given two lines m and n, a point P not on m and a point Q not on n,

where m and n are distinct or P and Q are distinct, fold O along a line to
superpose P and m, and Q and n.
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(O7) Given two lines m and n and a point P not on m, fold O along the unique
line to superpose P and m, and n onto itself.

The fold line described by operation (O1) is the line passing through two
distinct points. The fold line described by operation (O2) is the perpendicular
bisector of the line segment PQ as shown in Fig. 2. Operation (O3) gives rise to
at most two fold lines, which are the interior and exterior bisectors of the angle
formed by the two lines m and n. To perform operation (O4), we drop a line
perpendicular to m and passing through P . The fold line of operation (O5) is
the line tangent to the parabola of focus P and directrix m, denoted by P(P,m),
and passing through point Q. This operation is shown in Fig. 3. The operation
(O6) in Fig. 4 is about finding a common tangent to the parabolas P(P,m) and
P(Q,n). Finally, to perform operation (O7), we fold along the tangent to the
parabola P(P,m) and perpendicular to the line n.

Fig. 2. Operation (O2)

Fig. 3. Operation (O5)

Fig. 4. Operation (O6)
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3 Qualitative Spatial Relations in Origami

The following common sense concepts of connection, orientation and distance
will be used to describe origami folds qualitatively.

3.1 Object Connection

There is a finite number of situations on the way objects are put together. For
instance, whether they are connected and, if true, in which way they are con-
nected. Such situations are described using Region Connection Calculus known
in literature by RCC [3]. RCC defines a set of spatial relations. The commonly
used ones are either 5 or 8 relations depending on the topology of the spatial
objects and the purpose of the representation. Nevertheless, the set of relations
must satisfy an important property: pairwise disjoint and jointly exhaustive,
which means exactly one relation holds between two arbitrary objects.

RCC5 works for an object equal to its topological closure, in other words
its boundary and interior coincide. This is the case of origami points and lines.
Table 1 describes all possible connections between points and lines without ambi-
guities. Note that the 5 spatial relations are equivalent to basic geometric prop-
erties in the 2D plane. For instance, the relation proper-part stands for the
geometric property that a point is on a line, two lines are disjoint when they
are parallel, etc.

Table 1. RCC5 relations between origami points and lines

equal proper-part intersect proper-part−1 disjoint

Point×Point P1, P2 − − − P1

P2

Line×Line m,n −

m
n

−

m

n

Point×Line −
m

P − −

m

P

Line×Point − − −
m

P

m

P

Circles are more complex objects. The RCC5 is limited since we cannot
distinguish between a line tangent to a circle and a line not intersecting a circle,
or when two circles are tangent or disjoint. We use two of RCC8 relations,
namely relations disconnected and externally-connected, to improve the
expressiveness as shown in Fig. 5 [13].
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disjoint

disconnected externally-connected

C

m

C1 C2 C

m

C1 C2

Fig. 5. Two relations of RCC8 to describe
that circles and lines are disjoint

R

P
rightleft

up

bottom

up-left up-right

bottom-left bottom-right

Fig. 6. Relations of relative orien-
tation with (P, R) ∈ up-left

3.2 Relative Orientation

A well-known qualitative description of the positions of objects relative to each
other is Freska’s calculus for points on the 2D plane [6]. To describe the position
of an origami point P with respect to a reference point R, we divide the origami
plane into 8 regions intersecting in R as shown in Fig. 6.

3.3 Relative Distance

Several approaches have been defined to compare lengths of intervals which can
be regarded as distance between ending points [4]. However, these approaches do
not make a good use of the possibilities that the space may offer. The origami
plane, for instance, is a dynamic medium. By means of folds, points can be
moved by reflection while preserving the length.

Example. We want to compare the distances d(P,Q) and d(R,S) in Fig. 7(a),
where d is the conventional Euclidean distance. First, we perform an (O3) fold
to bring points R and S on the line PQ as shown in Fig. 7(b). In Fig. 7(c), R1
and S1 are the reflections of R and S by the fold.1 Next, we perform an (O2)
fold to bring R1 onto P . Figures 7(d) and (e) show this operation, where R2 = P
is the reflection of R1 and S2 the reflection of S1. Finally, we perform along the
line that passes through R2 and perpendicular to line PQ, i.e. (O4) fold. The
operation is depicted in Fig. 7(f) and (g) shows a new point S3 obtained by the
reflection of S2 by the fold. Since folding preserves the distance, we have

d(R,S) = d(R1, S1) = d(R2, S2) = d(P, S2) = d(P, S3).

The points P , S3 and Q are aligned consecutive points in a homogeneous distance
system where any given interval is bigger or equal than the previous one [4]. Since
S3 and Q are disjoint, d(P,Q) > d(P, S3) = d(R,S).

Distance between a point and a line, e.g. d(P,m), is in essence a distance
between points. For instance, in the case of d(P,m), we perform (O4) along the
point P and perpendicular to m. Let Q be the intersection of the fold line and
1 The reflection point can be easily obtained by (O1)–(O7) folds. We omit the steps
in Fig. 7.
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Fig. 7. Origami folds to deduce that d(P, Q) ≥ d(R, S)

m. Then, d(P,m) = d(P,Q). Similarly, the distance between two parallel lines,
e.g. d(m,n), is defined as the distance between two points M and N on the lines,
where MN⊥ m.

4 Well-Definedness of Fold Operations

The statements of (O1)–(O7) in Sect. 2.2 include conditions like “two distinct
points P and Q”, “two distinct lines m and n”, “a point P not on m”. These are
the conditions to eliminate degenerate configurations or incidence configurations.
The degenerate situations are configurations of points and lines where there are
infinite possibilities for the fold line. The incidence configurations occurs when
we superpose a point P and a line m and (P,m) ∈ proper-part. The opera-
tion becomes solvable with simpler operations, i.e. operations that solve lower
degree equations. See [7] for a discussion on the configurations of degeneracy
and incidence.

These conditions are intuitive and can be expressed qualitatively. First, we
use the following lemma. Distinct points (respectively distinct lines) means not
equal (respectively lines not equal).

Lemma 1. – (P,Q) �∈ equal if and only if (P,Q) ∈ disjoint.
– (m,n) �∈ equal if and only if (m,n) ∈ intersects ∪ disjoint.
– (P,m) �∈ proper-part if and only if (P,m) ∈ disjoint.

The proof follows from the fact that the RCC5 relations between points and
lines are jointly exhaustive and pairwise distinct.

– The Operation (O1) is well defined when (P,Q) ∈ disjoint.
– The Operation (O2) is well defined when (P,Q) ∈ disjoint.
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– The Operation (O3) is well defined when (m,n) ∈ intersects ∪ disjoint.
– The Operation (O4) is always well defined.
– The Operation (O5) is well defined when (P,m) ∈ disjoint.
– The Operation (O6) is well defined when (P,m) ∈ disjoint and (Q,m) ∈

disjoint and ((m,n) ∈ intersects ∪disjoint or (P,Q) ∈ disjoint.
– The Operation (O7) is well defined when (P,m) ∈ disjoint.

4.1 Spatial Conditions of the Solutions of (O1)–(O4)

Non-degenerate configurations are further processed by identifying the number
of solutions. The solutions of operations (O1), (O2), (O3) and (O4) are straight-
forward. We can easily show that (O1) and (O2) have a unique solution if and
only if the points are not equal, whereas (O4) always has a unique solution inde-
pendently from the spatial configuration of the parameters. Operation (O3) has
two solutions if the lines parameters are in relation intersects and one solution
if the lines are in disjoint.

5 Spatial Conditions of the Solutions of (O5)–(O7)

5.1 A Systematic Approach

Objects. To analyze the solutions of (O5)–(O7), we use an algebraic approach.
We consider a Cartesian Coordinate system. Points are defined by pairs of their
coordinates. We denote the coordinates of a point P by (xp, yp). A well defined
line has an equation of the form ax+ by + c = 0, where a �= 0∨ b �= 0. We denote
by am, bm and cm the coefficients of a line m. A circle C(P, r), whose center and
radius are P and r > 0, has the equation

√
(x − xp)2 + (y − yp)2 = r.

The determination of the (exact) domain of the coordinates and coefficients
is tricky. Q is too small since it doesn’t include

√
x numbers and R is too much.

An algebraic extension of Q would be a good candidate since the origami funda-
mental fold operations allow the construction of rational numbers plus numbers
of the form

√
x and 3

√
x [5].

Algebraic Relations and Functions. Table 2 shows the algebraic relations
of the qualitative spatial relations explained in Sect. 3. The algebraic forms are
self-explanatory.

Furthermore, in our analysis of the fold operations, specifically operations
(O5)–(O7), we work with parabolas P(P,m) represented by the following equa-
tion f(x, y).

f(x, y) := (x − xp)2 + (y − yp)2 − (amx + bmy + cm)2

am
2 + bm

2 = 0 (1)

Let t be a tangent to the parabola P(P,m) at a point (x1, y1). Also, let λ be
the slope of t. Then the following equation g(x1, y1) defines the tangent t.

g(x1, y1) :=
∂f

∂x
(x1, y1) + (

∂f

∂y
(x1, y1))λ = 0 (2)
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Table 2. Algebraic forms of the qualitative spatial relations and functions

Spatial relation/function Algebraic relation/function

O
b
je
ct

co
n
n
ec

ti
on

(P,Q) ∈ equal xp = xq ∧ yp = yq

(P,Q) ∈ disjoint xp �= xq ∧ yp �= yq

(m,n) ∈ equal ∃k. an = kam ∧ bn = kbm ∧ cn = kcm

(m,n) ∈ disjoint (anbm − ambn = 0) ∧ ¬((m,n) ∈ equal)

(m,n) ∈ intersects anbm − ambn �= 0

(C(P, r1), C(Q, r2)) ∈ equal (P,Q) ∈ equal ∧ r1 = r2

(C(P, r1), C(Q, r2)) ∈ intersects ((P,Q) ∈ disjoint) ∧ (
√

(xp − xq)2 + (yp − yq)2 < r1 + r2)

(C(P, r1), C(Q, r2)) ∈ externally-connected ((P,Q) ∈ disjoint) ∧ (
√

(xp − xq)2 + (yp − yq)2 = r1 + r2)

(C(P, r1), C(Q, r2)) ∈ disconnected ((P,Q) ∈ disjoint) ∧ (
√

(xp − xq)2 + (yp − yq)2 > r1 + r2)

(Q, C(P, r)) ∈ proper-part
√

(xq − xp)2 + (yq − yp)2 = r

(Q, C(P, r)) ∈ disjoint (
√

(xq − xp)2 + (yq − yp)2 < r) ∨ (
√

(xq − xp)2 + (yq − yp)2 > r)

(m, C(P, r)) ∈ intersects
|amxp+bmyp+cm|√

a2
m+b2m

< r

(m, C(P, r)) ∈ externally-connected
|amxp+bmyp+cm|√

a2
m+b2m

= r

(m, C(P, r)) ∈ disconnected
|amxp+bmyp+cm|√

a2
m+b2m

> r

O
ri
en

ta
ti
on

(P,Q) ∈ left xp < xq ∧ yp = yq

(P,Q) ∈ right xp > xq ∧ yp = yq

(P,Q) ∈ up xp = xq ∧ yp > yq

(P,Q) ∈ bottom xp = xq ∧ yp < yq

(P,Q) ∈ up-left xp < xq ∧ yp > yq

(P,Q) ∈ up-right xp > xq ∧ yp > yq

(P,Q) ∈ bottom-left xp < xq ∧ yp < yq

(P,Q) ∈ bottom-right xp > xq ∧ yp < yq

D
is
ta

n
ce d(P,Q)

√
(xp − xq)2 + (yp − yq)2

d(P,m) |amxp+bmyp+cm|√
a2
m+b2m

d(m,n), where m ‖ n
|cm−cn|√
a2
m+b2m

Proof Strategy. To prove the number of the solutions of (O5)–(O7), we perform
the following steps.

1. Define a system S of the algebraic relations that describe the fold line. These
relations are (1) and (2) as well as well-established algebraic form of geometric
properties that we will explain when used.

2. Compute Gröbner basis of S. This step attempts to eliminate some of the
variables and obtain one equation in the slope of the fold line.

– If one polynomial is obtained, then compute its discriminant.
– If more than one polynomial are obtained, then solve for some of the

dependent variables.
3. Analyze the obtained polynomial expressions to identify the cases with real

solutions. Specifically, we watch out for the appearance of relations of Table 2.

We use the power of the computer algebra system Mathematica to perform the
computations in the above steps. We use Buchberger’s algorithm to generate
Gröbner bases. The computations are performed symbolically, thus we prove
our results in the general case.
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5.2 Spatial Conditions of the Solutions of (O5)

Theorem 2. Let P , Q and m be on the origami where (P,m) ∈ disjoint. We
perform the (O5) operation along the fold line passing through Q to superpose P
and m.

– If d(Q, P ) = d(Q, m), then there is a unique fold line.
– If d(Q, P ) > d(Q, m), then there are two distinct fold lines.
– If d(Q, P ) < d(Q, m), then there is no fold line.

Proof. Since (P,m) ∈ disjoint, we know that the solutions of (O5) are the lines
passing through Q and tangent to the parabola P(P,m). Let λ be the slope of
the tangent to the parabola P(P,m) at point (x1, y1). Hence, we have the system
of equations S = {f(x1, y1), g(x1, y1), (y1 − yq) − λ(x1 − xq) = 0}. f and g are
given in (1) and (2), respectively. The equation (y1 −yq)−λ(x1 −xq) = 0 means
that the tangent passes through the points (x1, y1) and Q.

We compute the Gröbner basis of S. We obtain a 2nd degree polynomial in
λ whose discriminant is the following.

4(a2
m + b2m)2(cm + amxp + bmyp)2× (3)

(a2
m + b2m)((xp − xq)2 + (yp − yq)2) − (amxq + bmyq + cm)2 (4)

Line m is well defined, then am and bm cannot vanish at the same time and
a2
m + b2m > 0. Also, since (P,m) ∈ disjoint, (cm + amxp + bmyp)2 > 0. Thus,

the factors in (3) are always strictly positive and the sign of the polynomial in
(4) determines the number of solutions of λ. (4) is the expression of d(Q,P )2 −
d(Q,m)2 in algebraic terms. If strictly positive, we have two solutions for λ,
i.e. two fold lines. If strictly negative, then there is no solution. If equal to 0
then there is a unique fold line. 	

From a geometric point of view, a tangent t to a parabola is the perpendicular
bisector of the line segment joining P and a point on m that we name P ′. Since t
passes through Q, the circle whose center is Q and radius QP intersects m in P ′.
In Fig. 8, we show the situation where the circle intersects m in two points and
we have two tangents or two fold lines t1 and t2. If the circle does not intersect
m, then no tangent exists. If the circle is tangent to m (Q is a point on the
parabola) then there is one tangent.

5.3 Spatial Conditions of the Solutions of (O7)

Theorem 3. Let P , m and n be on the origami where (P,m) ∈ disjoint. We
perform operation (O7) along the fold line t perpendicular to n to superpose P
and m.

– If (m,n) ∈ equal ∪ disjoint, then there is no fold line.
– If (m,n) ∈ intersects, then there is one fold line.
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Fig. 8. d(Q, P ) > d(Q, m): two fold lines t1 and t2 for (O5)

Proof. We solve for x1 and y1 in {f(x1, y1), g(x1, y1), anλ − bn = 0}, where λ
is the slope of the fold line, and f and g are defined in (1) and (2). The former
equation anλ − bn = 0 states that n and the tangent are perpendicular. We
obtain one solution of the following form:

x1 → some polynomial expression of am, bm, cm, an, bn, cn, xp and yp
2(anbm − ambn)2

y1 → some polynomial expression of am, bm, cm, an, bn, cn, xp and yp
2(anbm − ambn)2

However, the solutions are undefined when the denominator is null, i.e. anbm −
ambn = 0. This is the algebraic relations of two lines that are disjoint or
equal according to Table 2. 	


5.4 Spatial Conditions of the Solutions of (O6) with Disjoint Lines

Theorem 4. Let points P and Q and disjoint lines m and n be on origami,
where (P,m) ∈ disjoint and (Q,m) ∈ disjoint. We perform operation (O6)
to superpose P and m and Q and n.

– If d(m,n) > d(P,Q), then there is no fold line.
– If d(m,n) = d(P,Q), then there is a unique fold line.
– If d(m,n) < d(P,Q), then there are two fold lines.

Proof. We proceed similarly to the proof of Theorem2. We know that the fold
line is a common tangent to parabolas P(P,m) and P(Q,n). We compute the
Gröbner basis of {f1(x1, y1), g1(x1, y1), f2(x2, y2), g2(x2, y2), (y1 − y2) − (x1 −
x2)λ = 0, anbm − ambn = 0}, where λ is the slope of the common tangent of
P(P,m) and P(Q,n) at (x1, y1) and (x2, y2), respectively. Note that f1, g1, f2
and g2 are Eqs. (1) and (2) defined for the first parabola P(P,m) and the second
parabola P(Q,n). The discriminant of the result of Gröbner basis computation
gives

(a2
m + b2m)((xp − xq)2 + (yp − yq)2 − (cm − cn)2),

which stands for the algebraic form of d(P,Q)2 − d(m,n)2. 	
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6 Analysis of (O6) with Intersecting Lines

6.1 Simplification Without Loss of Generality

Operation (O6) contributes to geometry by solving problems that are impossible
by classical Euclidean tools. The operation has the merits of solving any cubic
equation of the general form ax3 + bx2 + cx + d = 0. Coefficients a, b, c and d
are in the field of origami constructible numbers, i.e. an algebraic extension of
Q with square root and cubic square root [5].

To simplify our analysis of operation (O6), we use lines parallel to xy-axes.
This reduces the number of parameters that come from the lines m and n and
simplifies the Gröbner basis computation, which is, in the worst case, double
exponential in the number of variables [2].

Lemma 5. Any cubic equation ax3 + bx2 + cx + d = 0, where a �= 0, can be
solved with lines m and n perpendicular and parallel to xy-axes, respectively.

Proof. We apply (O6) to superpose P and m, and Q and n, simultaneously. The
fold line is a common tangent to the parabolas P(P,m) and P(Q,n). Let λ be
the slope of the common tangent. We take m and n to be of equations x+cm = 0
and y + cn = 0. We compute the Gröbner basis of

{f1(x1, y1), f2(x2, y2), g1(x1, y1), g2(x2, y2), (y2 − y1) − λ(x2 − x1) = 0},

where the former equation (y2 − y1) − λ(x2 − x1) = 0 states that the tangent
passes through the points (x1, y1) and (x2, y2) on the parabolas. The result is a
cubic polynomial in λ.

(cn + yq)λ3 + (cm − xp + 2xq)λ2 + (cn + 2yp − xq)λ + cm + xp (5)

We match the coefficient of the above polynomial with a, b, c and d. We solve
for the coordinates of P and Q and obtain:

{xp → −cm + d, yp → (a + c − 2cn)/2, xq → (b − 2cm + d)/2, yq → a − cn} (6)

	

We can further simplify by taking cm = cn = 0. In that case, solutions in (6)
gives rise to P (d, (a + c)/2) and Q((b + d)/2, a). For instance, to solve the cubic
x3 − 3x2 + 27

8 = 0 with (O6), we can take the lines m : x = 0 and n : y = 0 and
the points P ( 278 , 1

2 ) and Q( 3
16 , 1).

6.2 The Discriminant Function

Lemma 6. Let Δ be the discriminant of the polynomial (5). We have the fol-
lowing result about the number of real roots.

(i) If Δ < 0, then polynomial (5) has a single real root.
(ii) If Δ > 0, then polynomial (5) has three distinct real roots.
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(iii) If Δ = 0, then polynomial (5) has either a triple real root, or one double real
root and one single real root.

Proof. The proof is a result of solving cubic equations with radicals. 	

The description of Δ in term of spatial relations between (O6) parameters

m, n, P and Q is not straightforward. So, we observe how point Q would relate
to P . We fix P to be the point (3, 4), for instance, and take m and n to be the
y-axis and the x-axis, respectively. We plot Δ(xq, yq) = 0. Figure 9(a) depicts
the 3 regions defined by the curve Δ(xq, yq) = 0. If Q is on the blue region then
we are in case (ii), i.e. there are 3 distinct fold lines, if on the white region then
case (i), i.e. one fold line, if on the curve then case (iii), i.e. either one or two
fold lines.

yq

xq

(a)

yq

xq

(b)

Fig. 9. The curve Δ(xq, yq) = 0 (Color figure online)

Hereafter, we give a geometric explanation of the curve Δ(xq, yq). In Fig. 10,
we take two parabolas tangent at point S. Obviously, a possible fold line is the
tangent passing through point S. We move the point S on the parabola P(P,m)
and trace the point Q. The locus of point Q is Δ(xq, yq) = 0. Since the parabolas
are tangent, then 2 or 3 fold lines coincide and thus correspond to double or triple
real roots.

6.3 Spatial Case 1: Q is Equal to the Cusp Point

Lemma 7. If Q is the cusp point of Δ(xq, yq) = 0, then (O6) has a unique fold
line.

Proof. Another useful constant of a cubic ax3+bx2+cx+d = 0 is Δ0 = b2−3ac.
When Δ0 = Δ = 0, there exists a triple real root. In our example Δ0(xq, yq) = 0
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Fig. 10. The locus of Q (blue curve) when P , m and n are fixed and P(P, m), and
P(Q, m) are tangent at a point S (Color figure online)

is shown in Fig. 9(b). The cusp point is an intersection point of the two curves
and correspond to a situation where we have one fold line of multiplicity 3. A
second intersection point is on n excluded by the condition (Q,n) ∈ disjoint of
(O6). 	


Figure 11 shows the circles when Q is the cusp point. We have the following
result based on spatial observation.

Lemma 8. Let point O be the intersection of m and n, and point M be the
middle point of the line segment PQ. Furthermore, let C1 and C2 be the circles
C(M,MP ) and C(O,PQ). If (C1, C2) ∈ externally-connected, then Q is the
cusp point.

Proof. We provide the sketch of the proof. Using Mathematica:

1. Solve for the coordinates xq and yq of the cusp point using

∂Δ(xq, yq)
∂yq

=
∂Δ(xq, yq)

∂xq
= 0.

2. Show that the circles C(M,MP ) and C(O,PQ) are externally-
connectedusing the appropriate relation from Table 2.

	


6.4 Spatial Case 2: P and Q are on Opposite Half-Planes

The origami plane is divided by lines m and n into the 8 regions of relative
orientation (see Sect. 3.2). The curve Δ(xq, yq) = 0 intersects only 3 half-planes.
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Fig. 11. (C1, C2) ∈ externally-connected when Q is the cusp of Δ(xq, yq) = 0

Referring to Fig. 10, for instance, the curve Δ(xq, yq) = 0 intersects the up-left,
up-right and bottom-right half-planes. The remaining bottom-left half-
plane is a subset of the region Δ(xq, yq) > 0. Therefore, if we take Q to be
any point on the bottom-left half-plane, then we have 3 distinct fold lines for
(O6).

7 Conclusion

We analyzed the fundamental folding operations. Based on Gröbner basis and
other computer algebra methods, we proved the conditions on the number of
fold lines. The conditions are described using qualitative relations between points
and lines parameters of the fold operations. This approach worked for operations
(O1)–(O5), (O7) and (O6) with disjoint lines. In the case of (O6) with intersect-
ing lines, the spatial configurations cannot be described in a simple qualitative
language. To tackle this operation, we identified some spatial cases that are easy
to recognize when performing origami by hands.
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Abstract. By using a systematic, automated way, we discover a large
amount of geometry statements on regular polygons. Given a regular
n-gon, its diagonals are taken, two pairs of them may determine a pair
of intersection points that define a segment. By considering all possi-
ble segments defined in this way, we can compute the lengths of them
symbolically, and, depending on the simplicity of the symbolic result we
classify the segment either as “interesting” or “not interesting”.

Among others, we prove that in a regular 11-gon with unit sides the
only rational lengths appearing the way described above, are 1 and 2, and
the only quadratic surd is

√
3. The applied way of proving is exhaustion,

by using the freely available software tool RegularNGons, programmed
by the author. The combinatorial explosion, however, calls for future
improvements involving methods in artificial intelligence.

The symbolic method being used is Wu’s algebraic geometry approach
[1], combined with the discovery algorithm communicated by Recio and
Vélez [2]. The heavy computations are performed by a recent version of
the Giac computer algebra software, running in a web browser with the
support of the recent technology WebAssembly. Visual communication
of the obtained results is operated by the dynamic geometry software
GeoGebra.

Keywords: Automated theorem proving · Computer algebra
Regular polygons · WebAssembly · GeoGebra

1 Introduction

Obtaining interesting mathematical theorems automatically is a usual dream of
many mathematicians. By defining a formal language (with its logical axioms)
on a research field, and a set of (non-logical) axioms, one can deduce various
statements only by repeating the axioms. In principle, proofs for all propositions
in a research field can be traced back to consecutive uses of the axioms.

Several axiomatizations are available for many research fields in mathe-
matics, however, interesting theorems (with proofs) are more difficult to find.
One problem is that combining the axioms consecutively usually produces an
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unmanagable big database of propositions, including trivial or uninteresting
ones. The other problem is to identify which propositions are interesting enough
to call them theorems [3].

In this paper we limit our considerations to planar Euclidean geometry,
namely to find interesting properties in a regular polygon. The literature on
listing such properties is, however, huge, including constructible polygons (by
compass and straightedge or origami, for example). From the very start of the
availability of computer algebra systems (CAS) and dynamic geometry software
(DGS), namely, the 1990s, however, non-constructable polygons can also be bet-
ter observed, either numerically or symbolically.

In this study we limit the available axioms to very simple operations on
a regular n-gon. Its diagonals (including the sides) can be taken, two pairs of
them may determine a pair of intersection points which define a segment. By
considering all possible segments given in this way, we can compute the lengths
of them symbolically, and, depending on the simplicity of the symbolic result
we classify the segment either as “interesting” or “not interesting”. This is,
of course, somewhat subjective, but this approach can be slightly modified by
allowing other results interesting enough, or to define some other points as well
for the domain of interest.

The paper consists of the following parts: In Sect. 2 the mathematical back-
ground is explained on computing an appearing segment symbolically. Section 3
presents a manually obtained new result. Section 4 demonstrates how the math-
ematical computations can be automated by using the tool RegularNGons.
Finally, Sect. 5 depicts some future ideas.

2 Mathematical Background

In this section first we refer to two classic theorems on constructibility. An alge-
braic formula will be then shown by using former work.

2.1 Constructibility

Algebraization of the setup of a planar geometry statement is a well known
process since the revolutional book [4] of Chou’s. It demonstrates on 512 math-
ematical statements how an equation system describe a geometric construction,
and by performing some manipulations on the equation system, a mechanical
proof can be obtained. Chou’s work focuses mainly on constructible setups, that
is, mostly on such constructions that can be created only by using the classic
approach, namely by compass and straightedge.

It is well known (since 1801, according to Gauß, and since 1837, according
to Wantzel, see [5,6]) that a regular n-gon is constructible by using compass
and straightedge if and only if n is the product of a power of 2 and any number
of distinct Fermat primes (including none). We recall that a Fermat prime is a
prime number of the form 22

m

+ 1. A generalization of this result (Pierpont see
[7]) by allowing an angle trisector as well (for example, origami folding steps),
is that a regular n-gon is constructible if and only if

n = 2r · 3s · p1 · p2 · · · pk,
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where r, s, k ≥ 0 and the pi are distinct primes of form 2t · 3u + 1 [8]. The first
constructible regular n-gons of this kind are

n = 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, . . .

