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Abstract. Runtime verification (RV) is a lightweight technique for ver-
ifying traces of computer systems. One challenge in applying RV is to
guarantee that the implementation of a runtime monitor correctly detects
and signals unexpected events. In this paper, we present a method
for deriving correct-by-construction implementations of runtime moni-
tors from high-level specifications using Fiat, a Coq library for stepwise
refinement. SMEDL (Scenario-based Meta-Event Definition Language),
a domain specific language for event-driven RV, is chosen as the specifi-
cation language. We propose an operational semantics for SMEDL suit-
able to be used in Fiat to describe the behavior of a monitor in a rela-
tional way. Then, by utilizing Fiat’s refinement calculus, we transform
a declarative monitor specification into an executable runtime monitor
with a proof that the behavior of the implementation is strictly a subset
of that provided by the specification. Moreover, we define a predicate on
the syntax structure of a monitor definition to ensure termination and
determinism. Most of the proof work required to generate monitor code
has been automated.

Keywords: Runtime monitor · SMEDL · Formal semantics · Coq
Stepwise refinement

1 Introduction

Runtime verification (RV) [1] is a lightweight technique for correctness monitor-
ing of critical systems. The objective of RV is to check if a run of the system
(referred as a target system in the remainder of the paper), usually abstracted
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as a trace of events either from the execution or the logging information, satis-
fies or violates certain properties. Properties to be checked using RV are usually
specified by high level languages, such as temporal logics or state machines.
Specifications are then converted into executable monitor code by either a code
generator or manual effort. However, informal code generation processes are usu-
ally error-prone, and the generated monitor code may not adhere to its specifica-
tion. During execution, an incorrect monitor may not detect property violations,
which can lead to serious consequences in safety critical systems. As a result, it
is desirable to use a formal procedure to achieve correct-by-construction imple-
mentation of monitors.

This paper presents a method for generating correct-by-construction imple-
mentations of runtime monitors written in SMEDL [2], a state-machine-based
DSL (domain specific language) for RV. Our method is based on Fiat [3], a pow-
erful deductive synthesis framework embedded in the Coq proof assistant [4].
The core idea in Fiat is to separate declarative specifications from concrete
implementations. Users start by embedding their DSL into Coq, so that each
DSL program is understood as a mathematical description of the set of results
it may return. Using stepwise refinement, each program can be translated into
a correct-by-construction executable implementation.

High-level specifications of monitors are attractive because they succinctly
describe what monitors should do: implementation details are crucial for perfor-
mance, but they can be determined separately, along with a proof of preserva-
tion of semantics between the specification and implementation. One challenge
is to design semantic rules that can be used smoothly in the specification, while
remaining amenable to refinement so that such preservation can be proved with-
out excess difficulty.

Additionally, to generate a correct monitor, we have to ensure that the mon-
itor specification is well-formed. In this paper, we require that each monitor
satisfies two properties: termination and determinism. Termination is important
because if a monitor goes into infinite loop, or gets stuck during the execution, it
will not be able to receive events from the system and catch property violations.
Determinism ensures that the monitor always produces the same output given
the same input and current state. The code generation process thus needs to be
able to detect and reject any “bad” monitor specification that may get stuck
during execution.

To overcome the challenges above, we provide a solution for constructing
runtime monitor implementation using the Fiat framework. The contributions
of this paper are the following:

– We present an operational semantics for SMEDL monitors written in a rela-
tional way that ensures that the functionality of the specification and the
implementation are separated. This lays a foundation for generating correct
code using Fiat.
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– We define a predicate on the definition of SMEDL monitors to ensure termi-
nation and determinism. Only a well-formed monitor can be extracted into
executable code through the Fiat framework.

– We implement a complete procedure from the design of specifications to the
generation of correct-by-construction runtime monitors using Fiat, illustrat-
ing how deductive synthesis can be used to formally derive trustworthy mon-
itors.

The code generation process presented in this paper is shown in Fig. 1. First,
we define a general declarative specification to describe the behavior of a moni-
tor reacting to input events. This specification is independent of specific monitor
definitions. It is then refined into a general function using Fiat. To derive exe-
cutable code for a specific monitor, the user needs to specialize this general func-
tion using a definition of that monitor along with a proof of its well-formedness.
A Haskell program is extracted and rendered into a monitor to check properties
of the target system. Since most of the proof work is automated by auxiliary
decision procedures and tactics, applying this methodology does not lead to a
heavy workload. Furthermore, efficient monitor code can be generated simply by
picking other implementations, which are guaranteed by Fiat to adhere to the
behavior described by the specification.

Fig. 1. Code generation process

The paper is organized as follows. Section 2 introduces basic concepts of the
Fiat framework and SMEDL. Sections 3 and 4, respectively present the opera-
tional semantics of SMEDL and the monitor definition predicates that ensure
termination and determinism. Sections 5 and 6 present the process of refinement
using Fiat and illustrate the usability of this method by a case study. Section 7
summarizes related work. Section 8 concludes the paper and presents the future
work. The code for this paper can be downloaded from the internet1.

