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Abstract. Our aim is to investigate the robustness of classifiers against
the class imbalance. From this point of view, we compare several most
widely used classifiers as well as the one recently proposed, which is
based on the assumption that the probability densities in classes have
the matrix normal distribution. As the base for comparison we take a
sequence of images from that laser based additive manufacturing process.
It is important that the classifiers are fed by raw images. The classifiers
are compared according to several criterions and the methodology of all
pair-wise comparisons is used to rank them.
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1 Introduction

The class imbalance phenomenon, i.e., a largely different fractions of examples
from different classes in the learning and in the testing sequences, is known to
cause troubles when learning and assessing the quality of classifiers. The reason is
in that most of the known classifiers tend to give the priority to the largest class
in the learning sequence. This, in turn, leads to a poor generalization properties.
On the other hand, the class imbalance is unavoidable when classifiers are used
for detecting rare events (e.g., faults in production processes or diagnosis of rare
diseases).

Many attempts were proposed in order to circumvent this difficulty. They
can be, roughly, clustered as follows.

1. Data editing strategies that attempt to artificially increase the fraction of the
minority class (classes) examples in the learning and in the testing sequences.
Typically, it is achieved by either the re-sampling from the minority class
or by the under-sampling from the majority class or by combining them.
These ways, although useful in many cases, have one common drawback,
namely, they distort a priori class probabilities, which – in turn – may lead
to undesirable preference voting for the minority class.
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2. Attaching a high cost for a minority class misclassification, in particular, by
using a dedicated metrics.

3. Designing classifiers dedicated to cope with the class imbalance phenomenon.

Our approach differs from the above. Namely, we take several popular clas-
sifiers and we propose to rank them from the view point of their robustness
against the class imbalance in the data. In addition to the popular classifiers, we
consider also the classifier for matrix normal distributions (see [5,8,9]).

The second challenge in comparing the robustness of classifiers against the
class imbalance is the choice of criterions for their comparisons. Again, a num-
ber of criterions is advocated in the literature. For this reason, we propose to
use a pair-wise comparisons of classifiers, for which several criterions are calcu-
lated. This approach was originated by Slowinski [11] and its applicability is still
growing (see [4]).

As an empirical material for case studies we take raw images of the laser
additive manufacturing process (see [8] for more detailed description why this
process is important).

An important issue in our case study is that we put raw images as the inputs
of classifiers. This approach seems to be of importance at least for two reasons,
namely,

– it demonstrates that easily available PC computers can be successful in a
cheap way of classifying images, since the process of features extraction is
time-consuming (expensive)

– the results of comparisons of classifiers are not biased by a human-dependent
way of feature extraction.

The paper is organized as follows.

– In Sect. 2 we provide the description of a modified classifier for matrix normal
distributions.

– The well known classifiers that are selected for comparisons are listed and
briefly commented in Sect. 3.

– In Sect. 4 we describe the methodology of testing and comparisons as well as
their results.

– Section 5 contains conclusions, while in the Appendix we summarize the
known properties of matrix normal distributions.

2 A Modified Classifier for Matrix Normal Distributions

2.1 MND as Class Densities and Their Estimation

We assume that probability distributions of gray-level images from class j =
1, 2, . . . , J have MND with probability density functions (p.d.f.’s) fj(X) defined
in Appendix.

MND densities have special covariance structure in comparison to a general
multivariate Gaussian densities. Namely, their covariance matrices do not have
inter rows-columns covariances, which makes them much easier to estimate (see
Appendix).
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Further on, we assume that we have J learning sequences of the following
form: X(j)

i , i = 1, 2, . . . Nj , j = 1, 2, . . . , J .
Denote by pj > 0, j = 1, 2, . . . , J ,

∑
pj = 1, a priori class probabilities. It is

well known that in a general case the MAP classifier assigns X to class j∗ such
that

j∗ = arg max
j

[pj fj(X)], (1)

where arg maxj [ ] stands for the argument for which the maximum is attained.
It is also well known that this rule is the optimal one when the 0-1 loss function
is used (see, e.g., [2]).

