
Xinyu Feng · Markus Müller-Olm
Zijiang Yang (Eds.)

 123

LN
CS

 1
09

98

4th International Symposium, SETTA 2018 
Beijing, China, September 4–6, 2018 
Proceedings

Dependable 
Software Engineering 
Theories, Tools, and Applications



Lecture Notes in Computer Science 10998

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Xinyu Feng • Markus Müller-Olm
Zijiang Yang (Eds.)

Dependable
Software Engineering

Theories, Tools, and Applications

4th International Symposium, SETTA 2018
Beijing, China, September 4–6, 2018
Proceedings

123



Editors
Xinyu Feng
Nanjing University
Nanjing
China

Markus Müller-Olm
Westfälische Wilhelms-Universität Münster
Münster
Germany

Zijiang Yang
Western Michigan University
Kalamazoo, MI
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99932-6 ISBN 978-3-319-99933-3 (eBook)
https://doi.org/10.1007/978-3-319-99933-3

Library of Congress Control Number: 2018953821

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the papers presented at the 4th International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications (SETTA 2018),
held during September 4–6, 2018, in Beijing. The purpose of SETTA is to provide an
international forum for researchers and practitioners to share cutting-edge advance-
ments and strengthen collaborations in the field of formal methods and its interoper-
ability with software engineering for building reliable, safe, secure, and smart systems.
Past SETTA symposiums were successfully held in Nanjing (2015), Beijing (2016),
and Changsha (2017).

SETTA 2018 solicited submissions in two categories, regular papers and short
papers. Short papers could discuss ongoing research at an early stage, or present systems
and tools. There were 22 submissions in total. Each submission was reviewed by at least
three, and on average 3.7, Program Committee (PC) members, with the help of external
reviewers. After thoroughly evaluating the relevance and quality of each paper through
online PC meetings, the PC decided to accept nine regular papers and three short papers.
The program also included three invited talks given by Prof. Moshe Vardi from Rice
University, Prof. Tao Xie from University of Illinois at Urbana-Champaign, and Prof.
Hongseok Yang from KAIST. Prof. Moshe Vardi was a joint keynote speaker of
CONFESTA 2018, a joint event comprising the international 2018 conferences CON-
CUR, FORMATS, QEST, and SETTA, alongside with several workshops and tutorials.

This program would not have been possible without the unstinting efforts of many
people, whom we would like to thank. First, we would like to express our gratitude to
the PC and the external reviewers for their hard work put in toward ensuring the high
quality of the proceedings. Our thanks also go to the Steering Committee for its advice
and help. We would like to warmly thank the general chair of SETTA 2018, Prof.
Chaochen Zhou, the general chair of CONFESTA 2018, Prof. Huimin Lin, the local
organizers including Dr. David N. Jansen, Dr. Andrea Turrini, Dr. Shuling Wang, Dr.
Peng Wu, Dr. Zhilin Wu, Dr. Bai Xue, Prof. Lijun Zhang, and all others on the local
Organizing Committee.

We also enjoyed great institutional and financial support from the Institute of
Software, Chinese Academy of Sciences, without which an international conference
like CONFESTA and the co-located events could not have been successfully orga-
nized. We also thank the Chinese Academy of Sciences and the other sponsors for their
financial support. Furthermore, we would like to thank Springer for sponsoring the Best
Paper Award. Finally, we are grateful to the developers of the EasyChair system, which
significantly eased the processes of submission, paper selection, and proceedings
compilation.

July 2018 Xinyu Feng
Markus Müller-Olm

Zijiang Yang



Organization

General Chair

Chaochen Zhou Institute of Software, CAS, China

Program Chairs

Xinyu Feng Nanjing University, China
Markus Müller-Olm Westfälische Wilhelms-Universität Münster, Germany
Zijiang Yang Western Michigan University, USA

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Sanjoy Baruah Washington University in St. Louis, USA
Lei Bu Nanjing University, China
Michael Butler University of Southampton, UK
Yan Cai Institute of Software, CAS, China
Taolue Chen Birkbeck, University of London, UK
Yuxin Deng East China Normal University, China
Xinyu Feng Nanjing University, China
Yuan Feng University of Technology, Sydney, Australia
Ernst Moritz Hahn Institute of Software, CAS, China
Dan Hao Peking University, China
Maritta Heisel University of Duisburg-Essen, Germany
Raymond Hu Imperial College London, UK
He Jiang Dalian University of Technology, China
Yu Jiang Tsinghua University, China
Einar Broch Johnsen University of Oslo, Norway
Guoqiang Li Shanghai Jiao Tong University, China
Ting Liu Xi’an Jiaotong University, China
Tongping Liu University of Texas at San Antonio, USA
Yang Liu Nanyang Technological University, Singapore
Xiapu Luo The Hong Kong Polytechnic University, Hong Kong,

SAR China
Stephan Merz Inria Nancy and LORIA, France
Markus Müller-Olm Westfälische Wilhelms-Universität Münster, Germany
Jun Pang University of Luxembourg, Luxembourg
Davide Sangiorgi University of Bologna, Italy
Oleg Sokolsky University of Pennsylvania, USA
Fu Song ShanghaiTech University, China
Zhendong Su University of California, Davis, USA



Jun Sun Singapore University of Technology and Design,
Singapore

Walid Mohamed Taha Halmstad University and University of Houston,
Sweden

Sofiene Tahar Concordia University, Canada
Cong Tian Xidian University, China
Bow-Yaw Wang Academia Sinica, Taiwan
Chao Wang University of Southern California, USA
Ji Wang National University of Defense Technology, China
Heike Wehrheim University of Paderborn, Germany
Xin Xia Monash University, Australia
Zijiang Yang Western Michigan University, USA
Shin Yoo KAIST, Korea

Local Organizing Committee

Jansen, David N.
Lv, Yi
Turrini, Andrea
Wang, Shuling
Wu, Peng
Wu, Zhilin (chair)
Xue, Bai
Yan, Rongjie
Zhu, Xueyang

Additional Reviewers

Chen, Liqian
Chen, Zhe
Colley, John
Dongol, Brijesh
Elderhalli, Yassmeen
Gu, Tianxiao
Gutsfeld, Jens
Kaur, Ramneet
Kenter, Sebastian
Kharraz, Karam

König, Jürgen
Liu, Hongyu
Petre, Luigia
Santen, Thomas
Silvestro, Sam
Soualhia, Mbarka
Steffen, Martin
Tang, Enyi
Zhang, Min
Zhu, Chenyang

VIII Organization



Abstracts of Invited Talks



Intelligent Software Engineering: Synergy
between AI and Software Engineering

Tao Xie

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
taoxie@illinois.edu

Abstract. As an example of exploiting the synergy between AI and software
engineering, the field of intelligent software engineering has emerged with
various advances in recent years. Such field broadly addresses issues on intel-
ligent [software engineering] and [intelligence software] engineering. The for-
mer, intelligent [software engineering], focuses on instilling intelligence in
approaches developed to address various software engineering tasks to
accomplish high effectiveness and efficiency. The latter, [intelligence software]
engineering, focuses on addressing various software engineering tasks for
intelligence software, e.g., AI software. In this paper, we discuss recent research
and future directions in the field of intelligent software engineering.

This work was supported in part by National Science Foundation under grants no. CNS-1513939
and CNS1564274, and a grant from the ZJUI Research Program.



Formal Semantics of Probabilistic
Programming Languages: Issues, Results

and Opportunities

Hongseok Yang

KAIST, Daejeon, South Korea
hongseok00@gmail.com

Probabilistic programming refers to the idea of developing a programming language for
writing and reasoning about probabilistic models from machine learning and statistics.
Such a language comes with the implementation of several generic inference algo-
rithms that answer various queries about the models written in the language, such as
posterior inference and marginalisation. By providing these algorithms, a probabilistic
programming language enables data scientists to focus on designing good models
based on their domain knowledge, instead of building effective inference engines for
their models, a task that typically requires expertise in machine learning, statistics and
systems. Even experts in machine learning and statistics may get benefited from such a
probabilistic programming system because using the system they can easily explore
highly advanced models.

In the past three years, I and my colleagues have worked on developing so called
denotational semantics of such probabilistic programming languages, especially those
that support expressive language features such as higher-order functions, continuous
distributions and general recursion. Such semantics describe what probabilistic model
each program in those languages denotes, serve as specifications for inference algo-
rithms for the languages, and justify compiler optimisations for probabilistic programs
or models. In this talk, I will describe what we have learnt so far, and explain how these
lessons help improve the design and implementation of these probabilistic program-
ming languages and their inference engines.



Contents

Abstracts of Invited Talks

Intelligent Software Engineering: Synergy Between AI
and Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Tao Xie

Software Assurance

Automatic Support of the Generation and Maintenance of Assurance Cases . . . 11
Chung-Ling Lin, Wuwei Shen, Tao Yue, and Guangyuan Li

Refinement

Correct-by-Construction Implementation of Runtime Monitors
Using Stepwise Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Teng Zhang, John Wiegley, Theophilos Giannakopoulos,
Gregory Eakman, Clément Pit-Claudel, Insup Lee, and Oleg Sokolsky

Identifying Microservices Using Functional Decomposition . . . . . . . . . . . . . 50
Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu

Verification

Robust Non-termination Analysis of Numerical Software . . . . . . . . . . . . . . . 69
Bai Xue, Naijun Zhan, Yangjia Li, and Qiuye Wang

Developing GUI Applications in a Verified Setting . . . . . . . . . . . . . . . . . . . 89
Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw

Interleaving-Tree Based Fine-Grained Linearizability Fault Localization . . . . . 108
Yang Chen, Zhenya Zhang, Peng Wu, and Yu Zhang

Miscellaneous (Short Papers)

Improvement in JavaMOP by Simplifying Büchi Automaton . . . . . . . . . . . . 129
Junyan Qian, Cong Chen, Wei Cao, Zhongyi Zhai, and Lingzhong Zhao

Developing A New Language to Construct Algebraic Hierarchies
for Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

James Snook, Michael Butler, and Thai Son Hoang



Towards the Existential Control of Boolean Networks:
A Preliminary Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Soumya Paul, Jun Pang, and Cui Su

Timing and Scheduling

Statistical Model Checking of Response Times for Different
System Deployments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bernhard K. Aichernig, Severin Kann, and Richard Schumi

Probabilistic Analysis of Timing Constraints in Autonomous
Automotive Systems Using Simulink Design Verifier . . . . . . . . . . . . . . . . . 170

Eun-Young Kang and Li Huang

Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors. . . . . . . . 187
Zhishan Guo, Luca Santinelli, and Kecheng Yang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

XIV Contents



Abstracts of Invited Talks



Intelligent Software Engineering: Synergy
Between AI and Software Engineering

Tao Xie(B)

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
taoxie@illinois.edu

Abstract. As an example of exploiting the synergy between AI and soft-
ware engineering, the field of intelligent software engineering has emerged
with various advances in recent years. Such field broadly addresses issues
on intelligent [software engineering] and [intelligence software] engineer-
ing. The former, intelligent [software engineering], focuses on instilling
intelligence in approaches developed to address various software engi-
neering tasks to accomplish high effectiveness and efficiency. The latter,
[intelligence software] engineering, focuses on addressing various soft-
ware engineering tasks for intelligence software, e.g., AI software. In this
paper, we discuss recent research and future directions in the field of
intelligent software engineering.

Keyword: Intelligent software engineering

1 Introduction

As an example of exploiting the synergy between AI and software engineer-
ing, the field of intelligent software engineering [31] has emerged with various
advances in recent years. Such field broadly addresses issues on intelligent [soft-
ware engineering] and [intelligence software] engineering. The former, intelligent
[software engineering], focuses on instilling intelligence in approaches developed
to address various software engineering tasks to accomplish high effectiveness
and efficiency. The latter, [intelligence software] engineering, focuses on address-
ing various software engineering tasks for intelligence software, e.g., AI software.
Indeed, the preceding two aspects can overlap when instilling intelligence in
approaches developed to address various software engineering tasks for intel-
ligence software. By nature, the field of intelligent software engineering is a
research field spanning at least the research communities of software engineering
and AI.

This work was supported in part by National Science Foundation under grants no.
CNS-1513939 and CNS1564274, and a grant from the ZJUI Research Program.

c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 3–7, 2018.
https://doi.org/10.1007/978-3-319-99933-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_1&domain=pdf


4 T. Xie

2 Instilling Intelligence in Software Engineering

Applying or adapting AI technologies to address various software engineering
tasks [13] has been actively pursued by researchers from the software engineering
research community, e.g., machine learning for software engineering [1,18,38] and
natural language processing for software engineering [20,21,29,30,39,40], and
also by researchers from the AI research community in recent years [2] partly
due to the increasing popularity of deep learning [24]. Much of such previous
work has been on automating as much as possible to address a specific software
engineering task such as programming and testing. But as pointed out by various
AI researchers [14,17], AI technologies typically enhance or augment human,
instead of replacing human.

In future work, we envision that intelligence can be instilled into approaches
for software engineering tasks in the following two example ways as starting
points.

Natural Language Interfacing. Natural language conversations between a
human and a machine can be traced back to the Turing test [28], proposed
by Turing in 1950, as a test for a machine to exhibit intelligent behaviors
indistinguishable from a human’s. Natural-language-based chatbots have been
increasingly developed and deployed for various domains: virtual assistants (such
as Apple Siri, Google Assistant, Amazon Alexa, Microsoft Cortana, Samsung
Bixby), customer services, social media (such as Facebook Messenger chatbots).
Very recently, exploring the use of chatbots in software engineering has been
started [3,5,6,12,15,26]. Beyond chatbots or conversational natural language
interfacing, natural language interfacing will play an increasingly important and
popular role in software development environments [9], due to its benefits of
improving developer productivity.

Continuous Learning. Machine learning has been increasingly applied or
adapted for various software engineering tasks since at least early 2000 [2,32]; in
the past several years, deep learning [24] has been applied on software engineer-
ing problems (e.g., [10,11,35]). Such direction’s increasing popularity is partly
thanks to the availability of rich data (being either explicitly or implicitly labeled
in one way or another) in software repositories [32] along with the advances in
machine learning especially deep learning [24] in recent years. Beyond apply-
ing machine learning only once or occasionally, software engineering tools are in
need of gaining the continuous-learning capability: when the tools are applied
in software engineering practices, the tools continuously learn to get more and
more intelligent and capable.

3 Software Engineering for Intelligence Software

In recent decades, Artificial Intelligence (AI) has emerged as a technical pil-
lar underlying modern-day solutions to increasingly important tasks in daily life
and work. The impacted settings range from smartphones carried in one’s pocket
to transportation vehicles. Artificial Intelligence (AI) solutions are typically in



Intelligent Software Engineering 5

the form of software. Thus, intelligence software is naturally amenable to soft-
ware engineering issues such as dependability [8] including reliability [22,27] and
security [33,34], etc. Assuring dependability of intelligence software is critical but
largely unexplored compared to traditional software.

For example, intelligence software that interacts with users by communi-
cating content (e.g., chatbots, image-tagging) does so within social environ-
ments constrained by social norms [7]. For such intelligence software to meet
the users’ expectation, it must comply with accepted social norms. However,
determining what are accepted social norms can vary greatly by culture and envi-
ronment [7]. Recent AI-based solutions, such as Microsoft’s intelligent chatbot
Tay [16] and Google Photos app’s imagine-tagging feature [4], received negative
feedback because their behavior lied outside accepted social norms. In addition,
formulating failure conditions and monitoring such conditions at runtime may
not be acceptable for intelligence software such as robotic software because it
would be too late to conduct failure avoidance or recovery actions when such
failure conditions are detected [23]. Generally formulating proper requirements
for intelligence software remains a challenge for the research community.

In addition, intelligence software is known to often suffer from the “no
oracle problem” [19,25,36,37]. For example, in supervised learning, a future
application-data entry can be labeled (manually or automatically); however,
using such labels as the test oracle is not feasible. The reason is that there
exists some inaccuracy (i.e., predicting a wrong label) in the learned classifi-
cation model. This inaccuracy is inherent and sometimes desirable to avoid the
overfitting problem (i.e., the classification model performs perfectly on the train-
ing data but undesirably in future application data).

References

1. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from
source code: from usage scenarios to specifications. In: Proceedings of the Meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (ESEC-FSE), pp. 25–34
(2007)

2. Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning
for big code and naturalness, September 2017. arXiv:1709.06182

3. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder:
learning to write programs. In: Proceedings of the International Conference on
Learning Representations (ICLR) (2017)

4. Barr, A.: Google mistakenly tags black people as ‘gorillas’, showing limits of
algorithms. Wall Str. J. (2015). http://blogs.wsj.com/digits/2015/07/01/google-
mistakenly-tags-black-people-as-gorillas-showing-limits-of-algorithms/

5. Beschastnikh, I., Lungu, M.F., Zhuang, Y.: Accelerating software engineering
research adoption with analysis bots. In: Proceedings of the International Con-
ference on Software Engineering (ICSE), New Ideas and Emerging Results Track,
pp. 35–38 (2017)

6. Bieliauskas, S., Schreiber, A.: A conversational user interface for software visualiza-
tion. In: Proceedings of the IEEE Working Conference on Software Visualization
(VISSOFT), pp. 139–143 (2017)

http://arxiv.org/abs/1709.06182
http://blogs.wsj.com/digits/2015/07/01/google-mistakenly-tags-black-people-as-gorillas-showing-limits-of-algorithms/
http://blogs.wsj.com/digits/2015/07/01/google-mistakenly-tags-black-people-as-gorillas-showing-limits-of-algorithms/


6 T. Xie

7. Coleman, J.: Foundations of Social Theory. Belknap Press Series. Belknap Press
of Harvard University Press, Cambridge (1990)

8. Committee on Technology National Science and Technology Council and Penny
Hill Press: Preparing for the Future of Artificial Intelligence. CreateSpace Inde-
pendent Publishing Platform, USA (2016)

9. Ernst, M.D.: Natural language is a programming language: applying natural lan-
guage processing to software development. In: Proceedings of the 2nd Summit on
Advances in Programming Languages (SNAPL), pp. 4:1–4:14 (2017)

10. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep API learning. In: Proceedings of the
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE), pp. 631–642 (2016)

11. Gu, X., Zhang, H., Zhang, D., Kim, S.: DeepAM: migrate APIs with multi-modal
sequence to sequence learning. In: Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 3675–3681 (2017)

12. Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: fixing common C language
errors by deep learning. In: Proceedings of the National Conference on Artificial
Intelligence (AAAI) (2017)

13. Harman, M.: The role of artificial intelligence in software engineering. In: Proceed-
ings International Workshop on Realizing AI Synergies in Software Engineering
(RAISE), pp. 1–6 (2012)

14. Jordan, M.: Artificial intelligence-the revolution hasn’t happened yet, April 2018.
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-
happened-yet-5e1d5812e1e7

15. Lebeuf, C., Storey, M.D., Zagalsky, A.: How software developers mitigate collabo-
ration friction with chatbots. CoRR abs/1702.07011 (2017). http://arxiv.org/abs/
1702.07011

16. Leetaru, K.: How Twitter corrupted Microsoft’s Tay: a crash course in the
dangers of AI in the real world. Forbes (2016). https://www.forbes.com/sites/
kalevleetaru/2016/03/24/how-twitter-corrupted-microsofts-tay-a-crash-course-
in-the-dangers-of-ai-in-the-real-world/

17. Li, F.F.: How to make A.I. that’s good for people, March 2018. https://www.
nytimes.com/2018/03/07/opinion/artificial-intelligence-human.html

18. Michail, A., Xie, T.: Helping users avoid bugs in GUI applications. In: Proceed-
ings of the International Conference on Software Engineering (ICSE), pp. 107–116
(2005)

19. Murphy, C., Kaiser, G.E.: Improving the dependability of machine learning appli-
cations. Technical report, CUCS-049-, Department of Computer Science, Columbia
University (2008)

20. Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: WHYPER: towards automat-
ing risk assessment of mobile applications. In: Proceedings of the USENIX Con-
ference on Security (SEC), pp. 527–542 (2013)

21. Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., Paradkar, A.: Inferring method
specifications from natural language API descriptions. In: Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pp. 815–825 (2012)

22. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of
deep learning systems. In: Proceedings of the Symposium on Operating Systems
Principles (SOSP), pp. 1–18 (2017)

23. Qin, Y., Xie, T., Xu, C., Astorga, A., Lu, J.: CoMID: context-based multi-invariant
detection for monitoring cyber-physical software. CoRR abs/1807.02282 (2018).
https://arxiv.org/abs/1807.02282

https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
http://arxiv.org/abs/1702.07011
http://arxiv.org/abs/1702.07011
https://www.forbes.com/sites/kalevleetaru/2016/03/24/how-twitter-corrupted-microsofts-tay-a-crash-course-in-the-dangers-of-ai-in-the-real-world/
https://www.forbes.com/sites/kalevleetaru/2016/03/24/how-twitter-corrupted-microsofts-tay-a-crash-course-in-the-dangers-of-ai-in-the-real-world/
https://www.forbes.com/sites/kalevleetaru/2016/03/24/how-twitter-corrupted-microsofts-tay-a-crash-course-in-the-dangers-of-ai-in-the-real-world/
https://www.nytimes.com/2018/03/07/opinion/artificial-intelligence-human.html
https://www.nytimes.com/2018/03/07/opinion/artificial-intelligence-human.html
https://arxiv.org/abs/1807.02282


Intelligent Software Engineering 7

24. Schmidhuber, J.: Deep learning in neural networks. Neural Netw. 61(C), 85–117
(2015)

25. Srisakaokul, S., Wu, Z., Astorga, A., Alebiosu, O., Xie, T.: Multiple-
implementation testing of supervised learning software. In: Proceedings of the
AAAI-2018 Workshop on Engineering Dependable and Secure Machine Learning
Systems (EDSMLS) (2018)

26. Storey, M.D., Zagalsky, A.: Disrupting developer productivity one bot at a time.
In: Proceedings of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), pp. 928–931 (2016)

27. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings International Conference on Soft-
ware Engineering (ICSE), pp. 303–314 (2018)

28. Turing, A.M.: Computing machinery and intelligence (1950). One of the most
influential papers in the history of the cognitive sciences. http://cogsci.umn.edu/
millennium/final.html

29. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting duplicate
bug reports using natural language and execution information. In: Proceedings of
the International Conference on Software Engineering (ICSE), pp. 461–470 (2008)

30. Xiao, X., Paradkar, A., Thummalapenta, S., Xie, T.: Automated extraction of
security policies from natural-language software documents. In: Proceedings of
the ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE), pp. 12:1–12:11 (2012)

31. Xie, T.: Intelligent software engineering: synergy between AI and software engi-
neering. In: Proceedings of the Innovations in Software Engineering Conference
(ISEC), p. 1:1 (2018)

32. Xie, T., Thummalapenta, S., Lo, D., Liu, C.: Data mining for software engineering.
Computer 42(8), 55–62 (2009)

33. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in adversarial set-
tings: exploiting feature evolutions and confusions in Android apps. In: Proceedings
Annual Computer Security Applications Conference (ACSAC), pp. 288–302 (2017)

34. Yang, W., Xie, T.: Telemade: a testing framework for learning-based malware
detection systems. In: Proceedings AAAI-2018 Workshop on Engineering Depend-
able and Secure Machine Learning Systems (EDSMLS) (2018)

35. Yin, P., Neubig, G.: A syntactic neural model for general-purpose code genera-
tion. In: Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL) (2017)

36. Zheng, W., Ma, H., Lyu, M.R., Xie, T., King, I.: Mining test oracles of web search
engines. In: Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 408–411 (2011)

37. Zheng, W., et al.: Oracle-free detection of translation issue for neural machine
translation. CoRR abs/1807.02340 (2018). https://arxiv.org/abs/1807.02340

38. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: mining and recommending
API usage patterns. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
318–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 15

39. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from natu-
ral language API documentation. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 307–318 (2009)

40. Zhong, Z., et al.: Generating regular expressions from natural language specifica-
tions: are we there yet? In: Proceedings of the Workshop on NLP for Software
Engineering (NL4SE) (2018)

http://cogsci.umn.edu/millennium/final.html
http://cogsci.umn.edu/millennium/final.html
https://arxiv.org/abs/1807.02340
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1007/978-3-642-03013-0_15


Software Assurance



Automatic Support of the Generation
and Maintenance of Assurance Cases

Chung-Ling Lin1, Wuwei Shen1(&), Tao Yue2, and Guangyuan Li3

1 Department of Computer Science, Western Michigan University,
Kalamazoo, USA

{chung-ling.lin,wuwei.shen}@wmich.edu
2 Simula Research Laboratory, University of Oslo, Oslo, Norway

tao@simula.no
3 State Key Laboratory of Computer Science,

Institute of Software, Beijing, China
ligy@ios.ac.cn

4 China School of Computer and Control Engineering, UCAS, Beijing, China

Abstract. One of the challenges in developing safety critical systems is to
ensure software assurance which encompasses quality attributes such as relia-
bility and security as well as functionality and performance. An assurance case,
which lays out an argumentation-structure with supporting evidence to claim
that software assurance in a system is achieved, is increasingly considered as an
important means to gain confidence that a system has achieved acceptable safety
when checking with emerging standards and national guidelines. However, the
complexity of modern safety critical applications hinders the automatic inte-
gration of heterogeneous artifacts into an assurance case during a development
process such as a V-model, let alone the automatic support of system evolution.
In this paper, we present a novel framework to automatically generate assurance
cases via safety patterns and further support the maintenance of them during a
system’s evolution. The application of safety patterns not only enables
reusability of previously successful argument structures but also directs the
support of assurance maintenance caused by common types of modifications in
safety critical domains. The framework is implemented as a prototypical tool
built using Model Driven Architecture (MDA). We evaluated the framework
with two case studies featuring two criteria and the preliminary experimental
results not only show that the framework is useful in evaluation of safety critical
systems but also reveal how different types of modification can affect a structure
of an assurance case.