2 Preliminaries

Overview of Fiat. Stepwise refinement derives executable programs from non-
deterministic specifications. In each step, some details of the computation are
decided upon, proceeding this way until a computable program is derived. Each

1 https://gitlab.precise.seas.upenn.edu/tengz/smedl-fiat-code.

https://gitlab.precise.seas.upenn.edu/tengz/smedl-fiat-code
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refinement step must not introduce new behavior: the values that a refined pro-
gram may produce must be a subset of the values allowed by the specifica-
tion. Fiat is a stepwise refinement framework, providing a semi-automatic way
of deriving correct and efficient programs. Here “semi” means that while the
derivation process is automatic, it depends on manually verified refinement lem-
mas, specific to the domain that Fiat is applied to. This section briefly gives an
overview of Fiat. Readers can refer to [3,5,6] for more information.

Important Syntax Structures in Fiat. In Fiat, specifications are logical
predicates characterizing allowable output values. These specifications are called
computations, and written in the non-determinism monad: deterministic pro-
grams can be lifted into computations using the “ret” combinator, computa-
tions can be sequenced using the “bind” combinator (written “x ← c1; c2(x)”),
and a nondeterministic choice operator written {a|P a} is used to describe pro-
grams that may return any value satisfying a logical predicate P . Concretely,
the result of binding two computations c1 and c2 as shown above is simply the
set {y|∃x, x ∈ c1 ∧ y ∈ c2(x)}.

Fiat computations are organized into an Abstract Data Type (ADT), a struc-
ture used to encapsulate a set of operations on an internal data type. In Fiat,
an ADT contains an internal representation type (denoted as rep), a list of con-
structors for creating values of type rep, and a list of methods operating on
values of type rep. A well-typed ADT guarantees that rep is opaque to client
programs using the operations of the ADT.

Refinement Calculus in Fiat. Refinement in Fiat is the process of transform-
ing an ADT into a more deterministic ADT, involving refining all constructors
and methods defined in ADT and picking an efficient internal representation
using data refinement [7] of rep. When refining an expression, a partial relation
c1 ⊇ c2 must be preserved for each refinement step, meaning that the possible
values of expression c2 must be a subset of the possible values of expression
c1. For the data refinement part, changes of internal representation are justified
using a user-selected abstraction relation, so that if the internal states of two
ADTs are related, calling their methods must preserve the relation and produce
the same client-visible outputs. Adding the abstraction relation r to the partial
relation ⊇ of refinement on expression, Fiat uses ⊇r to represent the relation
to be preserved for each refinement step: I1 ⊇r I2 ⊇r ... ⊇r Ii where I1 is the
initial ADT and Ii is a fully refined (i.e. deterministic) ADT.

SMEDL Concepts. A SMEDL monitor is a collection of scenarios. Each sce-
nario is an Extended Finite State Machine (EFSM) [8] in which the transitions
are performed by reacting to events. By specifying a set of scenarios in a SMEDL
monitor, the monitor can check the behavior of a certain aspect of the system
from a variant levels of abstraction with a clearer separation. Scenarios inter-
act with each other using shared state variables or by triggering execution of
other scenarios through raised events. There are three types of events: imported,
exported and internal. Imported events, which are responsible for triggering the
execution of a monitor, are raised from the target system or by other moni-
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tors; exported events are raised within the monitor and are then sent to other
monitors; internal events are used to trigger transitions, but are only seen and
processed within a given monitor. Each transition is labeled with a triggering
event and attached to a guard condition and a list of actions to be executed after
the transition. Primitive data types, such as arithmetic and logical operations,
are supported in SMEDL. The abstract syntax of SMEDL is given below.

A monitor is a 3-tuple 〈V,Σ, S〉, where V is a set of state variables, Σ is a
set of event declarations and S is a non-empty set of scenarios for the monitor.
The event declaration is a three-tuple 〈eventType, eventName, attributeTypes〉
where eventType is an enumeration over three types of event introduced above;
attributeTypes represents the list of types of attributes of the event.

A scenario is a 5-tuple 〈n,Q, q0, E, δ〉 where n, Q, and q0 are respectively the
identity, the set of states and the initial state, E is the set of alphabets—events
that can trigger the transitions of the machine and δ is the set of transitions of
the scenario.

A transition is a four-tuple 〈qsrc, qdst , stpEv ,A〉 where qsrc and qdst are
the source and target state of the transition, stpEv denotes the trigger-
ing event of the transition, typed with eventInstance which is a three-tuple
〈event , eventArgs, eventGuard〉. event is a reference to the corresponding event
declaration, eventArgs is defined as the list of local variable names, and event-
Guard is an expression guarding the transition. Both the state variables and
local variables can be used in the eventGuard. The set A consists of statements
to be executed immediately after the transition, which can either update state
variables or raise events. Note that we assume all transitions in the scenario are
complete.