For symmetric and positive definite matrix A define the following function:
κ(A) = λmax(A)

λmin(A) , which indicates how large numerical errors can be committed
when the inverse of A is calculated. Select 0 < κmax < 100.

A Modified Matrix Normal Distribution Classifier (MMNDCL)
I. The Learning Phase

Step (L1) Collect J learning sequences (for each class) of the following form:
X(j)

i , i = 1, 2, . . . Nj , j = 1, 2, . . . , J .
Step (L2) Estimate the class mean matrices and a priori class probabilities as

follows

M̂j = N−1
j

Nj∑

i=1

X(j)
i , p̂j = Nj/N, j = 1, 2, . . . , J. (2)

Step (L3) Calculate the maximum likelihood estimates (MLE) of the inter-row
and inter-column covariance matrices by solving the following set of equa-
tions:

Ûj =
1

Nj m

Nj∑

i=1

(Xi − M̂j) V̂ −1
j (Xi − M̂j)T , (3)

V̂j =
1

Nj n

Nj∑

i=1

(Xi − M̂j)T Û−1
j (Xi − M̂j) (4)

for j = 1, 2, . . . , J . Equations (3) and (4) can be solved by the flip-flop
method.

Step (L4) Estimate the normalization constants of class densities as follows:

ĉj = (2π)0.5n m det[Ûj ]0.5n det[V̂j ]0.5m. (5)

II. The recognition Phase

Step 1 Acquire X to be classified.
Step 2 Check whether all the inequalities:

κ(Ûj) < κmax, j = 1, 2, . . . , J (6)

as well as
κ(V̂j) < κmax, j = 1, 2, . . . , J (7)

are fulfilled. If so, go to Step 3, otherwise, go to Step 4.



Robustness of Raw Images Classifiers 157

Step 3 Classify new image (matrix) X according to the following rule:

ĵ = arg min
1≤j≤J

[
1
2

tr[Û−1
j (X − M̂j)V −1

j (X − M̂j)T ]
]

− log(p̂j/ĉj), (8)

where ĵ is the predicted class for X.
Acquire the next image (matrix) X for classification and repeat (8).

Step 4 Classify new image (matrix) X according to the nearest mean rule, i.e.,
classify it to the class

j̃ = arg min
j

||X − M̂j ||2, (9)

where the squared distance ||X − M̂j ||2 is defined as follows:

||X − M̂j ||2 = tr[(X − M̂j) (X − M̂j)T ]. (10)

If the class j̃ in (9) is selected in a sufficiently sure way, e.g., if the following
condition holds for a pre-specified ζ > 0

(1 + ζ) ||X − M̂j̃ ||2 < ||X − M̂j ||2, j �= j̃, (11)

then update the estimates of Ûj̃ and V̂j̃ by adding current X to the learning
sequence as (X, j̃). Independently whether condition (11) is fulfilled or not,
go to Step 1.

It was proved in [14] that it suffices to perform only one flip-flop operation
in Step (L3) in order to obtain the efficient estimates of Uj and Vj .

2.2 The Methodology of Cross-Validation Testing

In order to test MMNDCL algorithm and to verify its robustness against the
class imbalance, we used the cross-validation (CV) methodology in the following
extensive version.

Step 1 Select from the set of images of the length 900 (at random with the
same probabilities) a learning sequence of the length 450 and denote it as
L450. The rest of the sequence, denoted as T450, use it for testing.

Step 2 Learn MMNDCL, using the L450 sequence.
Step 3 Test the classifier from Step 2, applying it to T450, calculate and store

the accuracy and other quality criterions (recall, precision, etc., see the next
subsection).

Step 4 Repeat Steps 1–3 1000 times.
Step 5 Provide the averages of the quality indicators, obtained in Step 3, as the

outputs.