Keywords: Assurance case � Safety pattern � Model transformation
Safety critical systems

1 Introduction

Failure of safety critical applications might lead to serious consequences such as sig-
nificant financial loss or even loss of life. Thus, software quality assurance, also simply
called software assurance, has become the focus when certifying a safety critical
system. Software assurance includes reliability, security, robustness, safety, and other

© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 11–28, 2018.
https://doi.org/10.1007/978-3-319-99933-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_2&amp;domain=pdf


quality-related attributes, as well as functionality and performance [1]. A structure, like
a legal case which lays out an argument structure with supporting evidence, can be
helpful to make decisions on software assurance. This kind of structures is called
assurance cases or safety cases. An assurance case is thus increasingly considered as an
important means to show that a system has acceptable safety when checking its con-
formance to emerging standards and national guidelines such as the ISO 26262
functional safety standard for automotive systems [2] and the U.S. Food and Drug
Administration draft guidance on the production of infusion pump systems [3].
However, most assurance cases are currently manually constructed. For example, the
preliminary assurance case for co-operative airport surface surveillance operations [4]
is about 200 pages long, and is expected to grow as the interim and operational safety
cases are created. The manual management of such increasingly complicated assurance
cases are not only time consuming but also error prone. Thus, any automation in the
management of assurance cases is appreciated. As such, we in this paper propose an
automatic mechanism to create and maintain assurance cases for the purpose of
assisting human decisions on software assurance.

One challenge in the automatic construction and maintenance of an assurance case
originates from the management of heterogeneous artifacts developed during a software
development lifecycle. In many cases, these artifacts are eventually used as evidence in
the assurance case. Such heterogeneous artifacts have various formats. The construc-
tion of an assurance case including heterogeneous artifacts as evidence as well as their
context, assumption and logic inference is further compounded by their underlying
development process. Each safety critical domain often has its own development
process while they share similarity conceptually.

Efforts have been made to construct assurance cases to support software certifi-
cation for safety critical systems. Denny et al. proposed a new methodology in the
aviation domain to automatically assembly lower level safety cases based on the
verification of safety-related properties of the autopilot software in the Swift Unmanned
Aircraft System (UAS) [5]. The methodology applied the annotation schema, which
models the information such as the definition of a program variable during the veri-
fication of safety-related properties, to automatically generate safety case fragments.
But, the annotation schema cannot be employed to model system artifacts and high-
level safety cases thus are manually assembled. Especially inspired by rapid and
successful application of design patterns in software development, researchers have
proposed safety patterns in the construction of assurance cases. However, we found
most existing approaches based on support of safety patterns lack flexibility when
combining two safety patterns in various environment [6–10]. For instance, when
combining a node, say leaf node A, in one safety pattern with another one, most
existing approaches require the leaf node be the same as the root node in the second
safety pattern. In this case, we call the connection to the first safety pattern via the
A leaf node unchanged. But, our experience in safety critical domains has shown that
the A leaf node can connect to the root node via the supportedBy relation to increase the
reusability of the two safety patterns. In this case, we call the connection to the first
safety pattern via A strengthened.

The automatic management of an assurance case in safety critical domains is a
crucial yet feasible feature and can be realized thanks to the development of Model

12 C.-L. Lin et al.



Driven Architecture (MDA) [12]. As is well known, many safety critical systems adopt
a development process such as a V-Model where a sequence of activities are performed
and each activity produces a set of artifacts based on the artifacts of its prior activity as
input. During a development process, an artifact produced by one activity can become
an input to the next activity. Thus, in MDA, using a metamodel, which models a
development process, makes it possible to automatically generate a complete assurance
case. To this end, we employ the Object Constraint Language (OCL) to expand the
syntax of the Goal Structuring Notation (GSN) [13] so that a safety pattern can be
defined in a way where more flexibility can be achieved compared with other existing
approaches. Furthermore, since only support of the unchanged connection to the first
safety pattern via a node limits the application of a safety pattern, we add a new feature
of having a client to decide whether a connection to the first safety pattern via a node is
unchanged or strengthened.

More importantly, the creation of an assurance case with our framework via safety
patterns further alleviates the difficulty in managing the evolution of an assurance case
during software maintenance. A root cause for software maintenance commonly comes
from two types of modifications, i.e. modifications in a development process, and
modifications in artifacts produced for a specific project. In general, if either a
development process or a system artifact is modified, a previously laid-out argument
structure with supporting evidence might be in jeopardy. Instead of regeneration and
review of an entire argument structure, we propose a novel strategy by means of
highlighting affected nodes according to modifications. Certifiers can thus concentrate
on the affected nodes with their underlying argument structure to recertify a software
system. In summary, we make the following contributions in this paper.

• Extension to GSN to allow the introduction of safety case patterns;
• Strengthening an argument structure of a safety pattern when combined with

another safety pattern;
• Automatic support of safety case pattern validation and assurance case generation

based on the extension to GSN to increase the reusability of successful safety case
patterns so that the capability of building and reviewing a safety case can be
improved; and

• Integration of safety case generation and maintenance into a development process.

The remainder of this paper is organized as follows: In Sect. 2, we briefly introduce
the GSN and present a problem statement for this research. In Sect. 3, we introduce a
running example to illustrate our framework. Section 4 discusses the framework
structure and algorithm with its application in one case study. Section 5 presents the
evaluation while Sect. 6 discusses the related work. We draw a conclusion and present
the future work in Sect. 7.

2 GSN and the Problem Statement

An assurance case is important for safety critical systems in that it provides an argu-
ment structure about why a safety critical system achieves its mission. Currently, there
are two notations to denote an assurance case, i.e. GSN and Claims-Arguments-

Automatic Support of the Generation and Maintenance of Assurance Cases 13



Evidence (CAE) Notation [14]. In this paper, we consider GSN as the main repre-
sentation of an assurance case. Central to an assurance case is an argument that is given
by a hierarchy of claims supporting a logic reasoning chain to support an overall claim.
To provide software assurance of a safety-critical system, a convincing assurance case
usually consists of claims, strategies, and evidence as well as assumptions and justi-
fications, which is illustrated via a GSN example shown in Fig. 4 with a brief intro-
duction as follows.

• Claim. A claim, also called a goal, is a statement that claims about some important
properties of a system such as safety and security. In GSN, a claim of an argument
is documented as a goal which is denoted as rectangle. In Fig. 4, for instance, the
top rectangle node “BSCU SW is safe” is a claim or a goal.

• Strategy. When a claim is supported by a set of sub-claims, it is useful to provide
the reasoning step as part of the whole argument. This reasoning step is called a
strategy. In GSN, a strategy links between two or more goals and is rendered as a
parallelogram. In Fig. 4, for instance, the parallelogram node “Argument over all
BSCU software contributions identified from BSCU SW” is a strategy.

• Evidence. Evidence is used to support the truth of a claim. In GSN, evidence is
documented as a solution and represented as a circle. In Fig. 4, for instance, the
circle node “WBS Hazard Analysis Report” is an evidence item.

A convincing and valid argument regarding why a system meets its assurance
properties is given by a logic reason chain which is the heart of an assurance case.
A line with solid arrowhead between two nodes in GSN denotes the “supportedBy”
relationship. For instance, the top claim of the GSN in Fig. 4 is supported by the
strategy, which is the argument over all “BSCU hazards” being identified from “BSCU
SW”. The strategy is further supported by four subclaims, three of which show the
three hazards while the fourth shows all these three hazards are completely and cor-
rectly identified. Each subclaim can be further supported until some evidence node is
provided. For instance, the fourth subclaim is further decomposed into another sub-
claim about the “Functional Hazard Analysis” method. Finally, the subclaim is sup-
ported by an evidence node showing the WBS hazard analysis report. Due to space, we
skip the further argumentation structure supporting the first three subclaims related to
the identified hazards using a diamond, meaning undeveloped. Once a GSN model is
established, a certifier can review the model in a bottom-up manner to gain the con-
fidence of a root claim.

The goal of this paper is to aid both engineers and certifiers to develop and certify a
safety critical system in an effective and efficient manner. We thus address the fol-
lowing problem statement: Given a specific development process employed by engi-
neers, while software assurance is finally made by a human judgement of fitness for
use, how can we provide as much automation as possible to generate an assurance
case which not only lays out an argument structure with supporting evidence to
support a claim about software assurance but also evolves during software mainte-
nance. To attack the challenging problem statement, we will present a novel framework
based on MDA [12]. The framework provides the automation of the creation and
maintenance of an assurance case in support of development and certification of safety
critical systems.

14 C.-L. Lin et al.



3 An Illustrative Example

To illustrate how our framework supports development and certification of safety critical
systems, we use a Wheel Braking System (WBS) for an aircraft called the S18 based on
the system specification in the Aviation Recommended Practice (ARP) 4761
Appendix L. To demonstrate the capability of our approach in support of automatic
generation of an assurance case, we use the system artifacts which were provided by [6],
where the authors manually generated an assurance case. An important reason to choose
this case study is that the case study was well developed and discussed by a third-party
developer team and so any bias when applying our approach can be removed.

According to the work [6], there are two independent Brake System Control Units
(BSCUs). To demonstrate that a software system is sufficiently safe to operate on the
BSCU, all hazards should be first identified and then hazardous software contributions
related to the identified hazards should be revealed. For each hazardous software
contribution, a set of safety requirements are presented in [6]. All this information can
be modelled as a class diagram in the Unified Modeling Language (UML), called a
domain model. Specifically, a domain model provides the meta-information which is
required for a specific project. In many cases, a domain model can be converted to the
meta information representing the content in a table. For instance, the classes Hazard,
SWContribution, SoftwareSafetyReq are converted to the three columns in Table 1. For
a specific system, the values/instances of the classes in a domain model are listed in the
table. The authors in [6] listed three hazards, three hazardous software contributions,
and three software safety requirements which are summarized in Table 1.

Figure 1 shows a safety pattern catalog whose pattern in the extended GSN is
supported by the framework. Unlike many existing safety pattern-based approaches, we
propose that a safety pattern catalog is necessary for the application of the safety pattern
in that the catalog provides not only a safety pattern in the extended GSN but also

Table 1. Example of system artifacts

Software Hazard SWContribution SoftwareSafetyReq

BSCU
SW

Hazard 1
Loss of Deceleration
Capability

Contribution 1
Software fails to
command braking
when required

SSR1 On receipt of brake pedal
position. Command shall calculate
braking force and output braking
command

Hazard 2
Inadvertent Deceleration

Contribution 2
Software
commands braking
when not required

SSR2
Command shall not output a braking
command unless brake pedal
position is received

Hazard I
Partial Loss of
Deceleration Capability
and Asymmetric
Deceleration

Contribution 3
Software
commands
incorrect braking
force

SSR3
Braking commands generated by the
Command component meet defined
criteria

Automatic Support of the Generation and Maintenance of Assurance Cases 15



includes the description and applied metamodel to which the pattern can be applied.
Therefore, a safety pattern can clearly demonstrate how it is applied in a concrete
environment via an applied metamodel combined with the description. As shown in
Fig. 1, we extend the syntax of GSN to accommodate the introduction of new vari-
ables. Basically, there are two types of variables. One is given by the {s} variable
where s is mapped to a class in an applied metamodel. The other type is given by {$a}
where variable $a denotes a string during the instantiation of a pattern. So, when the
safety pattern shown in Fig. 1 is applied to the metamodel with the configuration table
as shown in Fig. 3(2), an assurance case can be generated via the safety pattern where
the artifacts are produced.

Based on some artifacts produced as an exemplary of a particular system as shown
in Fig. 3(1), an assurance case is generated as shown in Fig. 3(4) as an application of
the pattern shown in Fig. 1 via our framework. The advantage of the framework is that
as more instances of the classes Hazard, SWContribution, and SoftwareSafetyReq are
created, the assurance case is augmented according to the safety pattern and its con-
figuration table. In our framework, the language for specifying a safety pattern has the
following features. First, a link relationship between some artifacts makes the structure
of an assurance case appropriately to be set up. In Fig. 3(4), for instance, three sub-
claims, which are related to three hazards instances which are associated to the BSCU
software, are generated to support the strategy node “Argument over all BSCU hazards
identified from BSCU SW”. Second, the application of string variables which are
replaced with a string value during the instantiation of a pattern provides more flexi-
bility in support of various types of claims. In Fig. 1, $a denotes a property variable
and a real property name depends on the real scenario and, for example, $a is replaced
with “safe” in Fig. 3(4). String variables increase the flexibility of a safety pattern in

Fig. 1. Safety pattern catalog – Pattern 1

16 C.-L. Lin et al.



that $a can be replaced with some other claims such as secure provided that a new
assurance case uses the same argument structure of the safety pattern.

The leaf nodes of the assurance case shown in Fig. 3(4) address the three WBS
hazards respectively. These three claims should be further supported by three goal
nodes, each of which claims that a corresponding software contribution related to a
hazard is addressed in a separate assurance case. In this case, each goal node matches
the root node of pattern 1 and the subtree under each goal node is generated via the
application of pattern 1. In this case, the connections to the first safety pattern via the
three goal nodes are all unchanged. Due to space, we only show how node G2 is
supported in Fig. 4. However, in another scenario, the connection to the first safety
pattern via a node can be strengthened. For instance, the strategy in Fig. 3(4) can be
further strengthened by the claim that all identified hazards are correct and complete,
and no other hazard exists. Thus, pattern 2 in Fig. 2 is connected to pattern 1 via the
strategy node in Fig. 3(4). Specifically, in the WBS assurance case shown in Fig. 4, the
claim node (i.e. node G5) “BSCU hazards are completely and correctly identified in
BSCU SW” as an application of pattern 2, is connected to the strategy node (i.e. node
S1) as an application of pattern 1 so the argument structure of pattern 1 is strengthened.
To make safety patterns more reusable, we add a new feature of having a client to
decide whether a connection to a first safety pattern via a node is unchanged or
strengthened.

On the other hand, modification of system artifacts cannot be avoided and the
modification thus can undermine the validity of a previously laid-out argument
structure. For instance, if the Hazard 1 in the WBS example is changed, then all the
corresponding nodes in the assurance case in Fig. 4 are affected and thus marked as .
Furthermore, all the nodes along the path from an affected node upwards to the root are
also undermined and thus we mark them as . Next, the traceability information
further helps to find affected nodes. Specifically, since Hazardous Software Contri-
bution 1 is derived from Hazard 1 via the traceability information, all the nodes in the

Fig. 2. Safety pattern catalog – Pattern 2

Automatic Support of the Generation and Maintenance of Assurance Cases 17



assurance case which are linked to Hazardous Software Contribution 1 are highlighted
as in Fig. 4. Numbers within a circle denote the order of how nodes in an assurance
case are affected and reported. As a result, certifiers should review all the affected nodes
in the assurance case.

Fig. 3. An assurance case

Fig. 4. WBS assurance case

18 C.-L. Lin et al.



4 The Framework Overview and Its Main Algorithms

4.1 Overview of the Framework

Our framework includes four main activities, shown in Fig. 5. First, the Instantiable
Validation activity (1) determines whether a generic safety pattern can be applied to a
domain model via configuration tables. This activity ensures that all variables in a
safety pattern can be appropriately instantiated. Second, the Variable Replacement
Activity (2) aims to generate a domain specific pattern by replacing all variables in a
safety pattern with domain classes via a configuration table. Third, the Pattern Com-
bination activity (3) employs pattern connection tables to generate a composite domain
specific pattern via the combination of the generic safety patterns. As a result of
activities (1), (2) and (3), a complete domain specific pattern is generated using an ATL
(Atlas Transformation Language) program [15]. For a specific project, the ATL pro-
gram takes all artifacts, which are a valid instance of a domain model, as input and
generates an assurance case as output. Once an assurance is generated, the Maintenance
Activity (4) takes over to monitor any modification in a domain model or any artifacts
related to the project. Once, a modification is found, the maintenance activity carries
out the impact calculation to figure out how the previous assurance case is affected by
highlighting the affected nodes in the assurance case.

4.2 Generation of Assurance Case and Its Algorithms

To finally produce an assurance case for a project in a specific domain model via the
application of various safety patterns, the generation process consists of two steps.
First, a complete safety pattern for a specific domain is produced and this is called a
complete domain specific safety pattern, or just a complete safety pattern for simplicity.
In a complete safety pattern, each variables is replaced with a domain class; for
instance, variable s is replaced with domain class Hazard. As output of the first step,
the framework produces an ATL program ready to output a specific assurance case

Fig. 5. Flow chart of our framework

Automatic Support of the Generation and Maintenance of Assurance Cases 19



based on the complete safety pattern. Second, to produce a final assurance case for a
specific project, we run the generated ATL program using the Eclipse ATL framework,
shown in the bottom of Fig. 5 and the ATL program uses the pattern connection
information to connect the second safety pattern to the first safety pattern via a node.

We outline the algorithm for the first step to generate a complete safety pattern in
Fig. 6. The algorithm takes a configuration table as input given by the c parameter and
all pattern connection information, given by the PC parameter. This algorithm gen-
erates an ATL program which is ready to produce an assurance based on a complete
safety pattern such as the one in Fig. 8(2). Note that a configuration table includes a
safety pattern to be instantiated. Our framework supports two types of pattern con-
nections based on the type of a node involved in the connection to build a complete
safety pattern. The first type, where the connection to a first safety pattern via a node is
unchanged, combines two patterns via the duplicate nodes between the two patterns.
This type of connection requires the identical nodes generated in the first pattern and a
starting node of the second pattern.

Figure 8 illustrates the generation of a complete safety pattern shown in Fig. 8(2)
via the connection of a unchanged node N1.3 between two patterns shown Fig. 8(1).
Specifically, the complete safety pattern shown in Fig. 8(2) is generated by connecting
pattern 1 to itself via duplicating nodes N1.3 and N1.1 in pattern 1 (shown in Fig. 8(1)).
So, the algorithm in Fig. 6 starts from generating an empty pattern denoted by variable
newp at line 3. Next, it calls method addNode() at line 5 in Fig. 6 on the root node N1.1
of p1 identified at line 4. Node N1.1 is added to cp as N1.1 by line 15. Next, all links
are added to cp, i.e. the link from N1.1 to N1.2 in p1, by line 18 and method addNode()
is called on N1.2 by line 19 to add N1.2 with its all links to cp. Line 20 checks if N1.1
is linked to another pattern via method checkPatternConnection() from line 34 to line
42 in Fig. 6. Since there is no link between N1.1 to any other pattern, method
checkPatternConnection() returns an empty list, and thus the addNode() method called

Fig. 6. Pattern combination algorithm

20 C.-L. Lin et al.



on node N1.1 is returned. So is the method call addNode() on node N1.2. When method
addNode is called on node N1.3 in the first application (Fig. 8(1)), node N1.3 is
temporary added to the complete safety pattern cp by line 15 since a safety pattern is
connected to N1.3. Line 20 retrieves the information of a second pattern returned by
method checkPatternConnection() from line 34 to line 42. After identifying the nodes
N1.3 and N1.1 are the same using line 23 to line 25, the parent node of N1.3, i.e., N1.2,
is identified by line 26, and a new supportedBy link between N2(N1.2) and N4(N1.1) is
generated by line 27. After the new link is generated, the duplicate goal node N1.3 is
removed from the complete safety pattern cp by line 28. A new link between N2 and
N4 is added to cp by line 31.

During the combination of two safety patterns, each variable is replaced with a
domain class simultaneously. Specifically, in Fig. 8(2), variable s is replaced with
domain class Hazard in the first application of pattern 1 while variable s is replaced

Fig. 7. Pattern combination inputs

Fig. 8. Pattern combination example (via first type pattern connections)

Automatic Support of the Generation and Maintenance of Assurance Cases 21



with domain class SWContribution in the second application of pattern 1 vis the
configuration tables as shown in Fig. 7(1). When the addNode() method is called on a
node, line 14 replaces a variable with a domain class via the configuration table
c. When a complete safety pattern is generated via a connection of duplicate nodes, our
framework ensures that the two variable in the two duplicate nodes are mapped to the
same domain class. For example, h in N1.3 in the first application of pattern 1 is
mapped to domain class SWContribution, and $c is replaced by string “addressed”.
Variable s in N1.1 in the second application of pattern 1 is also mapped to domain class
SWContribution, and $a is also replaced by “addressed”. In this case, both nodes are
identical and the combination process continues.

The second type of connection is to strengthen a node in a first safety pattern when
connected to a second safety pattern. In this case, a node of the first pattern is different
from a starting node/root claim of the second pattern during combination. For example,
Fig. 9 shows how two safety patterns are combined to generate a complete domain
specific safety pattern via the second type of connection. In this example, the complete
safety pattern is generated via the connection between node N1.2 in the first pattern and
starting node N2.1 of the second pattern (shown in Fig. 9(1)). The copy of the first
safety pattern to a complete safety pattern is similar to the previous type so we skip the
process. For the second type of connection, the difference is that a new supportedBy
link between node N2(N1.2) and N5(N2.1) is added in the complete pattern in Fig. 9(2)
and no node is removed. To do so, when the addNode() method is called on node N1.2,
a new supportedBy link from N1.2 in a first pattern to the root node N2.1 in a second
pattern is created by line 30 in Fig. 6. After that, the addNode() method adds the link
between the corresponding nodes N2 and N5 to the complete safety pattern at line 31.
Last, method addNode() is called on the rest of nodes to complete the combination at
line 32. As an example, the top of the assurance case in Fig. 4 is generated by the
complete safety pattern in Fig. 9(2) via running the corresponding ATL program.

Fig. 9. Pattern combination example (via second type pattern connections)

22 C.-L. Lin et al.



4.3 Maintenance of an Assurance Case and Its Algorithm

Next, we introduce another important module in the framework which supports the
evolution of a safety critical system. Modification has become an important activity
during a software development process. After modifications occur, an assurance case
produced by the previous assurance case generation module should be re-considered.
Obviously, re-evaluation of an entire assurance case is costly and impractical. A better
way to support maintenance of an assurance case during the evolution of a safety
critical system is to highlight nodes in the argument structure potentially undermined
by a modification.

The algorithm for maintenance of an assurance case is outlined in Fig. 10. The
maintenance algorithm takes as input an assurance case previously produced, all arti-
facts to be monitored, and a computation model to detect affected nodes in an assurance
case. The algorithm uses another method detect_modification on line 1 which returns a
list of modified artifacts. Next, the algorithm is enumerating all modified artifacts
starting from line 2. For each modified artifact, the algorithm calls method detect_af-
fected_nodes to find a list of nodes in an assurance which are affected by the modified
artifacts. The algorithm then employs the computation model provided as input to
calculate a list of affected nodes. The returned list of the affected nodes are added to
variable highlighted_nodes which is finally returned as output of the algorithm.