From the list the case n = 11 is missing, and, as a natural consequence, there
are much less scientific results known on regular 11-gons than for other polygons.
In this paper, therefore, we will focus on obtaining results on a regular 11-gon.

2.2 An Algebraic Formula for the Vertices

In this part of the paper we derive a formula for the coordinates of the vertices
of a regular n-gon.

From now on we assume that n ≥ 1. The cases n = 1, 2 have no real geomet-
rical meaning, but they will be useful from the algebraic point of view.

In Chou’s book—which is based on Wu’s algebraic geometry method [1], and
in the following it will be mentioned therefore as Wu’s approach—the usual way
to describe the points of a construction is to assign coordinates (xi, yi) for a given
point Pi (i = 0, 1, 2, . . .). When speaking about a polygon, in many cases the
first vertices are put into coordinates P0 = (0, 0) and P1 = (1, 0), and the other
coordinates are described either by using exact rationals, or the coordinates are
expressed as possible solutions of algebraic equations.

For example, when defining a square, for instance, P2 = (1, 1) and P3 = (0, 1)
seem to make sense, but for a regular triangle two equations for P2 = (x2, y2)
are required, namely x2

2+y2
2 = 1 and (x2−1)2+y2

2 = 1. It is easy to see that this
equation system has two solutions, namely x2 = 1

2 , y2 =
√
3
2 and x2 = 1

2 , y2 =
−

√
3
2 . It is well known that there is no way in Wu’s approach to avoid such

duplicates, unless the coordinates are rational. In other words, if both minimal
polynomials of the coordinates are linear (or constant), then the duplicates can
be avoided, otherwise not. Here, for x2 we have 2x2 − 1(= 0), but for y2 the
minimal polynomial is 4y2

2 − 3(= 0). We remark that the minimal polynomials
are irreducible over Z.

Clearly, minimal polynomials of a regular n-gon with vertices P0 = (0, 0) and
P1 = (1, 0) can play an important role here. The paper [9] (based on Lehmer’s
work [10]) suggests an algorithm to obtain the minimal polynomial pc(x) of
cos(2π/n), based on the Chebyshev polynomials Tj(x) of the first kind (see
Algorithm 1).

Now, by adding the equation pc(x)2 + ps(y)2 = 1 to the equation system,
we have managed to describe a polynomial ps(y) such that ps(sin(2π/n)) = 0.
Table 1 shows the minimal polynomials for n ≤ 17.

It is clear, that—not considering the cases n = 1, 2, 3, 4, 6—the number of
roots of pc is more than one, therefore the solution of the equation system
{pc(x) = 0, ps(x) = 0} is not unique. The number of solutions for pc(x) = 0
depends on the degree of pc, and—not considering the cases n = 1, 2—the num-
ber of solutions for ps(x) = 0 is two for each root of pc(x), therefore the number
of solutions for {pc(x) = 0, ps(y) = 0} is usually 2 ·deg(pc). As a result, the point
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Algorithm 1. Computing the minimal polynomial of cos(2π/n)
1: procedure cos2piOverNMinpoly(n)
2: pc ← Tn − 1
3: for all j | n ∧ j < n do
4: q ← Tj − 1
5: r ← gcd(pc, q)
6: pc ← pc/r

7: return SquarefreeFactorization(pc)

Table 1. List of minimal polynomials of cos(2π/n), n ≤ 7

n Minimal polynomial of cos(2π/n)

1 x − 1

2 x + 1

3 2x + 1

4 x

5 4x2 + 2x − 1

6 2x − 1

7 8x3 + 4x2 − 4x − 1

P = (cos(2π/n), sin(2π/n))

can be exactly determined by an algebraic equation in Wu’s approach only in
case n = 4, as shown in Table 2.

Table 2. Degree of ambiguity for (cos(2π/n), sin(2π/n)), 3 ≤ n ≤ 13

n 3 4 5 6 7 8 9 10 11 12 13

Degree 2 2 4 2 6 4 6 4 10 4 12

It seems to make sense that the degree of ambiguity (not considering the case
n = 4) can be computed with Euler’s totient function, that is, the degree equals
to ϕ(n). Later we will give a short proof on this.

Now we are ready to set up additional formulas to describe the coordinates
of the vertices of a regular n-gon, having its first vertices P0 = (0, 0) and P1 =
(1, 0), and the remaining vertices P2 = (x2, y2), . . . , Pn−1 = (xn−1, yn−1) are
to be found. By using consecutive rotations and assuming x = cos(2π/n), y =
sin(2π/n), we can claim that

(
xi

yi

)
−

(
xi−1

yi−1

)
=

(
x −y
y x

)
·
((

xi−1

yi−1

)
−

(
xi−2

yi−2

))
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and therefore

xi = −xyi−1 + xi−1 + xxi−1 + yyi−2 − xxi−2, (1)
yi = yi−1 + xyi−1 + yxi−1 − xyi−2 − yxi−2 (2)

for all i = 2, 3, . . . , n − 1.

3 A Manual Result on a Regular Pentagon

In this section we present a well-known statement on a regular 5-gon that can
be obtained by using the formulas from the previous section.

Theorem 1. Consider a regular pentagon (Fig. 1) with vertices P0, P1, . . . , Pn−1.
Let A = P0, B = P2, C = P1, D = P3, E = P0, F = P2, G = P1, H = P4. Let
us define diagonals d = AB, e = CD, f = EF, g = GH and intersection points
R = d ∩ e, S = f ∩ g. Now, when the length of P0P1 is 1, then the length of RS is
3−√

5
2 .

This result is well-known from elementary geometry, but here we provide a
proof that uses the developed formulas from Sect. 2. We will use the variables
x0, x1, x2, x3, x4 for the x-coordinates of the vertices, y0, y1, y2, y3, y4 for the y-
coordinates, and x and y for the cosine and sine of 2π/5, respectively. Points P0

and P1 will be put into (0, 0) and (1, 0).
By using Table 1 and Eqs. (1) and (2), we have the following hypotheses:

h1 = 4x2 + 2x − 1 = 0,

h2 = x2 + y2 − 1 = 0,
h3 = x0 = 0,

h4 = y0 = 0,

h5 = x1 − 1 = 0,

h6 = y1 = 0,

h7 = −x2 + −xy1 + x1 + xx1 + yy0 − xx0 = 0,

h8 = −y2 + y1 + xy1 + yx1 − xy0 − yx0 = 0,

h9 = −x3 + −xy2 + x2 + xx2 + yy1 − xx1 = 0,

h10 = −y3 + y2 + xy2 + yx2 − xy1 − yx1 = 0,

h11 = −x4 + −xy3 + x3 + xx3 + yy2 − xx2 = 0,

h12 = −y4 + y3 + xy3 + yx3 − xy2 − yx2 = 0.

Since R ∈ d and R ∈ e, we can claim that

h13 =

∣∣∣∣∣∣
x0 y0 1
x2 y2 1
xr yr 1

∣∣∣∣∣∣ = 0, h14 =

∣∣∣∣∣∣
x1 y1 1
x3 y3 1
xr yr 1

∣∣∣∣∣∣ = 0,
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Fig. 1. A well-known theorem on a regular pentagon (for convenience we use only the
indices of the points in the figure, that is, 0, 1, . . . , n − 1 stand for P0, P1, . . . , Pn−1,
respectively)

where R = (xr, yr). Similarly,

h15 =

∣∣∣∣∣∣
x0 y0 1
x2 y2 1
xs ys 1

∣∣∣∣∣∣ = 0, h16 =

∣∣∣∣∣∣
x1 y1 1
x4 y4 1
xs ys 1

∣∣∣∣∣∣ = 0,

where S = (xs, ys). Finally we can define the length |RS| by stating

h17 = |RS|2 −
(
(xr − xs)

2 + (yr − ys)
2
)

= 0.

From here we can go ahead with two methods:

1. We directly prove that |RS| = 3−√
5

2 . As we will see, this actually does not
follow from the hypotheses, because they describe a different case as well,
shown in Fig. 2. That is, we need to prove a weaker thesis, namely that |RS| =
3−√

5
2 or |RS| = 3+

√
5

2 , which is equivalent to(
|RS| − 3 − √

5
2

)
·
(

|RS| − 3 +
√

5
2

)
= 0.

Unfortunately, this form is still not complete, because |RS| is defined implic-
itly by using |RS|2, that is, if |RS| is a root, also −|RS| will appear. The
correct form for t is therefore

t =

(
|RS| − 3 − √

5
2

)
·
(

|RS| − 3 +
√

5
2

)
·

(
−|RS| − 3 − √

5
2

)
·
(

−|RS| − 3 +
√

5
2

)
= 0,
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that is, after expansion,

t = (|RS|2 − 3|RS| + 1) · (|RS|2 + 3|RS| + 1) = |RS|4 − 7|RS|2 + 1 = 0.

Proving the thesis can be done by denying t, with inserting t · z − 1 = 0 into
the equation system {h1, h2, . . . , h17} and obtaining a contradiction. This
approach is based on the Rabinowitsch trick, introduced by Kapur in 1986
(see [11]).

2. We can also discover the exact value of |RS| by eliminating all variables from
the ideal 〈h1, h2, . . . , h17〉, except |RS|. We will follow this second method,
suggested by Recio and Vélez in 1999 (see [2]).

Let us emphasize that the first method can be used only after one has a
conjecture already. In contrast, the second method can be used before having a
conjecture, namely, to find a conjecture and its proof at the same time.

For the first method we must admit that in Wu’s approach there is no way to
express that the length of a segment is 3−√

5
2 . Instead, we need to use its minimal

polynomial, having integer (or rational) coefficients. Actually, |RS|2 − 3|RS|+1
is a minimal polynomial of both 3−√

5
2 and 3+

√
5

2 , and |RS|2 + 3|RS| + 1 is of
− 3−√

5
2 and − 3+

√
5

2 . In fact, given a length |RS| in general, we need to prove
that the equation t = t1 · t2 = 0 is implied where t1 and t2 are the minimal
polynomials of the expected |RS| and −|RS|, respectively. Even if geometrically
t1 is implied, from the algebraic point of view t1 · t2 is to be proven.

Also, we remark that |RS| always appears to an even power in t.
Finally, when using the second method, by elimination (here we utilize com-

puter algebra), we will indeed obtain that

〈h1, h2, . . . , h17〉 ∩ Q[|RS|] = 〈|RS|4 − 7|RS|2 + 1〉.

3.1 Star-Regular Polygons

Before going further, we need to explain the situation with the star-regular
pentagon in Fig. 2. Here we need to mention that the equation h1 = 4x2+2x−1 =
0 describes not only cos(2π/5) but also cos(2·2π/5), cos(3·2π/5) and cos(4·2π/5),
however, because of symmetry, the first and last, and the second and third values
are the same. (We can think of these values as the projections of z1, z2, z3, z4 on
the real axis, where

zj = (cos(2π/5) + i sin(2π/5))j = cos(j · 2π/5) + i sin(j · 2π/5),

j = 1, 2, 3, 4.)
That is, in this special case (for n = 5) h1 is a minimal polynomial of Re z1(=

Re z4) and Re z2(= Re z3). By considering the formulas (1) and (2) we can learn
that the rotation is controlled by the vector (x, y), where 2π/n is the external
angle of the regular n-gon. When changing the angle to a double, triple, . . ., value,
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Fig. 2. A variant of the theorem in a star-regular pentagon

we obtain star-regular n-gons, unless the external angle describes a regular (or
star-regular) m-gon (m < n).

This fact is well-known in the theory of regular polytopes [12], but let us
illustrate this property by another example. When choosing n = 6, we have
h′
1 = 2x − 1 = 0 that describes cos(2π/6) = cos(5 · 2π/6). Now by considering

z′
1, z

′
2, z

′
3, z

′
4, z

′
5 where

z′
j = cos(j · 2π/6) + i sin(j · 2π/6),

j = 1, 2, 3, 4, 5, we can see that z′
2 can also be considered as a generator for

cos(1 · 2π/3) (when projecting it on the x-axis) since 2 · 2π/6 = 1 · 2π/3. That is,
z′
2(= z′

4) is not used when generating the minimal polynomial of cos(2π/6) (it
occurs at the creation of the minimal polynomial of cos(2π/3)), and this is the
case also for z′

3 (because it is used for the minimal polynomial of cos(2π/2)).
An immediate consequence is that z′

j is used as a generator in the minimal
polynomial of cos(2π/6) if and only if j and 6 are coprimes, but since cos(2π/6) =
cos(5 · 2π/6), only the first half of the indices j play a technical role. In general,
when n is arbitrary, the number of technically used generators are ϕ(n)/2 (the
other ϕ(n)/2 ones produce the same projections).

Finally, when considering the equation x2 + y2 = 1 as well, if n ≥ 3, there
are two solutions in y, hence the hypotheses describe all cases when j and n
are coprimes (not just for the half of the cases, that is, for 1 ≤ j ≤ n/2).
Practically, the hypotheses depict not just the regular n-gon case, but also all
star-regular n-gons. It is clear, after this chain of thoughts, that the number of
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cases is ϕ(n) (which is the number of positive coprimes to n, less than n). From
this immediately follows that the degree of ambiguity for (cos(2π/n), sin(2π/n))
is exactly ϕ(n).

Also, it is clear that there exists essentially only one regular 5-gon and one
star 5-gon (namely, {5/2}, when using the Schäfli symbol, see [12]). But these are
just two different cases. The other two ones, according to ϕ(5), are symmetrically
equivalent cases. The axis of symmetry is the x-axis in our case.

On the other hand, by using our method, it is not always possible to distin-
guish between these ϕ(n) cases:

1. t = |RS|2 − c where c is a rational. In this case clearly |RS| =
√

c follows.
2. Otherwise, the resulting polynomial t is a product of two polynomials t1, t2 ∈

Q[|RS|], and the half of the union of their roots are positive, while the others
are negative. On the other hand, the positive roots can be placed in several
combinations in t1 and t2 in general:
(a) In our concrete example there are two positive roots in t1 and two negative

ones in t2. When considering similar cases, the positive roots can always
occur in, say t1, and the negative roots then in t2. Albeit the elimination
delivers the product t = t1 · t2, clearly t2 cannot play a geometrical role,
therefore t1 can be concluded.
However, if t1 contains more than one (positive) root, those roots cannot
be distinguished. This is the case in our concrete example as well.

(b) In general, t1 may contain a few positive solutions, but t2 may also contain
some other ones. In such cases the positive solutions in t1 and t2 cannot
be distinguished from each other.
Such an example is the polynomial t = t1 · t2 where t1 = |RS|2 −|RS|− 1
and t2 = |RS|2 + |RS| − 1. It describes the length of the diagonal of a
regular (star-) pentagon, namely both lengths

√
5±1
2 . Here t1 contains one

of the positive roots, namely
√
5+1
2 , while t2 the other one,

√
5−1
2 . At the

end of the day, only t can be concluded, none of its factors can be dropped
because both contain geometrically useful data.

4 Automated Discovery of Theorems

Obtaining new results randomly is one of the possible aims when observing
regular polygons. But, luckily, this kind of discovery can be systematic when the
different setups S are numbered consecutively. If there is a bijective map

S : {0, 1, 2, . . . , s − 1} → S,

there are some programmatical benefits for the processing of the cases:

1. A database D : {0, 1, 2, . . . , s − 1} → {true, false} can be maintained. Here
for each k ∈ N0, k < s there is an explicitly defined setup S(k) ∈ S, and it
can be saved as a database entry D(k) if the check was already performed
or not. If the computation loop needs to be suspended or stopped due to the
high amount of computations for a given k, it can be restarted at the same
value k in a next loop, independently from the first run.
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2. This also supports parallel or distributed computing. The number of cases k
can be then split and the setups can be divided among several processors or
computers.

3. The distributed computation can also be controlled via a centralized Internet
application that communicates with the clients, assigns the task to them,
collects the results, and updates the central database. Of course, not only
the success of the performed computations should be stored, but also their
results, by using a map D′ : {0, 1, 2, . . . , s− 1} → . . . that has a sophisticated
output data structure.

4.1 A Bijective Mapping

In our approach we assume that a regular n-gon is to be studied. It has
(
n
2

)
diagonals (including the sides). From these we select two different ones, d and e
(the order of selection does not matter) to designate their intersection point R.
That is, the number of possible selections are

((n2)
2

)
. On the other hand, to des-

ignate another intersection point S from another combination of the diagonals,
we finally have (((n2)

2

)
2

)
(3)

different selections for the segment RS. When expanding the formula (3) we
learn that the number of cases is

n8 − 4n7 + 2n6 + 8n5 − 15n4 + 12n3 + 12n2 − 16n

128
∼ n8

128
,

that is, s is equal to n8/128 asymptotically.
It would be useful to find a formula for S(k) to compute RS quickly. For the

first step we will construct another map

c : {0, 1, 2, . . . ,

(
m

2

)
− 1} →

({0, 1, 2, . . . ,m − 1}
2

)

where
({0,1,2,...,m−1}

2

)
stands for the set of 2-combinations of the set

{0, 1, 2, . . . ,m − 1}. Here we will assume that

c(0) = {0, 1}, c(1) = {0, 2}, c(2) = {0, 3}, . . . , c(m − 2) = {0,m − 1},

c(m − 1) = {1, 2}, c(m) = {1, 3}, c(m + 1) = {1, 4}, . . . , c(2m − 4) = {1,m − 1},

c(2m − 3) = {2, 3}, . . . ,

. . ., and finally c
((

m
2

) − 1
)

= {m − 2,m − 1}. To compute c quickly, we consider
the inverse map c−1. It is clear that c−1(k, k+1) = (m−1)+(m−2)+. . .+(m−k),
that is, (m−1)+(m−k)

2 · k = − 1
2k2 + k · 2m−1

2 = p.
Let us now assume that p is given, and k is to be computed. Clearly − 1

2k2 +
k · 2m−1

2 − p = 0, and using the quadratic equation solver formula,

k =
1−2m

2 ±
√(

2m−1
2

)2 − 2p

−1
= m − 1

2
∓

√(
m − 1

2

)2

− 2p.
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Here obviously the subtraction should be chosen. By some further simple calcu-
lations finally we obtain the formula c(p) = {k, l} where

k =

⎢⎢⎢⎣m − 1
2

−
√(

m − 1
2

)2

− 2p

⎥⎥⎥⎦ , (4)

l =
2p + k2 − (2m − 3) · k

2
+ 1. (5)

This formula can be used then multiple times for m =
((n2)

2

)
, m =

(
n
2

)
and

m = n.

Example. Let n = 5, then s =
(((52)2 )

2

)
= 990. We are interested in, say, the

678th case when observing all possible segments RS.

1. First we compute
((52)

2

)
= 45 = m1. That is, we search for c(678). By using

formulas (4) and (5), we get k = 19 and l = 33.
2. Now we search for the 19th and 33th combinations of a set with

(
5
2

)
= 10 = m2

elements. Using the same formulas, we get k = 2, l = 5 and k = 4, l = 8 values
for p = 19 and p = 33, respectively.

3. Finally we search for the 2nd, 5th, 4th and 8th combinations of a set with
5 = m3 elements. Using the same formulas again, we get k = 0, l = 3,
k = 1, l = 3, k = 1, l = 2 and k = 2, l = 4 values for p = 2, 5, 4 and 8,
respectively.

Lastly we conclude that the 678th case describes when A = P0, B = P3, C = P1,
D = P3, E = P1, F = P2, G = P2, H = P4.

4.2 An Implementation

This automated algorithm has been recently implemented in the software tool
RegularNGons [13].

The following input parameters can be used to fine tune its output:

– n = . . . defines the number of vertices in the regular polygon.
– s and e define the starting and ending cases (both are non-negative integers,

less than the formula (3)).
– By adding m = . . . or M = . . . the minimal and maximal degrees of outputs

can be controlled, respectively. By default m = 1 and M = 2, that is, either
linear results or quadratic surds are collected.

– The parameter u will force searching for results given as parameters. For
example, u = 2 considers only the outputs that are of |RS| = 2.

– The option S = 0 tries to avoid checking cases that were already checked in a
symmetrically equivalent position. When this is set, only the A = 0, B ≤ n/2
cases will be checked. (Here, and from now on, we will use the indices of the
points, that is, 0 stands for P0, 1 for P1, and so on.)
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– When using parameter f = 1, once a length is found, no more results will be
printed that have the same length.

The software tool runs in a modern web browser, for example, Google Chrome
64. It uses the Giac computer algebra system to compute eliminations (its Web-
Assembly [14] version is used in an embedded way), and GeoGebra to visualize
the obtained results on-the-fly—finally (or during the run) the results can be
saved as a GeoGebra file.

The timing for a complete run for a given n-gon depends on the magnitude
of n. For smaller n values the complete run can be performed in seconds or
minutes. For bigger n values, a complete run may take several hours, or days,
or even more. Some, yet unresolved memory issues in Giac may require multiple
runs for bigger n values.

Parts of a typical output of RegularNGons look like the following, when using
inputs n = 7, S = 0 and parameter f = 1:
Welcome to RegularNGons (https :// github.com/kovzol/RegularNGons )...
s can be incremented until 21945
n=7, s=4: A=0, B=1, C=0, D=2, E=0, F=1, G=1, H=2: {RS^2-1}, {{RS=1}}

n=7, s=124: A=0, B=1, C=0, D=2, E=1, F=3, G=2, H=6: {RS^2-2}, {{RS=(
√
2)}}

n=7, s=2113: A=0, B=1, C=2, D=3, E=0, F=5, G=1, H=6: {RS^2-4}, {{RS=2}}
Elapsed time: 0h 28m 40s
Finished after finding 3 solutions
11627 cases were not checked to ignore symmetry

This result will be recalled later in Theorem 3.

4.3 Some Results

We will find the following definition useful when presenting the statements that
can be collected by using RegularNGons.

Definition 1. – Points of the first kind of a regular n-gon are its vertices.
We denote this set by P1.

– Segments of the first kind of a regular n-gon are its sides and diagonals.
We denote this set by S1.

– Points of the k-th kind of a regular n-gon are the intersection points of its
segments of the (k − 1)-th kind. We denote this set by Pk.

– Segments of the k-th kind of a regular n-gon are the segments defined by
its points of the (k)-th kind. We denote this set by Sk.

By using this notion, in this paper we consider segments of the second kind
of a regular n-gon. We remark that it makes sense to study segments of higher
kinds in a regular n-gon. It is easy to see that a recursive formula can be given
to determine the number of possible cases for the various kinds of points and
segments of a regular n-gon:

Proposition 1. – |P1| = n.
– |S1| =

(|P1|
2

)
.

– |Pk| =
(|Sk−1|

2

)
.

– |Sk| =
(|Pk|

2

)
.
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Proof. By construction, these formulas are obvious. �
Now we present some results that were obtained by RegularNGons.

Theorem 2. Given a regular 7-gon, there are 42 segments of its second kind
that are of length 2, shown in Fig. 3.

Fig. 3. Some properties of a regular heptagon (Color figure online)

Proof. By exhausting all |S2| = 21945 cases, there exist exactly the cases as
presented. (The running time on a modern PC was about 1 h and 15 min.) �

The 42 different cases can be classified into 3 substantially different groups,
shown in green, red and magenta in Fig. 3. Because of symmetry, each substan-
tially different segment have 6 rotated copies and a mirrored copy with 6 other
rotated copies. In total there are 7+7 = 14 elements of the groups. In the figure
only 2 representants are colored in each group (they are mirror images), the
others are all blue.

Theorem 3. Let us consider all segments of the second kind in regular 7-, 9-
and 11-gons, having side lengths 1. Then the following hold:

– In a regular heptagon the only rational lengths in S2 are 1 and 2, and the
only quadratic surd is

√
2.

– In a regular nonagon the only rational lengths in S2 are 1, 2 and 3, and the
only quadratic surds are

√
3 and

√
7.
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– In a regular 11-gon the only rational lengths in S2 are 1, 2, and the only
quadratic surd is

√
3.

Proof. By exhaustion, using a computer.

Some other results can be found at https://www.geogebra.org/m/
AXd5ByHX. The software tool RegularNGons can be launched on-line at
http://prover-test.geogebra.org/∼kovzol/RegularNGons/. An example run can
be started to request solving the case n = 5 by invoking the URL http://prover-
test.geogebra.org/∼kovzol/RegularNGons/?n=5.

5 Conclusion and Future Work

We presented an automated way on obtaining various new theorems on regular
polygons, based on the work of [1,2,9]. Some results may be not elegant from
some perspectives, but others can be, especially those where rational numbers
or quadratic surds appear.

On the other hand, classifying results to be “elegant” or not, can be very
subjective. For this reason our implementation RegularNGons is able to filter
the results by various criteria. Extending the existing filters by other ones, for
example, by searching for good approximations of a given real number, could be
another step forward in this direction.

We emphasize that enumerating the possible cases is a crucial detail in our
work. We found a simple way to map the first non-negative numbers to the
possible cases bijectively, however, some cases in our definitions still yield the
same segment RS. This case occurs when R or S, or both, are among the vertices
of the n-gon. We will try to address this issue in the future.

Automatizing theorems on regular n-gons can be further developed by con-
sidering segments of higher kinds, not just of the second. The number of cases
to check—according to Proposition 1—grows rapidly. For the third kind, the
number of cases is asymptotic to n16/215, for instance, for n = 5 the number
of segments of the third kind is 119, 831, 804, 235. That is, there can be lots of
new theorems to explore! Of course, many of them may be uninteresting, but
some of them may be of interest. (Here we did not mention that considering the
diagonals of n- and m-gons at once, may lead to a very high amount of new
statements as well.)

The high number of cases calls for distributed computing. Our further plan
is to extend our software tool to be a centralized system that assigns interesting
tasks to the contributors’ computers. By this way the idle computer time could
be used to “mine” new, interesting geometry theorems.

Also, using efficient methods on filtering the high amount of cases may avoid
combinatorial explosion. Algorithms in artificial intelligence, in particular, in
machine learning, may help future versions of the tool to obtain useful results
also for higher n in a reasonable time.

https://www.geogebra.org/m/AXd5ByHX
https://www.geogebra.org/m/AXd5ByHX
http://prover-test.geogebra.org/~kovzol/RegularNGons/
http://prover-test.geogebra.org/~kovzol/RegularNGons/?n=5
http://prover-test.geogebra.org/~kovzol/RegularNGons/?n=5
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Abstract. Understanding the mechanisms of the brain is a common
theme for both computational neuroscience and artificial intelligence.
Machine learning technique, like artificial neural network, has been ben-
efiting from a better understanding of the neuronal network in human
brains. In the study of neurons, mathematical modeling plays a vital
role. In this paper, we analyze the important phenomenon of bistability
in neurological disorders modeled by ordinary differential equations in
virtue of our recently developed method for solving bi-parametric poly-
nomial systems. Unlike the algebraic symbolic approach, our numeric
method solves parametric systems geometrically. With respect to the
classical bifurcation analysis approach, our method naturally has good
initial points thanks to the critical point technique in real algebraic geom-
etry.

Special heuristic strategies are proposed for addressing the multi-
scale problem of parameters and variables occurring in biological models,
as well as taking into account the fact that the variables representing
concentrations are non-negative. Comparing with its symbolic algebraic
counterparts, one merit of this geometrical method is that it may com-
pute smaller boundaries.

1 Introduction

Due to the tremendous increase in computing power, a machine learning app-
roach named artificial neural network is enjoying a renaissance. Design of artifi-
cial neural network has been being inspired by advances in neuroscience and it
is believed that a better understanding of the mechanisms of human brain and
nervous system will play a vital role for the advent of more powerful artificial
intelligence technology [13]. The study of human brain and nervous system is
also the main subject of computational neuroscience [1,2,11,21]. Different from
the “black-box” approach in machine learning, explicit mathematical models
were built and analyzed in this discipline.
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Historically, different models were proposed for studying neurons [11]. In
this paper, we are particularly interested in neurological disorder models [21].
A study of the underlying mechanism is important for understanding various
modalities of learning, such as long-term memory [20,23].