Notice that this is an intensive testing procedure, because we have to estimate
two matrices of the means and four covariance matrices, each of them 1000 times
when learning MMNDCL.
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3 Classifiers Selected for Verifying Their Robustness
Against the Class Imbalance

The following classifiers are selected for comparisons.

(a) The MMND classifier in the version that was described in the previous
section.

(b) The logistic regression classifier with L2 regularization coefficient equal 1.
We refer the reader to [12] for a contemporary description of this classifier.

(c) The naive Bayes classifier. Despite of its simplicity, this classifier works quite
well in many applications. It is of interest to check its robustness against
the class imbalance.

(d) The feed forward, sigmoidal neural network classifier with the following
parameters: two hidden layers, each containing 900 nodes with tanh activa-
tion functions. L2 regularization coefficient equal 0.1 was used (see [3]).

(e) The random forest (RF) classifier was proposed in the famous paper of
Breiman [1] in which also the proof of consistency is provided. The popu-
larity of the RF classifiers is still growing. In our experiments, the number
of generated trees was 200.

(f) The support vector machine (SVM) classifier is currently considered as the
classifier of the first choice in most of applications. In our experiments, the
Gaussian radial basis functions were used. The soft margin parameter was
selected to be 8.

(g) The nearest neighbors classifier is the golden classic. Its consistency and
other properties are investigated in [2]. In the experiments reported in the
next section, the version with 10 nearest neighbors (referred to as 10-NN)
is reported.

We refer the reader to [2] for a wide and deep discussions concerning classifiers
and their properties.

4 The Results of Testing Classifiers by Cross-Validation

Before providing the results of testing classifiers, we briefly discuss criterions
that are selected for comparisons. We also provide a short description of the
methodology of comparing classifiers when multiple criterions are used.

4.1 Criterions Selected for Comparisons

When testing a two class classifier on a large number of examples, we collect the
following data:

– TP – the number true positive examples,
– TN – the number of true negative cases,
– FP – the number of false positive examples,
– FN – the number of of false negative cases.
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Thus, the total number of test cases is FP + FN + TP + TN .
The following, widely used, measures of classifiers quality are selected for

further comparisons.

Accuracy. The accuracy (Acc) is defined as the ratio of all properly classified
patterns to all the patterns in the testing sequence:

Acc =
TP + TN

FP + FN + TP + TN
. (12)

It is well known that Acc is not quite adequate, especially when we are faced
with a large class imbalance, since it can provide a seemingly high accuracy just
by classifying improperly all (or most) items from the minority class.

Recall. The recall (Rec), also known as the sensitivity, is defined as

Rec = TP/(TP + FN), (13)

i.e., it is the proportion of positive patterns that are correctly classified. It does
not take into account TN and FP cases.

Precision. The precision (Prec), also called (specificity), defined as

Prec = TP/(TP + FP ) (14)

is – in fact – the true positive accuracy. It does not take into account TN and
FN cases.

F1 Score. The F1 score (F1sc) attempts to reduce the drawbacks of Rec and
Prec measures by calculating their harmonic mean:

F1sc = 2.0PrecRec/(Prec + Rec). (15)

Although F1sc is more informative than Prec and Rec separately, it still neglects
TN cases, which are of importance in class imbalance cases.

Matthews Correlation Coefficient. A widely accepted alternative to F1sc is
the Matthews Correlation Coefficient (MCC) that is defined as follows:

MCC =
(TP TN − FP FN)

√
(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)

. (16)

MCC takes into account all the entries of a classifier confusion matrix. MCC
is easy to interpret. Namely, if MCC is close to +1, then a classifier at hand
provides a good prediction. Conversely, MCC being about −1 indicates that a
classifier works properly, but it is advisable to exchange the roles of “true” and
“false” classes. Finally, when MCC is near zero, then a classifier is not a good
predictor at all, i.e., the tossing of the fair coin would provide comparable results.
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4.2 Multiple Criteria Sorting for Assessing Classifiers Quality

The above discussion of the quality measures of classifiers indicates that all
of them, although widely used, have also their drawbacks. For this reason, we
propose to apply all of them in our case study. This leads to the need of selecting
a method for multiple criteria sorting.