While the judgement of software assurance is a decision finally made by humans,
some effort has been made to automatically identify the areas where a decision must be
rendered. Specifically, various models have been proposed to calculate the confidence
of the root node in an assurance case. While various calculations have been carried out,
most existing approaches use a model to calculate the confidence of nodes affected by
the evidence which is linked to system artifacts. They then set up a threshold to show
and determine which nodes may be below the threshold. These nodes confidence is
then in doubt. Therefore, the confidence of all nodes along the path to the root of an
assurance is reduced and the software assurance about the system is in jeopardy. If the
confidence of a node is not below the threshold, then the node’s confidence is not
reduced. This implies it should not affect the confidence of the other nodes in an

Fig. 10. Maintenance algorithm

Automatic Support of the Generation and Maintenance of Assurance Cases 23



assurance case. To this end, we take a most conservative model in this paper where
once the framework detects a node whose linked artifact is modified, then the frame-
work highlights all nodes along the path from this node to the root node of the
assurance case. The rational behinds this idea comes from the following: To support the
evolution of an assurance case, we propose that any miss of highlighting nodes whose
confidence is in jeopardy is a costly mistake when evaluating software assurance of a
system. Therefore, the system should highlight all potential nodes whose confidence
could be undermined by modifications.

5 Evaluation

We implemented our approach in a tool which we applied to two case studies: the
Wheel Braking System (WBS) for an aircraft called the S18 [6] and the two tanks
control system [16]. For an objective evaluation of our approach, we concentrate on
two criteria of the framework. The first criterion is to study how the creation of an
assurance case aids the finding of an incomplete argument structure in support of
software assurance. As such, we build a new feature in the tool which attempts to find
the leaf goal nodes which are not supported by an evidence node. Note a complete
assurance case is a tree structure argument where each leaf goal node is supported by an
evidence node; otherwise an assurance case has an incomplete argument structure to
support a goal node.

In experiment 1 shown in Table 2, our tool generated 112 nodes in the WBS
assurance case and identified that 6 goal nodes are not supported by any other node in
the WBS assurance case. After the manual check of the WBS assurance case, we found
that the 6 unsupported goal nodes are related to safety requirement SSR2 and SSR3
shown in Table 1, and the WBS ABS, Input, Output, and Monitor modules. And these
artifacts are not further considered/traced to any other WBS artifact in [6]. To further
test the correctness of our tool for the WBS case study, in experiment 2 shown in
Table 2, we temporary remove the Braking unit testing result from WBS system
artifacts. Our tool generates 109 nodes in the WBS assurance case and identifies one
new node related to Braking Module is not supported by any node in the WBS
assurance case with totally 7 goal nodes not supported by any other node. In experi-
ment 3, our tool generates 1160 nodes in the two tanks control system assurance case
and identifies that 78 goal nodes are not supported by any node in the two tanks control
system assurance case. The manual check of the assurance case for the two tanks
control system indicates that the missing goal nodes in the assurance case are caused by

Table 2. Assurance case evaluation results

Experiment Assurance case Nodes Unsupported nodes

1 WBS 112 6
2 WBS 109 7
3 Two tanks system 1160 78

24 C.-L. Lin et al.



the incomplete traceability information of the system artifacts. These experiment results
demonstrate that our tool generates the assurance case based on existing system arti-
facts, and the evaluation feature of our tool can identify the structural errors of a
generated assurance case.

The second criterion is to investigate how a modification during system evolution
has an impact on an assurance case from two aspects. The first aspect is, as mentioned
before, the two types of modifications, i.e., (1) modification in a development process,
or (2) modification in a system artifact of a specific project. The experiment results are
summarized in Table 3. From the data in Table 3, we conclude that a development
process modification can lead to more affected nodes than its corresponding system
artifact modification.

To confirm the conclusion, we manually investigate a structural relationship
between the development process used in [6], system artifacts produced by [6], and
their assurance case. Specifically, we chose a domain classes Report as a subject. There
is no node directly linked to Report in the generated assurance case. Next, we consider
all instances of domain class Report which has three instances: Semantic analysis
report, Integration test report, and Fault Tree Analysis report. After further manual
review of the assurance case, we find that 31 nodes are linked to the system artifact
Semantic analysis report, 22 nodes to the system artifact Integration test report, and 16
nodes to the system artifact Fault Tree Analysis report. Note when a modification on an
artifact is caught, the affected nodes include all nodes in an assurance case which are
directly linked to the artifact as well as the nodes which are linked to all instances of the
artifacts. For instance, a modification on “Semantic analysis report” occurs in exper-
iment 5, it only affects 31 nodes since they are linked to the report and there is no other
instance of the report in the WBS case study. However, when a modification on Result
occurs in experiment 4, we consider all directly nodes linked to Result in the assurance
case, i.e., 0 in this case, and then all nodes linked to the three instances of Report. In
this case, for the three instances, the affected node numbers are 31, 22, and 16
respectively. Since some nodes are linked to multiple instances of Report, there are

Table 3. Assurance case maintenance results

Experiment Assurance
case

Type of
modification

Modified object Affected
nodes

4 WBS Domain class Report 60
5 WBS System artifact Semantic analysis report 31
6 WBS System artifact SSR1 38
7 WBS System artifact Braking module source code 9
8 Two tanks

system
Domain class Verification report 133

9 Two tanks
system

System artifact System level requirement analysis
report

32

10 Two tanks
system

System artifact Tank 1 architecture model
verification report

22

Automatic Support of the Generation and Maintenance of Assurance Cases 25



totally 60 nodes which are affected by the modification on Result. And a modification
on Result thus has more affected nodes than a modification on any of an instance of
Result. Likewise, we did experiments 8,9 and 10 for the two tanks case study and draw
the same conclusion.

Next, we consider the second aspect: how a modification during different phases of
a SDLC for a project affects an assurance. For the WBS case study, experiment 6 is
considered as a modification in an early phase of SDLC compared with experiment 7, a
late phase modification. For the two tanks control system case study, experiment 9 is
considered as an early phase modification compared with experiment 10. Both
experiment sets show that a modification made in an early phase of SDLC affects more
nodes in an assurance case compared to a modification made in a late phase of SDLC.
A manual check further confirms this conclusion. For instance, a modification of SSR1
affects two system artifacts, Hazard 1 and Contribution 1 via traceability. Artifacts
Hazard 1 and Contribution 1 together have 17 corresponding nodes in an assurance
case, and SSR1 has 32 corresponding nodes. But among the 49 nodes, 7 nodes ref-
erence multiple system artifacts and 4 nodes are affected by the same child nodes in the
assurance case, and 38 nodes are thus affected by the modification of SSR1. But artifact
“Braking Module Source code” has one system artifacts, Braking Module, via trace-
ability. And system artifact Braking Module has 8 corresponding nodes in the assur-
ance case, and Braking Module Source code has 9 corresponding nodes including the 8
corresponding nodes of Braking Module. So, the modification of a system artifact
generated during the early phase of a SDLC affect more nodes in an assurance case
compared with the modification of a system artifact generated during the later phase of
a SDLC.

6 Related Work

The insurance of software property assurance in safety critical systems has been a hot
topic due to the high demand of safety critical systems in our daily life. An even more
compelling argument can be made in safety-critical applications. Many challenges
remain in the assurance case community [17]. Various techniques have been proposed
to address the problems and difficulties in the construction of an assurance case. Some
researchers have presented the application of patterns in building an assurance case.

Hawkins et al. proposed a Model-Based approach to weave an assurance case from
design [11]. They used a reference model to model all artifacts and their relationship for
a specific project and a GSN metamodel to denote an assurance case. When a pattern is
instantiated, a weaving table is used to generate a specific assurance case. But the
simple mapping relationship cannot generate a correct underlying reasoning chain in an
assurance case.

Denney et al. provided a tool to support assurance-based software development [8].
In their tool, they also proposed a new pattern language to generate an assurance case.
Their approach required a data table to connect system artifacts and variables in a safety
pattern during its instantiation. Obviously, the mapping relationship between all system
artifacts and variables would be manually provided. So, the mapping relationship is a
project-dependent input. However, our approach takes the mapping relationship from a

26 C.-L. Lin et al.



domain model to model a development process. Thus, our framework can automati-
cally link system artifacts as an instance of domain classes together in a generated
assurance case and there is no mapping relationship needed for a specific project.

Ayoub et al. [18] proposed a safety case pattern for a system developed using a
formal method. The pattern considers the satisfaction between a design model in terms
of a formal notation and its implementation model. Our safety2design pattern can
complement their pattern since both patterns target different phases of a software
development process. More important, while Ayoub did not present the details of
generating a specific assurance case based on their template, generation of the safe-
ty2design is totally built on the model transformation technique, which fits well with
the purpose of MDA.

Hauge et al. [19] proposed a pattern-based method to facilitate software design for
safety critical systems. Under the pattern-based method is a language that offers six
different kinds of basic patterns as well as operators for composition. One of the
important ramifications of this method is the generation of safety case, which is con-
nected to the artifacts produced by the same method during a development process.

Jee et al. [7] discussed the construction of an assurance case for the pace-maker
software using a model-driven development approach, which is similar to ours.
However, their approach emphasizes on the later stage of a software development such
as a timed automata model as a design model and C code as implementation language.
The approach considers the application of the results from the UPPAAL tool and
measurement based timing analysis as evidence.

7 Conclusion and Future Work

In this paper, we present a novel framework which employs safety patterns to generate
an assurance case and further support highlight of affected nodes whose underlying
reasoning chain can be damaged during software maintenance. To remove the bias
towards using this framework, we used the two case studies developed by two different
third-party teams to evaluate the framework. The initial experimental results show that
the framework is useful in development of safety critical systems and their evaluation.
We will further integrate some confidence calculation models into the framework to
support evolution of an assurance case as future work.

Acknowledgement. Lin and Shen are partially supported by the Georgeau Construction
Research Institute at Western Michigan University. Li is supported by the National Natural
Science Foundation of China (Nos. 61472406 and 61532019).

References

1. National Research Council: Critical Code: Software Producibility for Defense. National
Academies Press, Washington, D.C. (2010)

2. Organización Internacional de Normalización, ISO 26262: Road Vehicles: Functional
Safety, ISO (2011)

Automatic Support of the Generation and Maintenance of Assurance Cases 27



3. US Food and Drug Administration (FDA): Guidance for Industry and FDA Staff-Total
Product Life Cycle: Infusion Pump–Premarket Notification [510 (k)] Submissions (2010)

4. European Organisation for the Safety of Air Navigation: Preliminary Safety Case for
Airports Surface Surveillance. Eurocontrol (2011)

5. Denney, E., Pai, G.: Automating the assembly of aviation safety cases. IEEE Trans. Reliab. 4
(63), 830–849 (2014)

6. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance case and prescriptive software
safety certification: a comparative study. J. Saf. Sci. 59(11), 55–71 (2013)

7. Jee, E., Lee, I., Sokolsky, O.: Assurance cases in model-driven development of the
pacemaker software. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416,
pp. 343–356. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0_33

8. Denney, E., Pai, G.: Tool support for assurance case development. Autom. Softw. Eng. 25,
435–499 (2018)

9. Ayoub, A., Kim, B., Lee, I., Sokolsky, O.: A safety case pattern for model-based
development approach. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226,
pp. 141–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3_14

10. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case from
design: a model-based approach. In: IEEE 16th International Symposium on High Assurance
Systems Engineering (HASE) (2015)

11. Denney, E.W., Pai, G.J.: Safety case patterns: theory and applications (2015)
12. France, R., Rumpe, B.: Model-driven development of complex software: a research

roadmap. In: Proceedings of Future of Software Engineering 2007 (2007)
13. Goal Structuring Notation Working Group: GSN Community Standard Version 1, pp. 437–

451 (2011)
14. Adelard (2003). http://adelard.co.uk/software/asce/
15. http://www.eclipse.org/atl/
16. Gross, K.H., Fifarek, A.W., Hoffman, J.A.: Incremental formal methods based design

approach demonstrated on a coupled tanks control system. In: 2016 IEEE 17th International
Symposium on High Assurance Systems Engineering (HASE) (2016)

17. Langari, A., Maibaum, T.: Safety cases: a review of challenges (2013)
18. Ayoub, A., Kim, B., Lee, I., Sokolsky, O.: A Systematic approach to justifying sufficient

confidence in software safety arguments. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP
2012. LNCS, vol. 7612, pp. 305–316. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33678-2_26

19. Hauge, A.A., Stølen, K.: A pattern-based method for safe control systems exemplified within
nuclear power production. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol.
7612, pp. 13–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33678-2_2

28 C.-L. Lin et al.

http://dx.doi.org/10.1007/978-3-642-16561-0_33
http://dx.doi.org/10.1007/978-3-642-28891-3_14
http://adelard.co.uk/software/asce/
http://www.eclipse.org/atl/
http://dx.doi.org/10.1007/978-3-642-33678-2_26
http://dx.doi.org/10.1007/978-3-642-33678-2_26
http://dx.doi.org/10.1007/978-3-642-33678-2_2


Refinement



Correct-by-Construction Implementation
of Runtime Monitors Using Stepwise

Refinement

Teng Zhang1(B), John Wiegley2, Theophilos Giannakopoulos2,
Gregory Eakman2, Clément Pit-Claudel3, Insup Lee1, and Oleg Sokolsky1

1 University of Pennsylvania, Philadelphia, PA 19104, USA
{tengz,lee,sokolsky}@cis.upenn.edu

2 BAE Systems, Burlington, MA 01803, USA
{john.wiegley,theo.giannakopoulos,gregory.eakman}@baesystems.com

3 MIT CSAIL, Cambridge, MA 02139, USA
cpitcla@csail.mit.edu

Abstract. Runtime verification (RV) is a lightweight technique for ver-
ifying traces of computer systems. One challenge in applying RV is to
guarantee that the implementation of a runtime monitor correctly detects
and signals unexpected events. In this paper, we present a method
for deriving correct-by-construction implementations of runtime moni-
tors from high-level specifications using Fiat, a Coq library for stepwise
refinement. SMEDL (Scenario-based Meta-Event Definition Language),
a domain specific language for event-driven RV, is chosen as the specifi-
cation language. We propose an operational semantics for SMEDL suit-
able to be used in Fiat to describe the behavior of a monitor in a rela-
tional way. Then, by utilizing Fiat’s refinement calculus, we transform
a declarative monitor specification into an executable runtime monitor
with a proof that the behavior of the implementation is strictly a subset
of that provided by the specification. Moreover, we define a predicate on
the syntax structure of a monitor definition to ensure termination and
determinism. Most of the proof work required to generate monitor code
has been automated.

Keywords: Runtime monitor · SMEDL · Formal semantics · Coq
Stepwise refinement

1 Introduction

Runtime verification (RV) [1] is a lightweight technique for correctness monitor-
ing of critical systems. The objective of RV is to check if a run of the system
(referred as a target system in the remainder of the paper), usually abstracted

This work is supported in part by the Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) under contract FA8750-16-
C-0007 and by ONR SBIR contract N00014-15-C-0126.

c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 31–49, 2018.
https://doi.org/10.1007/978-3-319-99933-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_3&domain=pdf


32 T. Zhang et al.

as a trace of events either from the execution or the logging information, satis-
fies or violates certain properties. Properties to be checked using RV are usually
specified by high level languages, such as temporal logics or state machines.
Specifications are then converted into executable monitor code by either a code
generator or manual effort. However, informal code generation processes are usu-
ally error-prone, and the generated monitor code may not adhere to its specifica-
tion. During execution, an incorrect monitor may not detect property violations,
which can lead to serious consequences in safety critical systems. As a result, it
is desirable to use a formal procedure to achieve correct-by-construction imple-
mentation of monitors.

This paper presents a method for generating correct-by-construction imple-
mentations of runtime monitors written in SMEDL [2], a state-machine-based
DSL (domain specific language) for RV. Our method is based on Fiat [3], a pow-
erful deductive synthesis framework embedded in the Coq proof assistant [4].
The core idea in Fiat is to separate declarative specifications from concrete
implementations. Users start by embedding their DSL into Coq, so that each
DSL program is understood as a mathematical description of the set of results
it may return. Using stepwise refinement, each program can be translated into
a correct-by-construction executable implementation.

High-level specifications of monitors are attractive because they succinctly
describe what monitors should do: implementation details are crucial for perfor-
mance, but they can be determined separately, along with a proof of preserva-
tion of semantics between the specification and implementation. One challenge
is to design semantic rules that can be used smoothly in the specification, while
remaining amenable to refinement so that such preservation can be proved with-
out excess difficulty.

Additionally, to generate a correct monitor, we have to ensure that the mon-
itor specification is well-formed. In this paper, we require that each monitor
satisfies two properties: termination and determinism. Termination is important
because if a monitor goes into infinite loop, or gets stuck during the execution, it
will not be able to receive events from the system and catch property violations.
Determinism ensures that the monitor always produces the same output given
the same input and current state. The code generation process thus needs to be
able to detect and reject any “bad” monitor specification that may get stuck
during execution.

To overcome the challenges above, we provide a solution for constructing
runtime monitor implementation using the Fiat framework. The contributions
of this paper are the following:

– We present an operational semantics for SMEDL monitors written in a rela-
tional way that ensures that the functionality of the specification and the
implementation are separated. This lays a foundation for generating correct
code using Fiat.



Correct-by-Construction Implementation of Runtime Monitors 33

– We define a predicate on the definition of SMEDL monitors to ensure termi-
nation and determinism. Only a well-formed monitor can be extracted into
executable code through the Fiat framework.

– We implement a complete procedure from the design of specifications to the
generation of correct-by-construction runtime monitors using Fiat, illustrat-
ing how deductive synthesis can be used to formally derive trustworthy mon-
itors.

The code generation process presented in this paper is shown in Fig. 1. First,
we define a general declarative specification to describe the behavior of a moni-
tor reacting to input events. This specification is independent of specific monitor
definitions. It is then refined into a general function using Fiat. To derive exe-
cutable code for a specific monitor, the user needs to specialize this general func-
tion using a definition of that monitor along with a proof of its well-formedness.
A Haskell program is extracted and rendered into a monitor to check properties
of the target system. Since most of the proof work is automated by auxiliary
decision procedures and tactics, applying this methodology does not lead to a
heavy workload. Furthermore, efficient monitor code can be generated simply by
picking other implementations, which are guaranteed by Fiat to adhere to the
behavior described by the specification.

Fig. 1. Code generation process

The paper is organized as follows. Section 2 introduces basic concepts of the
Fiat framework and SMEDL. Sections 3 and 4, respectively present the opera-
tional semantics of SMEDL and the monitor definition predicates that ensure
termination and determinism. Sections 5 and 6 present the process of refinement
using Fiat and illustrate the usability of this method by a case study. Section 7
summarizes related work. Section 8 concludes the paper and presents the future
work. The code for this paper can be downloaded from the internet1.

2 Preliminaries

Overview of Fiat. Stepwise refinement derives executable programs from non-
deterministic specifications. In each step, some details of the computation are
decided upon, proceeding this way until a computable program is derived. Each

1 https://gitlab.precise.seas.upenn.edu/tengz/smedl-fiat-code.

https://gitlab.precise.seas.upenn.edu/tengz/smedl-fiat-code


34 T. Zhang et al.

refinement step must not introduce new behavior: the values that a refined pro-
gram may produce must be a subset of the values allowed by the specifica-
tion. Fiat is a stepwise refinement framework, providing a semi-automatic way
of deriving correct and efficient programs. Here “semi” means that while the
derivation process is automatic, it depends on manually verified refinement lem-
mas, specific to the domain that Fiat is applied to. This section briefly gives an
overview of Fiat. Readers can refer to [3,5,6] for more information.

Important Syntax Structures in Fiat. In Fiat, specifications are logical
predicates characterizing allowable output values. These specifications are called
computations, and written in the non-determinism monad: deterministic pro-
grams can be lifted into computations using the “ret” combinator, computa-
tions can be sequenced using the “bind” combinator (written “x ← c1; c2(x)”),
and a nondeterministic choice operator written {a|P a} is used to describe pro-
grams that may return any value satisfying a logical predicate P . Concretely,
the result of binding two computations c1 and c2 as shown above is simply the
set {y|∃x, x ∈ c1 ∧ y ∈ c2(x)}.

Fiat computations are organized into an Abstract Data Type (ADT), a struc-
ture used to encapsulate a set of operations on an internal data type. In Fiat,
an ADT contains an internal representation type (denoted as rep), a list of con-
structors for creating values of type rep, and a list of methods operating on
values of type rep. A well-typed ADT guarantees that rep is opaque to client
programs using the operations of the ADT.

Refinement Calculus in Fiat. Refinement in Fiat is the process of transform-
ing an ADT into a more deterministic ADT, involving refining all constructors
and methods defined in ADT and picking an efficient internal representation
using data refinement [7] of rep. When refining an expression, a partial relation
c1 ⊇ c2 must be preserved for each refinement step, meaning that the possible
values of expression c2 must be a subset of the possible values of expression
c1. For the data refinement part, changes of internal representation are justified
using a user-selected abstraction relation, so that if the internal states of two
ADTs are related, calling their methods must preserve the relation and produce
the same client-visible outputs. Adding the abstraction relation r to the partial
relation ⊇ of refinement on expression, Fiat uses ⊇r to represent the relation
to be preserved for each refinement step: I1 ⊇r I2 ⊇r ... ⊇r Ii where I1 is the
initial ADT and Ii is a fully refined (i.e. deterministic) ADT.

SMEDL Concepts. A SMEDL monitor is a collection of scenarios. Each sce-
nario is an Extended Finite State Machine (EFSM) [8] in which the transitions
are performed by reacting to events. By specifying a set of scenarios in a SMEDL
monitor, the monitor can check the behavior of a certain aspect of the system
from a variant levels of abstraction with a clearer separation. Scenarios inter-
act with each other using shared state variables or by triggering execution of
other scenarios through raised events. There are three types of events: imported,
exported and internal. Imported events, which are responsible for triggering the
execution of a monitor, are raised from the target system or by other moni-



Correct-by-Construction Implementation of Runtime Monitors 35

tors; exported events are raised within the monitor and are then sent to other
monitors; internal events are used to trigger transitions, but are only seen and
processed within a given monitor. Each transition is labeled with a triggering
event and attached to a guard condition and a list of actions to be executed after
the transition. Primitive data types, such as arithmetic and logical operations,
are supported in SMEDL. The abstract syntax of SMEDL is given below.

A monitor is a 3-tuple 〈V,Σ, S〉, where V is a set of state variables, Σ is a
set of event declarations and S is a non-empty set of scenarios for the monitor.
The event declaration is a three-tuple 〈eventType, eventName, attributeTypes〉
where eventType is an enumeration over three types of event introduced above;
attributeTypes represents the list of types of attributes of the event.

A scenario is a 5-tuple 〈n,Q, q0, E, δ〉 where n, Q, and q0 are respectively the
identity, the set of states and the initial state, E is the set of alphabets—events
that can trigger the transitions of the machine and δ is the set of transitions of
the scenario.

A transition is a four-tuple 〈qsrc, qdst , stpEv ,A〉 where qsrc and qdst are
the source and target state of the transition, stpEv denotes the trigger-
ing event of the transition, typed with eventInstance which is a three-tuple
〈event , eventArgs, eventGuard〉. event is a reference to the corresponding event
declaration, eventArgs is defined as the list of local variable names, and event-
Guard is an expression guarding the transition. Both the state variables and
local variables can be used in the eventGuard. The set A consists of statements
to be executed immediately after the transition, which can either update state
variables or raise events. Note that we assume all transitions in the scenario are
complete.

3 An Operational Semantics of SMEDL

This section proposes the formal semantic rules for a single monitor. When an
imported event is sent to a monitor, state transitions within the monitor are
triggered. Actions attached to transitions can raise internal or exported events.
Internal events are used to trigger further transitions in other scenarios. After all
triggered transitions are completed, exported events are output and the monitor
waits for the next imported event. This process is denoted as a macro-step, which
cannot be interrupted by other imported events. Each scenario can execute its
transition at most once in a single macro-step so that there is no infinite loop
of interaction between scenarios. We introduce a data structure configuration to
describe the dynamic state of a monitor.

Configurations. A configuration is a five-tuple 〈MS ,DS ,PD ,EX ,SC 〉. MS
denotes the mapping from scenarios to their current states; DS is a well-typed
mapping from state variables to values; PD is the set of pending events to trigger
transitions within the monitor; and EX is the set of raised, exported events.
Elements in both sets are events binding with actual attribute values, denoted
as raisedEvents. SC is the set of scenarios executed during the current macro-
step and its corresponding triggering events. Each configuration conf relates to



36 T. Zhang et al.

a monitor M, denoted as confM . The subscript is omitted in the remainder of
the paper whenever the context is clear.

A macro-step is constructed by chaining a series of consecutive micro-steps.
Each micro-step is the synchronous composition of a set of transitions on scenar-
ios with the same triggering event, constructed by the interleaved application of
the basic rule and the synchrony rule. The chaining of micro-steps is performed
by applying the chain merge rule.

