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Abstract. The size, complexity and dimensionality of data collections
are ever increasing from the beginning of the computer era. Cluster-
ing methods, such as Growing Neural Gas (GNG) [10] that is based on
unsupervised learning, is used to reveal structures and to reduce large
amounts of raw data. The growth of computational complexity of such
clustering method, caused by growing data dimensionality and the spe-
cific similarity measurement in a high-dimensional space, reduces the
effectiveness of clustering method in many real applications. The growth
of computational complexity can be partially solved using the paral-
lel computation facilities, such as High Performance Computing (HPC)
cluster with MPI. An effective parallel implementation of GNG is dis-
cussed in this paper, while the main focus is on minimizing of inter-
process communication which depends on the number of neurons and
edges among neurons in the neural network. A new algorithm of adding
neurons depending on data density is proposed in the paper.
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1 Introduction

The size and complexity of data collections are ever increasing from the begin-
ning of the computer era, while the dimensionality of the data sets is rapidly
increasing in recent years. Contemporary and especially future technologies allow
us to acquire, store and process large high dimensional data collections that are
commonly available in areas like medicine, biology, information retrieval, web
analysis, social network analysis, image processing, financial transaction analy-
sis and many others.

To have any chance to process such amount of the data we have to reduce
amounts of raw data by categorizing them in smaller set of similar items, we have
to identify groups that occurs in the data, we have to reveal structures hidden in
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the data. These tasks are precisely the purpose of methods known as clustering.
There are many clustering methods, we will focus on clustering methods based
on unsupervised learning in this paper.

Unfortunately, there are two major issues faced by clustering algorithms
based on unsupervised learning, such as Growing Neural Gas (GNG) [10], that
prevent them to be effective, in many real applications, on vast high dimensional
data collection:

1. The fast growth of computational complexity with respect to growing data
dimensionality, and

2. The specific similarity measurement in a high-dimensional space, where the
expected distance, computed by Euclidean metrics to the closest and to the
farthest point of any given point, shrinks with growing dimensionality [1].

The growth of computational complexity can be partially solved using the par-
allel computation facilities, such as High Performance Computing (HPC) clus-
ter with MPI technology. Obviously, it is necessary to resolve technical and
implementation issues specific to this computing platform, such as minimizing
of interprocess communication, to provide effective parallel implementation of
GNG.

The amount of interprocess increases with the growing number of neurons
and edges connecting the neurons. The addition of a new neuron and edges
to GNG is driven by condition given at the startup – neuron is added after
predefined amount of time regardless the data collection properties. Respecting
the data collection properties it is easy to see that some addition of a new neuron
and edges is not necessary, for example the addition of a new neuron in dense
data area caused just by precalculated condition. Similar approach can be used
for outlying data. When a new neuron is created to cover this part of the data
collection, there is no special need to attach a new neuron to more neurons than
the nearest. In this way the future edge disposal is eliminated. A new neuron is
attached to two nearest neurons only in the case that a new neuron would cover
a part of the data collection located just nearby these two neurons. So, the sum
of distances between a new neuron to these two neurons should be proportional
to the distance between these two neurons themselves.

The proposed approach is based only on standard GNG learning algorithms,
there is no need to apply space partitioning method to improve nearest neuron
search. The performed experiments shows that our approach clearly adhere the
structure of data collection, while quality of the GNG is preserved.

We will first introduce the terminology, the notation which we use in the
article and related works to GNG. In the next section we describe a new approach
how to add a new neuron to GNG. Section Experiments contains statistics and
visualization of results. In conclusion, we discuss the advantages of our approach.

2 Growing Neural Gas

The principle of this neural network is an undirected graph which need not be
connected. Generally, there are no restrictions on the topology. The graph is
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generated and continuously updated by competitive Hebbian Learning [9,13].
According to the pre-set conditions, new neurons are automatically added and
connections between neurons are subject to time and can be removed. GNG can
be used for vector quantization by finding the code-vectors in clusters [8], clus-
tering data streams [7], biologically influenced [14] and 3D model reconstruction
[12]. GNG works by modifying the graph, where the operations are the addition
and removal of neurons and edges between neurons.

To understand the functioning of GNG, it is necessary to define the algorithm.
The algorithm described in our previous article [16] is based on the original
algorithm [6,8], but it is modified for better continuity in the SOM algorithm.
Here is the Algorithm 1 which describes one iteration.

Remark. The notation used in the paper is briefly listed in Table 1.

2.1 Related Works

The methods based on Artificial Neural Networks (ANN) are computationally
expensive. There are different approaches on how to improve effectivity of these
methods – improve computation of the nearest neurons, reduce number of com-
putation (batch), parallel implementation and other.