3 An Operational Semantics of SMEDL

This section proposes the formal semantic rules for a single monitor. When an
imported event is sent to a monitor, state transitions within the monitor are
triggered. Actions attached to transitions can raise internal or exported events.
Internal events are used to trigger further transitions in other scenarios. After all
triggered transitions are completed, exported events are output and the monitor
waits for the next imported event. This process is denoted as a macro-step, which
cannot be interrupted by other imported events. Each scenario can execute its
transition at most once in a single macro-step so that there is no infinite loop
of interaction between scenarios. We introduce a data structure configuration to
describe the dynamic state of a monitor.

Configurations. A configuration is a five-tuple 〈MS ,DS ,PD ,EX ,SC 〉. MS
denotes the mapping from scenarios to their current states; DS is a well-typed
mapping from state variables to values; PD is the set of pending events to trigger
transitions within the monitor; and EX is the set of raised, exported events.
Elements in both sets are events binding with actual attribute values, denoted
as raisedEvents. SC is the set of scenarios executed during the current macro-
step and its corresponding triggering events. Each configuration conf relates to
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a monitor M, denoted as confM . The subscript is omitted in the remainder of
the paper whenever the context is clear.

A macro-step is constructed by chaining a series of consecutive micro-steps.
Each micro-step is the synchronous composition of a set of transitions on scenar-
ios with the same triggering event, constructed by the interleaved application of
the basic rule and the synchrony rule. The chaining of micro-steps is performed
by applying the chain merge rule.

Basic Rule. The basic rule is applied to a state machine whenever a transition
is triggered by a pending event. In the definition below, the scenario performing
the transition is mh, conf denotes the configuration before applying the rule,
and conf ′

mh denotes the configuration after applying the rule, on mh.

tr : s1
e{a}−→c s2

valid(tr, conf ,mh)
conf ′

mh = updateConfig(mh, conf , tr)

conf e−→ conf ′
mh

tr is the enabled transition from s1 to s2 by e; a is the set of actions for tr ;
and c is the guard. valid tests the validity of tr under the configuration conf,
which includes: (1) tr is the transition of mh, (2) current state of mh is s1 and
(3) c evaluates to true for current DS and attribute values of the event, (4) e is
in PD, and (5) mh is not in SC. When tr is taken, conf is updated by executing
the function updateConfig, denoted as conf e−→ conf ′

mh . The update includes:
(1) mh transitions to s2 and is put into SC, (2) DS is updated by the actions in
the transition, (3) e is removed from PD , and (4) raised events are respectively
added to PD and EX according their types.

Synchrony Rule. One or more scenarios are enabled by a triggering event from
a source configuration. The basic rule creates new configurations for each sce-
nario by taking these transitions. The synchrony rule then combines scenario’s
resulting configuration into a new configuration. Combination of two configura-
tions conf1 and conf2 under the origin configuration conf is defined below.

– ∀mh ∈ S,

MS conf ′(mh) =

⎧
⎨

⎩

MS conf1 (mh) ,MS conf1 (mh) = MS conf2 (mh)
MS conf1 (mh) ,MS conf1 (mh) �= MS conf (mh)
MS conf2 (mh) ,MS conf2 (mh) �= MS conf (mh)

– ∀v ∈ V ,

DS conf ′(v) =

⎧
⎨

⎩

DS conf1 (v), DS conf1 (v) = DS conf2 (v)
DS conf1 (v), DS conf1 (v) �= DS conf (v)
DS conf2 (v), DS conf2 (v) �= DS conf (v)

– PDconf ′ = PDconf1 ∪ PDconf2

– EX conf ′ = EX conf1 ∪ EX conf2
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– SC conf ′ = SC conf1 ∪ SC conf2

The synchrony rule is given below. confs is the set of target configurations
obtained from the basic rule given a source configuration conf and an event
e. MergeAll combines each configuration in confs into a new configuration by
repeatedly combining configurations pairwise. The micro-step from c to c′ by e

is denoted as c
e

↪→ c′.

confs = {confmh |conf e−→ confmh}
conf

e
↪→ MergeAll(confs)

Chain Merge Rule. The objective of the chain merge rule is to construct a
macro-step, defined inductively below.

conf
e1
↪→ conf ′

conf e1
⇀1 conf ′ e1 ∈ ImportedEvents (1)

conf e1
⇀n conf ′

conf ′ e2
↪→ conf ′′

conf e1
⇀n+1 conf ′′ (2)

Case (1) shows that a micro-step triggered by an imported event is the basic
case. The corresponding source configuration is denoted as an initial configu-
ration in the remainder of this paper. The inductive case is shown in case (2).
Note that there is no restriction on how to choose e2 from PD of conf’. The
subscript in the chain merge rule indicates the number of micro-steps from the
initial configuration to the current configuration.