Basic Rule. The basic rule is applied to a state machine whenever a transition
is triggered by a pending event. In the definition below, the scenario performing
the transition is mh, conf denotes the configuration before applying the rule,
and conf ′

mh denotes the configuration after applying the rule, on mh.

tr : s1
e{a}−→c s2

valid(tr, conf ,mh)
conf ′

mh = updateConfig(mh, conf , tr)

conf e−→ conf ′
mh

tr is the enabled transition from s1 to s2 by e; a is the set of actions for tr ;
and c is the guard. valid tests the validity of tr under the configuration conf,
which includes: (1) tr is the transition of mh, (2) current state of mh is s1 and
(3) c evaluates to true for current DS and attribute values of the event, (4) e is
in PD, and (5) mh is not in SC. When tr is taken, conf is updated by executing
the function updateConfig, denoted as conf e−→ conf ′

mh . The update includes:
(1) mh transitions to s2 and is put into SC, (2) DS is updated by the actions in
the transition, (3) e is removed from PD , and (4) raised events are respectively
added to PD and EX according their types.

Synchrony Rule. One or more scenarios are enabled by a triggering event from
a source configuration. The basic rule creates new configurations for each sce-
nario by taking these transitions. The synchrony rule then combines scenario’s
resulting configuration into a new configuration. Combination of two configura-
tions conf1 and conf2 under the origin configuration conf is defined below.

– ∀mh ∈ S,

MS conf ′(mh) =

⎧
⎨

⎩

MS conf1 (mh) ,MS conf1 (mh) = MS conf2 (mh)
MS conf1 (mh) ,MS conf1 (mh) �= MS conf (mh)
MS conf2 (mh) ,MS conf2 (mh) �= MS conf (mh)

– ∀v ∈ V ,

DS conf ′(v) =

⎧
⎨

⎩

DS conf1 (v), DS conf1 (v) = DS conf2 (v)
DS conf1 (v), DS conf1 (v) �= DS conf (v)
DS conf2 (v), DS conf2 (v) �= DS conf (v)

– PDconf ′ = PDconf1 ∪ PDconf2

– EX conf ′ = EX conf1 ∪ EX conf2



Correct-by-Construction Implementation of Runtime Monitors 37

– SC conf ′ = SC conf1 ∪ SC conf2

The synchrony rule is given below. confs is the set of target configurations
obtained from the basic rule given a source configuration conf and an event
e. MergeAll combines each configuration in confs into a new configuration by
repeatedly combining configurations pairwise. The micro-step from c to c′ by e

is denoted as c
e

↪→ c′.

confs = {confmh |conf e−→ confmh}
conf

e
↪→ MergeAll(confs)

Chain Merge Rule. The objective of the chain merge rule is to construct a
macro-step, defined inductively below.

conf
e1
↪→ conf ′

conf e1
⇀1 conf ′ e1 ∈ ImportedEvents (1)

conf e1
⇀n conf ′

conf ′ e2
↪→ conf ′′

conf e1
⇀n+1 conf ′′ (2)

Case (1) shows that a micro-step triggered by an imported event is the basic
case. The corresponding source configuration is denoted as an initial configu-
ration in the remainder of this paper. The inductive case is shown in case (2).
Note that there is no restriction on how to choose e2 from PD of conf’. The
subscript in the chain merge rule indicates the number of micro-steps from the
initial configuration to the current configuration.

Discussion on Design of Semantic Rules. The basic rule and synchrony
rule are encoded in Coq as functions, because the transition of a scenario and
the construction of a micro-step are deterministic. On the other hand, the chain
merge rule is defined relationally because it does not specify which event to
choose from PD to trigger the next micro-step, nor does it guarantee termination
during the combination of micro-steps. To derive a computable version, which
must terminate because of restrictions in Coq, we require predicates, given below,
on the syntactic structure of monitor specifications, such that termination and
determinism are guaranteed.

4 Towards a Well-Formed Monitor Specification

This section presents the definition of a well-formed monitor. Both the basic
and synchrony rule are partial so we need to make sure that their application



38 T. Zhang et al.

succeeds. Moreover, two vital properties for a monitor, termination and deter-
minism, are considered. A set of predicates are proposed from which the def-
inition of well-formedness is constructed. We prove that if a monitor satisfies
these predicates, it always terminates in a final state, deterministically, which
indicates that the monitor is well-formed, i.e. no runtime errors are possible.
These predicates are required since only well-formed monitor specifications may
be generated into executable code by Fiat.

4.1 Well-Formedness Predicates

Table 1 lists predicates for well-formedness, which are divided into three cate-
gories indicating which part of the execution is influenced by the predicates.

Table 1. Predicates for well-formedness

Classification Name Definition

Scenario level P1 ∀s ∈ SM , ∀tr1 tr2 ∈ δs, qsrctr1 = qsrctr2 ∧ eventstpEvtr1
=

eventstpEvtr2
⇒ eventGuard stpEvtr1

= ¬eventGuard stpEvtr2

P2 ∀s ∈ SM , ∀tr ∈ δs, ∀e ∈ ΣM , eventstpEvtr
= e ⇒ e ∈ Es

Micro-step level P3 ∀v ∈ VM , ∀sce1 sce2 ∈ SM ,
updateVar(v , sce1 ) ∧ updateVar(v , sce2 ) ⇒
Esce1 ∩ Esce2 = ∅

Macro-step level P4 ∀e ∈ ΣM , eventTypee = Imported ∨ eventTypee =
Internal ⇒ ∃sce, sce ∈ SM ∧ e ∈ Esce

P5 ∀e e1 e2 ∈ ΣM , e1 
= e2 ∧ e ⇑M e1 ∧ e ⇑M e2 ⇒
¬∃sce, sce ∈ SM ∧ e1 ∈ Esce ∧ e2 ∈ Esce

P6 ∀e e1 ∈ ΣM , eventTypee = Imported ∧ e 
= e1 ∧ e ⇑M

e1 ⇒ ¬∃sce, sce ∈ SM ∧ e ∈ Esce ∧ e1 ∈ Esce

P7 ∀e ∈ ΣM , ∀ sce1 sce2 ∈
SM , raiseEv(sce1 , e) ∧ raiseEv(sce2 , e) ∧ sce1 
= sce2 ⇒
¬∃e′ ∈ ΣM , triggerSce(sce1 , e ′) ∧ triggerSce(sce2 , e ′)

P8 ∀e ∈ ΣM , sce ∈ SM , stp ∈
δsce,noDuplicatedRaise(e, sce, stp)

P9 ∀e1 e2 ∈ ΣM , ∀v ∈ VM , ∃e ∈
ΣM ,noDependency(e, e1, e2) ∧ updateVarEv(v ,e1) ⇒
¬updateVarEv(v ,e2) ∧ ¬usedVarEv(v ,e2)

P1 and P2 guarantee that exactly one transition is triggered for a scenario
during the application of the basic rule, by an event from the alphabet for that
scenario. P3 guarantees that when applying the synchrony rule to construct a
micro-step, scenarios that share the same triggering event never update the same
variable. updateVar(v , sce) means that variable v is updated by actions from the
transitions of scenario sce.

A well-formed monitor guarantees that it always terminates in some final
state. The definition of a final configuration is given below:



Correct-by-Construction Implementation of Runtime Monitors 39

Definition 1 (Final Configuration). A configuration conf is a final configu-
ration if (1) SC conf �= ∅ and (2) PDconf = ∅.

The tricky part is that all pending events must be consumed at the end of each
macro-step, i.e. there are no pending events when all the available scenarios have
finished execution and that the execution of a monitor never gets stuck because
of a mismatch between enabled scenarios and pending events.

P4 guarantees that all imported events or internal events can trigger exe-
cution of some scenarios. P5 and P6 ensure that imported or internal events
that may be raised in the same macro-step cannot directly trigger execution of
the same scenario. e ⇑M e1 means that e1 is raised by the actions of transitions
transitively triggered by e. P7 and P8 guarantee that in each macro-step, an
internal event cannot be raised multiple times. raiseEv(sce,e) means that the
actions of transitions defined in sce contain raising e. triggerSce(sce,e) means
that e may transitively trigger transition of sce. noDuplicatedRaise(e,sce,stp)
means that e can only be raised once in stp of sce.

The chain merge rule does not specify an order for the chaining of micro-
steps. If a monitor is not well defined, the execution result of a macro-step
could be non-deterministic. This is undesirable because we always want a deter-
ministic verdict from a monitor given the same input. P1 and P2 ensure
scenario-level determinism. P5 to P8 also prevent some behaviors that may
lead to non-determinism. We define a proposition noDependency(e,e1,e2) def=
eventTypee = Imported ∧ e ⇑M e1 ∧ e ⇑M e2 ∧ ¬e1 ⇑e

M e2 ∧ ¬e2 ⇑e
M e1. This

means that e1 and e2 may be raised in the macro-step triggered by imported
event e, and that during this macro-step, e1 can not transitively raise e2, and vice
versa. P9 guarantees that updating a state variable is mutually exclusive. updat-
eVarEv(v,e) and usedVarEv(v,e) respectively mean that v cannot be updated
and used in any actions transitively triggered by e.

We use the notation Pi(M ) to represent that a monitor M satisfies predicate
Pi. A well-formed monitor satisfies the nine predicates defined above, Well-
formed(M) def=

∧
1≤i≤9 Pi(M ).

4.2 Proof of Termination and Determinism

Given a monitor that is well-formed, and which starts execution with a well-
typed imported event, we can now prove that it can always reach a final state
within a limited number of micro-steps, as described in Theorem 1 below:

Theorem 1 (Termination). Given a well-formed monitor M, two of its con-
figurations confM and conf ′

M and an imported event e, if confM
e
⇀n conf ′

M and
M cannot take any micro-step from conf ′

M , conf ′
M is a final configuration and n

is equal to or less than |SM |.
To prove this theorem, we need to first prove that the number of micro-

steps taken within a macro-step is bounded. Because each scenario can only
transition once during each macro-step, and at least one scenario executes in each



40 T. Zhang et al.

micro-step, the number of micro-steps to be taken is bounded by the number of
scenarios of the monitor. So we first prove that |SCconf | strictly increases in a
micro-step.

Lemma 1 (Increase of SC). Given two configurations conf conf ′ and an
event e, if conf

e
↪→ conf ′, then |SC conf | < |SC conf ′ |.

With Lemma 1 and the fact that SC conf M
is a subset of |SM |, we can prove

that the number of micro-steps taken by a well-formed monitor in a macro-step
is bounded by the number of scenarios:

Lemma 2 (Up-bound of micro-steps). Given a well-formed monitor M ,
two of its configurations confM and conf ′

M and an imported event e, if confM
e
⇀n

conf ′
M , then n ≤ |SM |.
Next we need to prove that macro-step has the progress property, which

guarantees that a well-formed monitor cannot be stuck in a non-final state:

Lemma 3 (Progress). Given a well-formed monitor M , two of its configura-
tions confM and conf ′

M and an imported event e, if confM
e
⇀n conf ′

M and conf ′
M

is not a final configuration, then M can take a micro-step on all of its pending
events from conf ′

M .

With the three core lemmas presented above, and other auxiliary lemmas,
Theorem 1 can be proved. With this theorem, we can always pick a terminating
implementation of the relational semantic rules during the refinement step.

Deterministic execution of a macro-step is represented by the theorem below:

Theorem 2 (Determinism). Given a well-formed monitor M, if confM
e
⇀

conf ′
M , confM

e
⇀ conf ′′

M and both conf ′
M and conf ′′

M are final configurations, then
conf ′

M = conf ′′
M .

This theorem is proved using the idea of Newman’s lemma [9]. First, we prove
the diamond lemma defined below:

Lemma 4 (Diamond). Given a well-formed monitor M , if confM is an initial
configuration or there exists a configuration oconf such that oconf e

⇀ confM , and
confM

e1
↪→ conf1M and confM

e2
↪→ conf2M , then there exists a configuration conf ′

M

such that conf1M
e2
↪→ conf ′

M and conf2M
e1
↪→ conf ′

M .

Then, by induction on the number of micro-steps to be taken by two transi-
tion chains, we can prove the confluence lemma:

Lemma 5 (Confluence). Given a well-formed monitor M , if confM
e
⇀

conf1M , confM
e
⇀ conf2M , there exists a configuration conf ′

M such that conf1M
↪→∗ conf ′

M and conf2M ↪→∗ conf ′
M .

Transition ↪→∗ represents multiple micro-steps. Lemma 5 ensures that if an
initial configuration conf can transition into two non-final configurations conf1
and conf2 , then they can always transition back to the same configuration. Using
Lemma 5 and the fact that a final configuration cannot take any micro-step,
Theorem 2 can be proved.



Correct-by-Construction Implementation of Runtime Monitors 41

5 Refinement of a Monitor Specification Using Fiat

This section presents how to generate correct-by-construction code from a declar-
ative ADT using Fiat. Figure 2 gives an overview of the code generation process.
The initial ADT describes the basic behavior of monitors in a declarative way
using semantic rules defined in the previous section. Then, the ADT is refined
by proving a “sharpening” theorem, wherein the representation type, construc-
tors and methods of the ADT are refined. The refinement of methods involves
picking a specific implementation and proving that ⊇r, introduced in Sect. 2, is
preserved between the specification and the implementation. The implementa-
tion is parameterized by a specific monitor definition given a starting state and
proof of well-formedness of that monitor. Haskell code can then be extracted
from this definition.

Fig. 2. Fiat refinement steps for code generation

5.1 Definition of an ADT

Basically, the monitor ADT describes the common process of handling imported
events using the semantic rules defined in the previous section. The definition of
this ADT is given below.

Definition confSpec : ADT _ := Def ADT {
rep := configuration M,
Def Constructor0 newS : rep := { c : configuration M | readyConfig c },,
Def Method1 processEventS (r : rep) (e: raisedEvent | raisedAsImported M e) :

rep * list raisedEvent :=
{ p : rep * list raisedEvent

| exists conf’ econf,
chainMergeTrans r conf’ econf (‘ e) (fst p) (snd p) }

}.



42 T. Zhang et al.

The configuration of a given monitor M is used as the representation type for
the ADT. Instead of constructing a concrete value, Constructor newS specifies
that the starting state of a monitor should be a ready configuration. A ready
configuration has empty sets for PD, EX and SC, indicating that the monitor
is ready to receive an imported event for the next macro-step. The method
processEventS specifies the non-deterministic action of taking a macro-step. The
first parameter r represents the current ready state of the monitor and the second
parameter e is the imported event triggering the macro-step. The return value
is a tuple of a ready configuration that reflects the updated state of the monitor
after the macro-step and a list of raised exported events. The semantic rules from
previous sections were defined in a relational way to conveniently specify this
method, since relations easily model non-deterministic functions. To adapt the
chain merge rule to the interface of processEventS. chainMergeTrans is defined
below:

Definition chainMergeTrans {M : monitor} (conf conf’ econf: configuration M)
(e: raisedEvent) (rconf: configuration M) (events: list raisedEvent) : Prop :=

configTrans conf conf’ /\
chainMerge conf’ econf e /\
finalConfig econf /\
configTransRev econf rconf /\
events = EX econf.

configTrans conf conf’ represents the transformation from ready configura-
tion conf to initial configuration conf’ ; chainMerge conf’ econf e is the Coq
definition of conf ′ e

⇀ econf with the number of steps taken omitted; and config-
TransRev represents the transformation from econf to a new ready configuration
rconf. events is the set of exported events raised in this macro-step.

5.2 Refinement Process

Refinement by Fiat requires proving the theorem FullySharpened(confSpec M),
parameterized over some monitor definition M. The implementation is wrapped
in the proof term of the theorem. The first step refines the representation type.
In this paper, we choose the same representation type—the configuration of
monitor M—in the implementation. As a result, the abstraction relation r is
plain equality. Constructor newS is refined by choosing a ready configuration
conf for monitor M, given by the starting state of monitor M. Just like parameter
M, conf also needs to be provided to generate a concrete, executable monitor.
To refine method processEventS, we need to provide a deterministic function
that preserves the semantics of applying the chain merge rule. Preservation of
the specification’s semantics for this function is given by the lemma below:

Lemma ProcessEventRefined M (C : configuration M) (W : Wellformed M)
(Cor:readyConfig C) (e: raisedEvent) (P : raisedAsImported M e) :

refine { p : configuration M * list raisedEvent
| exists conf’ econf, chainMergeTrans C conf’ econf e (fst p) (snd p) }
(ret (macroStepReadyFinal W Cor P

(length (S M)))).

macroStepReadyFinal is a function which takes a ready configuration C and
returns a new ready configuration and list of exported events. In this paper,



Correct-by-Construction Implementation of Runtime Monitors 43

we choose a straightforward implementation: a fixpoint function that picks the
first event from PD of the current configuration to trigger the next micro-step.
Note that in the Coq definition, we use a list to represent the set, and due to the
predicates establishing well-formedness, PD can never have duplicate events. The
number of times the semantic function gets invoked is bounded by the number
of scenarios in M. Provided that M is well-formed, it is guaranteed that the
resulting configuration is a final configuration. The lemma ProcessEventRefined
establishes that the return value is a subset of the results obtained by applying
chainMergeTrans used in the original ADT. From the proof term of the theorem,
an executable version of processEventS can be obtained.

It is worth noting that, the semantics of SMEDL can be directly expressed
as a Coq function for generating the Haskell code by native Coq. But through
Fiat, we can refine from the declarative SMEDL semantics to a more efficient
implementation by changing the data structure for configuration, handling pend-
ing events more wisely, etc. Moreover, refinement can be conducted in a more
mechanical and extensible way in Fiat than using native Coq.

6 Case Study

A general event processing function is generated by refinement, parameterized
by: a specific monitor specification, its well-formedness proof and a starting,
ready state for that monitor. Therefore, to obtain a correct-by-construction
monitor, one needs to (1) write a monitor definition M ; (2) prove that M is
well-formed; and (3) specify a starting state. A Haskell program may then be
extracted, from which a monitor is implemented by adding glue code to receive
events from the target system. This section uses a real-world monitoring require-
ment to illustrate the usability of this method.

SMEDL Specification. The monitoring requirement comes from a known
vulnerability(CVE-2017-9228)2 in Oniguruma v6.2.0 [10], which is related to
incorrect parsing of regular expressions, resulting in a crash due to access of an
uninitialized variable. Based on a high-level specification, and agnostic of the
specific vulnerability, a SMEDL monitor is constructed to detect this violation
of the specification and raise an alarm. The specification is based on a part of
the regular expression grammar concerning character classes. The parsing can
be described as the state machine in Fig. 3, where transition labels are omitted
for clarity. Transitions in the state machine are triggered by tokens read by the
parser and guarded with additional conditions.

Part of the SMEDL specification (denoted as parseCC ) is given below. To
simplify the presentation, we concentrate only on one guard condition, which
states that the VALUE state cannot be recursively entered (i.e., from the START
state) while a class is still being processed. We refer to this condition below
as in class being equal to 1. Scenario main records transitions of the parser
state machine affected by the code; they are triggered by events that correspond

2 https://nvd.nist.gov/vuln/detail/CVE-2017-9228.

https://nvd.nist.gov/vuln/detail/CVE-2017-9228


44 T. Zhang et al.

Fig. 3. State machine of parsing character class

by changes to state variables in the code. Scenario check class determines the
value of the state variable in class by receiving the imported events in class and
out class. The specification can be directly mapped to an AST definition in Coq.

object parseCC
state

int in_class = 0;
events

imported inClass();//enter next_value_class
imported outClass();//exit next_value_class
imported state_to_start();//state is set to START
imported state_to_value();//state is set to VALUE
imported state_to_range();//state is set to RANGE
imported state_to_complete();//state is set to COMPLETE
exported error(int);

scenarios
main:

START -> state_to_value() when (in_class != 1) -> VALUE
START -> state_to_value() when (in_class == 1)
{raise error(0);} -> START
VALUE -> state_to_value() -> VALUE
VALUE -> state_to_range() -> RANGE
VALUE -> state_to_start() -> START
...

check_class:
idle -> in_class() when (in_class == 0)

{in_class = 1;} -> idle
idle -> out_class() when (in_class == 1)

{in_class = 0;} -> idle

Proof of Well-Formedness. Proving the well-formedness of a monitor seems
hard because there are nine sub predicates needed to be proved and type correct-
ness needs to be checked. However, we have implemented decision procedures to
check whether a monitor satisfies P1 to P4. Rest of them can be proved using the
auxiliary lemmas and tactics. The LOC for the proof is less than 1k of Gallina
and Ltac code. The time for proving well-formedness of parseCC is estimated
to be about 30 min for a user with basic experience of Coq.

Construction of the Haskell Monitor. The core building block of a par-
seCC -based monitor is given below. processEventS is the general event handling
function refined from the Fiat ADT. The Parameter r contains the information
to be used by parseCC : the proof of well-formedness (denoted as Well ParseCC )
and a starting state. Parameter e is the imported, triggering event for parseCC.

Definition parseCC_processEvent (r : ComputationalADT.cRep
program Well_ParseCC configuration1_ready)

(e: raisedEvent | raisedAsImported parseCC e) :=
processEventS r e.



Correct-by-Construction Implementation of Runtime Monitors 45

Coq provides the ability to extract Coq definitions to a Haskell program.
The monitor is constructed by adding glue code for receiving events from the
target system. We compile the Haskell code into an object file and expose two
functions to be instrumented into the target program. The type signature of
these two Haskell functions are given below:

cInitialRep :: IO (Ptr ())
cHandleImported :: CString -> Ptr () -> IO (Ptr ())

Both functions rely on the extracted Haskell code. cInitialRep provides a
starting state for the monitor. chandleImported takes the name of an imported
event, and the current state of the monitor, and returns a new state with any
exported events printed out. The target system is responsible for recording this
state update transparently. Using the GHC compiler, both an object file and
a C header file are generated. The header file contains the C API of the two
functions defined above, which are called in the source code of Oniguruma. When
an incorrect transition occurs in the library, an alarm is raised and printed to
the screen.

The LOC for the automatically extracted code is about 6k lines but only
about 10% of the code depends on the definition of a monitor. For another exam-
ple monitor with 6 scenarios and 16 transitions, the LOC of the part depending
on the monitor definition is less than 1k lines. Thus, scalability would not be an
issue.

The difficult part of deriving a monitor is its proof of well-formedness, which
can be simplified using the provided decision procedures and tactics. The other
steps are easily implemented using common procedures. The methodology pre-
sented in this paper provides an straightforward way to implement correct-by-
construction monitors.

7 Related Work

We summarize a representative selection of related work in three categories: (1)
formal semantics for RV; (2) mechanization of semantics for state-machine-based
formalisms and (3) case studies of using the Fiat framework.

The semantics of temporal logic and traces used for RV have been widely
studied [11–15]. There has been a lot of work related to describing the semantics
of LTL/MTL using automata-like formalisms. Giannakopoulou and Havelund
present a technique translating LTL formulae into FSM to monitor program
behavior [16]. Drusinsky presents TLCharts, a formalism resembling Harel stat-
echarts while supporting the specification of nondeterministic, temporal proper-
ties described in MTL or LTL inside a statechart specification [17]. This seman-
tics is described using Equivalent Non-Deterministic Automaton (ENFA). Roşu
and Havelund propose a method for rewriting LTL formulas into binary transi-
tion tree finite state machines for online monitoring [18]. Several RV tools sup-
port using FSM to specify properties [19–24]. However, little work has been done
on mechanizing semantics of DSLs for RV. Our work shows that the semantic
mechanization is a necessary foundation for generating correct monitors.



46 T. Zhang et al.

In [25], Paulin-Mohring presents the model of timed automata in Coq for
specifying and verifying of telecommunication protocols. Kammüller and Helke
[26] formalize the semantics of Statecharts [27] using Isabelle/HOL [28]. In
AADL (Architecture Analysis and Design Language) [29], the thread model and
mode change are represented using automata. Yang et al. [30] propose a machine-
checked transformation of a subset of AADL into TASM (Timed Abstract State
Machine [31]). The main purpose of defining formal semantics in these studies is
to prove properties of formal models. Although the formal semantics of SMEDL
can be used to prove properties of SMEDL or a monitor, the primary objective of
our work is code generation. Particularly, the semantic rules have been designed
to be conveniently integrated into a Fiat specification.