In general, dynamical system defined by ordinary different equations (ODEs)
is a powerful tool for modeling biochemical networks [10]. The dominant app-
roach for solving these systems is numerical simulation [24], which can handle
large systems of equations. For small size problems, bifurcation analysis [12,16]
is a very useful tool for understanding the role that parameters play.

The study of equilibria and their stability can be cast to an algebraic prob-
lem [19,26], which creates opportunities for symbolic tools for solving parametric
polynomial systems, such as cylindrical algebraic decomposition [6,8], the border
polynomial approach [29], the discriminant variety approach [17], real compre-
hensive triangular decomposition [7], and so on. Symbolic methods for handling
special biological systems also exist, for instance in [3,15]. In [5], we proposed
a numerical approach for solving bi-parametric polynomial systems. This app-
roach is essentially geometrical, which is based on curve tracing and projection
of points rather than elimination. This approach is further generalized to com-
puting stability boundary of dynamical systems defined by ODEs and applied
directly to analyzing stability of biological systems [4].

Two important characteristics peculiar to biological models were not
exploited in [4], namely the multiscale problem and non-negative requirement
of variables and parameters. In this paper, we introduced heuristics such as
variable rescaling and restricted curve tracing to address them. We re-examine
two neurological disorder models studied in [9,20] but provide improved or new
results by analyzing the bistability phenomenon in the models. To overcome the
difficulty of traditional bifurcation analysis method for finding initial starting
points, we reply on critical point techniques [14,22,28] in real algebraic geome-
try and homotopy continuation methods in numerical algebraic geometry [18,25]
to find at least one witness point for each connected component of fold and Hopf
bifurcation curves. As illustrated by the two models in Sect. 3, with respect to
symbolic methods, our method has the advantage of producing smaller bound-
ary since it only traces positive branches of the bifurcation in real space rather
than computing the Zariski closure of the projection of the bifurcation curve in
complex space.

2 Methodology

In this section, we first briefly review the theory introduced in [4,5] for computing
the fold and Hopf bifurcation boundaries of dynamical systems. Then we present
new strategies tuned for biological systems to enhance the algorithm in [4].

2.1 Basic Theory

Throughout this section, we consider continuous dynamical systems defined
by autonomous ODEs of the form ẋ = F (x, u), where x = (x1, . . . , xm)
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are unknowns, u = (u1, u2) are parameters independent of time t, and F =
(F1, . . . , Fm) are rational functions of R(u, x), called the vector field of the sys-
tem.

Let J be the Jacobian matrix of F with respect to x. The following system
defines the fold bifurcation [16], which is a bifurcation where the equilibrium has
zero eigenvalue:

{F = 0,J v = 0, αv − 1 = 0}, (1)

where v = v1, . . . , vm is a vector of auxiliary variables and α is a random vector
of Rm to avoid v = 0. This system has 2m + 1 equations and 2m + 2 variables.
“Generically” it defines a one-dimensional curve, called fold bifurcation curve.
To avoid v approaching to infinity or a large number, sometimes it is better to
replace αv − 1 = 0 by vv − 1 = 0 in Eq. (1).

Another defining system for fold bifurcation is {F = 0,det(J (F )) = 0},
which is suitable for symbolic solvers. But for our method, Eq. (1) is usually
preferred for better numerical stability and taking advantage of sparsity.

Let P (x, u) be the vector of the numerators of F (x, u). Assume that the
denominators of F never vanish (which is usually automatically satisfied for
biological systems due to the natural requirement that all the variables should
take non-negative values). It is shown in [4] that one can safely replace F by P
in the above two systems.

Next we derive the defining system for Hopf bifurcation [16], which is a
bifurcation where the equilibrium has a pair of purely imaginary eigenvalues.
Suppose that J has a pair of purely imaginary eigenvalues λ = ±ωi. Let (μ+ iν)
be the corresponding eigenvectors. Then we have J (μ+iν) = (ωi)(μ+iν), which
implies that J μ = −ων and J ν = ωμ hold. Thus a defining system for Hopf
bifurcation can be defined as below

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F = 0
J μ = −ων
J ν = ωμ
αμ − βν = 1
βμ + αν = 0,

(2)

where both μ and ν are additional vectors of m variables, ω is an additional
scalar variable, and α and β are random real vectors of Rm to avoid μ + iν = 0.
This system has 3m+2 equations and 3m+3 variables. “Generically”, it defines a
one-dimensional curve, called Hopf bifurcation curve. Note that in Eq. (2), when
ω �= 0, it defines exactly the Hopf bifurcation. When ω = 0, it defines exactly
the fold bifurcation [4]. Another typical defining system for Hopf bifurcation is:
{F = 0,Δm−1(F ) = 0}, where Δm−1(F ) is the (m − 1)-th Hurwitz determinant
of J (F ). This defining system is usually used for symbolic solvers as it does
not introduce extra variables. Note that this defining system may contain points
where J (F ) has eigenvalues of opposite signs.

Let π : R
m+2 → R

2 be the projection defined by π(x1, . . . , xm, u1, u2) =
(u1, u2). Let R be a bounding box of the parametric space (u1, u2). Let PF

be the vector of numerators of F . Let FH be the right hand side of Eq. (2),
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which defines Hopf bifurcation. Let PH be the vector of numerators of FH . Let
BH := π(VR(PH)). Then BH is the fold and Hopf bifurcation boundaries of the
vector field F . Note that when parameters take values crossing BH , the sign of
the real part of some eigenvalue of an equilibrium may change. So is stability of
the equilibrium. We call BH the stability boundary of F .

Assuming that PF , PH and R satisfy the following assumptions:

– (A1) The set VR(PF ) ∩ π−1(R) is compact.
– (A2) We have dim VR(PH) = 1.
– (A3) At each regular point of VR(PH), the Jacobian of PH has full rank.

Then the following property holds.

Proposition 1 [4]. Let BH be the stability boundary of the vector field F (x, u)
restricted to some bounding box R. Then R \ BH is divided into finitely many
connected components, called cells, such that in each cell, the number of equilibria
of F (x, u) does not change. Moreover, in every given cell, each equilibrium is a
smooth function of u with stability unchanged.

Remark 1. As argued in bifurcation analysis, “generically”, the assumptions
A2 and A3 are satisfied. It is argued in [4] that we can force A1 to be satisfied for
biological systems modeled by dynamical system ẋ = F (x, u), since the variables
x usually denote concentrations of biological substances, which are non-negative
and bounded by conservation laws. More precisely, in addition to BH , one should
also computes boundaries corresponding to constraints 0 ≤ xi ≤ bi, namely
Bi := π(VR(PF , xi)), i = 1, . . . ,m and Bi+m := π(VR(PF , xi−bi)), i = 1, . . . , m.

2.2 Computing Stability Boundary of Biological Systems

Next we present a numeric algorithm for computing the stability boundary of
biological systems modeled by the dynamical system F (x, u). It is specially tuned
for biological systems and improves the algorithm in our earlier work [4]. See
Remark 2 for details.

Let RealWitnessPoint be the routine introduced in [27] for computing a set of
witness points W of a real variety VR(PH) satisfying Assumption (A3). Recall
that a set of witness points W of a real variety V is a finite subset of V such
that W has non-empty intersection with every connected component of V . The
basic idea of this routine is to introduce a random hyperplane L. Then “roughly
speaking” the witness points of VR(PH) either belong to VR(PH) ∩ L or are the
critical points (points attaining local minima) of the distance from the connected
components of VR(PH) to L.

Algorithm StabilityBoundary

Input: a bi-parametric biological system defined by ẋ = F (x1, . . . , xm, u1, u2),
where F is a vector of m rational functions with real coefficients; a bounding
box R in the first quadrant of the (u1, u2)-plane.
Output: an approximation of the stability boundary of the vector field F
restricted to R.
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Steps:
1. Let FH be the left hand side of Eq. (2) and let PH be the vector of

numerators of FH .
2. Choose a random point u in R and compute S := PH(u)−1(0) ∩ R

m by
homotopy continuation method [18].

3. Based on solutions in S, rescale each xi and each ui to the range [0, 	],
where 	 is a small integer between 1 and 10.

4. Rescale R accordingly to R′. Choose a big integer K � 	 and set R2 :=
R′ × [0,K]m.

5. Set W := ∅.
6. Compute the intersection of VR(PH) with ∂R2 by a homotopy continua-

tion method and add the points into W .
7. Compute RealWitnessPoint(PH) and add the points into W .
8. For p ∈ W , starting from p, follow both directions of the tangent line of

VR(PH) at p, trace the curve PH by a prediction-projection method, until
a closed curve is found or a boundary of R2 is met.

9. Return the projections of the traced points in R.

Remark 2. Comparing with our algorithm in [4] for general dynamical systems,
this algorithm is specially tuned for biological systems. In particular, in Steps
2 and 3, we apply a rescaling strategy considering the factor that variables and
parameters in biological systems usually have different scales. In Step 4, we take
into account the fact that the variables of biological systems are non-negative.
Introducing the box R2 has two advantages. First it will force the following curve
tracing to be restricted in a positive box and thus avoid computing projections
of bifurcation points with negative coordinates, which has no biological mean-
ings. Secondly it will compute an approximation of the projection of positive
infinity points. This is one key reason why our numeric geometrical method pro-
duces smaller boundaries than symbolic algebraic methods, which first computes
Zariski closure of bifurcation boundaries in complex space. Another key reason
is we use a defining system encoding exactly the fold and Hopf bifurcation curve
and trace the curve in real space. It is usually infeasible for symbolic method
to use this defining system due to the fact that almost twice more auxiliary
variables are introduced.

Remark 3. If only one parameter effectively appears in F (x, u). Then com-
puting the stability boundary boils down to computing zero-dimensional systems
defined by Eq. (2) and {F, ∂R2}.

3 Two Examples

In this section, we analyze the bistability of two neurological disorder models
in detail by means of the algorithm presented in last section. In particular, the
strategies of rescaling and tracing only positive branches are illustrated.
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3.1 Alzheimer’s Disease Model

In [9], the authors proposed a model for studying Alzheimer’s disease.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder character-
ized by progressive and irreversible cognitive decline. The pathogenesis of AD is
only partially understood and there is no cure. The bistability is the property of
the coexistence between a stable steady-state characterized by low levels of Ca2+

and Aβ (corresponding to a healthy situation) and another stable steady-state
where the levels of both compounds are high (corresponding to a pathological
situation). The study would like to reveal the fact that appropriate perturba-
tions of various kinetic parameters can lead to a switch from the healthy to the
pathological state.

The model is described by the following ODEs:

da
dt = V1 + Va cn

Ka
n+cn − k1 a

dc
dt = V2 + kb am − k2 c,

(3)

where the suggested values of the parameters in [9] is V1 = 13
2000 ,V2 = 4,Va =

1/20,Ka = 120, kb = 1/5, k1 = 1
100 , k2 = 1/10,m = 4, n = 2. Let F be the right

hand-side of the above ODE. We notice that it is impossible for the above system
to have Hopf bifurcation since the trace of the Jacobian matrix JF is negative no
matter what values the parameters take. Thus to compute the stability boundary,
it is enough to compute the fold bifurcation boundary.

First we free two parameters V1 and V2 while the other parameters take
the suggested values. Now Eq. (1) defines a one-dimensional fold curve. Before
solving Eq. (1), we first randomly set V1 = 0.7926710114, V2 = 0.5581108504.
Solving F , we get one solution a = 5.778935983, c = 2286.410222. Since
the value of c is pretty high, we rescale c = 1000c′. Similarly we rescale
V1 = V ′

1/100 and V2 = 10V ′
2 . To take into account the infinity boundary

and non-negative boundary, we plot the curve defined by Eq. (1) in the box
(V ′

1 , V
′
2 , a, c′) ∈ [0, 2] × [0, 2] × [0,K] × [0,K], where K is a big number, say

104. Finally, we rescale the values back and obtain the following fold bound-
ary depicted in left subfigure of Fig. 1, which is also the border curve of F in
parameter space (V1, V2). The number of (asymptotically) stable equilibria is also
displayed. Similarly, we obtain stability boundary in parameter space (Va, kb),
depicted by the right subfigure of Fig. 1.

Finally, we free one parameter Ka while using default values for other param-
eters, then Eq. (1) is a zero-dimensional system. After rescaling the variable c as
before, we solve Eq. (1) by homotopy continuation method restricted to the box
[0,∞] × [0, 10000]2, we get two boundary points Ka = 109.6069757, 501.1488977
and the system is bistable if Ka is between them, which corrects the value
Ka ∈ (105, 520) given in [9]. Indeed, there is only one (non-negative) equilibrium
in (105, 109.6069757) or (501.1488977, 520). Bifurcation diagrams depending on
Ka is illustrated in Fig. 2.
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Stability boundary in (V1, V2). Stability boundary in (Va, kb).

Fig. 1. Stability analysis of system (3).

Bifurcation diagram in (Ka, a). Bifurcation diagram in (Ka, c).

Fig. 2. Bifurcation diagrams of system 3.

3.2 The Protein Kinase Mζ Network

In [20], the author proposed a model for the protein kinase Mζ network. Protein
kinase Mζ has drawn increasing attention as a molecule maintaining neuronal
memory for an extremely long period of time. It can enhance excitatory postsy-
naptic currents and lead to the long-term potention of synapses. It is crucial for
various modalities of learning, including spatial memory and fear conditioning.
Bistable positive feedback loops of enzymatic reactions may provide a basis for
cellular memory [9,20].
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The model is described by the following ODEs:

dP
dt = j1 R(1−P )−P

T1
dF
dt = (P j3+j2 )(1−F )−F

T2

dR
dt = j4 F (P+s)(1−R)−R

T3
,

(4)

where the default values of the parameters are: T1 = 1500, T2 = 0.5, T3 = 60, j1 =
80, j2 = 0.05, j3 = 0.5, j4 = 0.16, s = 0.003.

First we free two parameters j2 and j3 while the other parameters take the
suggested values. Now Eq. (2) defines a one-dimensional fold curve. First we
rescale j1 = 100j′

1 and j4 = j4/10. Since solving the right hand of Eq. (4) at
random parameter values does not reveal equilibria with large coordinates, it is
unnecessary to rescale the variables. To take into account the infinity bound-
ary and non-negative boundary, we plot the curve defined by Eq. (2) in the box
(j′

1, j4, P, F,R) ∈ [0, 3]× [0, 3]× [0,K]3, where where K is a big number, say 104.
Finally, we rescale the values back and obtain the following stability boundary
depicted in left subfigure of Fig. 3. The number of (asymptotically) stable equi-
libria is also displayed. The right subfigure plots the stability boundary obtained
by a symbolic approach by computing the discriminant variety [17] of the para-
metric system {F = 0,Δm−1(F ) �= 0}, where the two redundant boundaries are
projections of equilibria with negative coordinates. Similarly, we obtain stability
boundary in parameter space (j2, j3), which is exactly the same as Fig. 4C in
[20].

True (biological) stability boundary in (j1, j4). Stability boundary got by symbolic solver.

Fig. 3. Stability analysis of system 3.

Finally, we free one parameter s while using default values for other param-
eters, then Eq. (2) is a zero-dimensional system. After rescaling the variable c
as before, we solve Eq. (2) by homotopy continuation method restricted to the
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box [0,∞] × [0, 10000]2, we get one bifurcation point s = 0.00984547072 and
the system is bistable if s ∈ (0, 0.00984547072). Note that a direct use of sym-
bolic approaches [17,29] by solving the parametric system {F = 0,Δm−1(F ) �=
0} returns four points 0.009845470722, 0.4396431008, 2.100000000, 2.197170170,
while that last three does not have biological meanings as they are projections
of equilibria with negative coordinates. A bifurcation diagram depending on s is
illustrated in Fig. 4. It is interesting to see that initially the system is bistable for
s < 0.00984547072, where a stable equilibrium with high concentrations coexists
with another stable one with low concentrations. As the stimulation s increases,
the system finally turns monotone and only one equilibrium with high concen-
trations is left and its concentration will never turn low even one reduces the
value of s. This phenomenon is called irreversibility and the system behaves like
maintaining memory.

Fig. 4. Bifurcation diagrams of system 4.

4 Conclusion

In this paper, we presented a geometrical method for computing the stability
boundary of biological systems, which may produce less redundant boundaries
than symbolic methods. Its effectiveness was illustrated by revealing the bista-
bility property of two neurological disorder models, which could be useful for a
better understanding of molecular mechanisms of Alzheimer’s disease and neu-
ronal memory.

Acknowledgements. This work is partially supported by the projects NSFC
(11471307, 11671377, 61572024), and the Key Research Program of Frontier Sciences
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Abstract. For computing only the isolated real solutions to a given
polynomial system, a heuristic test is proposed to decide whether one
homotopy path will converge to a real root, which is based on the
asymptotic behavior of an angle defined by two points on the homo-
topy path. The data that the test requires is easily obtained from the
points along the curve-following procedure in homotopy methods. The
homotopy path-tracking may be sped up if we start the test before the
endgames, since most divergent paths and paths heading to complex
roots can be stopped tracking earlier and unnecessary endgames are
avoided. Experiments show that the test works pretty well on tested
examples.

1 Introduction

The homotopy continuation method was developed in 1970s [1,2] and has been
greatly expanded and developed by many reseachers (see for example [3–8] for an
overview of this area). An extensive description of polyhedral homotopy meth-
ods for sparse systems was given in [5] (see also [9–11]). A picture of the so-
called numerical algebraic geometry up to the end of 2004 was described in [6].
The book [12] provided major developments of homotopy continuation methods
up to 2013. Nowadays, homotopy continuation method has become one of the
most reliable and efficient classes of numerical methods for finding the isolated
solutions to a polynomial system and numerical algebraic geometry, based on
homotopy continuation method, has been a blossoming area. There are many
famous software packages implementing different algorithms in homotopy meth-
ods, including Bertini [12], Hom4PS-2.0 [13], NAG4M2 [14], PHCpack [15], etc.

Classical homotopy methods compute solutions in complex spaces, while in
diverse applications, it is quite common that only real solutions have physical
meaning. Computing real roots of an algebraic system is a difficult and funda-
mental problem in real algebraic geometry. In the field of symbolic computation,
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there are some famous algorithms dealing with this problem. The cylindrical
algebraic decomposition algorithm [16] is the first effective complete algorithm
which has been implemented and used successfully to solve many real prob-
lems. However, in the worst case, its complexity is of doubly exponential in the
number of variables. Based on the ideas of Seidenberg [17] and others, some
algorithms for computing at least one point on each connected component of an
real algebraic set were proposed through developing the formulation of critical
points and the notion of polar varieties, see for example [18–21] and references
therein. The idea behind is studying an objective function (or map) that reaches
at least one local extremum on each connected component of a real algebraic
set. For example, the function of square of the Euclidean distance to a ran-
domly chosen point was used in [22,23]. These symbolic methods all have the
complexity that limits their application in large problems. On the other hand,
some homotopy based algorithms for real solving have been proposed in [24–32].
For example, a detailed description of the bifurcation phenomenon of the real
homotopy paths was presented in [24]. In [30], a numerical homotopy method
to find the extremum of Euclidean distance to a point as the objective function
was presented. In [25,26], a combination of numerical algebraic geometry and
sum of square programming was provided to verify the completeness of the real
solution set of a real algebraic set. Algorithms for finding real roots based on
homotopy methods and interval analysis was provided in [31]. The Euclidean
distance to a plane was proposed as a linear objective function in [33].

Those homotopy based algorithms track all the paths defined by a given
homotopy and select real roots from complex roots, or track carefully the real
paths and deal with the complicate phenomenon of bifurcation. Motivated by
the idea of truncation (see [34]), this paper proposes an early-stop test in path
tracking procedure. By this test, we could identify the paths heading to isolated
non-real solutions earlier and stop tracking them to save computation. One by-
product is that, if we start the test before the endgames of path tracking, we may
even avoid the time-consuming procedure of tracking divergent paths. Compared
to those truncation methods, our identification method is not rudely decided by
a quantity of empirical data, but based on the asymptotic behavior of an angle
defined by two points on the homotopy path which will be shown in Sect. 3.
Experiments show that the test works pretty well.

The rest of this paper is organized as follows. Section 2 describes some pre-
liminary concepts and symbols of homotopy continuation methods. Section 3
introduces an angle defined by two points on one homotopy path, and analyzes
its asymptotic behaviors. It naturally leads to an EST (Early Stop Test) algo-
rithm. The experimental performance of the EST is given in Sect. 4.

2 Preliminary

2.1 Homotopy Continuation Methods

Homotopy continuation methods aim to numerically compute the isolated solu-
tions of a zero-dimensional square polynomial system F (x) (as for positive
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dimensional systems, the idea of “witness sets” is developed, see [3]), mostly
including two steps. Firstly, we look into the structure of the system F (x) to
construct a start system G(x), and define the homotopy

H(x, t) = γ · (1 − t) · G(x) + t · F (x) = 0, t ∈ [0, 1]

with γ ∈ C a random number. Such a homotopy in general (by Implicit Function
Theorem) defines curves (one-dimensional manifold) of solutions. Secondly, we
numerically trace the paths that originate at the solutions of the start system,
G(x), towards the solutions of the target system F (x). The coefficient-parameter
homotopy [35] detailed and ensured many aspects of the above approach. The
good properties we expect for the system G(x) are (borrowed from [36]):

1. (triviality) The solutions for t = 0 are trivial to find.
2. (smoothness) No singularities along the solution paths occur (the gamma-

trick).
3. (accessibility) An isolated solution of multiplicity m is reached by exactly m

paths.

The choice of the start system G(x) is crucial in the first step. The root count
of the start system is the number of paths tracked in the second step, and
determines the efficiency of the homotopy. In the early applications [37–40], G(x)
is chosen from dense polynomials, where the number of paths equals the product
of the degrees in the system. Multi-homogeneous homotopies were introduced
and applied in [41,42]. Linear-product start systems were developed in [43,44].
Product structures exploiting approach was introduced in [45]. In the middle
of 90’s, because of Bernshtein’s Theorem [46], the polyhedral homotopy was
developed [9] to solve sparse systems efficiently. A combination of linear-product
homotopy and polyhedral homotopy was introduced in [32] for systems derived
from optimization problems.

2.2 Trackable Paths

In homotopy continuation methods, the notion of path tracking is fundamental,
the following definition of trackable solution path is adapted from [47].

Definition 1. Let H(x, t) : Cn × C → Cn be polynomial in x and complex
analytic in t, and let x∗ be nonsingular isolated solution of H(x, 0) = 0. We
say x∗ is trackable for t ∈ [0, 1) from 0 to 1 using H(x, t) if there is a smooth
map ξx∗ : [0, 1) → Cn such that ξx∗(0) = x∗, and for t ∈ [0, 1), ξx∗(t) is a
nonsingular isolated solution of H(x, t) = 0. The solution path started at x∗is
said to be convergent if lim

t→1
ξx∗(t) ∈ Cn, and the limit is called the endpoint of

the path.

When the start system G(x) is appropriately chosen, each solution path orig-
inating at the isolated solutions of the system G(x) is trackable. See [35,47].
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2.3 Path Tracking

Assuming that the solution path is x(t) and x(0) = x∗, then we have H(x(t), t) =
0 for all t. By applying the operator ∂

∂t on the homotopy, via the chain rule, we
have

0 ≡ dH(x(t), t)
dt

= Hx(x(t), t)
dx(t)

dt
+ Ht(x(t), t).

then {
dx(t)

dt = −Hx(x(t), t)−1
Ht(x(t), t)

x(0) = x∗ .

This is an ordinary differential equation for x(t), with initial value x(0) = x∗.
We seek the value of the roots x(1). When tracking the paths, the Predictor-
Corrector method is widely used. There are three commonly used Predictors: the
Secant Predictor, the Euler Predictor, and the Hermite Predictor. The Secant
Predictor avoids solving a linear system at each step, but is less accurate. The
Euler Predictor uses the tangent vectors at points along the path. And the
Hermite Predictor uses the tangent vectors at two points along the path for cubic
interpolation. See Fig. 1 for a comparison. When the new point is “Predicted”,
it comes to Newton’s methods for “correction” step. For simplicity, we only go
into details about the Euler Predictor-Corrector method as follows:

Fig. 1. Predictors: Secant, Euler and Hermite

Step 1: Euler Prediction
For a given step size δ > 0, let t1 = t0 + δ < 1 and

x̃(t1) = x(t0) − δ · Hx(x(t0), t0)−1Ht(x(t0), t0).

Step 2: Newton’s Correction
For fixed t1, H(x, t1) = 0 becomes a system of n equations in n unknowns, and
we have an approximate solution x̃(t1). So, Newton’s iteration can be employed,
i.e.

x(k+1) = x(k) − Hx(x(k), t1)−1H(x(k), t1), k = 0, 1, . . .
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with x(0) = x̃(t1). Eventually, a more accurate approximation value of x(t1) can
be obtained. The following algorithm sketches the procedure of Euler Predictor-
Corrector path tracing method:

Algorithm 1. Euler Prediction-Newton Correction

input : t0 = 0,(x0, t0) ∈ Cn × IR and δ > 0 such that H(x0, t0) = 0 and
t0 + δ < 1

output: x0

1 repeat
2 x(0) := x0 − δ · Hx(x0, t0)−1Ht(x0, t0);
3 repeat
4 x(1) := x(0) − Hx(x(0), t0 + δ)−1H(x(0), t0 + δ);
5 x(0) := x(1);
6 until Convergence;
7 x0 := x(0);
8 t0 := t0 + δ;
9 until Path tracking is stopped ;

10 return x0;

Remark 1. It should be mentioned that, in homotopy continuation methods, the
paths tracked may be divergent (some coordinates will become arbitrarily large)
at the end, i.e. when t = 1. For divergent paths, the Newton Corrector method
will be invalid when t is close to 1. For identifying those divergent paths, a
procedure called end-game should be added [48,49]. But for simplicity, we omit
it in Algorithm 1. For divergent path tracking, there will be no return at Line
10 in Algorithm 1.

3 Heuristic Early-Ending Homotopy Procedure

In this section, we give a description of our idea. First we give a theorem which
characterizes the asymptotic behavior of the angle, defined by two points on
a trackable path. Then, we propose a strategy for early ending in homotopy
continuation methods for real roots. We make the assumption that the start
system G(x) has the abovementioned “good properties” (thus all the solution
paths are trackable).

Theorem 1. Let x(t) : [0, 1) → Cn be one of the trackable paths of homotopy
H(x, t) = γ · (1 − t) · G(x) + t · F (x) = 0, t ∈ [0, 1], u ∈ [0, 1), h > 0 and
u + h ∈ [0, 1). Define α(u, h) := 〈(x′(u), 1), (x(u + h) − x(u), h)〉,( i.e. the angle
between vector (x′(u), 1) and vector (x(u + h) − x(u), h)). Then the following
expansion holds:

α(u, h) = κ(u) · h + O(h3).
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Proof. Because of the smoothness of the trackable path x(t), we have the fol-
lowing expansion from Taylor’s formula

x(u + h) = x(u) + x′(u) · h +
1
2

· x′′(u) · h2 +
1
6

· x′′′(u) · h3 + O(h4)

Hence
x(u + h) − x(u)

h
= x′(u) +

1
2

· x′′(u) · h +
1
6

· x′′′(u) · h2 + O(h3)

α(u, h) =
〈

(x′(u), 1), (x′(u) +
1
2

· x′′(u) · h +
1
6

· x′′′(u) · h2 + O(h3), 1)
〉

Then

cos(α(u, h)) =
1 + x′(u)T [x′(u) + 1

2 · x′′(u) · h + 1
6 · x′′′(u) · h2 + O(h3)]

‖(x′(u), 1)‖ ∥∥(x′(u) + 1
2 · x′′(u) · h + 1

6 · x′′′(u) · h2 + O(h3), 1)
∥∥

= 1 − κ1 · h2 + O(h3)
(1)

where

κ1 =
1
8

· x′′(u)2 + x′(u)2 · x′′(u)2 − (x′(u) · x′′(u)T )
2

(1 + x′(u)2)
2 > 0

Thus we have

α(u, h) = ± arcsin(
√

1 − cos2(α(u, h))) = κh + O(h3)

where κ =
√

2κ1. 	