Discussion on Design of Semantic Rules. The basic rule and synchrony
rule are encoded in Coq as functions, because the transition of a scenario and
the construction of a micro-step are deterministic. On the other hand, the chain
merge rule is defined relationally because it does not specify which event to
choose from PD to trigger the next micro-step, nor does it guarantee termination
during the combination of micro-steps. To derive a computable version, which
must terminate because of restrictions in Coq, we require predicates, given below,
on the syntactic structure of monitor specifications, such that termination and
determinism are guaranteed.

4 Towards a Well-Formed Monitor Specification

This section presents the definition of a well-formed monitor. Both the basic
and synchrony rule are partial so we need to make sure that their application
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succeeds. Moreover, two vital properties for a monitor, termination and deter-
minism, are considered. A set of predicates are proposed from which the def-
inition of well-formedness is constructed. We prove that if a monitor satisfies
these predicates, it always terminates in a final state, deterministically, which
indicates that the monitor is well-formed, i.e. no runtime errors are possible.
These predicates are required since only well-formed monitor specifications may
be generated into executable code by Fiat.

4.1 Well-Formedness Predicates

Table 1 lists predicates for well-formedness, which are divided into three cate-
gories indicating which part of the execution is influenced by the predicates.

Table 1. Predicates for well-formedness

Classification Name Definition

Scenario level P1 ∀s ∈ SM , ∀tr1 tr2 ∈ δs, qsrctr1 = qsrctr2 ∧ eventstpEvtr1
=

eventstpEvtr2
⇒ eventGuard stpEvtr1

= ¬eventGuard stpEvtr2

P2 ∀s ∈ SM , ∀tr ∈ δs, ∀e ∈ ΣM , eventstpEvtr
= e ⇒ e ∈ Es

Micro-step level P3 ∀v ∈ VM , ∀sce1 sce2 ∈ SM ,
updateVar(v , sce1 ) ∧ updateVar(v , sce2 ) ⇒
Esce1 ∩ Esce2 = ∅

Macro-step level P4 ∀e ∈ ΣM , eventTypee = Imported ∨ eventTypee =
Internal ⇒ ∃sce, sce ∈ SM ∧ e ∈ Esce

P5 ∀e e1 e2 ∈ ΣM , e1 
= e2 ∧ e ⇑M e1 ∧ e ⇑M e2 ⇒
¬∃sce, sce ∈ SM ∧ e1 ∈ Esce ∧ e2 ∈ Esce

P6 ∀e e1 ∈ ΣM , eventTypee = Imported ∧ e 
= e1 ∧ e ⇑M

e1 ⇒ ¬∃sce, sce ∈ SM ∧ e ∈ Esce ∧ e1 ∈ Esce

P7 ∀e ∈ ΣM , ∀ sce1 sce2 ∈
SM , raiseEv(sce1 , e) ∧ raiseEv(sce2 , e) ∧ sce1 
= sce2 ⇒
¬∃e′ ∈ ΣM , triggerSce(sce1 , e ′) ∧ triggerSce(sce2 , e ′)

P8 ∀e ∈ ΣM , sce ∈ SM , stp ∈
δsce,noDuplicatedRaise(e, sce, stp)

P9 ∀e1 e2 ∈ ΣM , ∀v ∈ VM , ∃e ∈
ΣM ,noDependency(e, e1, e2) ∧ updateVarEv(v ,e1) ⇒
¬updateVarEv(v ,e2) ∧ ¬usedVarEv(v ,e2)

P1 and P2 guarantee that exactly one transition is triggered for a scenario
during the application of the basic rule, by an event from the alphabet for that
scenario. P3 guarantees that when applying the synchrony rule to construct a
micro-step, scenarios that share the same triggering event never update the same
variable. updateVar(v , sce) means that variable v is updated by actions from the
transitions of scenario sce.

A well-formed monitor guarantees that it always terminates in some final
state. The definition of a final configuration is given below:
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Definition 1 (Final Configuration). A configuration conf is a final configu-
ration if (1) SC conf �= ∅ and (2) PDconf = ∅.

The tricky part is that all pending events must be consumed at the end of each
macro-step, i.e. there are no pending events when all the available scenarios have
finished execution and that the execution of a monitor never gets stuck because
of a mismatch between enabled scenarios and pending events.

P4 guarantees that all imported events or internal events can trigger exe-
cution of some scenarios. P5 and P6 ensure that imported or internal events
that may be raised in the same macro-step cannot directly trigger execution of
the same scenario. e ⇑M e1 means that e1 is raised by the actions of transitions
transitively triggered by e. P7 and P8 guarantee that in each macro-step, an
internal event cannot be raised multiple times. raiseEv(sce,e) means that the
actions of transitions defined in sce contain raising e. triggerSce(sce,e) means
that e may transitively trigger transition of sce. noDuplicatedRaise(e,sce,stp)
means that e can only be raised once in stp of sce.