Correct-by-construction implementation generation using refinement has
been well studied [7,32–36]. For instance, Event-B [37] refines an abstract tran-
sition system into a more concrete one by adding transitions and states. Fiat
is a more general tool, suitable for the refinement objective of SMEDL. Fiat
provides flexible support for refinement of libraries for different functionality
domains. Delaware et al. [3] illustrate an example of using Fiat to synthesize
query structures. Wiegley and Delaware [6] use Fiat to generate efficient and
correct implementations of a subset of the bytestring library in Haskell. Chli-
pala et al. [5] present the development of a simple packet filter in Fiat. The
ADT for SMEDL is not as complicated as the case studies listed above, but it
is an initial work using Fiat to refine a state-machine-based DSL. The semantic
rules and ADT design presented in this paper offer guidance for applying Fiat
to generate code for other state-machine-style DSLs.

8 Discussion and Conclusions

We have presented a method for deriving correct-by-construction monitor code
using the Fiat framework. An operational semantics of SMEDL is designed using
Fiat to describe the essential behavior of any monitor. Using the mechanisms
provided by Fiat, this ADT is then refined into executable monitor code while
preserving those semantics. We have also proposed a well-formedness predicate
on monitor structures and proved that if a monitor is well-formed, it can always
terminate deterministically in a final state after reacting to any imported event.

One concern of using formal techniques is the manual effort involved in proof
work. In our development, proofs are divided into two parts: One part includes
proofs used during the refinement process, and auxiliary tactics and decision
procedures for proving the well-formedness of any monitor; the other part is
the proof of well-formedness for a particular monitor. The raw LOC in Coq
for the first part is about 30k lines. However, to apply the technique, users
only need prove well-formedness of their particular monitor, which is not labor-
intensive given the help of auxiliary tactics and lemmas. Therefore, we assert
that generating correct runtime monitors using a proof assistant is a feasible
task.

One main avenue of future work would be to improve the definition of well-
formedness, and implement more auxiliary tactics for better usability. It is also



Correct-by-Construction Implementation of Runtime Monitors 47

worth exploring more efficient implementation of the semantic rules in order to
generate more optimized monitor code.

References

1. Sokolsky, O., Havelund, K., Lee, I.: Introduction to the special section on runtime
verification. Softw. Tools Technol. Transf. 14(3), 243–247 (2012)

2. Zhang, T., Gebhard, P., Sokolsky, O.: SMEDL: combining synchronous and asyn-
chronous monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 482–490. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 32

3. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive synthesis of
abstract data types in a proof assistant. In: ACM SIGPLAN Notices, vol. 50, pp.
689–700. ACM (2015)

4. The Coq Development Team: The Coq Proof Assistant Reference Manual
5. Chlipala, A., et al.: The end of history? using a proof assistant to replace lan-

guage design with library design. In: SNAPL 2017: 2nd Summit on Advances in
Programming Languages (2017)

6. Wiegley, J., Delaware, B.: Using Coq to write fast and correct Haskell. In: Proceed-
ings of the 10th ACM SIGPLAN International Symposium on Haskell, pp. 52–62.
ACM (2017)

7. Hoare, C., et al.: Data refinement refined (1985)
8. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the

extended finite state machine model. In: Proceedings of the 30th International
Design Automation Conference, pp. 86–91. ACM (1993)

9. Newman, M.H.A.: On theories with a combinatorial definition of “equivalence”.
Ann. Math. 43, 223–243 (1942)

10. Oniguruma contributors: Oniguruma. https://github.com/kkos/oniguruma.
Accessed 27 Mar 2018

11. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

12. Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: ACM
SIGPLAN Notices, vol. 40, pp. 345–364. ACM (2005)

13. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

14. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00768-2 23

15. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: Departmental Papers (CIS), pp. 294 (1999)

16. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: 2001 Proceedings of 16th Annual International
Conference on Automated Software Engineering. (ASE 2001), pp. 412–416. IEEE
(2001)

17. Drusinsky, D.: Semantics and runtime monitoring of tlcharts: statechart automata
with temporal logic conditioned transitions. Electron. Notes Theor. Comput. Sci.
113, 3–21 (2005)

https://doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-319-46982-9_32
https://github.com/kkos/oniguruma
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-00768-2_23


48 T. Zhang et al.

18. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

19. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

20. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68524-1 3

21. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transf. 14(3), 249–
289 (2012)

22. Luo, Q., et al.: RV-monitor: efficient parametric runtime verification with simul-
taneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 285–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 24

23. Chen, Z., Wang, Z., Zhu, Y., Xi, H., Yang, Z.: Parametric runtime verification of C
programs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
299–315. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 17

24. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55

25. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Kobayashi, N.,
Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 298–315. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45500-0 15

26. Kammüller, F., Helke, S.: Mechanical analysis of UML state machines and class
diagrams. In: The Proceedings of Workshop on Precise Semantics for the UML.
ECOOP2000. Citeseer (2000)

27. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

29. Frana, R., Bodeveix, J.P., Filali, M., Rolland, J.F.: The AADL behaviour annex-
experiments and roadmap. In: 2007 12th IEEE International Conference on Engi-
neering Complex Computer Systems, 377–382. IEEE (2007)

30. Yang, Z., Hu, K., Ma, D., Bodeveix, J.P., Pi, L., Talpin, J.P.: From AADL to timed
abstract state machines: a verified model transformation. J. Syst. Softw. 93, 42–68
(2014)

31. Ouimet, M., Lundqvist, K., Nolin, M.: The timed abstract state machine language:
an executable specification language for reactive real-time systems. In: RTNS 2007,
p. 15 (2007)

32. Dijkstra, E.W.: A constructive approach to the problem of program correctness.
BIT Numer. Math. 8(3), 174–186 (1968)

33. Srinivas, Y.V., Jüllig, R.: Specware: formal support for composing software. In:
Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 399–422. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60117-1 22

https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-540-68524-1_3
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-3-662-49674-9_17
https://doi.org/10.1007/978-3-662-49674-9_17
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/3-540-45500-0_15
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-60117-1_22


Correct-by-Construction Implementation of Runtime Monitors 49

34. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 166–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32347-8 12

35. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free!. In: Gonthier, G., Nor-
rish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 147–162. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1 10

36. Lammich, P.: Refinement to imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 17

37. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to event-B. Fundam. Inform. 77, 1–28 (2007)

https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17


Identifying Microservices Using
Functional Decomposition

Shmuel Tyszberowicz1, Robert Heinrich2, Bo Liu3,4(B), and Zhiming Liu3

1 The Academic College Tel-Aviv Yafo, Tel Aviv, Israel
tyshbe@mta.ac.il

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
heinrich@kit.edu

3 Key Laboratory of Safety-Critical Software (Nanjing University of Aeronautics and
Astronautics), Ministry of Industry and Information Technology, Nanjing, China

4 Southwest University, Chongqing, China
{liubocq,zhimingliu88}@swu.edu.cn

Abstract. The microservices architectural style is rising fast, and many
companies use this style to structure their systems. A big challenge in
designing this architecture is to find an appropriate partition of the sys-
tem into microservices. Microservices are usually designed intuitively,
based on the experience of the designers. We describe a systematic app-
roach to identify microservices in early design phase which is based on
the specification of the system’s functional requirements and that uses
functional decomposition. To evaluate our approach, we have compared
microservices implementations by three independent teams to the decom-
position provided by our approach. The evaluation results show that our
decomposition is comparable to manual design, yet within a much shorter
time frame.

Keywords: Microservices · Decomposition · Coupling · Cohesion
Clustering

1 Introduction

The microservices architecture style is rising fast as it has many advantages over
other architectural styles such as scalability (fine-grained, independently scal-
able), improved fault isolation (and thus resilience), and enhanced performance.
Hence, many companies are using this architectural style to develop their sys-
tems; for example, Netflix, Amazon, eBay, and Uber. The microservices architec-
ture is an approach for developing an application as a set of small, well-defined,
cohesive, loosely coupled, independently deployable, and distributed services.
Microservices interact via messages, using standard data formats and proto-
cols and published interfaces using a well-defined lightweight mechanism such
as REST [9]. An important aspect of this architecture is that each microservice
owns its domain model (data, logic, and behavior). Related functionalities are
c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 50–65, 2018.
https://doi.org/10.1007/978-3-319-99933-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_4&domain=pdf


Identifying Microservices Using Functional Decomposition 51

combined into a single business capability (called bounded context), and each
microservice implements one such capability (one or several services) [24]. The
microservices architecture assists in tackling the complexity of large applications
by decomposing them into small pieces, where each component resides within
its own bounded context.

This architecture also enables traceability between the requirements and the
system structure, and thus only one microservice has to be changed and rede-
ployed in order to update a domain [10].

The development of the microservices architecture aims to overcome short-
comings of monolithic architecture styles, where the user interface, the business
logic, and the databases are packaged into a single application and deployed
to a server. Whereas deployment is easy, a large monolithic application can
be difficult to understand and to maintain, because once the system evolves,
its modularity is eroded. Besides, every change causes the redeployment of the
whole system.

Two important issues which are favored by the microservices community as
keys to building a successful microservices architecture are the functional decom-
position of an application and the decentralized governance (i.e., each service usu-
ally manages its unique database). One of the big challenges in designing the
microservices architecture is to find an appropriate partition of the system into
microservices [28]. For example, the microservice architecture can significantly
affects the performance of the system [20]. It seems reasonable that each service
will have only a very limited set of responsibilities, preferable only one—the single
responsibility principle [27]. Determining the microservice granularity influences
the quality of service of the microservice application [16] and also the number of
microservices. Nevertheless, there is a lack of systematic approaches that decide
and suggest the microservice boundaries as described in more detail in the follow-
ing section. Hence, microservices design is usually performed intuitively, based on
the experience of the system designers. However, providing an inappropriate par-
tition into services and getting service boundaries wrong can be costly [29].

In this paper we describe a systematic approach to identify microservices in
early design phase. We identify the relationships between the required system
operations and the state variables that those operations read or write. We then
visualize the relationships between the system operations and state variables, thus
we can recognize clusters of dense relationships. This provides a partition of the
system’s state space into microservices, such that the operations of each microser-
vice access only the variables of that microservice. This decomposition guarantees
strong cohesion of each microservice and low coupling between services.

The remainder of the paper is organized as follows. The state of the art
is discussed in Sect. 2. We use the CoCoME [32] case study to motivate and
demonstrate our approach; in Sect. 3 we present the CoCoME trading system.
Our approach for identifying microservices is described in Sect. 4. Systems evolve
over time, and in Sect. 5 we describe the KAMP approach for change impact
analysis which we will use for system maintenance. In Sect. 6, we evaluate our
approach. We conclude in Sect. 7.



52 S. Tyszberowicz et al.

2 State of the Art

We now present the state of the art on identifying microservices. In the approach
proposed by Newman [29], bounded contexts (i.e., responsibility have explicit
boundaries) play a vital role in defining loosely coupled and high cohesive ser-
vices. However, the question about how to systematically find those contexts
remains open.

Use-cases are mentioned in [28] as an obvious approach to identify the
services. Others, e.g. [14], suggest a partition strategy based on verbs. Some
approaches for partitioning a system into microservices are described in [34].
Those approaches include: using nouns or resources, by defining a service that
is responsible for all operations on entities or resources of a given type; decom-
posing by verbs or use cases and define services that are responsible for par-
ticular actions; decomposing by business capability, where a business capability
is something that a business does in order to generate value; and decompos-
ing by domain-driven design subdomain, where the business consists of multiple
subdomains, each corresponding to a different part of the business. The domain-
driven design approach [10] seems to be the most common technique for modeling
microservices.

Some of the approaches listed in [34] are relevant to our approach (e.g., using
the use cases, nouns, verbs). However, no systematic approach is offered. Baresi
et al. [2] propose an automated process for finding an adequate granularity and
cohesiveness of microservices candidates. This approach is based on the semantic
similarity of foreseen/available functionality described through OpenAPI speci-
fications (OpenAPI is a language-agnostic, machine-readable interface for REST
APIs). By leveraging a reference vocabulary, this approach identifies potential
candidate microservices, as fine-grained groups of cohesive operations (and asso-
ciated resources). A systematic architectural modeling and analysis for man-
aging the granularity of the microservices and deciding on the boundaries of
the microservices is provided in [16]. The authors claim that reasoning about
microservice granularity at the architectural level can facilitate analysis of sys-
tems that exhibit heterogeneity and decentralized governance.

However, there hardly are any guidelines on what is a ‘good’ size of a
microservice [13,29]. Basically the suggestion is to refine too large services, with-
out providing a metric that defines what too large means. Practical experience
shows that the size of the microservices heavily differ from one system to another.
There is also no rigorous analysis of the actual dependencies between the sys-
tem’s functionality and its structure.

3 Running Example: CoCoME

To demonstrate our approach we have applied the CoCoME (Common Compo-
nent Modeling Example) case study on software architecture modeling [19,32].
It represents a trading system as can be observed in a supermarket chain han-
dling sales, and is widely used as a common case study for software architecture



Identifying Microservices Using Functional Decomposition 53

modeling and evolution [18]. The example includes processing sales at a single
store of the chain, e.g. scanning products or paying, as well as enterprise-wide
administrative tasks, e.g. inventory management and reporting.

The system specification includes functional requirements for: selling prod-
ucts, ordering products from providers, receiving the ordered products, showing
reports, and managing the stocks in each store. The specification is informal, and
is given in terms of detailed use cases (in the format proposed by Cockburn [5]).
In the following, we provide an excerpt of the use cases of CoCoME, as depicted
in Fig. 1. A fully detailed description can be found in [32].

– Process Sale: this use case detects the products that a customer has purchased
and handles the payment (by credit or cash) at the cash desk.

– Order Products: this use case is employed to order products from suppliers.
– Receive Ordered Products: this use case describes the requirement that once

the products arrive at the store, their correctness have to be checked and the
inventory has to be updated.

– Show Stock Reports: this use case refers to the requirement of generating
stock-related reports.

– Show Delivery Reports: calculate the mean times a delivery takes.
– Change Price: describes the case where the sale price of a product is changed.

Fig. 1. The UML use case diagram for the CoCoME system.

4 Identifying Microservices

The proposed analytical approach to identify microservices described in this
section is based on use case specification of the software requirements and on a
functional decomposition of those requirements. To employ the suggested app-
roach, we first need to create a model of the system. This model consists of
a finite set of system operations and of the system’s state space. System oper-
ations are the public operations (methods) of the system; i.e., the operations
that comprise the system’s API and which provide the system response to exter-
nal triggers. The state space is the set of system variables which contain the
information that system operations write and read.



54 S. Tyszberowicz et al.

System Decomposition. The decomposition of the system into microservices is
achieved by partitioning the state space in a way that guarantees that each
microservice has its own state space and operations. That is, the microservices
partition the system state variables into disjoint sets such that the operations of
each microservice may directly access only its local variables. When a microser-
vice needs to refer (read or write) to a variable in another state space, it is
achieved only via the API of the relevant microservice, i.e., the one that includes
the relevant state space. This enables the selection of a good decomposition—
i.e., one that guarantees low coupling as well as high cohesion. Thus, we model
a system decomposition into microservices as a syntactical partition of the state
space. A system is then built as a composition of microservices by conjoining
their operations.

System requirements can be given in many forms, ranging from informal
natural language to fully formal models. Even an existing implementation of the
system (e.g., a monolith one) can serve as a source of requirements (see, e.g., [7],
[12]). Use case specifications are widely accepted as a way of specifying functional
requirements [21]. A use case describes how users (actors) employ a system to
achieve a particular goal. We identify the system operations and the system
state variables based on the description of the use cases. We record—in what we
call operation/relation table—the relationships between each system operation
and the state variables that the operation used (reads or writes). That is, each
cell in the table indicates whether the operation writes to the state variable,
reads it, or neither writes to it nor reads it. In order to identify the system
operations and system state variables, we find—as a first approximation1—all
the verbs in the informal descriptions of the use cases. The nouns found in those
descriptions serve as an approximation for the system state variables [1]2. Note
that our approach works in general once the operations and state variables are
identified, without the need to know how they are gathered. Nevertheless, we
shortly describe how we have collected the information that is used to create the
operation/relation table, as it makes the process even more systematic, compared
to any ad-hoc approach of extracting variables and operations. We use tools
(e.g., easyCRC [31], TextAnalysisOnline [39]) that assist us to extract nouns and
noun phrases from the use case specifications (as candidates for state variables)
as well as verbs (suggesting system operations). This process, however, can be
done without using any tool. This systematic approach enables us to identify
operations based on the use case descriptions and to produce informal and formal
specification of the contracts of the system operations. This then allows us to
carry out formal analysis and validation of the system model [25], as discussed
in Sect. 6.

Visualization. The operation/relation table is then visualized, shown in a graph
form. The visualization as a graph enables us to identify clusters of dense
1 The list of verbs that we have found may be updated as some verbs may not be

system operations, others may not be mentioned in the informal description, and
some verbs are synonyms, hence they describe the same operation.

2 A brain storming is needed to handle issues such as synonyms, irrelevant nouns, etc.



Identifying Microservices Using Functional Decomposition 55

relationships that are weakly connected to other clusters.3 Each such cluster
is considered a good candidate to become a microservice, because:

1. The amount of information it shares with the rest of the system is small, thus
it is protected from changes in the rest of the system and vice versa—this
satisfies the low coupling requirement.

2. The internal relationships are relatively dense, which in most cases indicates
a cohesive unit of functionality, satisfying the demand for strong cohesion.

We build an undirected bipartite graph G whose vertices represent the system’s
state variables and operations. An edge connects an operation op to a state vari-
able v if and only if op either reads the value of v or updates it. In addition, we
assign a weight to each edge of G, depending on the nature of the connection. A
read connection has a lower weight (we have chosen 1) and a write connection has
a higher weight (in our case 2). This choice tends to cluster together data with
those operations that change it, preferring read interfaces between clusters. A
write interface actively engages both subsystems, thus it has a stronger coupling.
While different numbers are possible for the weights, the chosen numbers result
in a graph that satisfies our needs to identify clearly separated clusters. Note,
however, that we have also tried other weights—yet keeping the weight of the
write operation higher than that of the read operation. Whereas this sometimes
has changed the layout of the graph, it did not change the clustering. For the
visualization of the graph we use NEATO [30]—a spring model based drawing algo-
rithm. The program draws undirected graphs such that nodes that are close to
each other in graph-theoretic space (i.e. shortest path) are drawn closer to each
other. The left hand side of Fig. 2 presents an example of the operation/relation
dependency graph of the CoCoME system, as drawn by NEATO. Note that this
visualization can be used in various ways: to suggest low dependency partitions,
where each part can serve as a microservice; to evaluate partitions into microser-
vices that are dictated by non-functional constraints; and to explore changes to
the system model that reduce the dependencies between areas that we consider
as good microservices candidates. We have used the partition into clusters to
identify the possible microservices. The right hand side of Fig. 2 describes the
microservices that we have identified.

At this point it is important to emphasize that the idea of software clustering
is not a new one; the reader may refer, for example, to [8,26]. Those works inves-
tigate clustering based on source code analysis, and the main idea is to enable
developers to understand the structure of evolving software. The source level
modules and dependencies are mapped to a module dependency graph and then
the graph is partitioned so that closely related nodes are grouped into compos-
ite nodes—the clusters (subsystems). However, who guarantees that the design
of the developed system was ‘good’ with respect to strong cohesiveness and
weak coupling? Quoting [26]: “Creating a good mental model of the structure
of a complex system, and keeping that mental model consistent with changes

3 A clustering of a graph G consists of a partition of the node set of G.



56 S. Tyszberowicz et al.

Fig. 2. An operation/relation dependency graph of CoCoME. The left side shows
the diagram before identifying the microservices, and the right side presents also the
microservices (the colored shapes). Thin/thick edges represent read/write relationship;
circles represent operations; and squares represent state variables. Note that the graph
was created by NEATO; the truncation in names (e.g. order) was done by NEATO.
(Color figure online)

that occur as the system evolves, is one of many serious problems that con-
front today’s software developers. . . . we have developed an automatic technique
to decompose the structure of software systems into meaningful subsystems.
Subsystems provide developers with high-level structural information that helps
them navigate through the numerous software components, their interfaces, and
their interconnections”.

Finding the clusters at the source code level definitely helps to understand
the structure of the system. But it may be the case that the design is bad
with regard to coupling and cohesion. Correcting this once the code exists is
sometimes a very difficult task. Using clustering before the code exists, as done
in our approach, enables to develop software that is of higher design quality. It
is also easier than to maintain the software, for example with tools like KAMP,
as elaborated in Sect. 5. Moreover, having both the operation/relation table and
the clustering that has been obtained using this table, traceability is much easier.
Suppose, for example, that the user has to change a function; then she can easily
recognize in which component this function is implemented.

APIs and Databases. For each identified microservice we define its API and its
data storage. The API of the microservice (cluster) is provided by the union



Identifying Microservices Using Functional Decomposition 57

of the system operations which write into the state variables belonging to the
cluster that has been identified based on the visualization process. When a sys-
tem operation of another cluster reads information from the current cluster, a
getter method is added to the API of the current cluster; i.e., the access is only
through a published service interface. For example, the operation identifyItem
is part of the API of the Sale microservice (see the right hand side of Fig. 2).
Since identifyItem needs to read the product state variable of the ProductList
microservice, the getProduct operation is added to ProductList ’s API.

There are two basic approaches regarding using databases for microservices.
(i) Hasselbring and Steinacker [17] propose the share nothing approach according
to which each microservice should have its own database. The advantages of this
approach is higher speed, horizontal scalability, and improved fault-tolerance.
One can also use a polyglot persistence architecture, where for each service the
best suited type of database is chosen. However, this approach is at the price of
data consistency, since consistency may only be eventual consistency (see [37]),
and problems are dealt with by compensating operations. (ii) Yanaga [38] as well
as Lewis and Fowler [24] claim that information can be shared. Yanaga argues
that since a microservice is not an island, the data between services has to be
integrated. That is, a microservice may require information provided by other
services and provides information required by other services.

We agree that services sometimes need to share data. Nevertheless, this shar-
ing should be minimal, to make the microservices as loosely coupled as possible.
In our approach we analyze each created cluster. The information that needs to
be persistent is found in the various clusters. If needed, we add to the cluster
(i.e., microservice) a database that contains the persistent data that is private
to this specific service. Of course it might be that the persistent data is located
in different clusters. In this case we may end up with several microservices that
contain data that is needed by other services. We guarantee that those databases
are accessible only via the API of the services that contain them; i.e., no direct
database access is allowed from outside the service.

Approach Summary. Our approach can be summarized as follows:

1. Analyze the use case specifications (write out their detailed descriptions if
needed).

2. Identify the system operations and the system state variables (based on the
use cases and their scenarios).

3. Create an operation/relation table.
4. Advise a possible decomposition into high cohesive and low coupled compo-

nents (using a visualization tool).
5. Identify the microservices APIs.
6. Identify the microservices databases.
7. Implement the microservices (using RESTish protocols as the means of com-

munication between microservices).
8. Deploy.

We have not referred to implementation and deployment; this is done in Sect. 6.



58 S. Tyszberowicz et al.

5 Architecture-Based Change Impact Analysis

Software systems must evolve over time, since otherwise they progressively
become less useful [23]. Once a system is released, it continuously changes, e.g.
due to emerging user requirements (perfective changes), bug fixes (corrective
changes), platform alterations (adaptive changes), or correction of latent faults
before they become operational faults (preventive changes). Consequently, the
system drifts away from its initial architecture due to the evolutionary changes;
yet, knowledge about the software architecture is essential to predict mainte-
nance efforts.

The KAMP approach [35] supports software architects assessing the effect
of change requests on technical and organizational work areas during software
evolution. Based on the Palladio Component Model (for details see [33]), KAMP
supports modeling the initial software architecture—the base architecture, and
the architecture after a certain change request has been implemented in the
model—the target architecture. The KAMP tooling calculates the differences
between the base and the target architecture models and analyses the propaga-
tion of changes in the software system. Due to this change propagation analysis,
services affected by a given change request can be identified. A large number of
affected services may indicate the necessity for redesigning the system. In such a
case we have to update the operation table according to the new requirements,
and to continue in the process as described in this paper.

6 Evaluation

In this section, we exemplify our approach based on the CoCoME community
case study [32] and evaluate our results.

Case Study: Starting with the use case specification of CoCoME, we identify
the system operations as well as their state variables. Table 1 shows the opera-
tion/relation table that has been created based on this information. This table
is then visualized as a graph, shown on the left hand side of Fig. 2. Based on the
graphical representation we have identified four major clusters which are candi-
dates to become microservices: ProductList, Sale, StockOrder, and Reporting; see
the right hand side of Fig. 2. In this way we have achieved a meaningful partition
into clusters, where each cluster has high cohesion and the coupling between the
clusters is low. Each of the four identified microservice candidates (clusters) is
responsible for a single bounded context in a business domain [10]. As can be
seen on the right hand side of Fig. 2, the microservices are not totally indepen-
dent. The communication between the microservices is implemented using REST
APIs [29].