Problems of multiple criteria sorting (ranking) of objects have a long history
that is documented in a large number of papers. For our purpose of sorting the
classifiers according to the above criterions, we use a simplified version of the
approach proposed in [4] (see also [11] for the discussion of the fundamental
notion of the pair-wise comparisons).

Denote by a1, a2, . . . , a7 the set of algorithms (classifiers) to be compared.
Let g1, g2, . . . , g5 stands for the set of criterions defined in the previous subsec-
tion. Then,

ḡ(ai)
def
= [g1(ai), g2(ai), . . . , g5(ai)], i = 1, 2, . . . , 7 (17)

is the vector of criterions that are evaluated for algorithm ai.
Select εk > 0 as the level of uncertainty of k-th criterion, i.e., if |gk(ai) −

gk(aj)| < εk, then ai and aj are considered to be equivalent with respect to
k-th criterion, k = 1, 2, . . . , 5. When algorithms (classifiers) ai and aj , i �= j are
compared as one pair, then the following rules of adding scores to their total
scores (denoted as Si and Sj , respectively) are applied.

Scoring the comparison of ai and aj

For k = 1, 2, . . . , 5 perform the following steps.

Step (C1) If |gk(ai) − gk(aj)| < εk, do not change Si and Sj and set k to k + 1
(Step (C2) is not performed).

Step (C2) If gk(ai) > gk(aj), then set Si := Si + 1 and Sj := Sj − 1. Set k to
k + 1 and go to Step (C1), unless k > 5, otherwise, finish the comparison of
ai and aj .

Overall Comparison. Initialize the all pairs comparison approach by setting
Si = 0, i = 1, 2, . . . , 7. Perform Step (C1) and (C2) for all pairs of algorithms
i �= j, i, j = 1, 2, . . . , 7. Sort Si’s as the output of the all pairs comparisons and
consider the one with the largest Si as the winner.
Remarks.

(1) In the next subsection εk = 0.01 for k = 1, 2, . . . , 5 was selected.
(2) An easy generalization of the above approach to multi-criteria comparisons

is to attach nonnegative weights to criterions and to use them in Step (C2),
instead of ±1, but we skip this generalization in the next subsection.

4.3 The Empirical Material

As an empirical material for comparisons we selected 900 images of the laser
based additive manufacturing process. In [8] it was explained in details why it
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is important to distinguish cases when the laser head is in the middle of a wall
to be constructed (class 1) versus the cases when it is near endpoints of the wall
(class 2). Roughly speaking, when it is recognized that the laser head is near
endpoints of the wall, it is desirable to reduce the laser power in order to prevent
the endpoints to be too thick.

Clearly, one can expect that the empirical material contains a smaller number
of examples of Class 2 than that of Class 1 since the laser head moves much
longer along the middle of the wall than near its endpoints. Indeed, in the testing
sequence of images we had 29 images from Class 2 out of all 450 images and a
similar fraction in the learning sequence.

Typical examples of images from Class 1 and 2 are shown in Fig. 1 (upper
row). These original images have the size of 111 × 241. Down-sampled images
of the size 10 × 22 were supplied as inputs of the classifiers (see Fig. 1 – lower
row). Notice that such images as in Fig. 1 (lower row) were inputs of the tested
classifiers, without applying any features extraction.

Fig. 1. Examples of images: Classes 1 and 2 (from the left). Original images – upper
row and down-sampled images – lower row.

Table 1. The confusion matrix obtained when the MMNDCL (as described in Sect. 1)
is applied to 450 long testing sequence.