The chain merge rule does not specify an order for the chaining of micro-
steps. If a monitor is not well defined, the execution result of a macro-step
could be non-deterministic. This is undesirable because we always want a deter-
ministic verdict from a monitor given the same input. P1 and P2 ensure
scenario-level determinism. P5 to P8 also prevent some behaviors that may
lead to non-determinism. We define a proposition noDependency(e,e1,e2) def=
eventTypee = Imported ∧ e ⇑M e1 ∧ e ⇑M e2 ∧ ¬e1 ⇑e

M e2 ∧ ¬e2 ⇑e
M e1. This

means that e1 and e2 may be raised in the macro-step triggered by imported
event e, and that during this macro-step, e1 can not transitively raise e2, and vice
versa. P9 guarantees that updating a state variable is mutually exclusive. updat-
eVarEv(v,e) and usedVarEv(v,e) respectively mean that v cannot be updated
and used in any actions transitively triggered by e.

We use the notation Pi(M ) to represent that a monitor M satisfies predicate
Pi. A well-formed monitor satisfies the nine predicates defined above, Well-
formed(M) def=

∧
1≤i≤9 Pi(M ).

4.2 Proof of Termination and Determinism

Given a monitor that is well-formed, and which starts execution with a well-
typed imported event, we can now prove that it can always reach a final state
within a limited number of micro-steps, as described in Theorem 1 below:

Theorem 1 (Termination). Given a well-formed monitor M, two of its con-
figurations confM and conf ′

M and an imported event e, if confM
e
⇀n conf ′

M and
M cannot take any micro-step from conf ′

M , conf ′
M is a final configuration and n

is equal to or less than |SM |.
To prove this theorem, we need to first prove that the number of micro-

steps taken within a macro-step is bounded. Because each scenario can only
transition once during each macro-step, and at least one scenario executes in each
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micro-step, the number of micro-steps to be taken is bounded by the number of
scenarios of the monitor. So we first prove that |SCconf | strictly increases in a
micro-step.

Lemma 1 (Increase of SC). Given two configurations conf conf ′ and an
event e, if conf

e
↪→ conf ′, then |SC conf | < |SC conf ′ |.

With Lemma 1 and the fact that SC conf M
is a subset of |SM |, we can prove

that the number of micro-steps taken by a well-formed monitor in a macro-step
is bounded by the number of scenarios:

Lemma 2 (Up-bound of micro-steps). Given a well-formed monitor M ,
two of its configurations confM and conf ′

M and an imported event e, if confM
e
⇀n

conf ′
M , then n ≤ |SM |.
Next we need to prove that macro-step has the progress property, which

guarantees that a well-formed monitor cannot be stuck in a non-final state:

Lemma 3 (Progress). Given a well-formed monitor M , two of its configura-
tions confM and conf ′

M and an imported event e, if confM
e
⇀n conf ′

M and conf ′
M

is not a final configuration, then M can take a micro-step on all of its pending
events from conf ′

M .

With the three core lemmas presented above, and other auxiliary lemmas,
Theorem 1 can be proved. With this theorem, we can always pick a terminating
implementation of the relational semantic rules during the refinement step.

Deterministic execution of a macro-step is represented by the theorem below:

Theorem 2 (Determinism). Given a well-formed monitor M, if confM
e
⇀

conf ′
M , confM

e
⇀ conf ′′

M and both conf ′
M and conf ′′

M are final configurations, then
conf ′

M = conf ′′
M .

This theorem is proved using the idea of Newman’s lemma [9]. First, we prove
the diamond lemma defined below:

Lemma 4 (Diamond). Given a well-formed monitor M , if confM is an initial
configuration or there exists a configuration oconf such that oconf e

⇀ confM , and
confM

e1
↪→ conf1M and confM

e2
↪→ conf2M , then there exists a configuration conf ′

M

such that conf1M
e2
↪→ conf ′

M and conf2M
e1
↪→ conf ′

M .

Then, by induction on the number of micro-steps to be taken by two transi-
tion chains, we can prove the confluence lemma:

Lemma 5 (Confluence). Given a well-formed monitor M , if confM
e
⇀

conf1M , confM
e
⇀ conf2M , there exists a configuration conf ′

M such that conf1M
↪→∗ conf ′

M and conf2M ↪→∗ conf ′
M .