Remark 2. 1. For the simplicity, in the proof of Theorem1, we omit the Taylor

expansion of functions: arcsin(x) at x = 0,
√

x at x = 1, and 1
x at x = 1.

2. The reason we using the Taylor expansion of function arcsin(x) but not
arccos(x), is that arccos(x) cannot be expanded as Taylor series at x = 1.

3. From the proof of Theorem 1, the constant κ is independent of h, and depends
smoothly on u.

For many polynomial systems derived from applications in science, engineer-
ing, and economics, the real roots are the only ones of interest. In the method of
homtopy continuation, H(x, t) = γ · (1 − t) · G(x) + t · F (x) = 0, the number of
paths tracked is larger than the number of the isolated roots of the target sys-
tem, especially for sparse systems. The extra paths are divergent as t close to 1.
The tracking of divergent paths is time-consuming in computation [48,49]. And,
most of the time, the number of the isolated roots (complex roots) is greater
than the number of real roots. So, when interested in computing only the real
roots, we propose a heuristic test for detecting the paths that are not convergent
to real roots and stop tracking them earlier to save time. We look into how the
size of the imaginary part of the points on the path is changing as t changes.

If we denote x̃ to be the vector of the imaginary part of a complex vector x,
i.e. x̃ = x−x̄

2·i , and by the same procedure of the proof of Theorem1, we obtain:
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Theorem 2. Let x(t) : [0, 1) → Cn be one of the trackable paths of homotopy
H(x, t) = γ·(1−t)·G(x)+t·F (x) = 0, t ∈ [0, 1], u ∈ [0, 1), h > 0 and u+h ∈ [0, 1).

Define α̃(u, h) :=
〈

(x̃′(u), 1), (
˜x(u+h)− ˜x(u)

h , 1)
〉
. Then the following expansion

holds:

α̃(u, h) = κ̃(u) · h + O(h3).

where κ̃(u) is independent of h and depends only on u.

Based on Theorem 2, and since real roots have zero imaginary part, the steps of
a heuristic test, called Early Stop Test (EST for short), can be as follows:

1. Choose a reasonable 0 < u < 1 to start the test, and let h = 1 − u.

2. Compute an approximate value of κ̃(u), κ̃(u) ≈ ˜α(u,−δ)
−δ and let α̃ = κ̃(u) · h.

3. Compute the angle α1 between vector (x̃′(u), 1) and vector (−x̃(u), h).
4. If α1 is less than Δ and the absolute error |α̃ − α1| is in a reasonable tolerance

Δ1, then the test passes. If α1 is greater than Δ and the relative error
∣∣∣ α̃−α1

α1

∣∣∣
is in another reasonable tolerance Δ2, then the test passes.

Remark 3. We give detailed explanations about these four steps respectively:

1. For different systems and different homotopies, the reasonability of choice of
u to start test differs. We think it is reasonable that u should not be too far
from 1. And the test should be started before the endgame, because some of
the divergent paths may be stopped tracking due to the test.

2. By the definition of ˜α(u,−δ), it is the angle between the vectors (x̃′(u), 1)

and (
˜x(u−δ)− ˜x(u)

−δ , 1). These two vectors are easily obtained if we reserve the
consecutive points, xold and x0, and the two consecutive tangent vectors, x′

old

and x′
0, along the path tracking process. The value of these vectors are com-

puted in Euler Prediction and Newton Correction, so it causes no extra cost
of time. Then α̃ is the approximation of the angle between vectors (x̃′(u), 1)

and (
˜x(1)− ˜x(u)

h , 1) based on Theorem 2, i.e. α̃ ≈ α̃(u, h).
3. If the tracked path is convergent to an isolated real root, the equation

(x̃(1), 1) = (0, 1) holds. Then we have

α1 =
〈
(x̃′(u), 1), (−x̃(u), h)

〉
=

〈
(x̃′(u), 1), (x̃(1) − x̃(u), h)

〉
= α̃(u, h).

We give an illustrative description of the angle α1 in Fig. 2.
4. By the explanation of 2 and 3, if the tracked path is convergent to a real

isolated root, we have α̃ ≈ α̃(u, h) = α1. So, when α1 is small, less than Δ,
due to the numerical stability, it is better to use the absolute error |α̃ − α1|
as a criterion. while, when α1 is not really small, it is reasonable to use the
relative error

∣∣∣ α̃−α1
α1

∣∣∣ as a criterion.
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Fig. 2. (a) illustrates α1 of complex roots, (b) illustrates α1 of real roots.

Algorithm 2. EST (Early Stop Test)

input : step size δ > 0, error tolerance Δ,Δ1,Δ2 > 0 and test starts at
0 < u < 1

output: False or True

1 κ̃(u) :≈ ˜α(u,−δ)
−δ ;

2 α̃ := κ̃(u) · h;

3 α1 := arccos((x′(u), 1) · (x̃(u), h)T );
4 if α1 � Δ then
5 if |α̃ − α1| � Δ1 then
6 return True;
7 end
8 else
9 return False;

10 end
11 end
12 else

13 if
∣∣∣ α̃−α1

α1

∣∣∣ � Δ2 then
14 return True;
15 end
16 else
17 return False;
18 end
19 end
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The following algorithm combines the Euler Predictor-Newton Corrector
path tracking method and the Early Stop Test.

Algorithm 3. ESTPT (Early Stop Test Path Tracking)

input :
t0 = 0, (x0, t0) ∈ IRn+1 such that H(x0, t0) = 0 ;
(xold, told) = (x0, t0);
step size δ > 0, t0 + δ < 1;
error tolerance Δ,Δ1,Δ2 > 0 and
0 < u < 1;
PASS:= True, TESTED:=False;

output: x0 or Null

1 repeat
2 x(0) := x0 − δ · Hx(x0, t0)−1Ht(x0, t0). ;
3 repeat
4 x(1) := x(0) − Hx(x(0), t0 + δ)−1H(x(0), t0 + δ) ;
5 x(0) := x(1) ;
6 until Convergence;
7 xold := x0;
8 told := t0;
9 x0 := x(0) ;

10 t0 := t0 + δ ;
11 if t0 > u && TESTED==False then
12 PASS:= EST(δ, Δ, Δ1, Δ2, u);
13 end
14 TESTED:= True;
15 until Path tracking is stopped or PASS==False;
16 if PASS == False then
17 return Null;
18 end
19 else
20 return x0;
21 end

4 Experiments

We have checked many benchmarks and randomly generated polynomial systems
with algorithm ESTPT. Because we cannot get the source code of path track-
ing of those famous homotopy software packages (such as Bertini, Hom4PS2.0,
HOMPACK and PHCpack), it is hard to make a suitable comparison with them.
We implement our algorithm in the path tracking procedure of program LPH
(available at http://arcnl.org/PDF/LHP.zip) and compare the early ending path
tracking procedure ESTPT to the traditional path tracking procedure. In this
section, all the homotopies are generated by total degree homotopy and all the

http://arcnl.org/PDF/LHP.zip
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experiments are computed on a PC with Intel Core i5 processor (2.5GHz CPU,
4 Cores, and 6 GB RAM) in the Windows environment.

In Table 1, we provide the comparison of ESTPT to traditional path tracking
on benchmarks which are available at [50]. For those benchmarks, we do the EST
at u = 0.98. N1 is the total degree of the system, and N2 is the number of paths
pass the EST test. T1 and T2 are the time (in millisecond) of traditional path
tracking and ESTPT respectively. R1 is the number of real roots, and R2 is the
number of real roots detected by ESTPT. “C” is the number of complex roots
of the system. “TR” is “Time Ratio”, i.e. the ratio of T2 to T1. “PR” is “Pass
Ratio”, i.e. the ratio of N2 to N1. “Precision” is the ratio of number of real roots
found by ESTPT to the number of paths that pass the EST test. “Recall” is the
percentage of real roots found by ESTPT.

In Table 1, for some benchmarks, N2 is greater than “C”, because some of the
divergent paths passed the EST test. Those divergent paths show their divergent
character after where we do the EST test. Actually, if we do the EST test at
u = 0.99, almost all of these divergent paths will not pass the EST test.

In Table 2, we provide the comparison on randomly generated square poly-
nomial systems. “n” is the number of variables in the system. “degree” is the
maximal degree of the polynomials in the system. “Terms” is the maximal num-
ber of monomials in the polynomials. For those randomly generated systems, we
do the EST test at u = 0.95.

In Table 2, when the system is very sparse, N2 is much smaller than N1 and
“C” . It is because that there are many divergent paths and paths heading to
complex roots, and most of them are early ended by EST. So we save a lot of
time for the endgames. However, when the system is (relatively) dense, because
the number of isolated roots are close to the total degree, there are few divergent
paths, we follow each path till we do the EST test. So, the time ratio is close to
u which is the place we do the EST test.

Table 1. Quantities compared on benchmarks

Equations T1 N1 R1 T2 N2 C R2 TR PR Precision Recall

des18 3 20763 324 5 20124 253 46 5 0.969 0.780864 0.0197628 1

eco7 5663 486 8 5226 301 32 8 0.922 0.619342 0.0265781 1

cyclic5 281 120 10 234 28 70 9 0.832 0.233333 0.321429 0.9

eco8 17831 1458 8 16412 954 64 8 0.920 0.654321 0.008386 1

geneig 873 243 10 624 62 10 10 0.714 0.255144 0.16129 1

kinema 468 64 8 468 37 40 7 1 0.578 0.189189 0.875

reimer4 202 120 8 156 37 36 8 0.772 0.308333 0.216216 1

virasoro 842 256 224 827 224 256 224 0.982 0.875 1 1

boon 3651 1024 8 2200 64 8 8 0.602 0.0625 0.125 1
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Table 2. Randomly generated examples

n Degree Terms N1 N2 C R1 R2 TR PR Precision Recall

4 3 3 54 6 8 4 4 0.715 0.111 0.667 1

5 4 8 1024 67 598 14 14 0.823 0.065 0.209 1

6 3 10 729 24 704 15 15 0.843 0.033 0.625 1

7 4 15 16384 209 14767 104 98 0.839 0.0128 0.469 0.94

6 5 40 15625 135 15395 86 82 0.925 0.0086 0.607 0.95

8 3 50 6561 72 6488 30 29 0.967 0.011 0.403 0.97

9 2 Dense 512 18 512 14 14 0.959 0.035 0.778 1

5 Conclusions

For isolated real roots identification in homotopy continuation methods, we
present a heuristic early-stop test in path tracking procedure. The test is mainly
based on Theorem 1, which shows the asymptotic behavior of an angle defined
by two points on one homotopy path. The EST test may stop tracking most of
the divergent paths and paths heading to complex roots. The parameter u we
choose influences the performance of algorithm ESTPT. There is a trade-off we
have to make. If u is too far from 1, the approximation α̃ of the angle α1 will be
bad, and none of the paths will pass the test ESTPT. On the other hand, if u is
too close to 1, it will save little time for the path tracking procedure. We do the
test with the same u for all the examples in Table 1 (and Table 2 respectively).

It may happen that, paths tracking to real roots may not pass the EST
test, and divergent paths pass the EST test. We mention some possible future
work. Some other data (such as the absolute value of the imaginary part of
x) in homotopy procedure could be added into this heuristic test. And, most
benchmarks are actually sparse systems. There are many other homotopies (such
as polyhedral homotopy) for sparse systems while the ESTPT in Sect. 4 is based
on total degree homotopy. It would be interesting to test the performance of
ESTPT on those homtopies. We may do the EST test in the ESTPT procedure
more than once based on some data in homotopy procedure.
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Abstract. A problem of interest in the realm of autocorrelation of
(binary) finite sequences is to find sequences of length n with given
(pre-defined) autocorrelation profiles. This amounts to solving a sys-
tem of �n/2� quadratic equations over the boolean cube {−1,+1}n. We
establish and discuss a computational approach to this autocorrelation
problems, using the concept of runs. An algorithm is given to solve this
problem and its application is illustrated with non-trivial examples.

Keywords: D-optimal design · Periodic autocorrelation function
Supplementary difference set · Hadamard matrix

1 Introduction

In this work we are interested in finite (binary) sequences A = [a0, . . . , an−1] of
length n, with elements from {−1,+1}. Throughout the paper, we will use A to
denote sequences of this form. The periodic autocorrelation function (PAF) of
the sequence A is defined as

PAF (A, k) =
n−1∑

i=0

aiai+k, for k = 0, 1, . . . , �n/2�

(where i + k is taken modulo n, when needed). The periodic autocorrelation
function is a concept of central importance, as it can be used to define several
classes of combinatorial matrices in a unified manner (See [8] for more details).

Given a sequence A of length n, the PAF profile of A is the following list of
�n/2� numbers:

[PAF (A, 1), . . . , PAF (A, �n/2�)]
Note that PAF (A, 0) is not used in the above definition. Since for binary
{−1,+1} sequences of length n, we have that PAF (A, 0) = n. It is also clear
that any rotation or reverse rotation of A has the same PAF profile as A, since
the PAF values remain unchanged under such rotations of the sequence. There-
fore, without loss of generality, we assume that A always starts with +1 and
ends with −1.
c© Springer Nature Switzerland AG 2018
J. Fleuriot et al. (Eds.): AISC 2018, LNAI 11110, pp. 195–205, 2018.
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In the realm of autocorrelation, we are typically interested in {−1,+1} sequences
with a constant element sum, i.e. such sequences satisfy the linear equa-
tion/constraint a1 + · · · + an = s, for a fixed constant s. This linear equa-
tion/constraint implies that there is a fixed number of “+1” and “−1” elements

in the sequence. In particular, there are exactly
n + s

2
“+1” elements and there

are exactly
n − s

2
“−1” elements.

We are interested in the following problem:

PAF Profile Problem (PPP)
For a specific length n and an element sum s, given a specific sequence of num-
bers, P = [p1, . . . , p�n/2�], is there a binary {−1,+1} sequence of length n, with
a constant sum of elements s, whose PAF profile is equal to P?

Note that it is possible that the answer to the PPP is negative. In case the
answer to the PPP is positive, we are interested in exhibiting one sequence of
length n that materializes the given PAF profile P . The question of finding all
sequences of length n that materialize the given PAF profile P is more general
and we will not be concerned with it in the current work.

Example
We illustrate the PPP with n = 9, s = −1 and P = [−3, 1,−3, 1]. A solution
to the PPP is the sequence A = [+1,+1,−1,+1,−1,+1,−1,−1,−1]. Note that
in fact we have solved the following system of one linear and four quadratic
equations in the boolean cube {−1,+1}9:

a1 + a2 + · · · + a8 + a9 = −1
a1a2 + a2a3 + · · · + a8a9 + a9a1 = −3
a1a3 + a2a4 + · · · + a8a1 + a9a2 = 1
a1a4 + a2a5 + · · · + a8a2 + a9a3 = −3
a1a5 + a2a6 + · · · + a8a3 + a9a4 = 1

Another way to describe a (+1,−1)-sequence is with runs. A run of a
(+1,−1)-sequence is defined as a fragment of the sequence such that: (a) its
elements are all +1’s or all −1’s; (b) the last element before the fragment and
the first element after the fragment are both with the opposite sign to the ele-
ments in the fragment. For example, given A = [1, 1,−1, 1, 1,−1,−1], there are
four runs in A, i.e., [1, 1], [−1], [1, 1], [−1,−1].

The basic idea in our work is to convert the problem of solving a PPP into
that of finding all the runs of A, which is equivalent to finding a t-partition of
n (i.e., n = n1 + · · · + nt where ni > 0 for i = 1, . . . , t) such that a sequence
A satisfying the given PPP can be constructed from the partition by the rules
that the first run starts with +1 and the ith run has exactly ni +1’s (when i is
odd) or −1’s (when i is even). This idea is based on the observation that every
sequence of length n corresponds to an ordered partition of n. For example, given
A = [+1,+1,−1,+1,−1,+1,−1,−1,−1], one can get a 6-partition of 9 which
is (2, 1, 1, 1, 1, 3); vice versa, given a 6-partition (2, 1, 1, 1, 3) of 9, one can get a
sequence [+1,+1,−1,+1,−1,+1,−1,−1,−1] of length 9. The two processes are
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called encoding (from sequences to partitions) and decoding (from partitions to
sequences), respectively. We explore some nice combinatorial properties related
to the PAF and runs, which are very helpful to discard candidate sequences
that cannot possibly materialize the given PAF profile and thus can significantly
improve the efficiency of the designed algorithm for solving PPP. Computational
results show that the proposed algorithm can solve very difficult PAF profile
problems. It should be pointed out that the algorithm presented in this paper
can be used for solving any PPP without any constraints on n. To the best of
our knowledge, there is no prior work for this problem.

This paper is organized as follows. In Sect. 2, some nice properties are proved
that can be used to explore some features of the partition corresponding to the
sequence A. Based on these properties, we design an algorithm with a series of
filters, to discard candidate sequences that cannot possibly materialize the given
PAF profile in Sect. 3 and it is followed by an application for solving non-trivial
problems in D-optimal designs in Sect. 4.

2 Combinatorial Properties

In this section we state and prove several combinatorial properties related to the
PAF as well as runs. These properties will be used in the algorithm, to implement
a series of filters, to discard candidate sequences that cannot possibly materialize
the given PAF profile.

For proving these properties, we introduce a new sequence C = [c0, . . . , cn−1]
associated to A with ci = ai+1

2 . Obviously, ci = 0 when ai = −1; ci = 1 when
ai = 1. Let Pk := PAF (A, k). Then we have

s′ :=
n−1∑

i=0

ci =
n−1∑

i=0

ai + 1
2

=
1
2
(s + n),

Qk :=
n−1∑

i=0

cici+k =
1
4

n−1∑

i=0

(ai + 1)(ai+k + 1) =
Pk + 2s + n

4
.

Under the assumption that A always starts with +1 and ends with −1, the
numbers of runs in A is even because the number of runs consisting of +1’s is
equal to that of runs consisting of −1’s. We denote these three numbers of runs
by rA, r

(+1)
A and r

(−1)
A , respectively. Then rA = 2r

(+1)
A . Similarly, we can define

rC , r
(1)
C and r

(0)
C for the sequence C. It is obvious that

rA = rC , r
(1)
C = r

(+1)
A and r

(0)
C = r

(−1)
A .

We will prove some nice combinatorial properties related to the PAF and runs
with the help of C.

Proposition 1. For a sequence A = [a0, . . . , an−1] of length n, we have that
PAF (A, k) ≡ n mod 4, for k = 1, . . . , n − 1.
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See [4] for a proof of the above proposition.

Proposition 2. The number of runs in the sequence A is (P0 − P1)/2.

Proof. With the above notations, we first prove r
(1)
C = Q0 − Q1.

Suppose that A has 2m runs. Thus so does C. Assume the j-th run of C
starts with cτj+1 and ending with cτj+1 where τ1 := 0. Then the runs consisting
of 1’s are those which start with the (τ2j−1 + 1)th elements in C and end with
the τ2jth elements in C for j = 1, . . . ,m. Therefore, we have

Q0 =
n−1∑

i=0

c2i =
τ2∑

i=τ1+1

1 × 1 +
τ4∑

i=τ3+1

1 × 1 + · · · +
τ2m∑

i=τ2m−1+1

1 × 1, (1)

Q1 =
n−1∑

i=0

cici+1 =

(
τ2−1∑

i=τ1+1

cici+1 + cτ2cτ2+1

)
+

(
τ4−1∑

i=τ3+1

cici+1 + cτ4cτ4+1

)
+ · · ·

+

⎛

⎝
τ2m−1∑

i=τ2m−1+1

cici+1 + cτ2mcτ2m+1

⎞

⎠

=

(
τ2−1∑

i=τ1+1

1 × 1 + 1 × 0

)
+

(
τ4−1∑

i=τ3+1

1 × 1 + 1 × 0

)
+ · · ·

+

⎛

⎝
τ2m−1∑

i=τ2m−1+1

1 × 1 + 1 × 0

⎞

⎠ . (2)

It follows that Q0 − Q1 = #{τ1, τ3, . . . , τ2m−1} = r
(1)
C . Hence

rA = 2r
(+1)
A = 2r

(1)
C = 2(Q0 − Q1)

= 2
(

P0 + 2s + n

4
− P1 + 2s + n

4

)
=

P0 − P1

2
.

��
Remark 1. The evenness of rA can be verified via Propositions 1 and 2.

Proposition 2 implies that if the given PPP has a solution, the decoded
partition of n must have p0−p1

2 parts. If p0−p1
2 is a fraction or an odd number,

we immediately conclude that the given PPP has no solution.
If the length of a run is 1, we call it a 1-run. The number of 1-runs in a

sequence A can be obtained from PAF (A, i) where i = 0, 1, 2 using the following
proposition.

Proposition 3. The number of 1-runs in A is (P0 + P2 − 2P1)/4.

Proof. Let C be a sequence associated to A as defined above. Then the number
of 1-runs in A is equal to that in C. We only need to show that the number of
1-runs in C is Q0 + Q2 − 2Q1. which can be proved by induction on the number
of 1-runs, denoted by N1.
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1. N1 = 0.
With the settings in the proof of Proposition 2,

Q2 =
n−1∑

i=0

cici+1

=

(
τ2−2∑

i=τ1+1

cici+1 + cτ2−1cτ2+1 + cτ2cτ2+2

)

+

(
τ4−2∑

i=τ3+1

cici+1 + cτ4−1cτ4+1 + cτ4cτ4+2

)
+ · · ·

+

⎛

⎝
τ2m−2∑

i=τ2m−1+1

cici+1 + cτ2m−1cτ2m+1 + cτ2mcτ2m+2

⎞

⎠

=

(
τ2−2∑

i=τ1+1

1 × 1 + 1 × 0 + 1 × 0

)
+

(
τ4−2∑

i=τ3+1

1 × 1 + 1 × 0 + 1 × 0

)
+

· · · +

⎛

⎝
τ2m−2∑

i=τ2m−1+1

1 × 1 + 1 × 0 + 1 × 0

⎞

⎠ . (3)

The substitution of (1)–(3) into Q0 + Q2 − 2Q1 yields 0, which is equal to
N1.

2. N1 = 1.
Assume C = [1, 1, . . . , 1︸ ︷︷ ︸

n−1

, 0], i.e., ci = 1 when i < n − 1 and cn−1 = 0. Then

Q0 =
n−2∑

i=0

c2i + c2n−1 =
n−2∑

i=0

1 × 1 + 0 × 0 = n − 1,

Q1 =
n−3∑

i=0

cici+1 + cn−2cn−1 + cn−1c0 =
n−3∑

i=0

1 × 1 + 1 × 0 + 0 × 1 = n − 2,

Q2 =
n−4∑

i=0

cici+2 + cn−3cn−1 + cn−2c0 + cn−1c1

=
n−4∑

i=0

1 × 1 + 1 × 0 + 1 × 1 + 0 × 1 = n − 2.

Thus Q0 + Q2 − 2Q1 = n − 1 + (n − 2) − 2(n − 2) = 1, which is equal to N1.
The case for C = [1, 0, . . . , 0︸ ︷︷ ︸

n−1

] can be proved similarly.

3. Suppose the conclusion holds for N1 < k. We now prove that it holds for
N1 = k. Let C be a sequence with k 1-runs.
(a) If C has a fragment of the form 1, 1, 0, 1, 1 and 0 in this fragment is the

jth element of C, we construct C ′ by replacing the jth element of C with
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1 and keeping the other n − 1 elements unchanged. Then the number
of 1-runs in C ′ is k − 1. Let Q′

i = PAF (C ′, i). By induction, we have
Q′

0 + Q′
2 − 2Q′

1 = k − 1.
Noting that cj−2cj = cj−1cj = c2j = cjcj+1 = cjcj+2 = 0, we have

Q′
0 =

∑

i�=j

c′2
i + c′2

j =
∑

i�=j

c2i + 1 = Q0 + 1,

Q′
1 =

∑

i�=j−1,j

c′
ic

′
i+1 + c′

j−1c
′
j + c′

jc
′
j+1

=
∑

i�=j−1,j

cici+1 + 1 × 1 + 1 × 1 = Q1 + 2,

Q′
2 =

∑

i�=j−2,j

c′
ic

′
i+2 + c′

j−2c
′
j + c′

jc
′
j+2

=
∑

i�=j−2,j

cici+2 + 1 × 1 + 1 × 1 = Q2 + 2.

Thus

Q0 + Q2 − 2Q1 = (Q′
0 − 1) + (Q′

2 − 2) − 2(Q′
1 − 2) = Q′

0 + Q′
2 − 2Q′

1 + 1 = k.

(b) If C has a fragment of the form 0, 0, 1, 0, 0 and 1 in this fragment is the
jth element of C, we construct C ′ by replacing the jth element of C
with 0 and keeping the other n − 1 elements unchanged. With similar
reasoning, we get Q0 = Q′

0 + 1, Q1 = Q′
1 and Q2 = Q′

2, which leads to
Q0 + Q2 − 2Q1 = Q′

0 + Q′
2 − 2Q′

1 + 1 = k.
(c) If C has a fragment of the form 1, 0, 1, 0 and the first 0 in this fragment

is the jth element of C, we construct C ′ by replacing the jth element
of C with 1 and keeping the other n − 1 elements unchanged. Then the
number of 1-runs in C ′ is k − 2 − (1 − cj−2). By induction, we have
Q′

0 + Q′
2 − 2Q′

1 = k − 2 − (1 − cj−2). Observe that

cj−2cj = cj−1cj = c2j = cjcj+1 = cjcj+2 = 0,

c′
j−2c

′
j = cj−2, c′

j−1c
′
j = c′

j
2 = c′

jc
′
j+1 = 1, c′

jc
′
j+2 = 0.

With similar reasoning, we get Q′
0 = Q0 + 1, Q′

1 = Q1 + 2 and Q′
2 =

Q2 + cj−2. It follows that

Q0 + Q2 − 2Q1 = Q′
0 + Q′

2 − 2Q′
1 + 3 − cj−2 = k.

Recall that Qi = (Pi+2s+n)/4. One may immediately get N1 = Q0+Q2−2Q1 =
(P0 + P2 − 2P1)/4. ��

Proposition 3 can help us discard the partitions of n where the number of
ones is not equal to (P0 + P2 − 2P1)/4. Furthermore, it can be checked that the
constraint rA = (n − p1)/2 ∧ N1 = (n + p2 − 2p1)/4 with p1, p2 as shown in the
PAF Profile Problem is equivalent to PAF (A, 1) = p1 ∧ PAF (A, 2) = p2.
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3 Description of the Algorithm

Now we summarize the ideas discussed above into the following algorithm.

Algorithm 1. (PPP solving)

Input: n, a natural number; s, an integer;
P = [p1, . . . , p�n/2�], a sequence of integers.