Note that the emphasize in our approach is on identifying microservices that
deal with one business capability, rather than minimizing the microservices size;
this conforms to [6]. Moreover, as stated in [6], a clear cohesion based on a
high number of dependencies indicates the need for a single microservice. This



Identifying Microservices Using Functional Decomposition 59

Table 1. Operation/relation table for CoCoME

is exactly what our functional decomposition achieves, and it actually provides
bounded context—as suggested in the domain-driven design approach [10].

Evaluation Goal and Design: To evaluate our approach, we have compared
our proposed decomposition of the CoCoME system into microservices with the
microservices that have been identified by three independent software projects
that have independently implemented CoCoME; the implementers have not been
aware of the other implementations. They also have not known our approach
of system decomposition. One project has been developed in RISE Centre at
Southwest University (SWU-RISE) in Chongqing, China, and the other two have
been built in Karlsruhe Institute of Technology (KIT), Germany. All projects
have been developed by students. The supervisors of the projects have not been
involved in the microservices’ design nor did they provide any hint that might
have influenced the design. The goal of the evaluation is to check whether our
approach provides a decomposition of the system into microservices that is sim-
ilar to a decomposition suggested by humans. Of course it might be the case
that the latter decomposition is wrong; therefore we compared the results to
three implementations. Note that there may exist several decompositions of a
given system, where each has its advantages and disadvantages. Thus, we cannot
claim that the decomposition provided by our approach is the best one, while
other decompositions are not as good. If our approach provides results that are
comparable to the decompositions done by human developers, then it has the
advantage that due to its systematic and tool-supported nature it provides the
decomposition much faster than when done manually.

Two of the CoCoMe implementations have been developed in KIT. Two
master students, working independently of each other, have decomposed the



60 S. Tyszberowicz et al.

system into microservices as part of the requirements in a practical course on
software engineering. The students have basic knowledge in software architecture
styles and in developing microservices. The students decomposed the system into
microservices merely based on the existing use case specification and on an exist-
ing source code of a service-oriented implementation of CoCoME. To identify the
microservices, the students also had to understand the design documentation—a
component diagram and sequence diagrams [19]. They have identified microser-
vices candidates based on the domain-driven design [10]. Then they modeled the
application domain and divided it into different bounded contexts, where each
bounded context was a candidate to be a microservice. Later they have made
explicit the interrelationships between the bounded contexts. After understand-
ing the requirements, it was a matter of days for them to design the microservices
architecture of the system. The design and implementations created by the stu-
dents can be found on GitHub.4

Another group of students, in the RISE Centre at Southwest University
(SWU-RISE), has also been involved in the evaluation of our approach. This
team has been composed of three computer science students: two first year post
graduate students and one undergraduate (senior student). The students have
basic knowledge in software architecture styles and in developing microservices.
All students have a basic idea of SOA, web services, and microservices-based
systems. One postgraduate student also has more than one year experience in
web-based system development and Docker usage. The team had a supervisor
that worked with them to control the progress of the development and to provide
consulting work on requirements (thus acting as the software client). The stu-
dents have been responsible for all development phases: requirements analyzing
and modeling, system design, and system implementation and deployment. The
supervisor, however, was not involved in the actual design of the microservice,
and as mentioned provided no hints that may have led to the design proposed
in this paper. The following principles guided this team in their division into
microservices:

– Identify business domain objects. For example, the CoCoME domain objects
includes Order, Commodity, Transaction, Payment, etc. The aim of this prin-
ciple is to find those microservices that correspond to one domain object.
This process was done by analyzing the use case descriptions and building a
conceptual class model [3].

– Identify special business. This is the case that a business process spans mul-
tiple domain objects, and then an independent microservice is designed.

– Reuse. Business processes that are frequently called may be detached from
the object and designed as a single microservice. Accordingly, if a constructed
microservice is seldom used or difficult to be implemented separately, it can
be attached to some object microservice or other microservices.

The team used the rCOS approach [4] to analyze the requirements and design
the microservices. The process can be summarized as follows: identify the use

4 For the implementations see https://github.com/cocome-community-case-study.

https://github.com/cocome-community-case-study


Identifying Microservices Using Functional Decomposition 61

cases (this step was not needed, as brief descriptions of the use cases specifi-
cations have been provided); construct the conceptual class diagram and use
case sequence diagrams; for each use case operation write contracts in terms of
its pre- and post-conditions. Those artifacts have formed a formal requirements
model; analysis can then be applied to verify consistency and correctness [4].
The CoCoMe requirements have been analyzed and validated for consistency
and functional correctness using the AutoPA tool [25]. It was a matter of days
for the students to design the microservices architecture of the system.5

Evaluation Results: Although the students at KIT named the microservices
differently from the names used by us, both implementations also created four
microservices. Each microservice has the same functionality as the one that was
provided by employing our approach:

– ProductList : Managing the products that are stored in the trading system.
– Sale: Handling a sale in the trading system.
– StockOrder : Managing a stock order of products.
– Reporting : Creating a report of the delivered products.

The microservices identified by the students at KIT are all connected to a
Frontend-Service, which provides the basic panel in which the user interfaces of
the microservices are displayed. Thus, the Frontend-Service serves as a single
integration point, similar to controllers that are used in related approaches.
Controllers are responsible for receiving and handling system operations [22].
The use case controller pattern, for example, deals with all system events of a
use case. It suggests delegating the responsibility for managing a use case flow
of execution to a specialized controller object, thus localizing this functionality
and its possible changes. The controllers provide a uniform way of coordinating
actor events, user interfaces, and system services.

The microservices that have been identified by the students at KIT and their
relationship are depicted in Fig. 3.

The students at SWU-RISE identified eight microservices:

– Inventory : Handles the products.
– Commodity : Queries the information regarding the product to be sold.
– Order : Manages the orders.
– Supplier : Handles the suppliers.
– Transaction: Refers to the sale (creation, management, query and end of the

transactions).
– Supplier evaluation: Calculates average time for the supplier to deliver the

product to the supermarket.
– Inventory report : Produces reports.
– Pay : Recording payment records—cash or non-cash.

5 The implementation created by this group of students can be found in http://cocome.
swu-rise.net.cn/.

http://cocome.swu-rise.net.cn/
http://cocome.swu-rise.net.cn/


62 S. Tyszberowicz et al.

Fig. 3. Overview of the CoCoME microservices designed by KIT students [36]

The microservices that have been identified by the students at SWU-RISE
and their relationship are depicted in Fig. 4. As can be seen, there are four
different GUIs for the actors of CoCoME. The GUI combines a few microservices
together to accomplish a specific function through a gateway.

The evaluation results show that the two teams in KIT have implemented
the CoCoME model using the same decomposition as advised by our approach;
the only difference is in the names of the microservices. The SWU-RISE team
created eight microservices. However, a thorough examination reveals that the
extra microservices are a refinement of the microservices provided by our app-
roach. That is, each of the additional implemented microservices also appears
as an activity in the coarser suggested decomposition. For example, the Stock-
Order microservice refers to the variables order and inventory which became
fine-grained microservices in the implementation of the students in SWU-RISE.
Also the Reporting microservice has been split—into the Supplier and Sup-
plier evaluation microservices. This means that our approach can serve as the
base decomposition. As mentioned in Sect. 4, the user can explore the visual-
ization and decide whether to further break the system into finer microservices.
Doing this results in exactly the decomposition provided by the SWU-RISE
group, just using different microservices names. Moreover, recall that our goal
is to provide a systematic and meaningful, high cohesive decomposition into
microservices rather than finding the finest granular decomposition. A high
cohesive cluster that is identified using our approach indicates the need for a
microservice, and this microservice sometimes can be refined further. As recog-
nized also in e.g. [6,15], a design problem of developing a system is to find the
optimal level of granularity of a microservice architecture, and it is not always
an immediate process. Balancing the size and the number of microservices is a
design trade-off.

Our approach guarantees that each service can get what it needs from
the other services. In contrast, when developing microservices without such a



Identifying Microservices Using Functional Decomposition 63

Inventory
Service

Commodity
Service

Order
Service

Supplier
Service

Transac on
Service

Pay
Service

Supplier_evalua on
Service

Inventory_report
Service

GUI

Enterprise 
manager 

GUI

Stock 
manager

GUI

Store 
manager

GUI

Cashier

Gateway

op1 op2 op3 op4 op5
op6 op7

op8
op9 op10 op11 op12

op1: getInventory()
op2: getCommodityInfo()
op3: createTransac on()
op4: makePayment() 

op5: getShortageInfo()
op6: makeOrder()
op7: getSupplierInfo()
op8: getInventoryInfo() 

op9: addInventory()
op10: confirmOrder()
op11: getSupplierInfo()
op12: getDeliveryTime() 

Fig. 4. Overview of the CoCoME microservices designed by SWU-RISE students

systematic approach, it is often difficult to understand and follow the intercon-
nections between the services so thoroughly [29]. The evaluation results give us
reasons to believe that our approach identifies microservice in a quality that is
comparable to a design done by human software designers. Our approach, how-
ever, achieved the microservices identification much faster and with less effort
compared to human developers. While identifying the microservices was a mat-
ter of days for the students at KIT and SWU-RISE, by employing our approach
it was a matter of hours. Moreover, the problem of identifying the appropri-
ate microservices becomes much more complicated as the system becomes more
complex. A large real world system has much more details, so the chances of
getting an appropriate decomposition by intuition will decrease.

7 Conclusion

We proposed a systematic and practical engineering approach to identify
microservices which is based on use-case specification and functional decom-
position of those requirements. This approach provides high cohesive and low
coupled decomposition. To evaluate our approach, we have compared the results
to three independent implementations of the CoCoME system. The evaluation
give us reasons to believe in the potential of our approach. We will involve other
kind of systems in the evaluation. Doing this we will also examine the scalability
of our approach. We believe it is scalable, since the tools that create the diagrams
and suggest decompositions are quite fast and can work on large graphs [11].



64 S. Tyszberowicz et al.

Moreover, if indeed as in the CoCoME model each use case is handled in
only one component provided in the decomposition, then the work can be split
among distributed teams.

Acknowledgment. This work was supported by the DFG (German Research Foun-
dation) under the Priority Programme SPP1593, and the Key Laboratory of Safety-
Critical Software (Nanjing University of Aeronautics and Astronautics) under the Open
Foundation with No. NJ20170007. We would like to thank Kang Cheng, Guohang Guo,
Yukun Zhang, Nils Sommer, and Stephan Engelmann who worked on the development
of the various CoCoME systems. We also thank the anonymous reviewers for their
careful reading and their many insightful comments and suggestions. Their comments
helped to improve and clarify this paper.

References

1. Abbott, R.J.: Program design by informal english descriptions. Commun. ACM
26(11), 882–894 (1983)

2. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 2

3. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75698-9 13

4. Chen, Z., et al.: Refinement and verification in component-based model-driven
design. Sci. Comput. Program. 74(4), 168–196 (2009)

5. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston (2000)
6. de la Torre, C., et al.: .NET Microservices: Architecture for Containerized .NET

Applications. Microsoft (2017)
7. De Santis, S., et al.: Evolve the Monolith to Microservices with Java and Node.

IBM Redbooks, Armonk (2016)
8. Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic clustering of software systems

using a genetic algorithm. In: STEP, pp. 73–81. IEEE (1999)
9. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and

Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

10. Evans, E.: Domain Driven Design: Tackling Complexity in the Heart of Business
Software. Addison-Wesley, Boston (2004)

11. Faitelson, D., Tyszberowicz, S.: Improving design decomposition. Form. Asp. Com-
put. 22(1), 5:1–5:38 (2017)

12. Fowler, M.: MonolithFirst (2015). https://martinfowler.com/bliki/MonolithFirst.
html#footnote-typical-monolith. Accessed Mar 2018

13. Francesco, P.D., et al.: Research on architecting microservices: trends, focus, and
potential for industrial adoption. In: ICSA, pp. 21–30. IEEE (2017)

14. Hassan, M., Zhao, W., Yang, J.: Provisioning web services from resource con-
strained mobile devices. In: IEEE CLOUD, pp. 490–497 (2010)

15. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: a self-adaptive
roadmap. In: SCC, pp. 813–818. IEEE (2016)

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-540-75698-9_13
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://martinfowler.com/bliki/MonolithFirst.html#footnote-typical-monolith
https://martinfowler.com/bliki/MonolithFirst.html#footnote-typical-monolith


Identifying Microservices Using Functional Decomposition 65

16. Hassan, S., et al.: Microservice ambients: an architectural meta-modelling approach
for microservice granularity. In: ICSA, pp. 1–10. IEEE (2017)

17. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility
and reliability in E-Commerce. In: ICSA Workshops, pp. 243–246. IEEE (2017)

18. Heinrich, R., et al.: A platform for empirical research on information system evo-
lution. In: SEKE, pp. 415–420 (2015)

19. Heinrich, R., et al.: The CoCoME platform for collaborative empirical research on
information system evolution. Technical report 2016:2, KIT, Germany (2016)

20. Heinrich, R., et al.: Performance engineering for microservices: research challenges
and directions. In: Companion Proceedings of ICPE, pp. 223–226 (2017)

21. Jacobson, I., et al.: Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley, Boston (1992)

22. Larman, C.: Applying UML and Patterns, 3rd edn. Prentice Hall, Upper Saddle
River (2004)

23. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-
program life cycle. J. Syst. Softw. 1, 213–221 (1980)

24. Lewis, J., Fowler, M.: Microservices. https://martinfowler.com/articles/
microservices.html. Accessed Apr 2018

25. Li, X., Liu, Z., Schäf, M., Yin, L.: AutoPA: automatic prototyping from require-
ments. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 609–
624. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0 49

26. Mancoridis, S., et al.: Bunch: a clustering tool for the recovery and maintenance of
software system structures. In: ICSM, pp. 50–59. IEEE Computer Society (1999)

27. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, Upper Saddle River (2003)

28. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. J. Open Inf. Tech-
nol. 2(9), 24–27 (2014)

29. Newman, S.: Building Microservices. O’Reilly, Sebastopol (2015)
30. North, S.C.: Drawing graphs with NEATO. User Manual (2004)
31. Raman, A., Tyszberowicz, S.S.: The EasyCRC tool. In: ICSEA, pp. 52–57. IEEE

(2007)
32. Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.): The Common Com-

ponent Modeling Example: Comparing Software Component Models. LNCS, vol.
5153. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85289-6

33. Reussner, R.H., et al.: Modeling and Simulating Software Architectures - The Pal-
ladio Approach. MIT Press, Cambridge (2016)

34. Richardson, C.: Microservices from design to deployment (2016). https://www.
nginx.com/blog/microservices-from-design-to-deployment-ebook-nginx/

35. Rostami, K., Stammel, J., Heinrich, R., Reussner, R.: Architecture-based assess-
ment and planning of change requests. In: QoSA, pp. 21–30 (2015)

36. Sommer, N.: Erweiterung und Wartung einer Cloud-basierten JEE-Architektur (in
German), report of a practical course. Technical report, KIT, Germany (2017)

37. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)
38. Yanaga, E.: Migrating to Microservice Databases: From Relational Monolith to

Distributed Data. O’Reilly, Sebastopol (2017). E-book
39. Text analysis. http://textanalysisonline.com/textblob-noun-phrase-extraction.

Accessed Apr 2018

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-642-16558-0_49
https://doi.org/10.1007/978-3-540-85289-6
https://www.nginx.com/blog/microservices-from-design-to-deployment-ebook-nginx/
https://www.nginx.com/blog/microservices-from-design-to-deployment-ebook-nginx/
http://textanalysisonline.com/textblob-noun-phrase-extraction


Verification



Robust Non-termination Analysis
of Numerical Software

Bai Xue1(B), Naijun Zhan1,2(B), Yangjia Li1,3(B), and Qiuye Wang1,2(B)

1 State Key Laboratory of Computer Science, Institute of Software, CAS,
Beijing, China

{xuebai,znj,yangjia,wangqy}@ios.ac.cn
2 University of Chinese Academy of Sciences, CAS, Beijing, China

3 University of Tartu, Tartu, Estonia

Abstract. Numerical software is widely used in safety-critical systems
such as aircrafts, satellites, car engines and many other fields, facilitating
dynamics control of such systems in real time. It is therefore absolutely
necessary to verify their correctness. Most of these verifications are con-
ducted under ideal mathematical models, but their real executions may
not follow the models exactly. Factors that are abstracted away in mod-
els such as rounding errors can change behaviors of systems essentially.
As a result, guarantees of verified properties despite the present of dis-
turbances are needed. In this paper, we attempt to address this issue of
nontermination analysis of numerical software. Nontermination is often
an unexpected behaviour of computer programs and may be problem-
atic for applications such as real-time systems with hard deadlines. We
propose a method for robust conditional nontermination analysis that
can be used to under-approximate the maximal robust nontermination
input set for a given program. Here robust nontermination input set is
a set from which the program never terminates regardless of the afore-
mentioned disturbances. Finally, several examples are given to illustrate
our approach.

Keywords: Numerical software · Nontermination analysis
Robust verification

1 Introduction

Software is ubiquitous in mission-critical and safety-critical industrial infrastruc-
tures as it is, in principle, the most effective way to manipulate complex systems
in real time. However, many computer scientists and engineers have experienced

This work from Bai Xue is funded by CAS Pioneer Hundred Talents Program under
grant No. Y8YC235015, and from Naijun Zhan is funded partly by NSFC under grant
No. 61625206 and 61732001, by “973 Program” under grant No. 2014CB340701,
and by the CAS/SAFEA International Partnership Program for Creative Research
Teams, and from Yangjia Li is funded by NSFC under grant No. 61502467.

c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 69–88, 2018.
https://doi.org/10.1007/978-3-319-99933-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_5&domain=pdf


70 B. Xue et al.

costly bugs in embedded software. Examples include the failure of the Ariane
5.01 maiden flight (due to an overflow caused by an unprotected data conversion
from a too large 64-bit floating point to a 16-bit signed integer value), the fail-
ure of the Patriot missile during the Gulf war (due to an accumulated rounding
error), the loss of Mars orbiter (due to a unit error). Those examples indicate
that mission-critical and safety-critical software may be far from being safe [11].
It is therefore absolutely necessary to prove the correctness of software by using
formal, mathematical techniques that enable the development of correct and
reliable software systems.

The dominant approach to the verification of programs is called Floyd-Hoare-
Naur inductive assertion approach [13,18,34]. It uses pre- and post-condition to
specify the condition of initial states and the property that should be satisfied
by terminated states, and use Hoare logic to reason about properties of pro-
grams. The hardest parts of this approach are invariant generation and termi-
nation analysis. It is well-know that the termination or nontermination problem
is undecidable, and even not semi-decidable in general. Thus, more practical
approaches include present some sufficient conditions for termination, or some
sufficient conditions for nontermination, or put these two types of conditions in
parallel, or prove the decidability for some specific families of programs, e.g.,
[3,7,14,16,23,25,39,53].

On the other hand, most of these verifications are conducted under ideal
mathematical models, but their real executions may not follow the models
exactly. Factors that are abstracted away in models such as rounding errors
can change behaviors of systems essentially. As a result, guarantees of verified
properties despite the present of disturbances are needed. We notice that this
problem affects most existing termination/nontermination as well.

In [54], the authors presented the following example:

Example 1. Consider a simple loop

Q1: while (Bx > 0) {x := Ax},

where A =
(

2 −3
−1 2

)
, B =

(
1 b

−1 b

)
with b = − 1127637245

651041667 = −√
3 + ε ∼

−1.732050807.
So we have ε =

√
3 − (− 1127637245

651041667 ) > 0 a small positive number. Here we
take 10 decimal digits of precision.

According to the termination decidability result on simple loops proved in [48],
Q1 terminates based on exact computation. But unfortunately, it does not termi-
nate in practice as the core decision procedure given in [48] invokes a procedure to
compute Jordan normal form based on numeric computation for a given matrix,
and thus the floating error has to be taken into account. In order to address
this issue, a symbolic decision procedure was proposed in [54]. However, a more
interesting and challenging issue is to find a systematic way to take all possible
disturbances into account during conducting termination and non-termination
analysis in practical numerical implementations.



Robust Non-termination Analysis of Numerical Software 71

In this paper we attempt to address this challenge, and propose a frame-
work for robust nontermination analysis for numerical software based on control
theory as in [40], which proposes a control-theoretic framework based on Lya-
punov invariants to conduct verification of numerical software. Non-termination
analysis proves that programs, or parts of a program, do not terminate. Non-
termination is often an unexpected behaviour of computer programs and implies
the presence of a bug. If a nonterminating computation occurs, it may be prob-
lematic for applications such as real-time systems with hard deadlines or situa-
tions when minimizing workload is important. In this paper, computer programs
of interest are restricted to a class of computer programs composed of a single
loop with a complicated switch-case type loop body. These programs can also
be viewed as a constrained piecewise discrete-time dynamical system with time-
varying uncertainties. We reformulate the problem of determining robust condi-
tional nontermination as finding the maximal robust nontermination input set
of the corresponding dynamical system, and characterize that set using a value
function, which turns out to be a solution to a suitable mathematical equa-
tion. In addition, when the dynamics of the piecewise discrete-time system in
each mode is polynomial and the state and uncertain input constraints are semi-
algebraic, the optimal control problem is relaxed as a semi-definite programming
problem, to which its polynomial solution forms an inner-approximation of the
maximal robust nontermination input set when exists. Such relaxation is sound
but incomplete. Finally, several examples are given to illustrate our approach.

It should be noticed that the concept of robust nontermination input sets is
essentially equivalent to the maximal robustly positive invariants in control the-
ory. Interested readers can refer to, e.g., [2,40,45,47]. Computing the maximal
robustly positive invariant of a given dynamical system is still a long-standing
and challenging problem not only in the community of control theory. Most exist-
ing works on this subject focus on linear systems, e.g. [21,38,45,47,51]. Although
some methods have been proposed to synthesize positively invariants for non-
linear systems, e.g., the barrier certificate generation method as in [36,37] and
the region of attraction generation method as in [15,19,30,49]. These methods,
however, resort to bilinear sum-of-squares programs, which are notoriously hard
to solve. In order to solve the bilinear sum-of-squares programs, a commonly
used method is to employ some form of alteration (e.g., [19,30,50]) with a fea-
sible initial solution to the bilinear sum-of-squares program. Recently, [43,44]
proposed linear programming based methods to synthesize maximal (robustly)
positive polyhedral invariants. Contrasting with aforementioned methods, in this
paper we propose a semi-definite programming based method to compute semi-
algebraic invariant. Our method does not require an initial feasible solution.

Organization of the Paper. The structure of this paper is as follows. In Sect. 2,
basic notions used throughout this paper and the problem of interest are
introduced. Then we elucidate our approach for performing conditional non-
termination analysis in Sect. 3. After demonstrating our approach on several
illustrating examples in Sect. 4, we discuss related work in Sect. 5 and finally
conclude this paper in Sect. 6.



72 B. Xue et al.

2 Preliminaries

In this section we describe the programs which are considered in this paper
and we explain how to analyze them through their representation as piecewise
discrete-time dynamical systems.

The following basic notations will be used throughout the rest of this paper:
N stands for the set of nonnegative integers and R for the set of real numbers;
R[·] denotes the ring of polynomials in variables given by the argument, Rd[·]
denotes the vector space of real multivariate polynomials of degree d, d ∈ N.
Vectors are denoted by boldface letters.

2.1 Computer Programs of Interest

In this paper the computer program of interest, as described in Program1, is
composed of a single loop with a possibly complicated switch-case type loop
body, in which variables x = (x1, . . . , xn) are assigned using parallel assign-
ments (x1, . . . , xn) := f(x1, . . . , xn, d1, . . . , dm), where d = (d1, . . . , dm) is the
vector of uncertain inputs, of which values are sampled nondeterministically
from a compact set, i.e. (d1, . . . , dm) ∈ D, such as round-off errors in performing
computations. The form of programs under consideration is given in Program1.
In Program 1, D = {d | ∧nk+1

i=1 hk+1,i(d) ≤ 0} is a compact set in R
m and

hk+1,i : Rm �→ R, is continuous over d. Ω ⊆ R
n stands for the initial condition on

inputs; X0 = {x ∈ R
n | ∧n0

i=1[h0,i(x) ≤ 0]} stands for the loop condition, which
is a compact set in R

n; Xj = {x ∈ R
n | ∧nj

i=1[hj,i(x) � 0]}, j = 1, . . . , k, stands
for the j-th branch conditions, where � ∈ {≤, <}. hj,i : Rn �→ R, j = 0, . . . , k,
i = 1, . . . , nj , fl : Rn × D �→ R

n, l = 1, . . . , k, are continuous functions over x
and over (x,d) respectively. Moreover, {X1, . . . , Xk} forms a complete partition
of Rn, i.e. Xi ∩ Xj = ∅ for ∀i �= j, where i, j ∈ {1, . . . , k}, and ∪k

j=1Xj = R
n.