Transition ↪→∗ represents multiple micro-steps. Lemma 5 ensures that if an
initial configuration conf can transition into two non-final configurations conf1
and conf2 , then they can always transition back to the same configuration. Using
Lemma 5 and the fact that a final configuration cannot take any micro-step,
Theorem 2 can be proved.
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5 Refinement of a Monitor Specification Using Fiat

This section presents how to generate correct-by-construction code from a declar-
ative ADT using Fiat. Figure 2 gives an overview of the code generation process.
The initial ADT describes the basic behavior of monitors in a declarative way
using semantic rules defined in the previous section. Then, the ADT is refined
by proving a “sharpening” theorem, wherein the representation type, construc-
tors and methods of the ADT are refined. The refinement of methods involves
picking a specific implementation and proving that ⊇r, introduced in Sect. 2, is
preserved between the specification and the implementation. The implementa-
tion is parameterized by a specific monitor definition given a starting state and
proof of well-formedness of that monitor. Haskell code can then be extracted
from this definition.

Fig. 2. Fiat refinement steps for code generation

5.1 Definition of an ADT

Basically, the monitor ADT describes the common process of handling imported
events using the semantic rules defined in the previous section. The definition of
this ADT is given below.

Definition confSpec : ADT _ := Def ADT {
rep := configuration M,
Def Constructor0 newS : rep := { c : configuration M | readyConfig c },,
Def Method1 processEventS (r : rep) (e: raisedEvent | raisedAsImported M e) :

rep * list raisedEvent :=
{ p : rep * list raisedEvent

| exists conf’ econf,
chainMergeTrans r conf’ econf (‘ e) (fst p) (snd p) }

}.



42 T. Zhang et al.

The configuration of a given monitor M is used as the representation type for
the ADT. Instead of constructing a concrete value, Constructor newS specifies
that the starting state of a monitor should be a ready configuration. A ready
configuration has empty sets for PD, EX and SC, indicating that the monitor
is ready to receive an imported event for the next macro-step. The method
processEventS specifies the non-deterministic action of taking a macro-step. The
first parameter r represents the current ready state of the monitor and the second
parameter e is the imported event triggering the macro-step. The return value
is a tuple of a ready configuration that reflects the updated state of the monitor
after the macro-step and a list of raised exported events. The semantic rules from
previous sections were defined in a relational way to conveniently specify this
method, since relations easily model non-deterministic functions. To adapt the
chain merge rule to the interface of processEventS. chainMergeTrans is defined
below:

Definition chainMergeTrans {M : monitor} (conf conf’ econf: configuration M)
(e: raisedEvent) (rconf: configuration M) (events: list raisedEvent) : Prop :=

configTrans conf conf’ /\
chainMerge conf’ econf e /\
finalConfig econf /\
configTransRev econf rconf /\
events = EX econf.

configTrans conf conf’ represents the transformation from ready configura-
tion conf to initial configuration conf’ ; chainMerge conf’ econf e is the Coq
definition of conf ′ e

⇀ econf with the number of steps taken omitted; and config-
TransRev represents the transformation from econf to a new ready configuration
rconf. events is the set of exported events raised in this macro-step.

5.2 Refinement Process

Refinement by Fiat requires proving the theorem FullySharpened(confSpec M),
parameterized over some monitor definition M. The implementation is wrapped
in the proof term of the theorem. The first step refines the representation type.
In this paper, we choose the same representation type—the configuration of
monitor M—in the implementation. As a result, the abstraction relation r is
plain equality. Constructor newS is refined by choosing a ready configuration
conf for monitor M, given by the starting state of monitor M. Just like parameter
M, conf also needs to be provided to generate a concrete, executable monitor.
To refine method processEventS, we need to provide a deterministic function
that preserves the semantics of applying the chain merge rule. Preservation of
the specification’s semantics for this function is given by the lemma below:

Lemma ProcessEventRefined M (C : configuration M) (W : Wellformed M)
(Cor:readyConfig C) (e: raisedEvent) (P : raisedAsImported M e) :

refine { p : configuration M * list raisedEvent
| exists conf’ econf, chainMergeTrans C conf’ econf e (fst p) (snd p) }
(ret (macroStepReadyFinal W Cor P

(length (S M)))).

macroStepReadyFinal is a function which takes a ready configuration C and
returns a new ready configuration and list of exported events. In this paper,
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we choose a straightforward implementation: a fixpoint function that picks the
first event from PD of the current configuration to trigger the next micro-step.
Note that in the Coq definition, we use a list to represent the set, and due to the
predicates establishing well-formedness, PD can never have duplicate events. The
number of times the semantic function gets invoked is bounded by the number
of scenarios in M. Provided that M is well-formed, it is guaranteed that the
resulting configuration is a final configuration. The lemma ProcessEventRefined
establishes that the return value is a subset of the results obtained by applying
chainMergeTrans used in the original ADT. From the proof term of the theorem,
an executable version of processEventS can be obtained.

It is worth noting that, the semantics of SMEDL can be directly expressed
as a Coq function for generating the Haskell code by native Coq. But through
Fiat, we can refine from the declarative SMEDL semantics to a more efficient
implementation by changing the data structure for configuration, handling pend-
ing events more wisely, etc. Moreover, refinement can be conducted in a more
mechanical and extensible way in Fiat than using native Coq.