Pred. Cl. 1 Pred. Cl. 2 Sum

Act. Cl. 1 416 4 420

Act. Cl. 2 2 28 30

Sum 418 32 450

4.4 The Robustness Against the Class Imbalance – The Results
of CV Testing

In this subsection we provide the comparisons of the classifiers that are important
from the view-point of their robustness against the class imbalance. Conclusions
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Table 2. The confusion matrix obtained when the logistic regression classifier (left
panel) and the naive Bayes classifier (right panel) are applied to 450 long testing
sequence.

Pred. Cl. 1 Pred. Cl. 2 sum

Act. Cl. 1 415 6 421

Act. Cl. 2 0 29 29

sum 415 35 450

Pred. Cl. 1 Pred. Cl. 2 sum

Act. Cl. 1 397 24 421

Act. Cl. 2 0 29 29

sum 397 53 450

Table 3. The confusion matrix obtained when the artificial neural network classifier
(left panel) – with two hidden layers and 900 nodes, having tanh activation function –
and the random forest classifier (right panel) are applied to 450 long testing sequence.

Pred. Cl. 1 Pred. Cl. 2 sum

Act. Cl. 1 406 15 421

Act. Cl. 2 0 29 29

sum 406 44 450

Pred. Cl. 1 Pred. Cl. 2 sum

Act. Cl. 1 420 1 421

Act. Cl. 2 0 29 29

sum 420 30 450

Table 4. The confusion matrix obtained when the SVM classifier (left panel) and
10-NN classifier (right panel) are applied to 450 long testing sequence.

Pred. Cl. 1 Pred. Cl. 2 sum

Act. Cl. 1 418 3 421

Act. Cl. 2 0 29 29

sum 418 32 450

Pred. Cl. 1 Pred. Cl. 2 sum

Act. Cl. 1 421 0 421

Act. Cl. 2 4 25 29

sum 425 25 450

Table 5. The summary of the tests of the classifiers for robustness against the class
imbalance. In columns 3–5 the values of criterions for each classifier are displayed.
Column 6 contains the scores collected by each classifier according to all the pairs
comparisons (see Sect. 4.2). In column 7 the classifiers are ranked according to the
scores gained in column 6.

nr ind./meth. Acc. MCC Rec. Prec. F1sc. Comp. Rank

a MMNDCL 0.987 0.896 0.990 0.995 0.993 4 1

a Log.-Reg. 0.987 0.904 0.986 1.000 0.993 2 2≡ 3

c n.-Bayes. 0.947 0.718 0.943 1.000 0.971 −16 7

d Neural n. 0.967 0.797 0.964 1.000 0.982 −12 6

e Rand-for. 0.998 0.982 0.997 1.000 0.999 2 2≡3

f SVM 0.993 0.948 0.993 1.000 0.996 1 4

g 10-NN 0.991 0.924 1.000 0.991 0.995 0 5
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are based on the values of criterions and on the multiple criteria sorting of
classifiers that were discussed in the previous subsections. Firstly, we display the
confusion matrix for each classifier. Then, in Table 5 we provide the comparison
of the classifiers and their sorting, according to the methodology of all the pairs
comparisons that is described in Subsect. 4.2.

As expected in the class imbalance case, the confusion matrices in Tables 1,
2, 3 and 4 and the Acc. column in Table 5 display very high accuracies of all
the classifiers. However, according to the rest of the criterions (columns 4–7
in Table 5), these classifiers are essentially different. In particular, when the
methodology of all the pairs comparisons (see Subsect. 4.2) is applied, then they
collect largely different scores (see column 8 in Table 5). In the analysis of this
column, notice that a classifiers which is essentially the dominant over all the
other classifiers, with respect of all the criterions, would be able to collect at
most plus 30 scores. Conversely, a classifier that is dominated by all the other
six classifiers would gain minus 30 scores.