Program 1. Computer Programs of Interest
1 x := x0;/* x0 ∈ Ω */

2 while x ∈ X0 do
/* d ∈ D */

3 if x ∈ X1 then
4 x := f1(x, d);
5 end
6 else if x ∈ X2 then
7 x := f2(x, d);
8 end
9 . . .

10 else if x ∈ Xk then
11 x := fk(x, d);
12 end

13 end



Robust Non-termination Analysis of Numerical Software 73

As described in Program 1, an update of the variable x is executed by the
i-th branch fi : Rn × D �→ R

n if and only if the current value of x satisfies the
i-th branch condition Xi.

2.2 Piecewise Discrete-Time Systems

In this subsection we interpret Program 1 as a constrained piecewise discrete-
time dynamical system with uncertain inputs. Formally,

Definition 1. A constrained piecewise discrete-time dynamical system (PS) is
a quintuple (x0,X0,X ,D,L) with

– x0 ∈ Ω is the condition on initial states;
– X0 ⊆ R

n is the domain constraint, which is a compact set. A path can evolve
complying with the discrete dynamics only if its current state is in X0;

– X := {Xi, i = 1, . . . , k} with Xi as interpreted in Program 1;
– D ⊆ R

m is the set of uncertain inputs;
– L := {fi(x,d), i = 1, . . . , k} is the family of the continuous functions

fi(x,d) : Xi × D �→ R
n.

In order to enhance the understanding of PS, we use the following figure, i.e.
Fig. 1, to illustrate it further. From now on, we associate a PS representation
to each program of the form Program 1. Since a program may admit several
PS representations, we choose one of them, but the choice does not change the
results provided in this paper.

s0

s1

s2

...
x := x0

x /∈ X0,

x := x
x ∈ X0,x := x

x ∈ X1,x := f1(x,d)

x ∈ X2,x := f2(x,d)

x ∈ Xk, x := fk(x,d)

Fig. 1. An illustrating graph of PS

Definition 2. An input policy π is an ordered sequence {π(i), i ∈ N}, where
π(·) : N �→ D, and Π is defined as the set of input policies, i.e. Π = {π | π(·) :
N �→ D}.



74 B. Xue et al.

If an input policy π makes Program 1 non-terminated from an initial state x0,
then the trajectory xπ

x0
: N �→ R

n from x0 following the discrete dynamics is
defined by

xπ
x0

(l + 1) = f(xπ
x0

(l),π(l)), (1)

where xπ
x0

(0) = x0, ∀l ∈ N.xπ
x0

(l) ∈ X0, and

f(x,d) = 1X1 · f1(x,d) + · · · + 1Xk
· fk(x,d)

with 1Xi
: Xi �→ {0, 1}, i = 1, . . . , k, representing the indicator function of the

set Xi, i.e.

1Xi
:=

{
1, if x ∈ Xi,

0, if x /∈ Xi.

Consequently, Program 1 is said to be robust nontermination starting from an
initial state x0 ∈ Ω if for any input policy π ∈ Π, ∀l ∈ N. xπ

x0
(l) ∈ X0 holds.

Formally,

Definition 3. A program of Program 1 is said to be robust non-terminating
w.r.t. an initial state x0 ∈ X0, if

∀π ∈ Π. ∀l ∈ N. xπ
x0

(l) ∈ X0. (2)

Now, we define our problem of deciding a set of initial states rendering Pro-
gram 1 robust non-termination.

Definition 4 (Robust Nontermination Set). A set Ω of initial states in
R

n is a robust nontermination set for a program P of the form Program 1 if P
is robustly non-terminating w.r.t. x0 for any x0 ∈ Ω. We call {x0 ∈ R

n | P
is robustly non-terminating w.r.t. x0} the maximal robust non-termination set,
denoted by R0.

From Definition 4, we observe that R0 is a subset of X0 such that all
runs of Program1 starting from it can not breach it forever, i.e. if x0 ∈ R0,
f(x0,d) ∈ R0 for ∀d ∈ D. Therefore, the set R0 is equivalent to the maximal
robust positively invariant for PS (1) in control theory. For the formal concept
of maximal robust positively invariant, please refer to, e.g., [2,45,47].

3 Robust Non-termination Set Generation

In this section we elucidate our approach of addressing the problem of robust con-
ditional nontermination for Program1, i.e. synthesizing robust non-termination
sets as presented in Definition 4. For this sake, we firstly in Subsect. 3.1 character-
ize the maximal robust non-termination set R0 by means of the value function,
which is a solution to a mathematical equation. Any solution to this optimal
control problem generates a robust non-termination set. Then, in the case that
fi, i = 1, . . . , k, is polynomial over x and d, and the constraint sets over x and
d, i.e. Xj , j = 0, . . . , k, and D, are of the basic semi-algebraic form, the semi-
definite program arising from sum-of-squares decompositions facilitates the gain
of inner-approximations Ω of R0 via solving the relaxation of the derived optimal
control problem in Subsect. 3.2.



Robust Non-termination Analysis of Numerical Software 75

3.1 Characterization of R0

In this subsection, we firstly introduce the value function to characterize the
maximal robust nontermination set R0 and then formulate it as a solution to a
constrained optimal control problem.

For x0 ∈ R
n, the value function V : Rn �→ R is defined by:

V (x0) := sup
π∈Π

sup
l∈N

max
j∈{1,...,n0}

{
h0,j(xπ

x0
(l))

}
. (3)

Note that V (x0) may be neither continuous nor semi-continuous. (A function
V ′ : X ′ �→ R is lower semicontinuous iff for any y ∈ R, {x ∈ X ′ | V ′(x) ≥ y} is
open, e.g., [4].)

The following theorem shows the relation between the value function V and
the maximal robust nontermination set R0, that is, the zero sublevel set of V (x0)
is equal to the maximal robust nontermination set R0.

Theorem 1. R0 = {x0 ∈ R
n | V (x0) ≤ 0}, where R0 is the maximal robust

nontermination set as in Definition 4.

Proof. Let y0 ∈ R0. According to Definition 4, we have that

∀i ∈ N. ∀π ∈ Π. ∀j ∈ {1, . . . , n0}. h0,j(xπ
y0

(i)) ≤ 0 (4)

holds. Therefore, V (y0) ≤ 0 and thus y0 ∈ {x0 | V (x0) ≤ 0}.
On the other side, if y0 ∈ {x0 ∈ R

n | V (x0) ≤ 0}, then V (y0) ≤ 0, implying
that (4) holds. Therefore, y0 ∈ R0.

This concludes that R0 = {x0 ∈ R
n | V (x0) ≤ 0}.

From Theorem 1, the maximal robust nontermination set R0 could be con-
structed by computing V (x0), which satisfies the dynamic programming princi-
ple as presented in Lemma 1.

Lemma 1. For ∀x0 ∈ R
n and ∀l ∈ N, we have:

V (x0) = sup
π∈Π

max
{
V (xπ

x0
(l)), sup

i∈[0,l)∩N

max
j∈{1,...,n0}

h0,j(xπ
x0

(i))
}
. (5)

Proof. Let

W (l,x0) := sup
π∈Π

max
{
V (xπ

x0
(l)), sup

i∈[0,l)∩N

max
j∈{1,...,n0}

h0,j(xπ
x0

(i))
}
. (6)

We will prove that for ε > 0, |W (l,x0) − V (x0)| < ε.
According to the definition of V (x0), i.e. (3), for any ε1, there exists an input

policy π′ such that

V (x0) ≤ sup
i∈N

max
j∈{1,...,n0}

{h0,j(xπ′
x0

(i))} + ε1.



76 B. Xue et al.

We then introduce two infinite uncertain input policies π1 and π2 such that
π1 = {π1(i), i ∈ N} with π1(j) = π′(j) for j = 0, . . . , l − 1 and π2 = {π2(i), i ∈
N} with π(j) = π′(j + l) ∀j ∈ N. Now, let y ∈ xπ1

x0
(l), then we obtain that

W (l, x0) ≥ max
{
V (y), sup

i∈[0,l)∩N

max
j∈{1,...,n0}

h0,j(x
π1
y (i))

}

≥ max
{

sup
i∈[l,+∞)∩N

max
j∈{1,...,n0}

{h0,j(x
π2
x0(i − l))}, sup

i∈[0,l)∩N

max
j∈{1,...,n0}

{h0,j(x
π1
x0(i))}

}

= max
{

sup
i∈[l,+∞)∩N

max
j∈{1,...,n0}

{h0,j(x
π′
x0(i))}, sup

i∈[0,l)∩N

max
j∈{1,...,n0}

{h0,j(x
π′
x0(i))}

}

= sup
i∈N

max
j∈{1,...,n0}

{h0,j(x
π′
x0(i))}

≥ V (x0) − ε1.

Therefore,
V (x0) ≤ W (l,x0) + ε1. (7)

On the other hand, for any ε1 > 0, there exists a π1 ∈ Π such that W (l,x0) ≤
max

{
V (xπ1

x0
(l)), supi∈[0,l)∩N maxj∈{1,...,n0}{h0,j(xπ1

x0
(i))}}+ε1, by the definition

of W (l,x0). Also, by the definition of V (x0), i.e. (3), for any ε1 > 0, there exists
a π2 such that

V (y) ≤ sup
i∈N

max
j∈{1,...,n0}

{h0,j(xπ2
y (i))} + ε1,

where y = xπ1
x0

(l). We define π ∈ Π such that π(i) = π1(i) for i = 0, . . . , l − 1
and π(i + l) = π2(i) for ∀i ∈ N. Then, it follows

W (l,x0) ≤ 2ε1 + max{ sup
i∈N∩[l,∞)

max
j∈{1,...,n0}

{h0,j(xπ2
y (i − l))},

sup
i∈[0,l)∩N

max
j∈{1,...,n0}

{h0,j(xπ1
x0

(i))}}

≤ sup
i∈[0,+∞)∩N

max
j∈{1,...,n0}

{h0,j(xπ
x0

(i))} + 2ε1

≤ V (x0) + 2ε1.

(8)

Combining (7) and (8), we finally have |V (x0)−W (l,x0)| ≤ ε = 2ε1, implying
that V (x0) = W (l,x0) since ε1 is arbitrary. This completes the proof.

Based on Lemma 1 stating that the value function V (x0) complies with the
dynamic programming principle (5), we derive a central equation of this paper,
which is formulated formally in Theorem2.

Theorem 2. The value function V (x0) : Rn �→ R in (3) is a solution to the
equation

min
{

inf
d∈D

(V (x0) − V (f(x0,d))), V (x0) − max
j∈{1,...,n0}

h0,j(x0)
}

= 0. (9)

Proof. It is evident that (9) is derived from (5) when l = 1.



Robust Non-termination Analysis of Numerical Software 77

According to Theorem 2, we conclude that if there does not exist a solution
to (9), the robust nontermination set R0 is empty. Moreover, according to The-
orem 2, V (x0) as defined in (3) is a solution to (9). Note that the solution to (9)
may be not unique, and we do not go deeper into this matter in this paper. How-
ever, any solution to (9) forms an inner-approximation of the maximal robust
nontermination set, as stated in Corollary 1.

Corollary 1. For any function u(x0) : R
n �→ R satisfying (9), {x0 ∈ R

n |
u(x0) ≤ 0} is an inner-approximation of the maximal robust nontermination set
R0, i.e. {x0 ∈ R

n | u(x0) ≤ 0} ⊂ R0.

Proof. Let u(x0) : Rn �→ R be a solution to (9). It is evident that u(x0) satisfies
the constraints:{

u(x0) − u(f(x0,d)) ≥ 0, ∀x0 ∈ R
n,∀d ∈ D,

u(x0) − h0,j(x0) ≥ 0, ∀x0 ∈ R
n,∀j ∈ {1, . . . , n0} (10)

Assume x′
0 ∈ {x0 | u(x0) ≤ 0}. According to (10), we have that for ∀π ∈ Π,

∀l ∈ N and ∀j ∈ {1, . . . , n0},
{

u(xπ
x′

0
(l + 1)) ≤ u(xπ

x′
0
(l)) ≤ u(x′

0)

h0,j(xπ
x′

0
(l)) ≤ u(xπ

x′
0
(l)) ≤ u(x′

0)
. (11)

Therefore, supl∈N maxj∈{1,...,n0}{h0,j(xπ
x′

0
(l))} ≤ u(x′

0) ≤ 0, implying that x′
0 ∈

R0. Thus, {x0 ∈ R
n | u(x0) ≤ 0} ⊂ R0.

From Corollary 1, it is clear that an approximation of R0 from inside, i.e.
a robust nontermination set, is able to be constructed by addressing (9). The
solution to (9) could be addressed by grid-based numerical methods such as
level set methods [12,32], which are a popular method for interface capturing.
Such grid-based methods are prohibitive for systems of dimension greater than
four without relying upon specific system structure. Besides, we observe that
a robust nontermination set could be searched by solving (10) rather than (9).
In the subsection that follows we relax (10) as a sum-of-squares decomposition
problem in a semidefinite programming formulation when in Program1, fis are
polynomials over x and d, state and uncertain input constraints, i.e. Xjs and
Ds, are restricted to basic semi-algebraic sets.

3.2 Semi-definite Programming Implementation

In practice, it is non-trivial to obtain a solution V (x0) to (2), and thus non-trivial
to gain R0. In this subsection, thanks to (10) and Corollary 1, we present a semi-
definite programming based method to solve (9) approximately and construct a
robust invariant Ω as presented in Definition 4 when Assumption 1 holds.

Assumption 1. fi, i = 1, . . . , k, is polynomial over x and d, Xj and D, j =
0, . . . , k, are restricted to basic semi-algebraic sets in Program 1.



78 B. Xue et al.

Firstly, (10) has indicator functions on the expression u(x0) − u(f(x0,d)),
which is beyond the capability of the solvers we use. We would like to obtain a
constraint by removing indicators according to Lemma 2.

Lemma 2 ([8]). Suppose f ′(x) = 1F1 · f ′
1(x) + · · · + 1Fk′ · f ′

k′(x) and g′(x) =
1G1 · g′

1(x) + · · · + 1Gl′ · g′
l′(x), where x ∈ R

n, k′, l′ ∈ N, and Fi, Gj ⊆ R
n,

i = 1, . . . , k′, j = 1, . . . , l′. Also, F1, . . . , Fk′ and G1, . . . , Gl′ are respectively
disjoint. Then, f ′ ≤ g′ if and only if (pointwise)

k′∧
i=1

l′∧
j=1

[
Fi ∧ Gj ⇒ f ′

i ≤ g′
j

]∧
k′∧

i=1

[
Fi ∧ ( l′∧

j=1

¬Gj

) ⇒ f ′
i ≤ 0

]∧
l′∧

j=1

[( k′∧
i=1

¬Fi

) ∧ Gj ⇒ 0 ≤ g′
j

]
.

(12)

Consequently, according to Lemma 2, the equivalent constraint without indi-
cator functions of (10) is equivalently formulated below:

k∧
i=1

[∀d ∈ D. ∀x0 ∈ Xi. u(x0) − u(fi(x0,d)) ≥ 0
]∧

n0∧
j=1

[∀x0 ∈ R
n. u(x0) − h0,j(x0) ≥ 0

]
.

(13)

Before encoding (13) in sum-of-squares programming formulation, we denote
the set of sum of squares polynomials over variables y by SOS(y), i.e.

SOS(y) := {p ∈ R[y] | p =
r∑

i=1

q2i , qi ∈ R[y], i = 1, . . . , r}.

Besides, we define the set Ω(X0) of states being reachable from the set X0 within
one step computation, i.e.,

Ω(X0) := {x | x = f(x0,d),x0 ∈ X0,d ∈ D} ∪ X0, (14)

which can be obtained by semi-definite programming or linear programming
methods as in [24,31]. Herein, we assume that it was already given. Consequently,
when Assumption 1 holds and u(x) in (13) is constrained to polynomial type
and is restricted in a ball B = {x | h(x) ≥ 0}, where h(x) = R − ∑n

i=1 x2
i

and Ω(X0) ⊆ B, (13) is relaxed as the following sum-of-squares programming
problem:



Robust Non-termination Analysis of Numerical Software 79

min
u,s

Xi
i,l1

,sD
i,l2

,si,l,s
′
1,j

c′ · w

u(x) − u(fi(x, d)) +

ni∑

l1=1

sXi
i,l1

hi,l1(x) +

nk+1∑

l2=1

sD
i,l2hk+1,l(d) − si,1h(x) ∈ SOS(x, d),

u(x) − h0,j(x) − s′
1,jh(x) ∈ SOS(x),

i = 1, . . . , k; j = 1, . . . , n0,

(15)
where c′·w =

∫
B

udμ(x), w is the vector of the moments of the Lebesgue measure
over B indexded in the same basis in which the polynomial u(x) ∈ Rd[x] with
coefficients c is expressed, sXi

i,l1
, sD

i,l2
, si,1 ∈ SOS(x,d), i = 1, . . . , k, l1 = 1, . . . , ni,

l2 = 1, . . . , nk+1, s′
1,j ∈ SOS(x), j = 1, . . . , n0, are sum-of-squares polynomials of

appropriate degree. The constraints that polynomials are sum-of-squares can be
written explicitly as linear matrix inequalities, and the objective is linear in the
coefficients of the polynomial u(x); therefore problem (15) is reformulated as an
semi-definite program, which falls within the convex programming framework
and can be solved via interior-points method in polynomial time (e.g., [52]).
Note that the objective of (15) facilitate the gain of the less conservative robust
nontermination set.

The implementation based on the sum-of-squares program (15) is sound but
incomplete. Its soundness is presented in Theorem 3.

Theorem 3 (Soundness). Let u(x) ∈ Rd[x] be solution to (15), then {x ∈ B |
u(x) ≤ 0} is an inner-approximation of R0, i.e., every possible run of Program 1
starting from a state in {x ∈ B | u(x) ≤ 0} does not terminate.

Proof. Since u(x) satisfies the constraint in (15), we obtain that u(x) satisfies
according to S− procedure in [5]:

k∧
i=1

[∀d ∈ D. ∀x ∈ Xi ∩ B. u(x) − u(fi(x,d)) ≥ 0
]∧ (16)

n0∧
j=1

[∀x ∈ B. u(x) − h0,j(x) ≥ 0
]
. (17)

Due to (16) and the fact that ∪k
i=1Xi = R

n, we obtain that for ∀x0 ∈ {x ∈
B | u(x) ≤ 0}, ∃i ∈ {1, . . . , k}. ∀d ∈ D. u(x0) − u(fi(x0,d)) ≥ 0, implying that

u(x0) − u(f(x0,d)) ≥ 0,∀d ∈ D. (18)

Assume that there exist an initial state y0 ∈ {x ∈ B | u(x) ≤ 0} and an
input policy π′ such that xπ′

y0
(l) ∈ X0 does not hold for ∀l ∈ N. Due to the

fact that (17) holds, we have the conclusion that {x ∈ B | u(x) ≤ 0} ⊂ X0

and thus y0 ∈ X0. Let l0 ∈ N be the first time making xπ′
y0

(l) violate the
constraint X0, i.e., xπ′

y0
(l0) /∈ X0 and xπ′

y0
(l) ∈ X0 for l = 0, . . . , l0 − 1. Also,

since Ω(X0) ⊂ B, (18) and (17), where Ω(X0) is defined in (14), we derive that
xπ′

y0
(l0 − 1) ∈ {x ∈ B | u(x) ≤ 0} and u(xπ′

y0
(l0)) > 0, which contradicts (18).



80 B. Xue et al.

Thus, every possible run of Program1 initialized in {x ∈ B | u(x) ≤ 0} will live
in {x ∈ B | u(x) ≤ 0} forever while respecting X0.

Therefore, the conclusion in Theorem 3 is justified.

4 Experiments

In this section we evaluate the performance of our method built upon the semi-
definite program (15). Examples 2 and 3 are constructed to illustrate the sound-
ness of our method. Example 4 is used to evaluate the scalability of our method
in dealing with Program1. The parameters that control the performance of our
approach in applying (15) to these three examples are presented in Table 1. All
computations were performed on an i7-7500U 2.70GHz CPU with 32GB RAM
running Windows 10. For numerical implementation, we formulate the sum of
squares problem (15) using the MATLAB package YALMIP1 [29] and use Mosek2

[33] as a semi-definite programming solver.

Table 1. Parameters and performance of our implementations on the examples
presented in this section. du, d

s
Xi
i,l1

, dsD
i,l2

, dsi,l , ds′
1,j

: the degree of the polynomials

u, sXi
i,l1

, sD
i,l2 , si,l, s

′
1,j in (15), respectively, i = 1, . . . , k, l1 = 1, . . . , ni, l2 = 1, . . . , nk+1,

j = 1, . . . , n0; Time: computation times (seconds).

Ex. dh d
s
Xi
i,l1

dsD
i,l2

dsi,l ds′
1,j

Time

1 14 14 14 14 14 11.30

1 16 16 16 16 16 28.59

2 6 12 12 12 6 9.06

2 8 16 16 16 8 65.22

2 10 20 20 20 10 123.95

2 12 24 24 24 12 623.95

4 4 4 4 4 4 58.56

4 5 4 4 4 4 60.02

Example 2. This simple example is mainly constructed to illustrate the differ-
ence between Program 1 taking uncertain inputs into account and free of distur-
bances. In both cases, Program 1 is composed of a single loop without switch-case
type in loop body, i.e. k = 1 and X1 = R

2.
In case that f1(x, y) = (0.4x+0.6y; dx+0.9y), X0 = {(x, y) | x2+y2−1 ≤ 0}

and D = {d | d2 − 0.01 ≤ 0} in Program 1, the inner-approximations of the

1 It can be downloaded from https://yalmip.github.io/.
2 For academic use, the software Mosek can be obtained free from https://www.mosek.

com/.

https://yalmip.github.io/
https://www.mosek.com/
https://www.mosek.com/


Robust Non-termination Analysis of Numerical Software 81

maximal robust nontermination set R0 are illustrated in Fig. 2(Left) when du =
10 and du = 12. By visualizing the results in Fig. 2, the inner-approximation
obtained when du = 12 does not improve the one when du = 10 a lot. Although
there is a gap between the inner-approximations obtained via our method and
the set R0, it is not big.

In the ideal implementation of Program1, that is, d in the loop body is a
fixed nominal value, there will exists some initial conditions such that Program1
in the real implementation may violate the constraint set X0, i.e. Program1
may terminate. We use d = 0 as an instance to illustrate such situation. The
difference between termination sets is visualized in Fig. 2(Right). The robust
nontermination set in case of d ∈ [−0.1, 0.1] is smaller than the nontermination
set when d = 0. Note that from Fig. 3, we observe that the inner-approximation
obtained by our method when du = 10 can approximate R0 very well.

Fig. 2. Computed robust nontermination sets for Example 2. Left: (Blue and Red
curves – the boundaries of the computed robust nontermination set R0 when du = 10
and du = 12, respectively; Gray points – the approximated robust nontermination set
via numerical simulation techniques; Black curve – the boundary of X0.) Right: (Green
and red points – the approximated (robust) nontermination sets via numerical simula-
tion techniques for Program 1 without and with disturbance inputs, respectively; Black
curve – the boundary of X0.) (Color figure online)

Example 3. In this example we consider Program 1 with switch-case type in the
loop body, where f1(x, y) = (x; (0.5 + d)x − 0.1y), f2(x, y) = (y; 0.2x − (0.1 +
d)y +y2), X0 = {(x, y) | x2 +y2 −0.8 ≤ 0}, X1 = {(x, y) | 1− (x−1)2 −y2 ≥ 0},
X2 = {(x, y) | −1 + (x − 1)2 + y2 < 0} and D = {d | d2 − 0.01 ≤ 0}. The inner-
approximations computed by solving (15) when du = 8, 10 and 12 respectively
are illustrated in Fig. 4. By comparing these results, we observe that polynomials
of higher degree facilitate the gain of less conservative estimation of the set R0.