6 Case Study

A general event processing function is generated by refinement, parameterized
by: a specific monitor specification, its well-formedness proof and a starting,
ready state for that monitor. Therefore, to obtain a correct-by-construction
monitor, one needs to (1) write a monitor definition M ; (2) prove that M is
well-formed; and (3) specify a starting state. A Haskell program may then be
extracted, from which a monitor is implemented by adding glue code to receive
events from the target system. This section uses a real-world monitoring require-
ment to illustrate the usability of this method.

SMEDL Specification. The monitoring requirement comes from a known
vulnerability(CVE-2017-9228)2 in Oniguruma v6.2.0 [10], which is related to
incorrect parsing of regular expressions, resulting in a crash due to access of an
uninitialized variable. Based on a high-level specification, and agnostic of the
specific vulnerability, a SMEDL monitor is constructed to detect this violation
of the specification and raise an alarm. The specification is based on a part of
the regular expression grammar concerning character classes. The parsing can
be described as the state machine in Fig. 3, where transition labels are omitted
for clarity. Transitions in the state machine are triggered by tokens read by the
parser and guarded with additional conditions.

Part of the SMEDL specification (denoted as parseCC ) is given below. To
simplify the presentation, we concentrate only on one guard condition, which
states that the VALUE state cannot be recursively entered (i.e., from the START
state) while a class is still being processed. We refer to this condition below
as in class being equal to 1. Scenario main records transitions of the parser
state machine affected by the code; they are triggered by events that correspond

2 https://nvd.nist.gov/vuln/detail/CVE-2017-9228.

https://nvd.nist.gov/vuln/detail/CVE-2017-9228
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Fig. 3. State machine of parsing character class

by changes to state variables in the code. Scenario check class determines the
value of the state variable in class by receiving the imported events in class and
out class. The specification can be directly mapped to an AST definition in Coq.

object parseCC
state

int in_class = 0;
events

imported inClass();//enter next_value_class
imported outClass();//exit next_value_class
imported state_to_start();//state is set to START
imported state_to_value();//state is set to VALUE
imported state_to_range();//state is set to RANGE
imported state_to_complete();//state is set to COMPLETE
exported error(int);

scenarios
main:

START -> state_to_value() when (in_class != 1) -> VALUE
START -> state_to_value() when (in_class == 1)
{raise error(0);} -> START
VALUE -> state_to_value() -> VALUE
VALUE -> state_to_range() -> RANGE
VALUE -> state_to_start() -> START
...

check_class:
idle -> in_class() when (in_class == 0)

{in_class = 1;} -> idle
idle -> out_class() when (in_class == 1)

{in_class = 0;} -> idle

Proof of Well-Formedness. Proving the well-formedness of a monitor seems
hard because there are nine sub predicates needed to be proved and type correct-
ness needs to be checked. However, we have implemented decision procedures to
check whether a monitor satisfies P1 to P4. Rest of them can be proved using the
auxiliary lemmas and tactics. The LOC for the proof is less than 1k of Gallina
and Ltac code. The time for proving well-formedness of parseCC is estimated
to be about 30 min for a user with basic experience of Coq.

Construction of the Haskell Monitor. The core building block of a par-
seCC -based monitor is given below. processEventS is the general event handling
function refined from the Fiat ADT. The Parameter r contains the information
to be used by parseCC : the proof of well-formedness (denoted as Well ParseCC )
and a starting state. Parameter e is the imported, triggering event for parseCC.

Definition parseCC_processEvent (r : ComputationalADT.cRep
program Well_ParseCC configuration1_ready)

(e: raisedEvent | raisedAsImported parseCC e) :=
processEventS r e.
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Coq provides the ability to extract Coq definitions to a Haskell program.
The monitor is constructed by adding glue code for receiving events from the
target system. We compile the Haskell code into an object file and expose two
functions to be instrumented into the target program. The type signature of
these two Haskell functions are given below:

cInitialRep :: IO (Ptr ())
cHandleImported :: CString -> Ptr () -> IO (Ptr ())

Both functions rely on the extracted Haskell code. cInitialRep provides a
starting state for the monitor. chandleImported takes the name of an imported
event, and the current state of the monitor, and returns a new state with any
exported events printed out. The target system is responsible for recording this
state update transparently. Using the GHC compiler, both an object file and
a C header file are generated. The header file contains the C API of the two
functions defined above, which are called in the source code of Oniguruma. When
an incorrect transition occurs in the library, an alarm is raised and printed to
the screen.

The LOC for the automatically extracted code is about 6k lines but only
about 10% of the code depends on the definition of a monitor. For another exam-
ple monitor with 6 scenarios and 16 transitions, the LOC of the part depending
on the monitor definition is less than 1k lines. Thus, scalability would not be an
issue.