Output: A, a solution to the PPP determined by n, s and P if it exists; []
otherwise.

1. rA ← (n − p1)/2, N1 ← (n + p2 − 2p1)/4, n+1 ← (n + s)/2, Q ← {}.

2. If one of the following occurs, return [].

(a) rA is fractional/odd/negative;

(b) n+1 is fractional/negative;

(c) N1 is fractional/negative.

3. Compute the set of all the rA-partitions of n, denoted by P.

4. Discard α from P if the occurrence of 1 in α is not equal to N1.

5. While P 	= ∅

5.1 Pop α out of P.

5.2 Choose rA/2 elements e1, . . . , erA/2 from α such that
∑rA/2

i=1 ei = n+1

and let its supplementary sequence be [e′
1, . . . , e

′
rA/2]. Collect all such

possibilities and form a set of sequences with the designated form [e1, e′
1,

e2, e
′
2, . . . , erA/2, e

′
rA/2], denoted by C.

5.3 For each β = [β1, . . . , βrA
] ∈ C

5.3.1 Compute the sets of all the permutations of [β1, β3, . . . , βrA−1] and
[β2, β4, . . . , βrA

], denoted by P(+1)
β and P(−1)

β , respectively.

5.3.2 P(+1)
β ← Removing repeated rotation(P(+1)

β ).*

5.3.3 Pβ ← {[γ1, γ′
1, γ2, γ

′
2, . . . , γrA/2, γ

′
rA/2] : γ ∈ P(+1)

β , γ′ ∈ P(−1)
β }.

5.3.4 Q ← Q ∪ Pβ .**

6. While Q 	= ∅
6.1 Pop α out of Q.

6.2 Construct A = [+1, . . . ,+1︸ ︷︷ ︸
α1

,−1, . . . ,−1︸ ︷︷ ︸
α2

, . . . ,−1, . . . ,−1︸ ︷︷ ︸
αrA

] from α.

6.3 If A satisfies PAF (A, k) = pk for k = 3, . . . , �n/2�, then return A.

7. Return [].
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*Removing repeated rotation is an algorithm which removes the rotations or
reverse rotations of any sequence α ∈ P(+1), only leaving the representative α. It
can help to avoid considerable redundant computation. For example, [1, 1, 2, 3],
[2, 3, 1, 1] and [2, 1, 1, 3] are viewed as identical partitions because we can obtain
the other two after rotating or reversely rotating one sequence. If one of them is
the solution to a PPP, so are the other two.

** One may also remove the repeated cycles or reverse cycles from Pβ . How-
ever, it should be pointed out that only those cycles obtained from rotations or
reverse rotations by even positions can be discarded.

The above algorithm is illustrated with the following example.

Example 1. Consider the PPP given in Sect. 1 where with n = 9, s = −1 and
P = [−3, 1,−3, 1]. We solve the system by using Algorithm 1.

Step 1. By calculation, rA = 6, n+1 = 4, N1 = 4 and Q is initialized to {}.
Step 2. Since rA, N1, and n+1 are all positive integers and rA is an even number,

we go to Step 3.
Step 3. Compute all the 6-partitions of 9 and get

P = {[1, 1, 1, 2, 2, 2], [1, 1, 1, 1, 2, 3], [1, 1, 1, 1, 1, 4]}.

Step 4. When α = [1, 1, 1, 2, 2, 2], the number of occurrences of 1 in α is 3, not
equal to N1; thus [1, 1, 1, 2, 2, 2] should be removed from P. Similarly,
[1, 1, 1, 1, 1, 4] should also be removed from P. So P is updated with
{[1, 1, 1, 1, 2, 3]}.

Step 5. Since P 	= ∅, pop α = [1, 1, 1, 1, 2, 3] out of P (which becomes an empty
set). Then the groups with 3 elements from α are [1, 1, 1], [1, 1, 2], [1, 1, 3]
and [1, 2, 3]. Only [1, 1, 2] satisfies 1 + 1 + 2 = n+1 = 4 and its supple-
mentary sequence is [1, 1, 3]. Thus C = {[1, 1, 1, 1, 2, 3]}.

Next let β = [1, 1, 1, 1, 2, 3] and compute the permutations of [1, 1, 2]
and [1, 1, 3], which yields

P(+1)
β = {[1, 1, 2], [1, 2, 1], [2, 1, 1]}, P(−1)

β = {[1, 1, 3], [1, 3, 1], [3, 1, 1]}.

After removing the repeated cycles in P(+1)
β , we get P(+1)

β = {[1, 1, 2]}.
Then Pβ is assigned with

{[1, 1, 1, 1, 2, 3], [1, 1, 1, 3, 2, 1], [1, 3, 1, 1, 2, 1]}.

Add Pβ to Q and we get

Q = {[1, 1, 1, 1, 2, 3], [1, 1, 1, 3, 2, 1], [1, 3, 1, 1, 2, 1]}.

Step 6. Check whether the sequence A constructed from every α ∈ Q satis-
fies the conditions PAF (A, 3) = −3 and PAF (A, 4) = 1. Eventually,
we get a solution to the given PPP, which is [+1,−1,+1,−1,+1,+1,
−1,−1,−1]. Its decoded partition is [1, 1, 1, 1, 2, 3].
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4 Application in D-Optimal Designs

The Maximal Determinant problem asks for the largest possible determinant (in
its absolute value) of an ν × ν matrix whose entries are chosen from the set
{−1,+1}. It was first posed by Hadamard [4,7] and has many applications in
the areas of experimental design and coding theory. However, it is quite difficult
when ν is big. In the worst case, the search space could have 2ν2

possibilities
with ν2 to be the number of unknowns. The Maximal Determinant problem is
still an open problem in the full generality. Significant progress on the problem
comes from Ehlich [6]. He proved that if R1 and R2 are circulant (−1, 1)-matrices
of order n such that R1R

t
2 + R2R

t
2 = 2(n − 1)In + 2Jn where In is the n × n

identity matrix and Jn is the n × n matrix with all entries 1, then the matrix

H =
(

R1 R2

−Rt
2 Rt

1

)

has the maximal determinant. R1 and R2 can be constructed from cyclic supple-
mentary difference sets which can be compressed into periodic autocorrelation
functions. The method of compression for periodic autocorrelation is introduced
in [5]. We also refer to [1–3,9] for the motivation of our work.

Given two PAF sequences PAFA and PAFB of length n, if PAFA+PAFB =
[α, . . . , α], i.e., the sum of PAF values are constant, then PAFA and PAFB are
called complementary sequences. For instance, given α = 2 and two PPPs with
n = 41, sA = 9, sB = −9 and

PAFA = [1, 5,−3, 5, 1, 1, 1, 1,−3, 5, 1, 5, 1,−3, 1, 5, 9,−3,−7,−3],
PAFB = [1,−3, 5,−3, 1, 1, 1, 1, 5,−3, 1,−3, 1, 5, 1,−3,−7, 5, 9, 5]

which are complementary sequences. Solving the PPPs with the above algorithm,
we get the following two sequences: 1

A = [ + 1,−1,+1,−1,+1,−1,+1,+1,−1,−1,+1,+1,+1,−1,−1,

− 1,−1,+1,−1,+1,+1,+1,+1,+1,+1,+1,−1,+1,+1,+1,

− 1,+1,+1,−1,+1,+1,+1,+1,−1,−1,−1],
B = [ + 1,−1,−1,+1,−1,+1,+1,−1,−1,−1,+1,−1,−1,−1,−1,

− 1,−1,−1,+1,+1,−1,+1,−1,−1,+1,+1,−1,−1,+1,+1,

+ 1,−1,+1,−1,−1,−1,−1,−1,+1,+1,−1].

Next we construct two circulant matrices R1, R2 from A and B (as shown
below). More explicitly, let A (or B) be the first row of R1 (or R2) and every
row (except the first) of A (or B) is a right cyclic shift by one of the previous
row. Then the D-optimal matrix H can be constructed as

H =
(

R1 R2

−Rt
2 Rt

1

)
.

1 The experiments are performed in Maple 2017 on a Windows PC with an Intel(R)
Core(TM) i7-6700U CPU @3.40 GHz and 8 GB RAM. The program terminates with
success after 7750 s and 14156 s, respectively.
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Thus the determinant of H is 2161 34 540.

R1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + + − + + + + − − −
− + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + + − + + + + − −
− − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + + − + + + + −
− − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + + − + + + +
+ − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + + − + + +
+ + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + + − + +
+ + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + + − +
+ + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + + −
− + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − + +
+ − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + − +
+ + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + + −
− + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + + +
+ − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − + +
+ + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + − +
+ + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + + −
− + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + + +
+ − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + + +
+ + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + + +
+ + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + + +
+ + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + + +
+ + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − + +
+ + + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + − +
+ + + + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − + −
− + + + + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − − +
+ − + + + + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − − −
− + − + + + + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − − −
− − + − + + + + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + − −
− − − + − + + + + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + + −
− − − − + − + + + + + + + − + + + − + + − + + + + − − − + − + − + − + + − − + + +
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⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Mathématiques 17, 240–246 (1893)

8. Kotsireas, I.S.: Algorithms and metaheuristics for combinatorial matrices. In: Parda-
los, P., Du, D.Z., Graham, R. (eds.) Handbook of Combinatorial Optimization.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 13

9. Orrick, W.P.: On the enumeration of some D-optimal designs. J. Stat. Plan. Infer-
ence 138(1), 286–293 (2008)

http://arxiv.org/abs/1112.4160v1
https://doi.org/10.1007/978-1-4419-7997-1_13


Intelligent Documents and Collective
Intelligence



LAText: A Linear Algebra
Textbook System

Xiaoyu Chen1,2(B), Haotian Shuai3, Dongming Wang1,2,3, and Jing Yang3

1 Beijing Advanced Innovation Center for Big Data and Brain Computing,
Beihang University, Beijing 100191, China

chenxiaoyu@buaa.edu.cn
2 LMIB-SKLSDE, School of Mathematics and Systems Science, Beihang University,

Beijing 100191, China
3 SMS-HCIC, College of Software and Information Security,
Guangxi University for Nationalities, Nanning 530006, China

Abstract. Mathematical textbooks play a key role in disseminating
systematized mathematical knowledge of study. Most textbooks are
published in printed or online electronic format without machine-
understandable semantics. In this paper we present an intelligent
system for managing linear algebra knowledge in the form of textbook
with open access to users. Fine-grained data schemas are designed to
represent structural semantics of knowledge contents and implemented
by using a graph database with an interface of authoring and browsing
knowledge contents and structures. A vector-based retrieving method
is implemented to rank knowledge objects with respect to query. We
report the results of our investigations on semantic representation of
mathematical knowledge with experimental implementations for the
development of such textbooks.

Keywords: Intelligent textbook · Knowledge retrieval
Mathematical knowledge management · Semantic representation

1 Motivation

Mathematical textbooks have been used to systematically introduce mathematical
knowledge of study to students or learners and played a fundamental role in
education and knowledge dissemination. Traditional textbooks are published
usually in printed or online electronic formats, such as PDF and HTML, as
whole documents. Most textbooks are stored and managed in libraries accessible
only via meta information including titles, authors, publishers, and keywords. To
enhance their efficiency and adaptivity, a number of learning systems have been
developed to manage learning objects that encapsulate pieces of mathematical
knowledge in a database. Based on teaching objectives and student requirements,
the systems could assemble necessary learning objects into a visual dependent
graph or a document accordingly. This makes it possible for students to learn
c© Springer Nature Switzerland AG 2018
J. Fleuriot et al. (Eds.): AISC 2018, LNAI 11110, pp. 209–214, 2018.
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knowledge contents in a more flexible way. However, the textbook contents are
not yet machine-understandable to a desired extent, so that computer programs
still have difficulties in effectively dealing with the underlying knowledge to exactly
respond users’ requirements of query, browsing, and question answering, etc.

Many efforts have been dedicated to tackling the difficulties of managing
textbook knowledge effectively. For example, electronic geometry textbooks
were studied from the point of view of dynamic software specially designed
for interactively managing geometric knowledge that can be processed and
interfaced with software tools developed for geometric reasoning, diagram
visualization, multi-versioned textbook generation and consistency checking [3,
5]. An intelligent and dynamic geometry book for the future was proposed and
sketched with adaptive, collaborative, visual, and intelligent features to bring
together a whole new generation of mathematical tools with impact in all levels
of education [13]. Interactive mathematical documents were introduced and
realized within the MathDox system that supports recording context information
of both mathematical and personal data for users [6]. Moreover, an intelligent
textbook, named Inquire Biology, was designed to answer users’ questions
by applying knowledge representation and question-answering technology to
electronic textbooks [2]. Intelligent tutoring systems have been intensively
studied and developed to provide immediate and customized instruction or
feedback to learners by synthesizing domain knowledge, problem solving
strategies, pedagogical approaches, student capabilities and profiles, etc. into
interactive exercises [11].

Based on previous explorations, we started a new project named LAText
(for Linear Algebra Textbook system). The main objective is to investigate
the methodologies of creating intelligent textbook systems capable of not only
managing mathematical knowledge with semantics in the form of textbook but
also making use of the semantic representations of knowledge for fine-grained
management and retrieval, automated computation and reasoning, effective
interaction and tutoring. This is an ongoing project and we will present our
general view and design principles on building such textbooks and report our
progress and experiments on the implementation of a system.

2 General View on Intelligent Textbooks

We view intelligent textbooks as software platforms for managing both domain
knowledge with semantics and software toolkits of various kinds to provide users
with facilities of dynamic authoring and rendering, fine-grained retrieving and
browsing, and automated problem solving. Their features can be characterized
from the following three aspects.

Modularization and Structurization. In order to be effectively manageable
and processable, systematic knowledge contents need to be classified and
encapsulated into manipulable semantic units, called knowledge objects. Each
knowledge object organizes contents with the same semantics but in different
representation formats for specific applications of rendering, computing, and
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reasoning, etc. According to different types of semantic relations, knowledge
objects are linked with each other in a multi-scale way so that knowledge
retrieving, browsing, and problem solving can be efficiently performed
consequently. Some standard formats, such as OMDoc [8] and OntoMath [7],
have been developed for the modularization and structurization of mathematical
documents.

Formalization and Interoperation. It is important to make knowledge
contents capable of interoperating with external software tools and other
knowledge resources to efficiently realize specific intelligent settings, such as
multi-platform displaying and automated problem solving. Transformations
between different knowledge representation formats are required with semantics
unchanged. Task-oriented formalization approaches are provided for representing
the semantics of knowledge objects in a machine-processable way and the
formalized contents can thus play a standard and intermediate role in
corresponding transformation tasks. In addition, semantic features can also be
extracted from the formalized representations for accurate knowledge object
matching and retrieving. Some standard formats, such as OpenMath [12],
have been designed and implemented for the formalization of mathematical
expressions and interfacing with selected computer algebra systems and dynamic
geometry software. Some systems, such as Theorema [15] and Mizar [1], support
mathematical theorem proving, verification, and theory exploration through
formalizing a certain amount of mathematical knowledge.

Crowdsourcing and Personalization. The textbook is freely accessible on
the web to teachers, students, and other interested users. Structured and
formalized knowledge contents are allowed to be created, revised, and reviewed
via collective intelligence in contrast to traditional textbooks usually authored
by a few domain experts with their own intelligence. Effective mechanisms are
implemented to automatically or interactively justify the assessments of revisions
and update the textbook with its acceptable version adaptively in real time [4].
According to specified teaching or learning objectives and tasks, the platform can
automatically retrieve and interactively assemble target knowledge contents into
usable courseware and documents for teachers. Furthermore, every student has
access to a personalized dynamic textbook under comprehensive consideration
of the student’s learning capability and weakness and tutoring pedagogy. To
personalize learning processes of students, intensive efforts have been made
on adaptive learning and intelligent tutoring methods and systems, such as
ActiveMath [10] and Knewton [14].

3 Design Principles and Elements of LAText

Based on our general view, we have investigated concrete methods for the
construction of an intelligent textbook system by taking linear algebra as case
study. The following principles have been used for the design of the LAText system.
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Architecture and Modules. The system manages both a fine-grained know-
ledge base and a knowledge processing toolkit to respond users’ requests through
a user interface with dialog box on the web (see Fig. 1). The knowledge base
stores knowledge objects encapsulating multi-format contents together with
specific relations among the objects. The knowledge toolkit includes a search
engine for retrieving knowledge objects via free text, mathematical expressions,
and semantic relations, a convertor for equivalently transforming knowledge
contents from one format to another, and interfaces with external computing
and reasoning tools.

Fig. 1. Framework of the LAText system

Knowledge Management. It is difficult to select an appropriate granularity
of knowledge objects satisfying all requirements. We deal with the problem in
a scalable way. Firstly, knowledge objects are created, encapsulating contents
of definitions, axioms, theorems, proofs, problems, solutions, and examples, etc.
that are usually marked in traditional mathematical textbooks. Then related
objects are linked with each other through tagged edges that indicate meanings
of the relations, such as definition of Determinant →isContextOf Cramer’s Rule,
symmetric matrix →inherit square matrix, and orthonormalizing a set of vectors
→hasAlgorithm Gram–Schmidt process. Finally, knowledge objects together with
their relations are viewed as a tagged relationship graph, called knowledge
development graph, depicting the dependent structure of domain knowledge.
For the purposes of accurate retrieving, computing, and reasoning, selected
subgraphs of the knowledge development graph can further derive more detailed
tagged graphs by analyzing and processing the encapsulated contents. On the
whole, the knowledge base can be viewed as consisting of multiple tagged
relationship graphs for different views and applications of the system. To formally
represent the structural semantics of knowledge contents, we have designed an
ontology defining concepts of knowledge objects, properties and relations of the
concepts, and required constraints.
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4 Implementation Issues

We have implemented a preliminary version of LAText [9] built with Node.js
server, AngularJS front-end web application framework, and Ionic client,
to be efficiently deployed on both desktop and mobile platforms. A graph
database system Neo4j is used as a knowledge base to store and manage
structural textbook contents. Currently, representation formats for mathematical
expressions in LaTEX, MathML, and OpenMath are allowed. A rich text editor
CKEditor with MathJax plugin is embedded into the client for users to edit
knowledge objects with mathematical contents. Traditional readable documents
in HTML with hybrid links are automatically converted and generated from the
stored knowledge contents (see Fig. 2).

Fig. 2. Rendering LAText

Textbook content adding, revising, and
removing are allowed dynamically without
breaking the non-redundancy and complete-
ness of the textbook. To avoid creating
a knowledge object already existing in the
knowledge base, we adopt the following
interactive mechanism. A classic text-based
search engine is implemented based on vector
space model with TF-IDF scheme. The
search engine retrieves from the knowledge
base a ranked list L of knowledge objects
O1,O2, . . . ,On whose contents are similar with
the content of a knowledge object O that a user
is adding or revising. Then the user determines
whether there exists an Oi in L which has the
same semantics as O. A path searching tool is
also implemented for retrieving related objects
in the view of tagged relationship graphs.

5 Conclusion and Future Work

In this paper, we present our general view on intelligent mathematical textbooks
from three aspects: structurization, interoperation, and personalization. As an
ongoing project of case study, a linear algebra textbook system LAText has
been designed and a preliminary implementation of the system is reported.
Current version of the system provides users with basic manipulations of
adding, removing, revising, browsing linear algebraic knowledge objects, and
retrieving similar ones. Traditional textbook-like documents with hybrid links
can be generated and rendered. To realize accurate knowledge retrieval and
automated problem solving, we will focus our future work on the design of
suitable formal languages for encoding knowledge object contents that require
efficient transformations with both natural languages and internal representation
formats of software tools developed for algebraic computation and reasoning.
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Furthermore, the creation of textbooks via collective intelligence and the
personalization of textbooks adaptive to learners will be studied in a late stage.
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Abstract. We report on preliminary work towards the automated find-
ing of theorems in elementary geometry. The resulting system is being
currently implemented on top of GeoGebra, a dynamic geometry sys-
tem with millions of users at high schools and universities. Our system
exploits GeoGebra’s recently added new functionalities concerning auto-
mated reasoning tools in geometry. We emphasize that the method for
finding geometric properties that are present on a user-provided con-
struction is purely symbolic, thus giving such properties rigorous math-
ematical certainty. We describe some generalities about the system we
are developing, which are illustrated through an example.

Keywords: Automated discovery · Automated theorem proving
Computer algebra · GeoGebra

1 Introduction

Half a century ago Lenat’s AM [1] introduced a rule based system able to suc-
cessfully discover (or rediscover) non-trivial mathematical results in number the-
ory. It tried to replicate a human approach to “doing mathematics”. Our aim,
somehow similar, but in the realm of automated discovery in geometry, has been
inspired by the strategy reported in [2, p. 44]. Roughly, it consists of using auto-
matic reasoning tools for checking mechanically produced statements involving
elements of a geometric construction, both in the case where those elements
are actually present in the construction or when the elements are automatically
generated by the program from the given ones. For example, given a triangle
and a point on its plane, the system will develop some elementary operations
between the point and the vertices (or sides). These operations (drawing perpen-
dicular lines, adding midpoints of sides and lines from vertices to midpoints, . . .)
can be also imposed by the user or suggested somehow by the system. Then, the
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program will verify the truth/failure of different statements concerning collinear-
ity, parallelism, . . . of the different elements, given or generated, in the input
construction.

This line of work concerning automated discovery (i.e. finding statements
holding in a given figure) in geometry was initiated, to the best of our knowledge,
in [3]. There, the authors developed a system with a generator of constructions
where a systematic search is performed to find new conjectures which are then
proved through Wu’s algebraic method. A related proposal, able to discover all
properties of a construction given a set of rules, was reported in [4]. Finally, a
report on discovering properties from scanned images has been described in [5].
Some strategies are used to generate conjectures involving the image translation
to a geometric figure, and algebraic computations return their truth or falsity.

Our system is being built on top of GeoGebra, exploiting recent abilities on
automatic reasoning tools in geometry [6]. The Automated Geometer, AG, (also
meaning Amateur Geometer) intends to be a GeoGebra module where pure
automatic discovery is performed. It includes a generator of further geometric
elements from those of a given construction, and a set of rules for producing
conjectures on the whole set of elements. But the ultimate AG aim is not just
performing a systematic exploration of the space of possible conjectures, but
mimicking human thought when doing elementary geometry.

GeoGebra, from its first versions, incorporates a Relation tool that returns
the results of some basic checks (for instance, incidence, parallelism, perpendic-
ularity, equal length, . . .) between a pair of selected elements. This command
is not exclusive to GeoGebra: it also existed in previous dynamic software like
Cabri, but until the inclusion of automated reasoning tools all these approaches
in widespread environments were based on numerical checking. A paradigmatic
example of this numerical checking is OK Geometry [7]: this tool detects rele-
vant facts in a construction by slightly moving its free points, checking which
relations among them remain then invariant, and filtering the results through a
library of well-known properties.

The GeoGebra AG module does not perform numerical checking. Rather,
all facts are symbolically managed by means of the Prove command [6]. The
module runs on modern browsers, thus providing universal accessibility, and
it is controlled by the Javascript API [8]. Currently, AG is able to accept a
user defined construction (that could be also the result of loading a preexistent
one) and it searches for meaningful relations between the construction elements.
All possible relations are listed on a combinatorial basis, and those classified
as generally true by the prover algorithm are returned. So, AG only outputs
certified true properties in constructions. Furthermore, since it is built on top of
GeoGebra, it can reach an audience of millions of mathematics students.

From the technical perspective we highlight that the AG module currently
runs in a web browser and it implicitly uses a precompiled version of the Giac
[9] computer algebra system as a piece of JavaScript or WebAssembly [10] code.
To our knowledge, these kinds of technologies ensure the users the quickest per-
formance to obtain results on heavy computations in a popular, user-friendly
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way. For instance, running our Prove algorithm, that is based on an algebraic
geometry approach to automatic proving [11], requires Gröbner bases computa-
tions and variable elimination, two time and space consuming operations that
are efficiently solved in our framework.

2 AG at Work

The AG module can be freely tested at http://htmlpreview.github.io/?https://
github.com/kovzol/ag/blob/master/automated-geometer.html, and its develop-
ment is shown at https://github.com/kovzol/ag. Figure 1 shows part of the
default screen of the web application. There, a simple construction is displayed,
involving three user-defined points A,B,C, their midpoints D,E, F and a fourth
midpoint G between D and E. The user is requested to select, among a list of
possible choices, the type of generic properties to be tested. Currently, the choices
are: collinearity or equality of distances between three points, and perpendicu-
larity or parallelism of segments defined by two points.

Fig. 1. The default construction in Automated Geometer.

http://htmlpreview.github.io/?https://github.com/kovzol/ag/blob/master/automated-geometer.html
http://htmlpreview.github.io/?https://github.com/kovzol/ag/blob/master/automated-geometer.html
https://github.com/kovzol/ag
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Soon, after starting the discovery process and assuming that collinearity and
distance equality between three points have been selected, AG returns a list of
sixteen theorems:

D ∈ AB,F ∈ AC,E ∈ BC,G ∈ BF,G ∈ DE,AD = BD,

AD = EF,AF = CF,AF = DE,BD = EF,BE = CE,

BE = DF,BG = FG,CE = DF,CF = DE,DG = EG.

It could be argued that some of these theorems are, in fact, mere reformulations
of the constructions constraints. For instance, it is true that D ∈ AB since D is
the midpoint of A and B. An identical argument can also be applied to AD =
BD. Only theorems like AD = EF,AF = DE,BD = EF,BE = DF,CE =
DF,CF = DE are of different nature, although, for the expert reader, they
could seem also quite obvious. Yet, we remark we are just describing a prototype
and a basic toy example. Anyway, deciding, automatically, the relevance of the
obtained mathematical properties is an interesting, on-going, research question
[12]. On the other hand let us remark that AG is being designed not only as an
academic tool, but as a geometry discovery product for the masses (i.e. for being
used in touristic walks, as a helper mechanism to appreciate better the geometry
of some monuments [13]), so we do not have yet a final answer about the level of
difficulty of the results that we would expect our program to achieve. A balance
between cognitive load and the richness of discovered facts will be investigated
with the help of didactics experts and field tests.

3 Future AG Improvements

A major improvement will consist of connecting the LocusEquation GeoGebra
command [14] with AG. Currently, this command can accept two parameters, a
Boolean condition and a free point in the construction, returning as an implicit
curve the equation that the free point must satisfy in order to verify the Boolean
condition. A well-known example of this situation is the Simson-Wallace theorem
about the collinearity of the projections from a point on the sides of a triangle
(Fig. 2, the projections are collinear if the point D lies on the circumcircle).

The actual version of LocusEquation gives a conic as the necessary path of
D for the sought collinearity. Under the current AG development, points D,E, F
are not, in general, aligned, so the theorem E ∈ FG will not be returned. AG
aims to complement user intelligence (when he/she states the boolean condition)
by a heuristic search on the construction elements, that is, using in a systematic
way the LocusEquation command with simple conditions and relevant points
of the construction. The outputs of the command will also be filtered trying to
identify meaningful relations in the construction.
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Fig. 2. The projections from a circumcircle point to the sides are collinear.
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Abstract. The pursuit of an AI Geometry Book should involve the
study of how currently developing methodologies and technologies of
geometry knowledge representation, management, deduction and discov-
ery can be incorporated effectively into a computational application, a
“book” of the future.

In the geometry book of the future statements and proofs should be
en-lighted by dynamic geometry sketches and diagrams, and the correct-
ness of the proofs should be ensured by computer checking. The book
will be intelligent, the reader should be able to ask closed or open ques-
tions, and can also ask for proof hints. The book should also provide
interactive exercises with automatic correction.