The authors of the paper [4] propose two optimization techniques that are
aimed at an efficient implementation of the GNG algorithm internal structure.
Their optimizations preserve all properties of the GNG algorithm. The technique
enhances the nearest neighbor search using a space partitioning by a grid of
rectangular cells and the second technique speeds up the handling of node errors
using the lazy evaluation approach. The authors in [13] propose a algorithm
for a GNG which can learn new input data (plasticity) without degrading the
previously trained network and forgetting the old input data (stability). Online
Incremental Supervised Growing Neural Gas in [3] is an algorithm whose features
are zero nodes initialization, the original batch Supervised Growing Neural Gas
node insertion mechanism and network size constraint. In [2] is proposed a batch
variant of Neural gas (NG) which allows fast training for a priorly given data set
and a transfer to proximity data. Author’s algorithm optimizes the same cost
function as NG with faster convergence than original algorithm. A paper [11]
proposes a Growing Neural Gas based on density, which is useful for clustering.
An algorithm creates new units based on the density of data, producing a better
representation of the data space with a less computational cost for a comparable
accuracy. Authors use access methods to reduce considerably the number of
distance calculations during the training process.

In the paper [5] the authors combine the batch variant of the GNG algorithm
with the MapReduce paradigm resulting in a GNG variant suitable for process-
ing large data sets in scalable, general cluster environments. The paper [15] is
focused on the actualizations of neurons weights in the learning phase of parallel
implementation of SOM. Authors study update strategies between Batch SOM
– updates are processed at the end of whole epoch – and immediately updating
after processing one input vector.
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Table 1. Notation used in the paper

Symbol Description

M Number of input vectors

n Dimension of input vectors, number of input neurons,
dimension of weight vectors in GNG output layer neurons

N Current number of neurons in GNG output layer

Nmax Maximum allowed number of neurons in GNG output layer

Ni i-th output neuron, i = 1, 2, . . . , N

X Set of input vectors, X ⊂ R
n

xi i-th input vector, i = 1, 2, . . . , M

x(t) ∈ X, x(t) = (x1, x2, . . . , xn)

wk (t) Weight vector of neuron Nk, k = 1, 2, . . . , N

wk (t) ∈ R
n, wk (t) = (w1k, w2k, . . . , wnk)

Nc1 The first Best Matching Unit (BMU1), winner of learning competition

Nc2 The second Best Matching Unit (BMU2), the second best
matching neuron in learning competition

wc1(t) Weight vector of BMU1

wc1(t) Weight vector of BMU2

lc1 Learning factor of BMU1

lnc1 Learning factor of BMU1 neighbours

ei Local error of output neuron Ni, i = 1, 2, . . . , N

α Error ei reduction factor

β Neuron error reduction factor

γ Interval of input patterns to add a new neuron

amax Maximum edges age

p Number of processes

k Specify an area around BMU1 without adding a new neuron; 0 < k ≤ 1/2

3 Optimization of Learning Phase

In our paper [16] we dealt with the parallelization of GNG. The main problem
that reduces parallelization is communication between processes and threads.
This communication increases with the number of neurons in the neural network.
The goal of our optimization is to reduce the number of neurons and to manage
the addition of new neurons.

By default, new neurons are added after the condition, which is determined
at startup calculation - see Algorithm 1 step 8 (a neuron added after a certain
period of time). We identified after analysing the GNG learning algorithm that
the algorithm does not take into account the input data. The only limitation is
the maximum number of neurons in the neural network. Our proposed solution
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Algorithm 1. One iteration of the Growing Neural Gas algorithm
1. Find neurons BMUs neurons Nc1 and Nc2 .
2. Update the local error ec1 of neuron Nc1

ec1 = ec1 + ‖wc1 − x‖2 (1)

3. Update the weight vector wc1 of neuron Nc1

wc1 = wc1 + lc1(x − wc1) (2)

4. For all neurons Nk where exists edge ec1k (Nc1 neighbourhood)
(a) Update the weights wk using lnc1 learning factor

wk = wk + lnc1(x − wk ) (3)

(b) Increase age akc1 of edge ec1k

akc1 = akc1 + 1 (4)

5. If there is no edge between neurons Nc1 and Nc2 , then create such edge. If the edge
exists, the age is set to 0.

6. If any edge has reached the age of amax, it is removed.
7. If there is a neuron without connection to any edge, the neuron is then removed.
8. If the number of processed input vectors in the current iteration has reached the

whole multiple of the value γ and the maximum allowed number of output neurons
is not reached, add a new neuron NN+1. The location and error of the new neuron
is determined by the following rules:
(a) Found neuron Nb(NBE) which has the biggest error eb.
(b) Found neuron Nc(NSE) among neighbours of neuron Nb and has the biggest

error ec among these neighbours.
(c) Create a new neuron NN+1 and the value of wn is set as:

wN+1 =
1

2
(wb + wc) (5)

(d) Creating edges between neurons Nb and NN+1, and also between neurons Nc

and NN+1.
(e) Removed edge between neurons Nb and Nc.
(f) Reduction of error value in neurons Nb and Nc using the multiplying factor α.

Error for neuron NN+1 is equal to the new error of neuron Nb.

consists of two parts. The first part is a change in the condition when inserting
a new neuron and the second part is a change in the weight of this new neuron.

3.1 A New Approach How to Add a New Neuron

The goal is to change the current condition that adds a neuron (after a certain
time) to a new condition that will take into account the data it is working on.
We do not have to specify number of steps for which we add a new neuron. The
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basic principle of our approach for adding a new one is to evaluate the distance
of the input vector from the neurons Nc1 and Nc2 . If the input vector is close to
Nc1 then our algorithm does not add the new neuron. Standard approach allways
add the new neuron in this situation.