From this point of view, the classifiers: MMNDCL, Logistic Regression, Ran-
dom forests, SVM and 10-NN collected non-negative scores, which means that
they are – to some extent – robust against the class imbalance. On the other
hand, and somewhat unexpectedly, the naive Bayes the neural networks classi-
fiers gained high negative scores for the comparisons.

In column 9 of Table 5 the ranking of the classifiers is presented, which is
based on the scores that are shown in column 8. Formally, the winner is the
MMND classifier, when the methodology of Subsect. 4.2 is used. Its success can
be explained by the fact that it is essentially based on the rule of the nearest
mean (in the Mahalonobis or the Euclidean distances). Notice however, that
the winner MMNDCL is only slightly better than the last non-negatively tested
10-NN classifier. Notice also that both the MMNDCL and the 10-NN classifiers
require only 10–30 images for a proper functioning. This is in contrast to all the
others competing methods. On the other hand, the losers, i.e., the naive Bayes
and the neural networks classifiers, are more global and they require relatively
more longer learning sequences than they are usually in our disposal.

On the other hand, when only the MCC criterion is considered, the winner is
the Random Forest method, while the MMNDCL is ranked at the 4-5 position.

5 Conclusions

A modified MAP classifier for images (matrices) having matrix normal distribu-
tion was extensively tested on down-sampled images of the laser additive man-
ufacturing process. In parallel, the well known classifiers are tested using the
same sequence of images. The main aim of the tests was to check the robustness
of all these classifiers against the class imbalance troubles.

The conclusions are the following:

(I) There is the group of classifiers with positive scores in column 8 of Table 5.
They can be considered as more robust against the class imbalance than
others classifiers, i.e., the neural network and the naive Bayes one.
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(2) The highest overall scores in column 8 of Table 5 was collected by the
MMNDCL method.

(3) The above conclusions are based on extensive comparisons, but they are
restricted to only one learning-testing sequence of images. These conclusions
are – to some extend – confirmed by tests for another sequence of real-life
images, namely, by the attempts to classify images of an industrial gas burner
(see [10,13]).

Summarizing, although our attempts of selecting a group of classifiers that are
robust against the class imbalance seems to be promising, it is highly desirable
to verify these findings on other sets of real-life data.

A Appendix

The densities of the matrix normal distribution are defined as follows:

fj(X) =
1
cj

exp
[

−1
2

tr[U−1
j (X − Mj)V −1

j (X − Mj)T ]
]

, (18)

where the normalization constants are given by:

cj
def
= (2π)0.5n m det[Uj ]0.5n det[Vj ]0.5m , (19)

where n × m matrices Mj ’s denote the class means matrices. The covariance
structure of MND class densities is as follows

1. n×n matrix Uj denotes the covariance matrix between rows of an image from
j-th class,

2. m × m matrix Vj stands for the covariance matrix between columns of an
image from j-th class.

The above definitions are meaningful only when det[Uj ] > 0, det[Vj ] > 0.
The equivalent description of MND is the following:

vec(X) ∼ Nn m(vec(Mj), Σj), for j = 1, 2, . . . , J, (20)

where NK stands for the classic (vector valued) normal distribution with K
componentnts. In (20), vec(X) is the operation of stacking columns of matrix X,
while Σj is a nm × nm covariance matrix of j-th class, which is the Kronecker
product (denoted as ⊗) of Uj and Vj , i.e.,

Σj
def
= Uj ⊗ Vj , j = 1, 2, . . . , J. (21)

Formulas (20) and (21) show clearly that MND’s form a subclass of all normal
distributions. Namely, MND’s have the special structure of the covariance matrix
given by (21) (see [7]). Thus, in practice, it suffices to estimate two much smaller
matrices Uj and Vj instead of a general covariance matrix which is nm × nm.
As the consequence, it suffices to have:

Nj ≥ max
{ n

m
,
m

n

}
+ 1, j = 1, 2, . . . , J. (22)

(see [6] for the proof).
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