To fulfil such a goal the development of an open library of geometry
automated theorem provers with a carefully design application inter-
face protocol, must be considered. This would allow to link computer
platforms for geometry with theorem provers, providing the automatic
deduction capabilities for the AI Geometry Book.

1 Introduction

The geometry book of the future should be intelligent, correct, visual, adaptive,
and collaborative in its production and use. Although the previous efforts and
achievements help set aside many obstacles on the way to an intelligent geometry
book, all the approaches, methods, techniques, basic tools, and systems, are still
developed, applied, and conceived in separated, and relatively small, circles [13,
19].

When considering the application of automated reasoning in a learning con-
text two, somehow opposing, goals are to be considered: efficiency and readability
of the proofs. Whenever the help of the computer is considered, the user wants
a fast and friendly answer [6].

Overall, the existing methods for automated theorem proving and discovering
in geometry are very efficient and, in some cases, providing an output that can be
used in a learning context. However, finding a method/implementation capable
of both (fast and friendly) is only possible for a small number of cases. There is
still a lot of room for further improvements [3].

Automated deduction methods can be more tightly integrated within interac-
tive theorem provers and dynamic geometry [8,9]. Automated deductions meth-
ods are currently unable to produce guidance and explanations for educational
c© Springer Nature Switzerland AG 2018
J. Fleuriot et al. (Eds.): AISC 2018, LNAI 11110, pp. 221–226, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99957-9_16&domain=pdf
http://orcid.org/0000-0001-7728-4935


222 P. Quaresma

purposes. New techniques are needed involving synthetic geometry, formalisation
techniques and artificial intelligence [2,4,5,16].

Computer checking of geometric proofs has been addressed in the literature
but: current formal proofs are not readable, natural and visual languages should
be connected with formal deductions; several foundations of geometry and auto-
mated theorem provers are available, but all connections between them have not
been obtained; the editing of a pedagogical corpus from formalisation have not
been studied deeply enough [4,7,10,20,21].

Building on the work already developed in the systems: OpenGeoProver
(OpenGeoProver) an open source project implementation of GATPs [1,2]; the
Thousand of Geometric problems for geometric Theorem Provers (TGTP) a
problem repository and test bench [12]; and the standardised format for con-
structions and conjectures in geometry, i2gatp [14], we intend to extend and
integrate these projects, providing deductive services to other applications.

The immediate program include the development/implementation of new
methods to incorporate into the OpenGeoProver ; finalising the standard format
i2gatp to be able to define a programming protocol between OpenGeoProver
and third-party programs; extend the platform TGTP in such a way that it can
become the base for a competition between GATPs developed by the scientific
community, to boost the improvement of methods/implementations.

Overview of the Paper. This paper is organised as follows: In Sect. 2 the current
status and future developments of OpenGeoProver are described. In Sect. 3, the
TGTP platform is described and the goal for a future competition between
GATPs are set. In Sect. 4 the common format i2gatp is described and future
developments are foreseen. In Sect. 5 the integration issues are discussed. In
Sect. 6 some final remarks are drawn.

2 Open Geometry Prover

The OpenGeoProver1 is an open source project, aiming to implement various
geometry automated theorem provers (GATPs). It can be used as a stand-alone
tool but can also be integrated into other geometry tools, such as dynamic geom-
etry software, e.g., work is being made to integrate OpenGeoProver with GeoGe-
bra [2]. In its current state, OpenGeoProver implements two algebraic methods,
the Wu’s method and the Gröbner basis method, as well as one semi-synthetic
method, the area method . Some initial work on the implementation of the full-
angle method was already done [1].

As future developments we have: the implementation of new methods, fin-
ishing the work done with full-angle method , implementation of the deductive
databases method, among others; the design of an application programming
interface (API), allowing the different implemented GATPs to be easily used by
other programs; write an extensive documentation, with a special care in the
description of the API.
1 https://github.com/ivan-z-petrovic/open-geo-prover/.

https://github.com/ivan-z-petrovic/open-geo-prover/
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The OpenGeoProver will constitute an excellent mean to provide automated
reasoning resources to the AI Geometry Book .

3 The TGTP Platform

Thousands of Geometric problems for geometric Theorem Provers (TGTP) is a
Web-based library of problems in geometry, a comprehensive common library of
problems with a significant size and unambiguous reference mechanism, easily
accessible to all researchers in the automated reasoning in geometry community.
It share the database of problems with the GeoThms, a Web-based framework
for exploring geometrical knowledge that integrates Dynamic Geometry Software
(DGS), Automatic Theorem Provers (ATP), and a repository of geometrical
constructions, figures and proofs [5,12].

One of the main motivations in building TGTP is to support the testing and
evaluation of geometric automated theorem proving (GATP) systems. Providing
a common library of problems for the testing of GATPs it will allow the pursue
of the development of better methods/implementations.

Along the lines of the competition CASC [18], the conception and opera-
tionalization of a competition among GATPs is part of the future developments
for the TGTP , it will allow the development of better methods/implementations,
but will also push in the direction of a better interface between the geometric
information and the programs that can use the information.

For the AI Geometry Book a repository such as TGTP is of extreme impor-
tance, it will constitute a source of valuable information to enrich the “book”.

4 The i2gatp Common Format

The i2gatp format is an extension of the i2g (Intergeo) common format aimed
to support conjectures and proofs produced by geometric automatic theorem
provers. The goal in building such a format is to provide a communication chan-
nel between different tools from the field of geometry, allowing linking such
tools, as well as allowing the use of geometric knowledge kept in different repos-
itories [14,17].

The i2gatp format is a combination of four XSD files: information.xsd,
with all the meta-information regarding the conjecture; intergeo.xsd,
the Intergeo i2g format, for the description of geometric constructions;
conjecture.xsd, the translation of geocons.dtd to the XSD format [11];
proofInfo.xsd, the meta-information regarding the proof generated by a given
GATP on a given computing platform..

The i2gatp container is an extension of the i2g container. In addition to the
information in the i2g container, all the information regarding the geometric
conjecture and all the proofs attempts are kept in the i2gatp container.

The i2gatp library is an open source project2, to support the writing of
filters from/to the i2gatp container and different geometric computation tools.
2 https://github.com/GeoTiles/libI2GATP.

https://github.com/GeoTiles/libI2GATP
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The i2gatp library will enable to specify an API, opening the possibility of
geometric information interchange and the use of the GATPs in OpenGeoProver
(and others, supporting the i2gatp format) and also the information contained
in TGTP .

5 Deductive Tools in an AI Geometry Book

The integration that can be seen in systems like GeoThms, GeoGebra, Cinderella,
JGEX, GCLC and GeoProof [2,4,5,10,16,21], should be used as an inspiration
to the AI Geometry Book .

The AI Geometry Book should be able to interface with repositories of geo-
metric information and with DGSs and GATPs. Using the i2gatp common
format as interface we could include deductive services via the OpenGeoProver
and information via the TGTP repository.

Another two development that the author and other researcher are working
on are: a taxonomy for geometric problems allowing to adjust the queries to each
and every user [15]; a semantic search mechanism that will allow to search for
geometric information in a geometric fashion.3

6 Conclusions and Future Work

The pursuit of an AI Geometry Book—where the “book” is understood as a
computation platform that will extend the concept of (non-digital) object of
study, a repository of (non-digital) knowledge, to the digital world—needs the
use of many AI techniques. AI is needed for the automatic deduction, for the
adaptation to the user’s profiles, for the search of information.

Some of this issue are already, partially, solved, e.g. there are already many
efficient GATPs, but the integration of all the “players” in such a way that a
AI Geometry Book can be built is still to be done. As described above we are
working on those issues, trying to integrate OpenGeoProver with TGTP through
the i2gatp common format, and also on some issued related with the usability
of such integrated platform, i.e. the adaptability and the semantic geometric
search.
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Abstract. New word detection is of great significance for Chinese text
information processing, which directly affects the capabilities of word
segmentation, information retrieval and automatic translation. Focus-
ing on the problem of Chinese new word detection, this paper proposes
an independence-testing-based detection approach with no need of prior
information. The paper analyzes statistical characteristics of new words
in Chinese texts, uses statistical hypothesis testing to infer the correla-
tions between adjacent semantic units, and proposes an iterative algo-
rithm to detect new words gradually. Our algorithm is evaluated on both
large-scale corpus and short news texts. Experimental results show that
this approach can effectively detect new words from all kinds of news.

Keywords: New word detection · Hypothesis testing
Test of independence · Semantic unit

1 Introduction

Words, the basic unit of a language, are important in information processing. In
the fields of information retrieval, automatic translation, part-of-speech tagging
and text semantic analysis, words are the basic symbolic units with particular
meanings for processing. However, unlike English and other western languages,
Chinese is based on characters without white spaces to mark word boundaries.
Moreover, there are not unified definitions or rules to identify Chinese words. In
order to process Chinese texts, it always needs a dictionary for word segmenta-
tion.

This work was supported by Fundamental Research Funds for Central Universi-
ties (No. BLX2015-17) and National Nature Science Foundation of China (No.
61702025).
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However, the form of Chinese words is flexible and diverse. New words can be
generated from existing words and characters through derivation, compounding,
abbreviation, etc. The occurrence of new words makes it difficult to handle word
segmentation with a fixed dictionary. Especially with the rapid development of
the Internet, unknown names and places, new companies and expressions and
other kinds of new words emerge frequently. The out-of-vocabulary problem
becomes the most important factor that affects the accuracy of Chinese word
segmentation [1]. Therefore, effective methods of new word detection are very
important for Chinese language processing.

As words are not segmented by special symbols in Chinese and there are no
morphological rules for Chinese word identification, it is not feasible to detect
new words by syntax analysis or morphological analysis. Currently, frequently
used methods for new word detection are based on statistics, semantical rules,
or both. Candidates of new words are extracted according to basic statistical
features, and they are filtered according to more complex statistical features
or semantical rules. These methods are effective in practice, but they usually
require prior knowledge or large-scale training corpus which leads to unexpected
correlations between the detection results and the prior information.

To eliminate the dependencies on prior knowledge and training corpus, this
paper studies the problem of Chinese new word detection from the perspective
of statistical hypothesis testing, and proposes a new word detection approach
with no need of prior information. The main contributions of this paper are as
follows.

(1) Three criterias are proposed to describe the statistical characteristics of new
words in Chinese texts;

(2) Statistical hypothesis testing techniques are used for Chinese new word
detection, and an independence-testing-based detection approach is pro-
posed.

2 Related Work

Currently, most effective methods of Chinese new word detection adopt a two-
step approach. In the first step, all possible candidates are extracted from the tar-
get text. As the result may include many garbage strings, in the second step dif-
ferent strategies and methods are used to filter out garbage strings and improve
the accuracy.

In the candidate extraction step, the most frequently used method is provid-
ing some kind of frequency threshold for character strings. Once the frequency
of a string exceeds the threshold, the string will be extracted as a candidate. Zou
et al. assumed that new words need to be repeated in a certain number of texts
in a period of time. Thus, the total frequency of a string and the number of texts
that contain the string are used as thresholds for candidate extraction [2]. Luo
and Song proposed the concept of suffix array to handle candidate extraction.
Strings that have the same prefix or suffix are indexed in right or left suffix
array, and the ones that appear in both suffix arrays are treated as candidates
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[3]. Li et al. set a fixed frequency threshold for n-gram candidate extraction [4].
Zhang et al. used hierarchical pruning to improve the n-gram based method,
which reduces the number of garbage strings [5].

The methods for candidate-word filtering are mainly based on statistics or
semantic rules. In statistics-based methods, different statistical features of new
words are used to describe the internal association and external boundary of
new words. He et al. proposed the concepts of inside word probability and dou-
ble character coupling for filtering candidate words [6]. Luo and Zhao et al. used
mutual information, left/right entropy and average entropy of left/right neigh-
bor to filter candidate words [3,7]. Statistical models where various lexicons or
statistical features are used, such as predication by partial matching (PPM) and
conditional random fields (CRF), were also applied to new word detection [8,9].

Besides statistical features, manually constructed word-formation rules are
also used for candidate words filtering. Zou et al. defined a set of rules by regular
expressions for candidate-word filtering [2]. Cui et al. trained three garbage lex-
icons and one suffix lexicon using a large-scale corpus to remove garbage strings
[10]. Zhang and Lin et al. integrated statistical features, semantical rules and
other tactics to filter candidate words [5,11].

These methods are effective in new word detection. However, in most of the
methods, the parameters of statistical features and semantic rules are obtained
from training large-scale corpus or from prior knowledge. As there are dependent
relations between the results and the prior knowledge or training corpus, once
the prior knowledge is not proper for the target text or the training corpus has a
different type with the target text, the accuracy of the results will be affected. To
avoid the dependencies on prior information, this paper will study the problem
of Chinese new word detection based on statistical characteristics of the target
text.

3 Statistics-Based Modelling

3.1 Statistical Characteristics of New Words

Generally, people identify Chinese words according to their personal experiences
and the meanings of the context. But for machines, context understanding is still
a challenge in natural language processing, and the flexibility of Chinese makes
the results of rule-based detection incomplete.

For a given Chinese text, we believe that a new word in the text can be
identified if it satisfies the following characteristics: (1) the characters in the
word are interrelated; (2) the word shows a certain independence and flexibility,
i.e. it can be used as some specific component of a sentence and can be connected
with different words or characters; (3) the word appears in the text at a certain
frequency so that people can recognize it from the context. Based on the above
analysis, the statistical characteristics of new words can be described by following
three criterias.

1. The Chinese characters that compose a new word show strong correlations in
a given text.
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2. The occurrence of a new word and the occurrence of its adjacent characters
(or words) are independent.

3. The frequency of a new word reaches a certain threshold in in a given text.

In order to obtain all new words of a given text automatically, all three cri-
terias above need to be translated into mathematical methods, which can be
processed on computer. As the correlations in Criteria 1 and the independency
in Criteria 2 are both concepts in statistics, we can use hypothesis testing to
infer whether Criteria 1 and 2 are satisfied. For example, for any two Chinese
characters X and Y , the hypothesis can be set as for any two adjacent characters,
the event of X being the first character and the event of Y being the second
character are independent. According to statistics knowledge, this hypothesis
can be tested by observation and computation. If the test result shows that
the hypothesis is accepted, then the two characters come together at random.
If the result shows the rejection of the hypothesis, then there is a correlation
between the occurrences of the two characters. Moreover, it is possible that the
two characters constitute a word (or part of a word). Therefore, both the inter-
nal correlations between characters in a word and the external independencies
between different words or characters can be inferred by hypothesis testing. In
addition, for the last criteria, it only needs to set a basic frequency threshold for
filtering.

3.2 Basic Concepts and Modelling

The idea of the independence-testing-based new word detection is to combine all
interrelated characters into the candidates of new words. In this paper, a Chinese
character string that represent a relatively complete meaning is called a semantic
unit. Without additional information, all Chinese characters are semantic units.
For a given text, the string of two adjacent semantic units is called a semantic
pair. In a semantic pair, the former semantic unit is called the pre-unit of the
semantic pair, and the latter one is called the post-unit of the semantic pair.

For a given text T , let the number of all semantic pairs be n and all of these
semantic pairs constitute a sample of hypothesis testing. For a semantic unit
u, the number of all the semantic pairs which have u as pre-units is denoted
as nu+. Then the probability of u being a pre-unit of a semantic pair in T can
be estimated by pu+ = nu+/n. Similarly, n+u denotes the number of all the
semantic pairs which have u as post-units and p+u is the relevant probability.
Then, for any semantic units u and v, the independence hypothesis can be stated
as follows:

H0: for any semantic pair in T , the event of u being its pre-unit and the
event of v being its post-unit are independent.

Based on this hypothesis, the frequency nu,v of the semantic pair uv in T
can be estimated by npu+p+v. Similarly, if we use ũ to denote any semantic unit
that is not u, then nũ,v can be estimated by npũ+p+v where pu+ + pũ+ = 1.
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With above analysis, the statistic Q2
u,v can be constructed to characterize

the total frequency errors of semantic pairs associated with u and v.

Q2
u,v =

(nu,v − npu+p+v)2

npu+p+v
+

(nu,ṽ − npu+p+ṽ)2

npu+p+ṽ

+
(nũ,v − npũ+p+v)2

npũ+p+v
+

(nũ,ṽ − npũ+p+ṽ)2

npũ+p+ṽ

(1)

If we assume that in Eq. (1) each error indicating the difference between the
actual frequency and the relevant estimated frequency fits a normal distribution,
then Q2

u,v fits the chi-squared distribution with 1 degree of freedom, i.e. Q2
u,v ∼

χ(1)2.
For any semantic pair uv in T , the 2 × 2 contingency table for uv can be

constructed accordingly, i.e.

Table 1. 2 × 2 Contingency table of uv

Pre-unit Post-unit

+v +ṽ Row total

u+ a b a + b

ũ+ c d c + d

Column total a + c b + d n

In Table 1, a is the frequency of the semantic pair uv in T , b, c and d are the
frequencies of uṽ, ũv and ũṽ, respectively, and n = a+ b+ c+d holds. With this
table, Eq. (1) can be simplified, and we have

Q2
u,v =

n(ad − bc)2

(a + b)(c + d)(a + c)(b + d)
. (2)

Accordingly, the correlation between the occurrences of u and v in one seman-
tic pair can be inferred by independence testing: given a significance level α, if
Q2

u,v is in the critical region, H0 is rejected, which means that the occurrences
of u and v in one semantic pair is correlated; otherwise, H0 should be accepted,
which indicates that u and v occur in the semantic pair uv independently.

4 Algorithm Based on Independence Testing

4.1 Problem Analysis

Independence testing can be used to infer the correlation between the occurrences
of two semantic units in one semantic pair. However, even if the testing result
is rejection of the hypothesis, it is still problematic to identify the semantic pair
of the two units as one new word.
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Firstly, the rejection of H0 means that the event of u being a pre-unit of
one semantic pair and the event of v being the post-unit of the same semantic
pair are correlated. However, the correlation may not be determined by the co-
occurrence of u and v. It may be determined by the co-occurrence of u and ṽ or
the co-occurrence of ũ and v. Therefore, to show that the correlation is indeed
determined by the co-occurrence of u and v, it is still necessary to demonstrate
nu,v ≥ δnpu+p+v where the coefficient δ is significant larger than 1.

Secondly, two interrelated semantic pairs often share one semantic unit, i.e.
the post-unit of one semantic pair is the pre-unit of the other semantic pair.
In this case, improper word identification tactic may result in inaccuracy or
irrationality.

If we identify one of these overlapped interrelated semantic pairs as a word,
the correlation of the other semantic pair is affected, which may cause inaccurate
word identification. Take the name “ ” (Trump) as an example, the
consecutive semantic units “ ” contains two overlapped semantic pairs
“ ” and “ ”, but neither of them is a word. Thus, it is inappropriate
to select one of the overlapped semantic pairs as a new word.

However, if we identify all the consecutive semantic units that constitute
several overlapped semantic pairs as one word, it may also cause irrationality.
For example, “ ” (people) and “ ” (civilian-run) are two interrelated
semantic pairs sharing the common character “ ”. And it is unwise to identify
“ ” as one new word in the sentence “ ” (do practical work
for the people).

The main reason for this problem is that the test of independence is used to
infer the correlation between two semantic units and it is insufficient to analyze
the correlations between multiple consecutive semantic units. Therefore, it needs
other tactic to detect words formed by multiple semantic units.

4.2 Algorithm Description

In order to solve the problem of interference between overlapped interrelated
semantic pairs, we apply an iterative approach to merge the most interrelated
semantic pair as a new semantic unit for each iteration and gain new words
gradually.

More specifically, for a text T , the statistic Q2 of each semantic pair can be
calculated under the independence hypothesis H0 according to Eq. (2). For any
semantic pair whose Q2 is in the critical region, the larger Q2 is the stronger
the correlation between its internal semantic units is. Therefore, we can select
the internal related semantic pair with the largest Q2 as a semantic unit. Based
on this idea, we merge the most related semantic units and obtain new words
gradually. The independence-testing-based Chinese word detection algorithm is
proposed as follows:

In the algorithm, U and V are used to record the adjacent semantic units
which have the largest Q2. freq is used to record the frequency of semantic
pair UV . For each iteration, UV will be merged into one semantic unit and
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Algorithm 1. IHT − WD

Input: A string of Chinese text T
Output: A list wordlist of new detected words

1 foreach character c of T do
2 if c is a Chinese character then
3 insert (c, posc) into semanticUnitList;

4 Q2 = χ(1)2α, freq = threshold;
5 set U and V to be empty;
6 while Q2 ≥ χ(1)2α do
7 forall the semantic pair UV ∈ semanticUnitList do
8 set UV as one semantic unit and update semanticUnitList;

9 update all frequency information of semanticUnitList;
10 set Q2 = 0, freq = threshold;
11 foreach semantic pair uv ∈ semanticUnitList do
12 if nu,v ≥ threshold ∧ nu,v ≥ δnpu+p+v then
13 calculate Q2

u,v according to Equation (2);
14 if Q2

u,v > Q2 ∨ Q2
u,v = Q2 ∧ nu,v > freq then

15 update Q2, freq, U and V according to Q2
u,v, nu,v, u and v;

16 foreach semantic unit u ∈ semanticUnitList do
17 if u is not a character ∧ nu ≥ threshold then
18 insert u into wordlist;

19 return wordlist;

semanticUnitList will be updated accordingly (the two operations will not be
performed in the first loop as U and V are empty at the beginning). After
these operations, the algorithm will find the most interrelated semantic pair in
semanticUnitList. If its error statistic is in the critical region and its actual fre-
quency exceeds the frequency threshold threshold, the merging and the updating
operations will be performed in next iteration.

In this algorithm, threshold is a frequency threshold which is determined by
two factors. Firstly, for any text, there should be a basic frequency threshold
basic freq for all new words according to Criteria 1 of Sect. 3. threshold must
not be smaller than basic freq. Secondly, as the number n of all semantic units
may vary from text to text, if threshold is fixed, the noise will increase as the
text grows. To avoid this, the threshold should grow as the length of the text
increases. In this paper, the average word frequency is used for the threshold.
As the number of words are unknown before processing, Heaps’ law is used for
estimation, i.e. if there are N words in the text, the text contains KNβ different
words. In this paper, N is estimated by half of the initial semantic pairs n. Then,
the frequency threshold threshold can be calculated as follows:

threshold = max(basic freq, (
n

2
)1−β/K).
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This iterative merging algorithm can solve the problems mentioned above.
Take the name “ ” as an example: if “ ” instead of “ ” is
merged in one iteration, then “ ” will be merged with “ ” in some
following iteration. For the example of “ ” and “ ”, if “ ” is
merged first, then “ ” and “ ” will become two different semantic
pairs. “ ” and “ ” still can be merged, but the merge of “ ” and “
” is rare in practice.

5 Experiments

The detection algorithm is estimated by precision. As the three criterias for new
words in Sect. 3 also accord with the characteristics of some commonly used
Chinese words, the detection results may contain existing words, new words and
garbage strings. If we use R, E, N and G to denote the set of result strings,
the set of existing words, the set of new words and the set of garbage strings,
respectively, then word detection precision Pw and new word detection precision
Pn can be used for evaluation of our approach.

Pw =
|E| + |N |

|R| , Pn =
|N |

|N | + |G| .

In the experiments, parameters in the detection algorithm are set as follows:
the significant level α is set to 0.5%; the basic frequency basic freq is set to 4;
in Heaps’ law, we set K = 1, β = 0.75, which is suitable for news and other
short texts; the coefficient δ for co-occurrence judgement is set to 4.

The algorithm is firstly evaluated by using the ICTCLAS testing corpus -
People’s Daily of Jan 1998, which is provided by Peking University. All news are
input as one single text, and the output is a list of semantic units. The existing
words and the new words are obtained in different methods. All words in the
segmentation result of the ICTCLAS corpus are set as the existing words. After
filtering out the existing words from the result, new words are manually anno-
tated according to the following criteria: (1) a new word should be an existing
entry in Wikipedia or Baidu encyclopedia; (2) a new word should represent a
clear concept in real life; (3) a new word should be the abbreviation of an exist-
ing word. If a semantic unit meets one of the criteria, it is identified as a new
word (Table 2).

Table 2. Result on ICTCLAS corpus

Total Existing New Pw

4471 3308 350 81.82%

The algorithm has detected 4471 different semantic units from the ICTCLAS
corpus, 3308 of them are existing words, and 350 of them are new words. The
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precision of word detection is 81.82%. As the word segmentation result of the
ICTCLAS corpus has already included some of the new words, it is not appropri-
ate to show the precision of new word detection by this experiment. To illustrate
the effect of the algorithm on new word detection, we randomly download 100
pieces of news from www.gmw.cn, which cover politics, international news, econ-
omy, life, sport, education, etc (Table 3).

Table 3. Result on news from www.gmw.cn

Total Existing New Pw Pn

1217 767 368 93.26% 81.78%

The algorithm obtains 1217 semantic units in total, which includes 767 exist-
ing words and 367 new words. The new word detection precision is 81.78% while
the total word detection precision is 93.26%. Because there is no standard test
set for Chinese new word detection, it is improper to compare our method with
existing ones directly. But in terms of the new word detection precision, our
approach is competitive. Some examples of new words are listed as follows:

– Entries in Baidu encyclopedia: (the public school), (intel-
ligent chip), (basic medical insurance), (African
American), etc.

– Semantic units representing a clear concept: (the Belt and Road),
(Abe administration), (Starbucks), (an active

loser), etc.
– Abbreviations: (Shanghai Cooperation Organization), (For-

eign Language Teaching and Research Press), (World Health Orga-
nization), etc.

6 Conclusion and Future Work

This paper presents three statistical criterias for new word detection and pro-
poses an independence-testing-based approach for Chinese new word detection.
Compared with the existing methods, our approach does not need prior knowl-
edge or large scale training corpus and it is more suitable for detecting new words
from news texts. The experiment on randomly selected news shows that the new
word detection precision of the algorithm is over 80%, which is competitive
compared with the existing methods. As the method only use some statistical
characteristics of new words, it is recommended to combine this method with
semantic-rule-based methods to improve the accuracy.

In the future, we will construct a test set of Chinese new word detection
for comparison and calculate the recall rate of our approach. Furthermore, since
both the coefficient δ and the frequency threshold threshold can be determined
by statistical methods, the methods of setting these parameters in Algorithm1
and the impact of these parameters will be studied in a late stage.

www.gmw.cn
www.gmw.cn
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Abstract. Accessing mathematical information, including inputting
and reading mathematical formulas on computer, still has big difficulty
and barrier for people who are blind or partially sighted. The paper
introduces new progress of assistive technology of mathematical docu-
ments and Web pages for Chinese visually impaired people. In the paper,
we give two conversion models from MathML to Chinese mathematics
Braille and a verbalization method of mathematical formulas in Chinese.
The work described in the paper is part of “China Digital Platform of
Braille” Web site and can be found in http://www.braille.org.cn.