The following inequalities determined when we add a new neuron. A new
neuron is added to the neural network, if one of inequalities (6), (7), (8) is true.

||Nc2 − x(t)|| < ||Nc1 − Nc2 || ∧ ||Nc1 − x(t)|| ≥ k||Nc1 − Nc2 || (6)
||Nc2 − x(t)|| ≥ ||Nc1 − Nc2 || ∧ ||Nc1 − x(t)|| ≥ k||Nc1 − Nc2 || (7)
||Nc2 − x(t)|| > ||Nc1 − Nc2 ||, (8)

where x(t) is input vector, parametr k specifies the size of area around Nc1 and
0 < k ≤ 1/2.

In Fig. 1, two neurons (N1 and N2) and four input vectors (x1, x2, x3 and x4)
can be seen. Neurons N1 and N2 represent BMU Nc1 and second BMU Nc2 for
all input vectors in the example. The input vector x1 is too closed to N1 (||N1 −
x1|| < k||Nc1 − Nc2 ||) and a new neuron is not added (Fig. 1(b)). If the input
vectors x2, x3 and x4 are selected then a new neuron is added. The input vector
x2 satisfies inequality (6) and it is in the standard situation (Fig. 1(a)). The new
added neuron N3 obtains weight which is calculated: 1/2(wc1(t) + wc2(t)). The
edge between N1 and N2 is deleted and new edges are created which connect a
new neuron N3 with neuron N1 and N2. The age of new edges is set to zerro.

N2

N1

N3

x1

x2
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x4

(a) Input vector x2, standard procedure
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(b) Actualization area for k = 0.3
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(c) Input vector x3
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(d) Input vector x4

Fig. 1. Addition of a new neuron based on given input vectors x2, x3 and x4
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The inequality (8) is true for the input vector x3 (see Fig. 1(c)) and the
inequality (7) is true for the input vector x4 (see Fig. 1(d)). Only one edge
connect the new added neuron N4 (N5) with BMU N1 in both situations. The
weight of new neuron and the age of the new edge is set in the standard way.

4 Experiments

4.1 Experimental Datasets and Hardware

One dataset was used in the experiments. The dataset was commonly used in
benchmark – Clustering dataset.

Clustering Dataset. Three training data collections called TwoDiamonds,
Lsun and Target from the Fundamental Clustering Problems Suite (FCPS) were
used. A short description of the selected dataset used in our experiments is given
in Table 2.

Table 2. Fundamental Clustering Problems Suite – selected datasets

Name Cases #Vars #Clusters Main clustering problem

Target 770 2 6 Outlying clusters

Lsun 400 2 3 Different variances in clusters

TwoDiamonds 800 2 2 Touching clusters

Experimental Hardware. The experiments were performed on a Linux HPC
cluster, named Anselm, with 209 computing nodes, where each node had 16
processors with 64 GB of memory. Processors in the nodes were Intel Sandy
Bridge E5-2665. Compute network is InfiniBand QDR, fully non-blocking, fat-
tree. Detailed information about hardware is possible to find on the web site of
Anselm HPC cluster1.

4.2 The Experiments

The first part of the experiments was oriented towards comparing the results
obtained in density versions (k = 0.3 and k = 0.5) and standard GNG algorithm.
The Clustering dataset was used for the experiment. The parallel version of the
learning algorithm was run using 16 MPI processes. The GNG parameters are
the same for all experiments and are as follows ew = 0.05, en = 0.006, α = 0.5,
β = 0.0005, amax = 100, M = 1000, δ = 200.

1 https://support.it4i.cz/docs/anselm-cluster-documentation/hardware-overview.

https://support.it4i.cz/docs/anselm-cluster-documentation/hardware-overview
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Table 3. Graphical representations of data set layout and corresponding GNGs
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The first row in the Table 3 shows a layout view of the input data, which
are used for training GNG. The outputs of standard GNG algorithms are in the
second row. In third and fourth rows are result of our proposal method, but each
for different size areas that will not update.
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In the Table 4, we can see number of neurons which have been used.
For data collection TwoDiamonds, the time computation of standard GNG

is 6.05 s, parallel GNG with k = 0.3 is 3.9 s and parallel GNG with k = 0.5 is
2.2 s.

Table 4. Number of used neurons

Algorithm Dataset

Target Lsun TwoDiamonds

Standard GNG 771 401 801

Parallel GNG; k = 0.3 583 187 231

Parallel GNG; k = 0.5 51 38 148

5 Conclusion

In this paper the parallel implementation of the GNG neural network algorithm
based on data density is presented. The achieved speed-up was better than our
previous approach. That’s because there are only fewer neurons in the network.
Therefore, it takes less time to locate the BMU. For parallelization, we generally
try to keep communication as small as possible, which reduces this communi-
cation due to fewer neurons; this is most evident when adding and removing
neurons.

In future work we intend to focus on the sparse date, use combinations of
neural networks for improved result and improved acceleration.
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