The difficult part of deriving a monitor is its proof of well-formedness, which
can be simplified using the provided decision procedures and tactics. The other
steps are easily implemented using common procedures. The methodology pre-
sented in this paper provides an straightforward way to implement correct-by-
construction monitors.

7 Related Work

We summarize a representative selection of related work in three categories: (1)
formal semantics for RV; (2) mechanization of semantics for state-machine-based
formalisms and (3) case studies of using the Fiat framework.

The semantics of temporal logic and traces used for RV have been widely
studied [11–15]. There has been a lot of work related to describing the semantics
of LTL/MTL using automata-like formalisms. Giannakopoulou and Havelund
present a technique translating LTL formulae into FSM to monitor program
behavior [16]. Drusinsky presents TLCharts, a formalism resembling Harel stat-
echarts while supporting the specification of nondeterministic, temporal proper-
ties described in MTL or LTL inside a statechart specification [17]. This seman-
tics is described using Equivalent Non-Deterministic Automaton (ENFA). Roşu
and Havelund propose a method for rewriting LTL formulas into binary transi-
tion tree finite state machines for online monitoring [18]. Several RV tools sup-
port using FSM to specify properties [19–24]. However, little work has been done
on mechanizing semantics of DSLs for RV. Our work shows that the semantic
mechanization is a necessary foundation for generating correct monitors.
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In [25], Paulin-Mohring presents the model of timed automata in Coq for
specifying and verifying of telecommunication protocols. Kammüller and Helke
[26] formalize the semantics of Statecharts [27] using Isabelle/HOL [28]. In
AADL (Architecture Analysis and Design Language) [29], the thread model and
mode change are represented using automata. Yang et al. [30] propose a machine-
checked transformation of a subset of AADL into TASM (Timed Abstract State
Machine [31]). The main purpose of defining formal semantics in these studies is
to prove properties of formal models. Although the formal semantics of SMEDL
can be used to prove properties of SMEDL or a monitor, the primary objective of
our work is code generation. Particularly, the semantic rules have been designed
to be conveniently integrated into a Fiat specification.

Correct-by-construction implementation generation using refinement has
been well studied [7,32–36]. For instance, Event-B [37] refines an abstract tran-
sition system into a more concrete one by adding transitions and states. Fiat
is a more general tool, suitable for the refinement objective of SMEDL. Fiat
provides flexible support for refinement of libraries for different functionality
domains. Delaware et al. [3] illustrate an example of using Fiat to synthesize
query structures. Wiegley and Delaware [6] use Fiat to generate efficient and
correct implementations of a subset of the bytestring library in Haskell. Chli-
pala et al. [5] present the development of a simple packet filter in Fiat. The
ADT for SMEDL is not as complicated as the case studies listed above, but it
is an initial work using Fiat to refine a state-machine-based DSL. The semantic
rules and ADT design presented in this paper offer guidance for applying Fiat
to generate code for other state-machine-style DSLs.

8 Discussion and Conclusions

We have presented a method for deriving correct-by-construction monitor code
using the Fiat framework. An operational semantics of SMEDL is designed using
Fiat to describe the essential behavior of any monitor. Using the mechanisms
provided by Fiat, this ADT is then refined into executable monitor code while
preserving those semantics. We have also proposed a well-formedness predicate
on monitor structures and proved that if a monitor is well-formed, it can always
terminate deterministically in a final state after reacting to any imported event.

One concern of using formal techniques is the manual effort involved in proof
work. In our development, proofs are divided into two parts: One part includes
proofs used during the refinement process, and auxiliary tactics and decision
procedures for proving the well-formedness of any monitor; the other part is
the proof of well-formedness for a particular monitor. The raw LOC in Coq
for the first part is about 30k lines. However, to apply the technique, users
only need prove well-formedness of their particular monitor, which is not labor-
intensive given the help of auxiliary tactics and lemmas. Therefore, we assert
that generating correct runtime monitors using a proof assistant is a feasible
task.

One main avenue of future work would be to improve the definition of well-
formedness, and implement more auxiliary tactics for better usability. It is also
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worth exploring more efficient implementation of the semantic rules in order to
generate more optimized monitor code.
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35. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free!. In: Gonthier, G., Nor-
rish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 147–162. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1 10

36. Lammich, P.: Refinement to imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 17

37. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to event-B. Fundam. Inform. 77, 1–28 (2007)

https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17

	Correct-by-Construction Implementation of Runtime Monitors Using Stepwise Refinement
	1 Introduction
	2 Preliminaries
	3 An Operational Semantics of SMEDL
	4 Towards a Well-Formed Monitor Specification
	4.1 Well-Formedness Predicates
	4.2 Proof of Termination and Determinism

	5 Refinement of a Monitor Specification Using Fiat 
	5.1 Definition of an ADT
	5.2 Refinement Process

	6 Case Study
	7 Related Work
	8 Discussion and Conclusions
	References