Keywords: Braille · Mathematical formula · MathML
Information accessibility

1 Background

Information accessibility refers to that no matter if you are healthy or disabled,
you would benefit from the information technology. Braille and speech are two
main ways of getting information for the visually impaired [1]. Mathematics as
the language of science underpins almost all applications of science, education
and engineering. Mathematics is also at the heart of representing and reasoning
about scientific and education data and knowledge. The accessibility of mathe-
matics information refers to the inclusive practice of making mathematics acces-
sible and usable by all the people of abilities and disabilities. However, accessing
mathematical formulas, including inputting and reading mathematical formu-
las on computer, still has big difficulty and barrier for people who are blind or
partially sighted. The main contributions of the paper is to introduce our new
progress of assistive technology of mathematical documents and Web pages for
visually impaired people in China. The Sect. 2 analyzes the reasons of verbal-
ization ambiguity and discusses the method of mathematical verbalization in
Chinese. Section 3 presents our proposed system of transforming various mathe-
matical expression format to Chinese Braille. Finally, the conclusion is presented
in Sect. 4.
c© Springer Nature Switzerland AG 2018
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2 Verbalization of Mathematical Formula in Chinese

Recently, with the rapid development of the TTS (Text To Speech) technology,
the visually impaired can access Chinese Web pages by using Chinese screen
reader such as Sunshine [2] and NVDA [3]. However, the current screen reader
cannot process mathematical expressions due to their flexible and complex two-
dimensional structures. Currently there is no specification on how to read math-
ematical expressions both in English and in Chinese. Plenty of institutions have
set foot in the verbalization field of mathematical formulas many years ago
[4–14]. MathPlayer [4], MathGenie [5] and MathSpeak [6], LAMBDA [7], and
AudioMath [8] could speak mathematical notations, which use the indicator
words such as “begin/end” to clearly point out where the notations begin or
end, and use the abbreviation to replace the long math pronunciation. Fateman
[9] has done some research on analyzing of the pronunciation rules of operators
and operands, and designing some ad-hoc methods on eliminating the pronunci-
ation ambiguity of mathematical formulas via adding “all, quantity” and other
indicators. The major research field of these studies is on mathematical formulas
pronunciation in English, and few start on other languages [10,11]. Mathemati-
cal formulas speech are different in orders and rules for different languages and
countries [12]. The paper introduces a way of translating mathematical expres-
sions into Chinese voice for the visually impaired of China.

In Lanzhou University (LZU), we are doing research on converting the math-
ematical formulas into unambiguous and concise Chinese text [12]. As shown
in Fig. 1, the various forms of mathematical formulas including LaTEX, Open-
Math, OMML, and Infix (Mathematica, Maple, and Maxima) are translated
into MathML firstly, and then MathML formulas are converted into Chinese
text, which can output to TTS system for producing voice.

Fig. 1. Converting mathematical formulas to Chinese speech

A series of verbalization rules for mathematical formulas are created in our
system to solve the ambiguity problem. When creating the rules we mainly
consider three basic requirements:
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– The verbalization rules should decrease and/or avoid ambiguous of different
mathematical formulas as far as possible.

– The rules should ensure the verbalization of most formulas meet current usual
habit.

– The verbalization rules should be simple to learn and easy to understand.

A mathematical formula may contain one or several operators and operands.
A single operator or operand will not produce ambiguity for listeners. Most
ambiguity problems are caused by the combination of operators and operands.
According to their relative position of operands, most operators can be catego-
rized into prefix, infix and postfix operator. In the paper we use “�” to denote
prefix operator, “⊥” to denote infix operator, and “�” to denote postfix opera-
tor, and “Δ” to denote operand or sub-expression. We can classify most elements
of Content MathML into the three categories [12]. The combination of opera-
tors and operands can get eight different forms (See Table 1). The experiment
in Lanzhou University in 2014 [12] shows that most ambiguity problems occur
in the forms of “� Δ ⊥”, “� Δ �”, “Δ ⊥ Δ ⊥ Δ”, “Δ ⊥ Δ �”, while there
is almost no ambiguity problems in other four forms of, “�� Δ”, “Δ ⊥� Δ”,
“Δ �⊥ Δ”, and “Δ ��”. For example, the Chinese verbalization of “x plus y
squared” (see the first line of Fig. 2), which is the form of “Δ ⊥ Δ �”, could
be understood either as “x + y2” or “(x + y)2”. Another example, the Chinese
verbalization of “b plus c over a” (“Δ ⊥ Δ ⊥ Δ”, see the second line of Fig. 2)
could be considered as formula of “b/a+c” or “(b+c)/a”. However the Chinese
verbalization of “x plus sin y” (the third line of Fig. 2) refers only the expression
of “x+sin y”. To avoid ambiguity problem, we add a start-tag or end-tag into
the verbalization of mathematical expressions in order to constrain the effect
scope of each operator. For example, in the Chinese verbalization of “x plus y
all squared” (the fourth line of Fig. 2), an end-tag “all” is used to indicate the
affecting score of “plus”. The verbalization of the last line in Fig. 2 can also elim-
inate the ambiguity. The rules are easy to be accepted by the visually impaired
because start and end tags are used in mathematical Braille too.

Fig. 2. Chinese verbalization of four formulas
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Table 1. Combination of operators and operands

Type Prefix Infix Postfix

Prefix �� Δ � Δ ⊥ Δ � Δ �
Infix Δ ⊥� Δ Δ ⊥ Δ ⊥ Δ Δ ⊥ Δ �
Postfix Null Δ �⊥ Δ Δ ��

3 Braille of Mathematical Formulas

Braille is another pervasive format for the visually impaired. Many countries have
developed some software in order to enable the visually impaired to access math-
ematical information via Braille. The assistant tools and projects support math-
ematical formulas transformations to/from different Braille formats including
Marburg, Nemeth, French, Netherland, BAUK, UEBC or Czech Braille. Table 1
lists the researches and software of in recent two decades [13–19]. Braille dots
and rules for mathematics vary among different countries. Zhiwei and Youyang
in LZU have introduced our assistant tool for translating mathematical formulae
(Content MathML) into Chinese Braille in the paper [20] (Table 2).

Table 2. Research and software on transforming mathematical formulas to/from
Braille

Name Math format Braille format Work

LaBraDoor Latex Marburg Braille, Austrian Braille ↔
BraMaNet MathML Presentation, Latex French Braille →
Math2Braille MathML Netherlands Braille →
MAVIS Latex Nemeth Braille ↔
DBT MathM Nemeth, UEBC, French Braille →
Infty Latex UEBC, Japanese Braille →
Insight Latex Nemeth Braille ←
MathGenie MathML Nemeth Braille →
Vickie MathML, Latex French Braille →
Tiger Text Nemeth, UK and French Braille →
Lambda MathML 8-dots Braille →
BrailleCz MathML Czech Braille →
Dooley Content MathML Nemeth Braille ↔
RoboBraille MathML, Latex Nemeth, Marburg Braille →
Latex2nemeth Latex Nemeth Braille →
Note: →←↔ respectively denotes translation math formulas to, from, to/from Braille

In LZU, we developed two tools: SunMathC and SunMathP , for translating
MathML to Braille. MathML supports both a presentation encoding and a con-
tent encoding for different purposes. Content MathML is a semantic mathematical
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markup language, focused on their semantics. SunMathC is a XSLT-based tool,
which can convert Content MathML to Chinese Braille. Content-based editing
enables the user to enter/modify well-formed expressions that represent meaning-
ful mathematical operations. Presentation MathML is very good for the display
layout of mathematical formulas. SunMathP , developed in Java, is Web service
tool, which can convert Presentation MathML to Chinese Braille. In both tools,
we create conversion modules to improve the accuracy of conversion and build sev-
eral simplification rules to remove the redundant Braille cells.

4 Conclusion

The paper gives a Chinese verbalization method of mathematical expression and
introduces two translation tools for Content MathML and Presentation MathML
to Chinese Braille. In LZU, we are implementing a Web site of “China Digital
Platform of Braille” (http://www.braille.org.cn). The method and tools men-
tioned in the paper have been applied in the “Mathematics Braille” module. We
are also trying to provide audio and Braille feedback when users enter expres-
sions in MathEdit [21]. In the next step, we will complete all the functions of
translating mathematical expressions to speech and Braille.
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Abstract. With the rapid development of mobile Internet, spatial
crowdsourcing is gaining more and more attention from both academia
and industry. In spatial crowdsourcing, spatial tasks are sent to workers
based on their locations. A wide kind of tasks in spatial crowdsourc-
ing are specialty-aware, which are complex and need to be completed by
workers with different skills collaboratively. Existing studies on specialty-
aware spatial crowdsourcing assume that each worker has a unified charge
when performing different tasks, no matter how many skills of her/him
are used to complete the task, which is not fair and practical. In this
paper, we study the problem of specialty-aware task assignment in spa-
tial crowdsourcing, where each worker has fine-grained charge for each
of their skills, and the goal is to maximize the total utility of the com-
pleted tasks based on tasks’ budget and requirements on particular skills.
The problem is proven to be NP-hard. Thus, we propose two efficient
heuristics to solve the problem. Experiments on both synthetic and real
datasets demonstrate the effectiveness and efficiency of our solutions.

1 Introduction

With the development of mobile Internet and the blossom of sharing economy, all
kinds of spatial crowdsourcing (SC) platforms become popular, where the online
crowd workers are employed through their phones to participate in and com-
plete offline crowdsourcing tasks in the physical world [9]. Typical SC platforms
include Gigwalk1, TaskRabbit2 and gMission3 [2].

One fundamental issue in SC is task assignment, namely assigning crowd-
sourcing tasks to suitable crowd workers. Generally speaking, there are two
kinds of tasks. The first kind is micro tasks which can be completed by any
single worker such as taking photos and delivering things. The second kind is
specialty-aware tasks such as repairing a house and organizing a party, where
crowd workers with different kinds of skills are needed to work collaboratively
and finish the task. For micro-task assignment, there are many existing works

1 www.gigwalk.com.
2 www.taskrabbit.com.
3 gmission.github.io.

c© Springer Nature Switzerland AG 2018
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Table 1. Tasks and their lists of skills

Tasks Lists of required skills

t1 s1(music), s2(drinks)

t2 s1(music), s3(barbecue), s4(lights)

t3 s1(music), s2(drinks), s3(barbecue), s4(lights), s5(stage)

Table 2. Workers’ skills and fees

Workers Skills and fees

w1 (s1, 3), (s2, 4), (s4, 5)

w2 (s3, 5), (s5, 3)

w3 (s4, 2)

w4 (s1, 5), (s5, 1)

w5 (s1, 2), (s2, 2), (s3, 3), (s4, 6)

[6,10,15–18] and we refer the readers to [14] for more details. In this paper we
focus on specialty-aware tasks assignment.

Existing works [3,4] on specialty-aware tasks assignment formulate that each
crowd worker has multiple skills and will get a unified fee if s/he is employed,
which is not very practical as (1) workers often have unbalanced workloads, (2) if
more than one workers with the same required skills are employed, they may be
confused who should do the job in a task and (3) the payment and the workload
do not often match. To solve the above drawbacks, in this paper we propose the
Specialty-Aware Task Assignment (SATA) problem where each crowd worker
specifies a fee for each of her/his skill to make the payment proportional to the
workload.

We then illustrate the SATA problem by a motivation example of organizing
a party.

Example 1. Suppose we have three tasks of organizing parties, each has different
styles and thus different kinds of skills are needed. For example, party 1 is a mini
one and only needs music and drinks, while party 3 is ceremonious and requires
music, drinks, barbecue, lights and a stage. The skill lists required by the three
tasks are shown in Table 1. Besides, we have some workers shown in Table 2, each
with different skills and corresponding fees. For example, if w1 is required to be
responsible for the music of the party (skill s1), s/he will be paid 3. Besides,
each worker will get the transportation fee, which equals the distance from the
worker to the assignment task times a global unit price. For example, Fig. 1
shows the locations of tasks and workers, and if the global unit price is 0.5, the
transportation fees for assigning w1 to t1 is

√
5 × 0.5 ≈ 1.12.

Motivated by the example above, we formalize the SATA problem, which aims
to assign crowd workers to specialty-aware tasks, and the goal is to maximize the
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Fig. 1. Locations of tasks and workers.

total utility. Note that existing works either focus on assigning workers to micro
tasks to optimize different goals, or assume that the workers have a unified fee.
Thus, their methods cannot be adopted directly to solve our problem. Briefly,
we make the following contributions.

– We formally define a new task assignment problem in spatial crowdsourcing,
called the Specialty-Aware Task Assignment (SATA) problem (Sect. 4).

– We prove the SATA problem is NP-hard (Sect. 3), and develop two efficient
heuristics to solve it (Sect. 4).

– We verify the effectiveness and efficiency of the proposed methods with exten-
sive experiments on real and synthetic datasets (Sect. 5).

We next review the related works in Sect. 2. The paper is concluded in Sect. 6.

2 Related Work

In this section, we review related works from two categories, namely task assign-
ment and team formation problem.

2.1 Task Assignment in Spatial Crowdsourcing

The research on task assignment in spatial crowdsourcing mainly includes two
parts: micro-task assignment and specialty-aware task assignment.

Micro task refers to the spatial tasks that can be completed by any single
worker. [6] is the first work on task assignment in spatial crowdsourcing, whose
goal is to maximize the total number of the assignment tasks. [16] is the first
work focusing on the online scenario of task assignment, and studies the two-
sided online task assignment problem, whose goal is to maximize the total utility
score of the assignment. [10] also focuses on the online scenario and considers
the influence of work space on task assignment, whose goal is to maximize the
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total utility score. [15] studies the problem of online minimum weighted bipar-
tite matching, which can be used in online task assignment. [18] considers the
problem of flexible online matching where workers can be scheduled if no task
is assigned. [11] recommends routes dynamically for workers to deal with online
tasks, and the goal is to maximize the total utility. [21] assigns tasks to work-
ers while trading off quality and latency of task completion. [17] proposes a
match-based approach to solve the dynamic pricing problem in spatial crowd-
sourcing. [22] takes the destinations of workers into consideration to perform
task assignment. [13] considers performing online task assignment while preserv-
ing the privacy of tasks and workers under the circumstance that the server
is untrusted. [12,19] propose a real-time framework for task assignment. The
difference between our work and the aforementioned works is that they focus
on micro tasks which can be completed by a single worker, and we study on
the assignment for specialty-aware tasks which have requirements on skills of
workers and usually have to be completed by multiple workers collaboratively.

[4,5] recommend top-k teams with the minimum cost to a specialty-aware
task. [3] studies assigning workers for specialty-aware tasks to maximize the
total utility score. The biggest difference between our work and [3–5] is that in
our work workers specify fees for each of their skills, and in [3–5] workers only
have a united fee, which is not practical.

2.2 Team Formation Problem

A closely related topic is the team formation problem [7], whose goal is to find a
team of experts with the minimum cost, according to the skills and social rela-
tionships of the users. [1] studies the online version of the team formation prob-
lem, where the issue of workload balance is also considered. [8] studies another
variant of the team formation problem where the capacity constraint of experts
is considered. The difference between our problem and the above works on the
team formation problem and its variants is that we do not consider the social
relationships between users and focus on task assignment.

3 Problem Definition

We first introduce two basic concepts, namely Task and Worker. Then, we intro-
duce how to calculate the reward of worker. Finally, we formally give the defini-
tion of the Specialty-Aware Task Assignment (SATA) problem.

Definition 1 (Worker). A worker w is defined as <Lw, Sw, Pw>, where
Lw is the location of w which can be described by longitude and latitude,
Sw = <sw1 , sw2 , · · · , sw|Sw|> is the list of skills that w masters, and Pw =
<pw1 , pw2 , · · · , pw|Sw|> is the list of fees for each skill in Sw.

Definition 2 (Task). A task t is defined as <Lt, St, Bt>, where Lt is
the location of t which can be described by longitude and latitude, St =
<st1, s

t
2, · · · , st|St|> is the list of skills that are needed to complete t collabora-

tively, and Bt is the total monetary budget of t.
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Briefly, a worker’s reward includes two parts: (1) transportation fee, which is
directly proportional to the distance between the worker and the task; (2) labor
fee, which is the sum of the fees for the skills used to perform a task.

Definition 3 (Reward of Worker). The reward of task w to perform task
t equals rw = γ · dis(Lw, Lt) +

∑
s∈S′

w
pws , where dis(Lw, Lt) is the distance

between Lw and Lt, which can be Euclidean distance or road network distance,
γ is a global parameter representing the unit transportation fee, and S′

w is the
set of skills that w uses to perform the task.

We define the utility of a task as follows.

Definition 4 (Utility of Task). The utility of task t is defined as ut = Bt −∑
t∈Wt

rt, where Bt is the budget of the task and
∑

t∈Wt
rt is the summation of

rewards of workers assigned to t if t is completed. If t cannot be finished, the
utility is zero.

We finally define our problem as follows.

Definition 5 (Specialty-Aware Task Assignment (SATA) Problem).
Given a set of tasks T , a set of workers W and a global unit transportation
fee γ, the problem is to assign workers to tasks to maximize the total utility of
the completed tasks and the following constraints should be satisfied:

– Specialty Constraint: a task can be completed as long as the workers
assigned to it can cover the required skills of the task;

– Budget Constraint: the total rewards of workers assigned to a task cannot
exceed the task’s total budget;

We then prove the hardness of SATA problem.

Theorem 1. The SATA problem is NP-hard.

Proof. We prove through a reduction from the set cover problem [20]
We first introduce the set cover problem. Given a universe U =

{s1, s2, · · · , sn} and its m subsets S1, S2, · · · , Sm ⊆ U , ∪m
i=1Si = U . Each Si is

associated with a cost ci. The set cover problem is to find a set K ⊆ {1, 2, · · · ,m}
to minimize

∑
i∈K ci satisfying ∪i∈KSi = U .

We next show how to transform the set cover problem to an instance of our
SATA problem. We only have one task t which requires skills St = U and has
infinite budget Bt. For m workers {w1, w2, · · · , wm}, their required fees for skills
are all zero, and we adjust their locations and γ to make their transportation
fee to perform t is ci. For this instance of our SATA problem, we aim to find a
set of workers K to maximize the utility of t, which equals to minimize

∑
i∈K ci.

In this way, we reduce set cover problem to our SATA problem. As the set cove
problem is known to be NP-hard [20], SATA problem is also NP-hard.
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Algorithm 1. Total Budget Based Algorithm (TBA)
input : set of workers W , set of tasks T
output: Assignment M

1 Q ← sorting tasks in T according to their total budgets in descending order;
2 foreach t in Q do
3 Assign w ∈ W to t with minimum rw

|S′
w∩St| ;

4 Update M and W ;
5 St ← St − S′

w;
6 if St is ∅ then
7 Break;

8 return M

4 Algorithms

In this section, we give two efficient heuristic algorithms to solve the SATA
problem.

4.1 Total Budget Based Algorithm

Our first algorithm is called the Total Budget Based Algorithm (TBA). The main
idea is that we always try to assign workers to the tasks with the largest budget.
During the procedure of task assignment, we refer to the greedy algorithm to
solve the set cover problem [20].

The procedure of TBA is shown in Algorithm 1. The algorithm takes the
set of workers W and set of tasks T as input, and return an assignment M
between them. In line 1, the algorithm first sorts the tasks in T in descending
order according to their total budgets, and the sorted result is saved in Q. In
lines 2–7, for each task t in Q, we refer to the greedy algorithm to solve the set
cover problem [20] to assign workers. Specifically, in lines 3, we find worker with
minimum rw

|S′
w∩St| . Notes that here S′

w considers all possible subsets of Sw. In
lines 4–5, we update M , W and St. In lines 6–7, if St is ∅, which means it can
be completed, we break the loop and start to assign workers for the next task.

Example 2. Back to our running example in Example 1. TBA first finds the task
with the largest total budget, which is t3. The it starts to assign workers for
t3. As w3 has the minimal rw

|S′
w∩St| of 2, we first assign w3 to t3. After assigning

w3, t3’s list of skills has not been covered, thus we assign w5 to t3 with rw
|S′

w∩St|
of 7

3 . We finally assign w4 to t3 and the total reward paid to w3, w4 and w5

is 2 + 2 + 2 + 3 + 1 + (
√

2 + 4 +
√

10) × 0.5 ≈ 15. Thus, the utility of t3 is
30−15 = 15. Similarly, we assign workers to t2 and t3 successively, and the final
utility of TBA is 21.08.

Complexity. If taking the maximum number of skills of a worker as a constant,
the time complexity of line 1 and lines 2–7 is O(|T |log|T |) and O(|T ||W |) respec-
tively. As a result, the time complexity of TBA is O(max{|T |log|T |, |T ||W |}).
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Algorithm 2. Average Budget Based Algorithm (ABA)
input : set of workers W , set of tasks T
output: Assignment M

1 Q ← sorting tasks in T according to their average budgets in descending order;
2 foreach t in Q do
3 Assign w ∈ W to t with minimum rw

|S′
w∩St| ;

4 Update M and W ;
5 St ← St − S′

w;
6 if St is ∅ then
7 Break;

8 return M

4.2 Average Budget Based Algorithm

The TBA algorithm only considers the total budget of tasks. However, a large
budget may result from a large number of skills required in the task. Thus, in
this subsection, we propose another algorithm, called Average Budget Based
Algorithm (ABA). The main idea is that we first measure the average budget
(per skill) of all the tasks, and prefer to assign workers to tasks with a larger
average budget.

The pseudo codes of ABA is shown in Algorithm 2. The biggest difference
between TBA and ABA lies on line 1. In ABA, we first sort tasks in T based on
average budget, which is defined as Bt

|St| . The procedure of how to assign workers
to a given task is the same as TBA, which is shown in lines 2–7.

Example 3. Back to our running example in Example 1. Different from TBA,
ABA first finds the task with the largest average budget, which is t1. Then it
assigns workers to t1. As w5 has the minimal rw

|S′
w∩St| of 2, we first assign w5 to

t1. After assigning w5, we find t1’s list of skills has been covered, thus the total
utility is 20 − (2 + 2) − (

√
13 × 0.5 ≈ 14.20). Similarly, we next assign workers

for t2 and t3, and the final utility of TBA is 25.78.

Complexity. Similar to the analysis of TBA, if we take the maximum number
of skills a worker may have as a constant, the time complexity of ABA is also
O(max{|T |log|T |, |T ||W |}).

5 Evaluation

5.1 Experiment Setup

We use real and synthetic datasets to evaluate our algorithms. Real data comes
from CSTO (http://www.csto.com/), which is an outsource task platform. In the

http://www.csto.com/
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Table 3. Synthetic dataset

Factor Setting

|T | 100 300 500 700 900

|W | 1000 3000 5000 7000 9000

γ 0.1 0.3 0.5 0.7 0.9

Bt 60 80 100 120 140

Pw 10 15 20 25 30

|S| 10 20 30 40 50

CSTO dataset, each task is associated with a set of skills needed to complete the
software development task, and each coder is associated with a set of skills and
an average price which can be deduced from the history data. Since the CSTO
data is not associated with location information, we generate the distance of each
coder from the task following uniform distribution. For synthetic data, based on
the observation from real data set, the price of skills owned by a worker and the
budget of a task both follow Gaussian distribution. Statistics of the synthetic
data are shown in Table 3, where we mark our default settings in bold font.
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Fig. 2. Results on varying |T | and |W |.
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Fig. 3. Results on varying γ and Bt.

5.2 Experimental Results

In this subsection, we test the performance of our proposed algorithms by setting
different parameters. We compare TBA and ABA with a baseline algorithm in
terms of total utility score, running time and memory cost, and study the effect
of varying parameters on the performance of the algorithms. The baseline algo-
rithm uses a simple random strategy, which assigns workers to tasks randomly.
The algorithms are implemented in CodeBlocks 16.1, and the experiments are
performed on a machine with Intel(R) Core(TM) i5 2.50 GHZ CPU and 8 GB
main memory.

Effects of the Number of Tasks |T |. The results of varying |T | are presented
in Fig. 2a to c. First, we can observe that the utility increases as |T | increases,
which is reasonable as more tasks available. Also, we can observe that TBA
and ABA are much better than baseline algorithm and TBA has advantages
over ABA. The reason may be that the average budget is a better metric for
identifying profitable tasks, as tasks with large total budget may result from the
requirements on a large number of skills. As for running time, TBA and ABA
are slower than the baseline due to sorting tasks and finding more economic
schedule, and the running time is acceptable for better performance on utility.
Moreover, TBA is faster than ABA for it is easier to find suitable workers for
each tasks. The three algorithm do not vary much in memory consumption.

Effects of the Number of Workers |W |. The results of varying |W | are
presented in Fig. 2d to f. We can observe that the utility, running time and
memory consumption generally increase as |W | increases, which is reasonable as
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Fig. 4. Results on varying Pw and S.

more workers need to be assigned. Again, we can see that TBA are better than
ABA in terms of Utility and running time.

Effects of the Global Unit Transportation Fee γ. The results of varying
γ are presented in Fig. 3a to c. We can see that the utility and running time
decrease as the γ increases for higher transportation fee and less workers that
could be assigned to far tasks.

Effects of the Average Budget of Tasks Bt. The results are presented in
Fig. 3d to f. We can first see from the figure that the utility increases as the
average budget increases. And there is no large differences of the running time
and memory consumption between various Bt.

Effects of the Variance of the Price of Different Skills Pw. The results are
presented in Fig. 4a to c. We can see from the figures that TBA and ABA have
much better performance than baseline algorithm as the price increases. And
the running time and memory consumption do not vary too much in different
price.

Effects of the Total Number of Skills |S|. The results are presented in
Fig. 4d to f. First, we can observe that the utility and memory consumption do
not change greatly as the number increases. Then, we can see that the running
time increases as the number increases, and this is reasonable because it is much
harder to find suitable workers to finish the task for more kinds of skills.



Specialty-Aware Task Assignment in Spatial Crowdsourcing 253

100 300 500 700 900

U
til
ity

105

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Baseline
TBA
ABA

(a) Cardinality of varying |T |

100 300 500 700 900

Ti
m
e

104

0

0.5

1

1.5

2

2.5

Baseline
TBA
ABA

(b) Running Time of varying |T |

100 300 500 700 900

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
Baseline
TBA
ABA

(c) Memory of varying |T |

0.1 0.3 0.5 0.7 0.9

U
til
ity

105

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Baseline
TBA
ABA

(d) Cardinality of varying γ

0.1 0.3 0.5 0.7 0.9

Ti
m
e

2000

4000

6000

8000

10000

12000

14000

16000

Baseline
TBA
ABA

(e) Running Time of varying γ

0.1 0.3 0.5 0.7 0.9

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
Baseline
TBA
ABA

(f) Memory of varying γ

Fig. 5. Results of real dataset on varying |T | and γ.

Real Dataset. The results on real dataset are shown in Fig. 5a to f, where we
vary |T | and price. We can observe similar patterns as those in Figs. 2a to c and
3a to c.

Conclusion. For utility, TBA is better than ABA and baseline algorithm, and
both TBA and ABA have a much better performance than baseline algorithm.
As for running time, baseline algorithm is fastest, but the speed of TBA and
ABA algorithm is acceptable for most circumstances. Moreover, TBA is faster
than ABA algorithm.

6 Conclusion

In this paper we study the problem of Specialty-Aware Task Assignment (SATA)
in spatial crowdsourcing, where the tasks have requirements on skills, and the
workers specify fees for each of their skills. The goal is to maximize the total
utility of the task assignment between tasks and workers. We prove the SATA
problem is NP-hard. Two heuristic algorithms are proposed to solve the problem.
We conduct extensive experiments on both synthetic and real-world datasets to
evaluate our algorithms. The experimental results show that our solutions are
efficient and effective.
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Abstract. In this paper a game theoretic model of multiple players is
established to relate the reward from the outsourcer and the number of
participants in the software crowdsourcing contest in the winner-take-all
mode via Nash equilibria of the game. We show how to construct the pay-
off function of each participant in this game by computing his expected
probability of winning sequential pairwise challenges. Preliminary exper-
imental results with our implementations are provided to illustrate the
relationships between the reward and the number of participants for
three typical participant compositions.

Keywords: Software crowdsourcing · Game theory
Nash equilibrium · Payoff function

1 Introduction

Crowdsourcing is a type of activity for accomplishing tasks in an open call to a
group of non-specific individuals, usually through the internet [3]. As a success-
ful application, software crowdsourcing has become an influential approach for
software development by using collective intelligence of the software developers
all over the world [11]. Currently there are many popular software crowdsourcing
platforms such as TopCoder1 [10], Apple’s App Store, and Applause2.
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The design, analysis, evaluation, and development of software crowdsourcing
have been studied from different perspectives [1,19], among which one kind of pop-
ular method is based on the game theory [7,17]. In particular, a game theoretic
model of crowdsourcing contests is proposed in [1] with formal analysis on the
asymptotic behaviors of the outcomes of the contests; a framework is proposed in
[20] for evaluating the software crowdsourcing projects from many aspects such
as quality and cost; the 2-player algorithm challenges on TopCoder are modeled
by static games with complete information in [8]; and a crowdsourcing framework
is proposed in [16] based on a revised form of n-person chicken games.

The ways how the rewards from the oursourcers in software crowdsourcing con-
tests are paid to the participants can be categorized into two modes: the winner-
take-all mode and multiple-winners mode [12]. In the former mode all the reward
from the outsourcer is taken by the sole winner of the contest, while in the lat-
ter multiple or even all the participants get the rewards based on their efforts in
the contest. The choice between the two payment modes of the contests has been
studied based on the cost functions [15] and the degrees of risk aversion of the par-
ticipants [1,9]. It has been shown in [15] that when the cost functions are linear or
concave, the choice should be the winner-take-all mode and shown in [1,9] that the
choice should be the winner-take-all mode in the case of risk-neutral participants
and the multiple-winners mode in the case of risk-averse participants.

Crowdsourcing contests were first modeled as all-pay auctions in [6], where
the behaviors of the participants facing multiple simultaneous winner-take-all
contests with different rewards are studied. Then the all-pay auction model has
been widely used in the study on crowdsourcing contests [1,4,13]. In this paper
we focus on the software crowdsourcing contest in the winner-take-all mode using
the all-pay auction model and study the influence of the reward on the number
of participants in the contest. The study on such influence is helpful for the
outsourcers of software crowdsourcing contests to choose an appropriate reward
to attract an expected number of participants.

We first model the software crowdsourcing contest by a game of multiple play-
ers, each of whom has two pure strategies as joining or quitting the game. Under
the assumption that the probability for any player to win a pairwise challenge
against any other player is known, we propose a method for constructing the payoff
functions of all the players by computing the expected winning probability of each
player in this game. With the payoff functions we compute all the Nash equilibria
of the game and connect the expected number of participants with the computed
Nash equilibria. Experimental results for three typical compositions of candidates
are reported based on our implementation for computing payoff functions and the
software Gambit [14] for computing all the Nash equilibria.

The paper is organized as follows. After the introduction of all the necessary
notions and notations in the game theory in Sect. 2, we present the game theoretic
model in which the number of participants is connected to all the Nash equilibria
of the game in Sect. 3. Then in Sect. 4 we elaborate how the payoff functions of all
the players in the game are constructed. The experimental results are presented
in Sect. 5, and we conclude this paper with some remarks in Sect. 6.
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2 Preliminaries

Let us consider a game of n players P1, . . . , Pn. Fixed an integer i (1 ≤ i ≤ n).
Let Si be the set of pure strategies that Pi can choose from and pi :

∏n
j=1 Sj → R

be the payoff function of Pi, where pi(s) represents Pi’s payoff given a profile
s = (s1, . . . , sn) of pure strategies sj ∈ Sj , j = 1, . . . , n. In particular, we denote
si = si for s = (s1, . . . , sn).

Take the game of matching pennies between two players P1 and P2 for exam-
ple. In this game, each player has a penny and they show their choices of turning
the penny to head or tail simultaneously. Here S1 = S2 = {H,T}, where H and
T denote the pure strategies of turning the penny to head and tail respectively,
and therefore S1 × S2 = {(H,H), (H,T ), (T,H), (T, T )}. Two possible payoff
functions p1 and p2 are shown below.

p1 p2
(H,H) �→ 1 (H,H) �→ −1
(H,T ) �→ −1 (H,T ) �→ 1
(T,H) �→ −1 (T,H) �→ 1
(T, T ) �→ 1 (T, T ) �→ −1

A mixed strategy σi of Pi is a probability distribution over the pure strategies
in Si, where σi(s) is the probability for Pi to choose a pure strategy s ∈ Si.
Denote the space of mixed strategies of Pi by Σi and Σ−i :=

∏
j∈{1,...,n}\{i} Σj .

For a profile σ = (σ1, . . . , σn) of mixed strategies σj ∈ Σj , j = 1, . . . , n, denote
σi = σi and σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) ∈ Σ−i. The payoff of Pi for a
mixed strategy profile σ, denoted by p̃i(σ), is defined as

p̃i(σ) =
∑

s∈∏n
j=1 Sj

(
n∏

k=1

σk(sk)

)

pi(s), (1)

which is essentially the expected payoff of Pi for the probability distribution σ.
For the sake of simplicity, we write p̃i(σ) as p̃i(σi,σ−i) and as p̃i(s,σ−i) when
σi(s) = 1 for some s ∈ Si.

For the game of matching pennies, consider the mixed strategies σ1 of P1 with
σ1(H) = 0.3 and σ1(T ) = 0.7 and σ2 of P2 with σ2(H) = 0.6 and σ2(T ) = 0.4.
Then for the mixed strategy profile σ = (σ1, σ2), the payoffs p̃1(σ) of P1 and
p̃2(σ) of P2, computed by (1), are

p̃1(σ) = 0.3×0.6×1 + 0.3×0.4×(−1) + 0.7×0.6×(−1) + 0.7×0.4×1 = −0.08,

p̃2(σ) = 0.3×0.6×(−1) + 0.3×0.4×1 + 0.7×0.6×1 + 0.7×0.4×(−1) = 0.08

respectively.
A mixed strategy profile σ∗ ∈ ∏n

j=1 Σj is called a Nash equilibrium of a game
if for each i = 1, . . . , n, p̃i(σ∗

i ,σ
∗
−i) ≥ p̃i(si,σ∗

−i) for any pure strategy si ∈ Si.
A Nash equilibrium is a state such that each player in the game maximizes his
expected payoff under the condition that the mixed strategies of the other players
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are fixed, and thus anyone attempting to change his mixed strategy from the
Nash equilibrium will face a reduced payoff. For a finite non-cooperative game,
there always exists at least one Nash equilibrium [17].

It is easy to verify that σ∗ = ((1/2, 1/2), (1/2, 1/2)) is a Nash equilibrium
of the game of matching pennies:

p̃1(σ∗) = 0 ≥ p̃1(H,σ∗
−1) = p̃1(T,σ∗

−1) = 0,
p̃2(σ∗) = 0 ≥ p̃2(H,σ∗

−2) = p̃2(T,σ∗
−2) = 0,

and that σ̃ = ((2/3, 1/3), (1/2, 1/2)) is not a Nash equilibrium:

p̃2(σ̃) = 0 < p̃2(T, σ̃−2) = 1/3.

In fact, for any σ �= σ∗, there exist some i = 1 or 2 and s ∈ Si such that
p̃i(σi,σ−i) < p̃i(s,σ−i), and thus σ∗ is the only Nash equilibrium of the game
of matching pennies.

3 A Multi-Player Game-Theoretic Model

This paper studies the relationship between the reward and the expected number
of participants in the software crowdsourcing contest by using Nash equilibria
of a corresponding game of multiple players with two pure strategies. In this
context, the players in this game are called candidates. Each candidate has two
optional pure strategies as joining or quitting the contest, denoted by J and
Q respectively. A candidate who chooses to join the contest is further called a
participant.

Based on the discussions above, we model the software crowdsourcing contest
as a game of n candidates C1, . . . , Cn. For each i = 1, . . . , n, let Si = {J,Q} be
the set of pure strategies for Ci and let pi :

∏n
j=1 Sj → R be the payoff function

of Ci. Let R be the reward paid to the sole winner of the software crowdsourcing
contest and ci be the cost of Ci for finishing the contest. The payoff function pi
of Ci is defined as

pi(s) =
{

R · Wi(s) − ci, if si = J
0, if si = Q

(2)

for any s ∈ ∏n
j=1 Sj , where Wi(s) is the probability for Ci to win the contest

with participants specified by s (note that sj ∈ Sj = {J,Q} for j = 1, . . . , n and
thus the participants of the contest are known once s is given). As one may find
clearly from (2), the reward R of the contest appears in the payoff function of
each candidate. The explicit computation of Wi(s) (and thus the construction
of all the payoff functions) is elaborated in Sect. 4.

Assume that the payoff functions p1, . . . , pn are known. Then all the Nash
equilibria of the game described above can be computed, say by the meth-
ods proposed in [2,5]. Each Nash equilibrium is a mixed strategy profile σ =
(σ1, . . . , σn) ∈ ∏n

i=1 Σi, where σi(J) describes the probability for Ci to choose
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to join the game. Then the expected number of participants N(σ) for this Nash
equilibrium is equal to

∑n
i=1 σi(J). For example, suppose that σ = (σ1, . . . , σ4)

is a Nash equilibrium of a 4-player game described above such that σ1(J) = 1,
σ2(J) = 0.7, σ3(J) = 0, and σ4(J) = 0.2. Then the expected number of partici-
pants in the game for this Nash equilibrium is 1+0.7+0+0.2 = 1.9. In the case
of multiple Nash equilibria σ(1), . . . ,σ(m) of the game, the expected number of
participants of the contest is defined to be

∑m
i=1 N(σ(i))/m.

The game above of multiple candidates is the underlying theory for the study
in this paper on the influence of the reward of the software crowdsourcing con-
test, which appears in the payoff functions as shown in (2), on the number of
participants in this contest, which can be computed via the Nash equilibria as
discussed above. In particular, for any given value R = R0, by computation of
all the Nash equilibria we are able to obtain the expected number of participants
corresponding to R0. Furthermore, the changes in the value of R lead to changes
in the expected number of participants, and this correspondence is what we are
interested in for the influence of the reward on the number of the participants.

4 Construction of Payoff Functions

For the game described above of n candidates C1, . . . , Cn, assume that the prob-
ability for any candidate Ci to win a pairwise challenge against another candi-
date Cj (j �= i) is known and denoted by Pij . Next we show how to compute the
probability Wi(s) in (2) for a given pure strategy profile s in a model of sequen-
tial pairwise challenges of all participants specified by s. Note that in software
crowdsourcing contests like those held in TopCoder, the information regarding
the participants in the contests is usually available in the host platform, and it
can be further analyzed and processed to furnish such a winning probability in
a pairwise challenge.

Assume that for a pure strategy profile s, there are m out of n candidates
who choose to join the contest. Without loss of generality, we further assume
that the m participants are C1, . . . , Cm.

Let i = (i1, i2, . . . , im) be a permutation of {1, 2, . . . ,m}. Then i defines
an order for sequential pairwise challenges in the following way: the winner of
the pairwise challenge Ci1 and Ci2 goes to the next round of pairwise chal-
lenge with Ci3 , whose winner goes further to the next round. This process is
repeated and ended with one final winner. Obviously two distinct permutations
i(1) = (i(1)1 , i

(1)
2 , . . . , i

(1)
m ) and i(2) = (i(2)1 , i

(2)
2 , . . . , i

(2)
m ) define the same order for

sequential pairwise challenges if and only if

i
(1)
1 = i

(2)
2 , i

(1)
2 = i

(2)
1 , i

(1)
3 = i

(2)
3 , . . . , i(1)m = i(2)m .

Denote

P(m) :={permutations of {1, . . . , m} such that no pair defines the same order}.

The permutations in P(m) define all the possible orders of C1, . . . , Cm for sequen-
tial pairwise challenges, and it is straightforward that the cardinality of P(m) is
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#P(m) =
(
m
2

) · (m − 2)!, where
(
m
2

)
denotes the number of 2-combinations in a

set of m elements and (m − 2)! is the factorial of m − 2.
For an arbitrary i = (i1, . . . , im) ∈ P(m), next we study the probability for

Ci (1 ≤ i ≤ m) to be the final winner in the sequential pairwise challenges
in the order defined by i, denoted by Wi(i). Let i = ik for some k (1 ≤ k ≤
m). Then Ci is the final winner if and only if Ci wins the pairwise challenge
against any possible winner of the sequential pairwise challenges in the order
(i1, . . . , ik−1) and Ci wins successive pairwise challenges against Cik+1 , . . . , Cim .
This observation leads to

Wi(i) =
k−1∑

r=1

[Pik,ir · Wir

(
(i1, . . . , ik−1)

)
] ·

m∏

s=k+1

Pik,is , (3)

where Pij , as defined at the beginning of this section, is the probability for Ci

to win a pairwise challenge against Cj (j �= i) and Wir ((i1, . . . , ik−1)) is the
probability for Cir to be the final winner of the sequential pairwise challenges
in the order (i1, . . . , ik−1). Since the length of the permutation (i1, . . . , ik−1) is
strictly smaller than that of the permutation (i1, . . . , im), the probability Wi(i)
can be effectively computed in a recursive way.

Obviously, for a given permutation i = (i1, . . . , im), the probability Wi(i) is
heavily dependent on the position of i in i. Assume that all the permutations
in P(m) follow an equiprobable distribution. Then the expected probability for
Ci (1 ≤ i ≤ m) to be the final winner of a sequential pairwise challenge, which
is Wi(s) in (2) by our notation, is

Wi(s) =
1

(
m
2

) · (m − 2)!
·

∑

i∈P(m)

Wi(i). (4)

At this point, for each i = 1, . . . , n, we are able to compute Wi(s) in (2) for
any pure strategy profile s, and thus the payoff function pi can be constructed
immediately with (2).

4.1 Algorithm Description

The procedure to construct all the payoff functions p1, . . . , pn described above is
formulated as Algorithm 1 below. In this algorithm, A cat B for A = [A1, . . . , Ar]
and B = [B1, . . . , Bs] returns [A1, . . . , Ar, B1, . . . , Bs] and a payoff function pi
is stored as pi = {[s, p] : s ∈ ∏n

j=1{J,Q}, p ∈ R}, where in each pair [s, p], p is
the payoff of Ci for the pure strategy profile s. The subroutine in Algorithm 1
for computing the probability for some participant to be the final winner in a
sequential pairwise challenge is formulated as Algorithm 2 and is essentially a
recursive function.

4.2 An Illustrative Example

Let us consider a game of seven candidates C1, . . . , C7 with the following matrix
P of pairwise winning probability such that Pij is the probability for Ci to win
a pairwise challenge against Cj for 1 ≤ i �= j ≤ 7:
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Algorithm 1. Computation of payoff functions (p1, . . . , pn) :=
Payoff(n,P, R, (c1, . . . , cn))
Input: n: number of candidates; P: matrix of pairwise winning probability such

that Pij (i �= j) is the probability for Ci to win a pairwise challenge
against Cj ; R: reward; (c1, . . . , cn): costs of n candidates C1, . . . , Cn

Output: (p1, . . . , pn), payoff functions of C1, . . . , Cn

1 pi := { }, i = 1, . . . , n;
2 for s ∈ ∏n

i=1{J,Q} do
3 for i = 1, . . . , n do
4 if si = Q then
5 pi := pi ∪ {[s, 0]};
6 else
7 s̃ = [ ]; [s̃ records the participants]
8 for j = 1, . . . , n do
9 if sj = J then

10 s̃ := s̃ cat [j] ;

11 P(s̃) := {permutations of s̃ with no pair defining the same order};
12 Wi := 0;
13 for i ∈ P(s̃) do
14 Suppose that ik = i;

15 W
(2)
i :=

∏#s̃
j=k+1 Pi,ij ; [W

(2)
i : second part of probability in (3)]

16 W
(1)
i := 0; [W

(1)
i : first part of probability in (3)]

17 i(k − 1) := (i1, . . . , ik−1);
18 for j = 1, . . . , k − 1 do

19 W
(1)
i := W

(1)
i + Pi,ij · WinPairwise(ij , i(k − 1),P);

20 Wi := Wi + W
(1)
i · W (2)

i ;

21 pi := pi ∪ {[s, R · Wi

(#s̃
2 )·(#s̃−2)!

− ci]}; [as in (4)]

22 return (p1, . . . , pn);

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0.90 0.92 0.91 0.93 0.94 0.96
0.10 ∗ 0.52 0.50 0.53 0.56 0.60
0.08 0.48 ∗ 0.49 0.50 0.52 0.57
0.09 0.50 0.51 ∗ 0.52 0.53 0.55
0.07 0.47 0.50 0.48 ∗ 0.50 0.54
0.06 0.44 0.48 0.47 0.50 ∗ 0.52
0.04 0.40 0.43 0.45 0.46 0.48 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let s = (J,Q, J, J,Q,Q, J) be a pure strategy profile. Next we show how the
payoff p1(s) of C1 is computed with Algorithm 1. First with s2 = s5 = s6 = Q
and s1 = s3 = s4 = s7 = J , we construct the list s̃ = [1, 3, 4, 7] of indexes for
the participants as in Line 10 for the profile s.
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Algorithm 2. Probability to win sequential pairwise challenges W :=
WinPairwise(i, s,P)
Input: i: an integer; s: a sequence; P: matrix of pairwise winning probability

such that Pij (i �= j) is the probability for Ci to win a pairwise
challenge against Cj

Output: W , the probability for Ci to be the final winner in the sequential
pairwise challenges in the order s

1 if s1 = i then

2 return
∏#s

j=2 Pi,sj ;

3 else if #s = 2 then
4 return Pi,s1 ;
5 else
6 Suppose that sk = i;

7 W
(2)
i :=

∏#s
j=k+1 Pi,sj ; [W

(2)
i : second part of probability in (3)]

8 W
(1)
i := 0 [W

(1)
i : first part of probability in (3)]

9 s(k − 1) := (s1, . . . , sk−1);
10 for j = 1, . . . , k − 1 do

11 W
(1)
i := W

(1)
i + Pi,sj · WinPairwise(sj , s(k − 1),P); [a recursive call]

12 return W
(1)
i · W (2)

i ;

One example of all the permutations of s̃ = [1, 3, 4, 7] such that no pair
defines the same order is shown as follows.

(4, 7, 3, 1), (3, 7, 4, 1), (3, 4, 7, 1), (4, 7, 1, 3), (1, 7, 4, 3), (1, 4, 7, 3),
(3, 7, 1, 4), (1, 7, 3, 4), (1, 3, 7, 4), (3, 4, 1, 7), (1, 4, 3, 7), (1, 3, 4, 7).

Note that there are
(
4
2

) · (4 − 2)! = 12 possible permutations in total.
Take the permutation i = (4, 7, 1, 3) for example. In i we find that i3 = 1.

Then W
(2)
1 , the second part of winning probability as in (3), is equal to P13 =

0.92, and W
(1)
1 , the first part as in (3) is

W
(1)
1 = P14P47 + P17P74 = 0.91 × 0.55 + 0.96 × 0.45 = 0.9325.

Therefore the probability for C1 to be the final winner in the sequential pairwise
challenges in the order (4, 7, 1, 3) is 0.9325 × 0.92 = 0.8579.

The probabilities for C1 to be the final winners for all the 12 possible per-
mutations are listed in Table 1 below.

The expected probability for C1 to be the final winner in the contest of the
four participants C1, C3, C4, and C7 is therefore

0.924935 + 0.922468 + 0.934803 + 0.8579 + 0.852852 + 0.878304 + 0.803712 × 6

12
≈ 0.8495.

Then with any given R and c1, the payoff p1(s) can be computed immediately
with (2).
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Table 1. Probability for C1 to be the final winner for different permutations

Permutation Probability Permutation Probability Permutation Probability

(4, 7, 3, 1) 0.924935 (3, 7, 4, 1) 0.922468 (3, 4, 7, 1) 0.934803

(4, 7, 1, 3) 0.8579 (1, 7, 4, 3) 0.803712 (1, 4, 7, 3) 0.803712

(3, 7, 1, 4) 0.852852 (1, 7, 3, 4) 0.803712 (1, 3, 7, 4) 0.803712

(3, 4, 1, 7) 0.878304 (1, 4, 3, 7) 0.803712 (1, 3, 4, 7) 0.803712

5 Experimental Results

In this section, the experimental results on the influence of the reward of the soft-
ware crowdsourcing contest on the expected number of participants are reported
for three types of candidates based on our implementations of Algorithms 1 and
2 and the software Gambit for computing all Nash equilibria.

We consider a software crowdsourcing contest of 7 candidates C1, . . . , C7,
each of whom has a fixed cost ci = 20 for i = 1, . . . , 7. The three types of candi-
dates we consider are the following: the first is such that all the candidates have
average capabilities, the second is such that one candidate is super strong while
the others have average capabilities, and the third is such that the capabilities
of the candidates follow a normal distribution.

5.1 Candidates of Average Capabilities

In this case, the matrix of pairwise winning probability is set as

Paverage =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0.49 0.50 0.53 0.54 0.58 0.60
0.51 ∗ 0.51 0.52 0.52 0.55 0.56
0.50 0.49 ∗ 0.52 0.53 0.56 0.57
0.47 0.48 0.48 ∗ 0.50 0.53 0.54
0.46 0.48 0.47 0.50 ∗ 0.52 0.54
0.42 0.45 0.44 0.47 0.48 ∗ 0.51
0.40 0.44 0.43 0.46 0.46 0.49 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For each R = 10, 20, . . . , 700, we construct the payoff functions p1, . . . , p7 with
Algorithm 1 and then compute the expected number N(R) of participants by
using the Nash equilibria of the corresponding game. The relationship between
R and N(R) is shown in Fig. 1.

For example, at R = 70, in total there are 25 Nash equilibria returned by the
Gambit software. For example, one Nash equilibrium σ = (σ1, . . . , σ7) is shown
as follows.

σ1(J) = 1, σ1(Q) = 0, σ2(J) = 0.0655276, σ2(Q) = 0.934472,

σ3(J) = 1, σ3(Q) = 0, σ4(J) = 0.568249, σ4(Q) = 0.431751,

σ5(J) = 0, σ5(Q) = 1, σ6(J) = 0, σ6(Q) = 1, σ7(J) = 0.993354,

σ7(Q) = 0.00664647.
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Fig. 1. Relationship between the reward R and the expected number of participants
N(R): the case of candidates of average capabilities

Therefore the expected number of participants is
∑7

i=1 σi(J) = 3.6271306 for
this Nash equilibrium σ.

As can be seen from Fig. 1, the expected number of participants N(R)
increases almost at a constant speed with respect to the reward R and reaches its
maximum value N(R) = 7 when R = 180, which means that all the candidates
choose to join the contest at this point.

5.2 One Super Strong Candidate

In this case, the matrix of pairwise winning probability is set as

Pstrong =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0.90 0.92 0.91 0.93 0.94 0.96
0.10 ∗ 0.52 0.50 0.53 0.56 0.60
0.08 0.48 ∗ 0.49 0.50 0.52 0.57
0.09 0.50 0.51 ∗ 0.52 0.53 0.55
0.07 0.47 0.50 0.48 ∗ 0.50 0.54
0.06 0.44 0.48 0.47 0.50 ∗ 0.52
0.04 0.40 0.43 0.45 0.46 0.48 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The relationship between R and N(R) is shown in Fig. 2.
As can be found in Fig. 2, the function curve of N(R) is in the shape of a lad-

der with respect to R. Compared to the slope of the curve in Fig. 1, the expected
number of participants in this case increases at a slower speed than that in the
case of candidates of average capabilities. In particular, the expected number of
participants N(R) reaches 6 at R = 510 and 7 at R = 670 respectively. This rela-
tionship between R and N(R) reflects the fact that in a software crowdsourcing
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Fig. 2. Relationship between the reward R and the expected number of participants
N(R): the case of one super strong candidate

contest, there are fewer participants when there is one super strong candidate,
for the other candidates are reluctant to join a contest in which he tends to lose
unless the reward from the contest is great enough. In some sense, the width of
each step in the ladder in the curve of N(R) reflects the difference in the reward
to draw an additional participant.

5.3 Normal Distribution

In this case, we choose the capabilities r1, . . . , r7 of the 7 candidates randomly
from a normal distribution N(μ, σ2) with the mean value μ = 5 and the standard
deviation σ = 5/3 so that the probability for the capability to fall in the interval
[μ − 3σ, μ + 3σ] = [0, 10] is about 99.74%. Then, based on their capabilities, the
probability Pij for Ci to win a pairwise challenge against Cj for 1 ≤ i �= j ≤ 7
is set to Pij = ri/(ri + rj).

For example, one instance of randomly chosen capabilities of 7 candidates is
[4.13, 6.03, 5.54, 4.11, 8.35, 2.81, 2.18], and the corresponding matrix of pairwise
winning probability is constructed as follows. The relationship between R and
N(R) is shown in Fig. 3.

Pnormal =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0.41 0.43 0.50 0.33 0.60 0.65
0.59 ∗ 0.52 0.59 0.42 0.68 0.73
0.57 0.48 ∗ 0.57 0.40 0.66 0.72
0.50 0.41 0.43 ∗ 0.33 0.59 0.65
0.67 0.58 0.60 0.67 ∗ 0.75 0.79
0.40 0.32 0.34 0.41 0.25 ∗ 0.56
0.35 0.27 0.28 0.35 0.21 0.44 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Fig. 3. Relationship between the reward R and the expected number of participants
N(R): the case of normal distribution

As can be found in Fig. 3, the slope of the curve is between those of the
curves in Fig. 1 and 2, and the expected number of participants N(R) reaches
7 at R = 340. We have tested 5 instances of randomly generated capabilities
from the normal distribution mentioned above, and the least rewards for the
numbers of participants to reach 7 are presented in the column labeled R7 in
Table 2 below.

Table 2. Least rewards for 7 participants in the case of normal distribution

No Capabilities R7

1 [4.13, 6.03, 5.54, 4.11, 8.35, 2.81, 2.18] 340

2 [6.64, 3.96, 3.68, 5.22, 6.57, 3.23, 3.87] 220

3 [5.83, 2.05, 4.95, 3.69, 5.65, 4.76, 4.66] 340

4 [7.39, 7.14, 7.86, 4.69, 6.48, 5.59, 5.35] 200

5 [8.91, 4.91, 6.86, 4.38, 6.40, 5.51, 5.23] 210

6 Concluding Remarks

A game theoretic model of the software crowdsourcing contest is proposed in this
paper, and in this model the number of participants in the contest is connected to
the Nash equilibria of the game. Based on the winning probabilities of pairwise
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challenges, we show how to construct the payoff functions of all the players
in the game and thus the Nash equilibria of the game can be computed with
these payoff functions. Experimental results illustrate different behaviors of the
influence of the reward on the expected number of participants for three types
of candidates.

As regards the efficiency of our algorithms, computation of all the Nash
equilibria of the game is the current bottleneck. In fact, the study on and imple-
mentation of efficient algorithms for computing Nash equilibria of different kinds
of games remain a highly non-trivial problem of common interest in game theory
and computer science [18].

The proposed method in this paper for computing the payoff functions are
based on the winning probabilities of pairwise challenges, but these probabilities
may not be directly available in actual software crowdsourcing contests. In this
case, one can try to estimate these winning probabilities of pairwise challenges
by analyzing the information disclosed by the contest platform or establish a
new model for computing the payoff function of each player in the game.

In this paper we only study software crowdsourcing contests in the winner-
take-all mode. The study on the influence of allocation of rewards on the number
of participants in contests in the multiple-winners mode by extending our algo-
rithms is our future work.

Acknowledgements. The first author wishes to thank his supervisor, Professor
Dongming Wang, for his support and encouragement.
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