Example 4. In this example, we consider Program1 with seven variables x =
(x1, x2, x3, x4, x5, x6, x7) and illustrate the scalability of our approach. In Pro-
gram 1, f1(x) = ((0.5 + d)x1; 0.8x2; 0.6x3 + 0.1x6;x4; 0.8x5; 0.1x2 + x6; 0.2x2 +



82 B. Xue et al.

Fig. 3. Nontermination set estimation
for Example 2. (Black and Red curves:
the boundaries of X0 and the computed
robust nontermination set R0 when
du = 16, respectively; Gray points –
the approximated robust nontermina-
tion set via numerical simulation tech-
niques.) (Color figure online)

Fig. 4. Robust nontermination sets
for Example 3. Black, Purple, Blue,
Green and Red curves: the bound-
aries of X0 and the computed robust
nontermination sets R0 when du =
6, 8, 10, 12, respectively; Gray points –
the approximated robust nontermina-
tion set via numerical simulation tech-
niques. (Color figure online)

0.6x7);, f2(x) = (0.5x1+0.1x6; (0.5+d)x2;x3; 0.1x1+0.4x4; 0.2x1+x5;x6; 0.1x1+
x7), X0 = {x | ∑7

i=1 x2
i −1 ≥ 0}, X1 = {x | x1+x2+x3−x4−x5−x6−x7 ≥ 0},

X2 = {(x, y) | x1 +x2 +x3 −x4 −x5 −x6 −x7 < 0} and D = {d | d2 −0.01 ≤ 0}.
From the computation times listed Table 1, we conclude that although the com-
putation time increases with the number of variables increasing, our method may
deal with problems with many variables, especially for the cases that the robust
nontermination set formed by a polynomial of low degree fulfills certain needs
in real applications. Note that numerical simulation techniques suffers from the
curse of dimensionality and thus can not apply to this example since this exam-
ple has seven variables, we just illustrate the results computed by our method
based on (15) in Fig. 5.

5 Related Work

Methods for proving nontermination of programs have recently been studied
actively. [16] uses a characterization of nontermination by recurrence sets of
states that is visited infinitely often along the path. A recurrence set exists iff
a program is non-terminating. To find recurrence sets they provide a method
based on constraint solving. Their method is only applicable to programs with
linear integer arithmetic and does not support non-determinism and is imple-
mented in the tool Tnt. [7] proposes a method combining closed recurrence
sets with counterexample-guided underapproximation for disproving termina-
tion. This method, implemented in the tool T2, relies heavily on suitable safety
provers for the class of programs of interest, thus rendering an application of



Robust Non-termination Analysis of Numerical Software 83

Fig. 5. Computed robust nontermination sets for Example 4. (Black, Red and Green
curves – the boundaries of X0 and the cross-sections (from left to right: x3 = x4 =
x5 = x6 = x7 = 0, x1 = x2 = x5 = x6 = x7 = 0 and x1 = x2 = x3 = x4 = x7 = 0) of
the computed robust nontermination sets R0 when du = 5 and du = 4, respectively.)
(Color figure online)

their method to nonlinear programs difficult. Further, [9] introduces live abstrac-
tions combing with closed recurrence sets to disprove termination. However, this
method, implemented in the tool Anant, is only suitable for disproving non-
termination in the form of lasso for programs of finite control-flow graphs.

There are also some approaches exploiting theorem-proving techniques
to prove nontermination, e.g., [53] presents a method for disproving non-
termination of Java programs based on theorem proving and generation of invari-
ants. This method is implemented in Invel, which is restricted to deterministic
programs with unbounded integers and single loops. Aprove [14] uses SMT solv-
ing to prove nontermination of Java programs [6]. The application of this method
requires either singleton recurrence sets or loop conditions being recurrence sets
in the programs of interest. [23] disproves termination based on MaxSMT-based
invariant generation, which is implemented in the tool Cppinv. This method is
limited to linear arithmetic as well.

Besides, TRex [17] integrates existing non-termination proving approaches
to develop compositional analysis algorithms for detecting non-termination in
multithreaded programs. Different from the method in TRex targeting sequen-
tial code, [1] presents a nontermination proving technique for multi-threaded
programs via a reduction to nontermination reasoning for sequential programs.
[27] investigates the termination problems of multi-path polynomial programs
with equational loop guards and discovering nonterminating inputs for such pro-
grams. It shows that the set of all strong non-terminating inputs and weak
non-terminating inputs both correspond to the real varieties of certain poly-
nomial ideals. Recently, [22] proposes a method combining higher-order model
checking with predicate abstraction and CEGAR for disproving nontermina-
tion of higher-order functional programs. This method reduces the problem of



84 B. Xue et al.

disproving non-termination to the problem of checking a certain branching prop-
erty of an abstract program, which can be solved by higher-order model checking.

Please refer to [10,55] for detailed surveys on termination and nontermination
analysis of programs.

As opposed to above works without considering robust nontermination, by
taking disturbances such as round-off errors in performing numerical implemen-
tation of computer programs into account, this paper propose a systematic app-
roach for proving robust nontermination of a class of computer programs, which
are composed of a single loop with a possibly complicated switch-case type loop
body and encountered often in current embedded systems. The problem of robust
conditional nontermination is reduced to a problem of solving a single equation
derived via dynamic programming principle, and semi-definite programs could
be employed to solve such optimal control problem efficiently in some situations.

The underlying idea in this work is in sprit analogous to that in [40], which is
pioneer in proposing a systematic framework to conduct verification of numerical
software based on Lyapunov invariance in control theroy. Our method for con-
ducting (robust) verification of numerical software falls within the framework
proposed in [40]. The primary contribution of our work is that we systemati-
cally investigate a class of computer programs and reduce the nontermination
problem for such computer programs to a mathematical equation, thus resulting
in an efficient nontermination verification method, as indicated in Introduction
Sect. 1.

6 Conclusion and Future Work

In this paper we presented a system-theoretic framework to numerical software
analysis and considered the problem of conditional robust non-termination anal-
ysis for a class of computer programs composed of a single loop with a possibly
complicated switch-case type loop body, which is encountered often in real-time
embedded systems. The maximal robust nontermination set of initial configura-
tions in our method was characterized by a solution to a mathematical equation.
Although it is non-trivial to solve gained equation, in the case of polynomial
assignments in the loop body and basic semi-algebraic sets in Program 1, the
equation could be relaxed as a semi-definite program, which falls within the
convex programming framework and can be solved efficiently via interior point
methods. Finally, we have reported experiments with encouraging results to
demonstrate the merits of our method.

However, there are a lot of works remaining to be done. For instance, the semi-
definite programming solver is implemented with floating point computations, we
have no absolute guarantee on the results it provides. In future work, we need a
sound and efficient verification procedure such as that presented in [26,35,41,46]
that is able to check the result from the solver and help us decide whether the
result is qualitatively correct. Besides, the presented work can be extended in
several directions, these include robust nontermination analysis for computer
programs with nested loops and robust invariant generations with or without
constraints [20,28,42].



Robust Non-termination Analysis of Numerical Software 85

References

1. Atig, M.F., Bouajjani, A., Emmi, M., Lal, A.: Detecting fair non-termination in
multithreaded programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 210–226. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31424-7 19

2. Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Springer, Boston
(2008). https://doi.org/10.1007/978-0-8176-4606-6

3. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodŕıguez-Carbonell,
E., Rubio, A.: Proving termination through conditional termination. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99–117. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 6

4. Bourbaki, N.: General Topology: Chapters 1–4, vol. 18. Springer, Heidelberg (2013)
5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in

System and Control Theory. SIAM, Philadelphia (1994)
6. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-

termination and NullPointerExceptions for Java Bytecode. In: Beckert, B., Dami-
ani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31762-0 9

7. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination
via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8 11

8. Chen, Y.-F., Hong, C.-D., Wang, B.-Y., Zhang, L.: Counterexample-guided poly-
nomial loop invariant generation by lagrange interpolation. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 658–674. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 44

9. Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Disproving termination with over-
approximation. In: Proceedings of the 14th Conference on Formal Methods in
Computer-Aided Design, pp. 67–74. FMCAD Inc. (2014)

10. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

11. Cousot, P., Cousot, R.: A gentle introduction to formal verification of computer
systems by abstract interpretation (2010)

12. Fedkiw, S.O.R., Osher, S.: Level set methods and dynamic implicit surfaces. Sur-
faces 44, 77 (2002)

13. Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19(19–
32), 1 (1967)

14. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-
6 13

15. Giesl, P., Hafstein, S.: Review on computational methods for Lyapunov functions.
Discrete Contin. Dyn. Syst.-Ser. B 20(8), 2291–2331 (2015)

16. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. ACM Sigplan Not. 43(1), 147–158 (2008)

17. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1 19

https://doi.org/10.1007/978-3-642-31424-7_19
https://doi.org/10.1007/978-3-642-31424-7_19
https://doi.org/10.1007/978-0-8176-4606-6
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-642-15769-1_19


86 B. Xue et al.

18. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

19. Jarvis-Wloszek, Z.W.: Lyapunov based analysis and controller synthesis for poly-
nomial systems using sum-of-squares optimization. Ph.D. thesis, University of Cal-
ifornia, Berkeley (2003)

20. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik (2006)

21. Kouramas, K.I., Rakovic, S.V., Kerrigan, E.C., Allwright, J., Mayne, D.Q.: On
the minimal robust positively invariant set for linear difference inclusions. In: 44th
IEEE Conference on Decision and Control, 2005 and 2005 European Control Con-
ference, CDC-ECC 2005, pp. 2296–2301. IEEE (2005)

22. Kuwahara, T., Sato, R., Unno, H., Kobayashi, N.: Predicate abstraction and
CEGAR for disproving termination of higher-order functional programs. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 287–303. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 17

23. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
non-termination using max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 52

24. Lasserre, J.B.: Tractable approximations of sets defined with quantifiers. Math.
Programm. 151(2), 507–527 (2015)

25. Li, Y.: Witness to non-termination of linear programs. Theor. Comput. Sci. 681,
75–100 (2017)

26. Lin, W., Wu, M., Yang, Z., Zeng, Z.: Exact safety verification of hybrid systems
using sums-of-squares representation. Sci. China Inf. Sci. 57(5), 1–13 (2014)

27. Liu, J., Xu, M., Zhan, N., Zhao, H.: Discovering non-terminating inputs for multi-
path polynomial programs. J. Syst. Sci. Complex. 27(6), 1286–1304 (2014)

28. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: Proceedings of the Ninth ACM International Conference
on Embedded Software, pp. 97–106. ACM (2011)

29. Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In:
2004 IEEE International Symposium on Computer Aided Control Systems Design,
pp. 284–289. IEEE (2004)

30. Luk, C.K., Chesi, G.: On the estimation of the domain of attraction for discrete-
time switched and hybrid nonlinear systems. Int. J. Syst. Sci. 46(15), 2781–2787
(2015)

31. Magron, V., Garoche, P.-L., Henrion, D., Thirioux, X.: Semidefinite approxi-
mations of reachable sets for discrete-time polynomial systems. arXiv preprint
arXiv:1703.05085 (2017)

32. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi for-
mulation of reachable sets for continuous dynamic games. IEEE Trans. Autom.
Control 50(7), 947–957 (2005)

33. Mosek, A.: The MOSEK optimization toolbox for MATLAB manual. Version 7.1
(Revision 28), p. 17 (2015)

34. Naur, P.: Proof of algorithms by general snapshots. BIT Numer. Math. 6(4), 310–
316 (1966)

35. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02959-2 35

https://doi.org/10.1007/978-3-319-21668-3_17
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-08867-9_52
http://arxiv.org/abs/1703.05085
https://doi.org/10.1007/978-3-642-02959-2_35


Robust Non-termination Analysis of Numerical Software 87

36. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

37. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Transa. Autom. Control 52(8),
1415–1428 (2007)

38. Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., Mayne, D.Q.: Invariant approxima-
tions of the minimal robust positively invariant set. IEEE Trans. Autom. Control
50(3), 406–410 (2005)

39. Rebiha, R., Matringe, N., Moura, A.V.: Generating asymptotically non-
terminating initial values for linear programs. arXiv preprint arXiv:1407.4556
(2014)

40. Roozbehani, M., Megretski, A., Feron, E.: Optimization of Lyapunov invariants
in verification of software systems. IEEE Trans. Autom. Control 58(3), 696–711
(2013)

41. Roux, P., Voronin, Y.-L., Sankaranarayanan, S.: Validating numerical semidefinite
programming solvers for polynomial invariants. In: Rival, X. (ed.) SAS 2016. LNCS,
vol. 9837, pp. 424–446. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53413-7 21

42. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-
tion using gröbner bases. ACM SIGPLAN Not. 39(1), 318–329 (2004)

43. Sassi, M.A.B., Girard, A.: Controller synthesis for robust invariance of polynomial
dynamical systems using linear programming. Syst. Control Lett. 61(4), 506–512
(2012)

44. Sassi, M.A.B., Girard, A., Sankaranarayanan, S.: Iterative computation of polyhe-
dral invariants sets for polynomial dynamical systems. In: 2014 IEEE 53rd Annual
Conference on Decision and Control (CDC), pp. 6348–6353. IEEE (2014)

45. Schaich, R.M., Cannon, M.: Robust positively invariant sets for state dependent
and scaled disturbances. In: 2015 IEEE 54th Annual Conference on Decision and
Control (CDC), pp. 7560–7565. IEEE (2015)

46. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination.
In: Proceedings of the 36th International Symposium on Symbolic and Algebraic
Computation, pp. 329–336. ACM (2011)

47. Tahir, F., Jaimoukha, I.M.: Robust positively invariant sets for linear systems
subject to model-uncertainty and disturbances. IFAC Proc. Vol. 45(17), 213–217
(2012)

48. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 6

49. Topcu, U., Packard, A., Seiler, P.: Local stability analysis using simulations and
sum-of-squares programming. Automatica 44(10), 2669–2675 (2008)

50. Topcu, U., Packard, A.K., Seiler, P., Balas, G.J.: Robust region-of-attraction esti-
mation. IEEE Trans. Autom. Control 55(1), 137–142 (2010)

51. Trodden, P.: A one-step approach to computing a polytopic robust positively invari-
ant set. IEEE Trans. Autom. Control 61(12), 4100–4105 (2016)

https://doi.org/10.1007/978-3-540-24743-2_32
http://arxiv.org/abs/1407.4556
https://doi.org/10.1007/978-3-662-53413-7_21
https://doi.org/10.1007/978-3-662-53413-7_21
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6


88 B. Xue et al.

52. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95
(1996)

53. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9 11

54. Xia, B., Yang, L., Zhan, N., Zhang, Z.: Symbolic decision procedure for termination
of linear programs. Formal Aspects Comput. 23(2), 171–190 (2011)

55. Yang, L., Zhou, C., Zhan, N., Xia, B.: Recent advances in program verification
through computer algebra. Front. Comput. Sci. China 4(1), 1–16 (2010)

https://doi.org/10.1007/978-3-540-79124-9_11


Developing GUI Applications
in a Verified Setting

Stephan Adelsberger1(B), Anton Setzer2, and Eric Walkingshaw3

1 Department of Information Systems, Vienna University of Economics,
Vienna, Austria

stephan.adelsberger@wu.ac.at
2 Department of Computer Science, Swansea University, Swansea, UK

3 School of EECS, Oregon State University, Corvallis, USA

Abstract. Although there have been major achievements in verified
software, work on verifying graphical user interfaces (GUI) applications
is underdeveloped relative to their ubiquity and societal importance. In
this paper, we present a library for the development of verified, state-
dependent GUI applications in the dependently typed programming lan-
guage Agda. The library uses Agda’s expressive type system to ensure
that the GUI, its controller, and the underlying model are all consistent,
significantly reducing the scope for GUI-related bugs. We provide a way
to specify and prove correctness properties of GUI applications in terms
of user interactions and state transitions. Critically, GUI applications and
correctness properties are not restricted to finite state machines and may
involve the execution of arbitrary interactive programs. Additionally, the
library connects to a standard, imperative GUI framework, enabling the
development of native GUI applications with expected features, such
as concurrency. We present applications of our library to building GUI
applications to manage healthcare processes. The correctness properties
we consider are the following: (1) That a state can only be reached by
passing through a particular intermediate state, for example, that a par-
ticular treatment can only be reached after having conducted an X-Ray.
(2) That one eventually reaches a particular state, for example, that one
eventually decides on a treatment. The specification of such properties
is defined in terms of a GUI application simulator, which simulates all
possible sequences of interactions carried out by the user.

Keywords: Agda · Interactive theorem proving · GUI verification

1 Introduction

Graphical user interfaces (GUIs) are widely used in real-world software systems.
They are also a major source of bugs. For example, a study of the Mozilla
project found that the web browser’s GUI is the source of 50.1% of reported
bugs and responsible for 45.6% of crashes [33]. Unfortunately, testing of GUIs
is notoriously difficult [21,23]. The fundamental problem is that “tests must be
c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 89–107, 2018.
https://doi.org/10.1007/978-3-319-99933-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_6&domain=pdf


90 S. Adelsberger et al.

automated, but GUIs are designed for humans to use” [30]. Automated tests
must simulate user interactions, but the range of user interactions is huge, and
simulated actions tend to be brittle with respect to minor changes in the GUI
such as swapping the placement of two buttons.

A challenge related to GUIs is the widespread use of code generation. For
example, a GUI builder enables a GUI to be graphically assembled, then gen-
erates code for the GUI which can be integrated into the rest of the applica-
tion [34]. Code generation can have a negative impact on software evolution and
maintenance if the GUI specification and the program logic cannot be evolved
together [36]. In the worst case, handwritten customizations must be manually
integrated each time the GUI code is re-generated [34]. Moreover, the depen-
dence of handwritten code on the upstream specification is implicit.

Because of their importance and the challenges related to testing them,
researchers have studied the formal verification of GUI applications using model
checking [22]. However, such approaches verify only an abstracted model of the
GUI rather than the software itself.

In this paper, we present a library for developing directly verified GUI appli-
cations in Agda [6]. Agda is a dependently typed programming language and
interactive theorem prover. Our library supports verifying properties about GUI
applications in terms of user interactions. We address the challenge of code gen-
eration by observing that such systems are implicitly working with dependent
types (the hand-written parts depend on the types generated by the declarative
specification), and so make this relationship explicit. This combines the benefits
of a declarative specification with the flexibility of post-hoc customization.

Our library builds on our previous work on state-dependent object-based pro-
gramming in Agda [1], which is briefly summarized in Sect. 2. The library itself
is introduced in Sect. 3, beginning with an example of a GUI application written
using the library, followed by a description of key aspects of the implementation.
In our library, GUIs are declaratively specified as a value of an inductive data
type. This value is used in the types of the controller functions that link the GUI
to the underlying business logic, guaranteeing via the type system that the con-
troller code is consistent with the GUI specification. Since the GUI specification
is an inductive value, we can write arbitrary functions to modify it, improving
the flexibility of GUI specifications.

In Sect. 5.1, we present a case study based on a healthcare process adapted
from the literature [24]. Processes in the healthcare domain are mostly data-
driven (e.g. patient data), include interactions with doctors (e.g. diagnosis), and
are not easily modeled as finite state machines [24,26]. We demonstrate that
by using dependent types, we can model such state-dependent systems with an
infinite number of states.

On this note, in Sects. 4 and 5, we develop a framework for specifying and
proving the correctness of GUI applications. More precisely, in Sect. 4, we define a
simulator that simulates sequences of user inputs to a GUI. Using this, we define
reachability as whether there exists a sequence of user inputs to get from one
state of the GUI to another. We then conduct a small case study to prove for a



Developing GUI Applications in a Verified Setting 91

simple GUI application which states can be reached from a given state. In Sect. 5,
we develop an example from the healthcare domain with interactive handlers
(i.e. the observer pattern where an object handles GUI events) and a data-
dependent GUI. We specify an intermediate-state property that requires passing
through a specific state before reaching some other state, and we prove that
the example satisfies a given property. Finally, we specify a final-state property
that requires the application to eventually reach a given state from a start state.
We show that the advanced example fulfills such a property. It turns out that
the complexity lies more in the specification of the properties, while proving the
properties is relatively straightforward. We discuss related work in Sect. 6 and
conclusions in Sect. 7.

To summarize, the contributions of this paper are:

1. A dependently typed library for programming state-dependent GUI appli-
cations, which allows an infinite number of states and arbitrary interactive
handlers.

2. A technique for specifying properties of GUIs using a simulator which simu-
lates all possible sequences of interactions carried out by the user.

3. A framework for the verification of GUI applications involving: (1) reachabil-
ity between states, (2) that one state can only be reached by passing through
another state, and (3) that one eventually reaches a specific state.

Source Code. All displayed Agda code has been extracted automatically from
type checked Agda code. For readability, we have hidden some bureaucratic
details and show only the crucial parts of the code. The code is available at [4].

2 Background

Agda and Sized Types. We recommend the short introduction to Agda that we
provided in a previous paper [1]; here, we will just repeat the basics. Agda [6]
is a theorem prover and dependently typed programming language based on
Martin-Löf type theory. Propositions are represented as types, and a value of
a type corresponds to a proof of the preposition. Agda features a type checker,
a termination checker, and a coverage checker. The termination and coverage
checker guarantee that every program in Agda is total. Partiality would make
Agda inconsistent as a proof language.

Agda has a hierarchy of types for describing sets of types themselves, for
example, the set of all types in the usual sense is called in Agda. The type

includes all of plus types that refer to itself. For example, in our
library, we use to define structures that have as one of its components
(e.g. below). Agda has function types, inductive types,
types, and dependent function types. A dependent function type (x : A) → B
represents the type of functions mapping an element x : A to an element of B
where B may depend on x. The variant form {x : A} → B of the dependent
function type allows us to omit argument x when applying the function; Agda



92 S. Adelsberger et al.

will try to infer it from typing information, but we may still apply it explicitly
as {x = a} or {a} if Agda cannot deduce it automatically.

To represent infinite structures we use Agda’s types,
equipped with size annotations [16]. The size annotations are used to show pro-
ductivity of corecursive programs [2], which we define using copattern match-
ing [3].

State-Dependent IO. In previous work [1], we gave a detailed introduction to
interactive programs, objects, and state-dependent versions of interactive pro-
grams and objects in dependent type theory. The theory of objects in dependent
type theory is based on the IO monad in dependent type theory, developed by
Peter Hancock and the second author of this article [14]. The theoretical basis
for the IO monad was developed by Moggi [25] as a paradigm for representing
IO in functional programming. The idea of the IO monad is that an interactive
program has a set of commands to be executed in the real world. It iteratively
issues a command and chooses its continuation depending on the response from
the real world. Formally, our interactive programs are coinductive, i.e. infinitely
deep, Peterson-Synek trees [28], except that they also have the option to ter-
minate and return a value. This allows for monadic composition of programs,
namely sequencing one program with another program, where the latter pro-
gram depends on the return value of the first program. In the state-dependent
version [1], both the set of available commands and the form of responses can
depend on a state, and commands may modify the state.

We introduce now an IO language for GUIs. It will include also console com-
mands and calls to external services, such as database queries. An IO language,
which we call IO interface, is a record consisting of commands a program can
issue, and responses the real world returns in response to these commands.

The fields of this record type and are its projections. They
can be applied also postfix using the dot notation: if P: , then P:

. To improve readability we omit in records bureaucratic state-
ments , and .

3 State-Dependent GUI Applications

Our library separates the structure and appearance of an application’s GUIs (the
view) from the handlers that process the events produced by user interactions
(the controller). This separation of concerns is similar to current practice with
model-view-controller frameworks [20] and graphical GUI-builder tools [34]. A
distinguishing feature of our approach is that handlers are dependently typed
with respect to the GUIs they interface with. This means that GUI specifications
can be programmatically generated and dynamically modified (e.g. a button



Developing GUI Applications in a Verified Setting 93

may be dynamically added at runtime) without sacrificing the static guarantee
of consistency with the handler objects. As a GUI dynamically changes, the
interfaces of the corresponding handler objects (which methods exist and their
types) dynamically change in response. Such dynamically changing GUIs are not
well supported by the GUI-builder model, and the consistency guarantees are
not provided by programmatic MVC frameworks.

In the rest of this section, we introduce our library. In Sect. 3.1, we provide an
introductory example that illustrates how to build a simple state-dependent GUI
application. In Sect. 3.2, we turn to the implementation of the library, introduc-
ing the basic command interface provided by the library for creating and inter-
acting with GUIs. In previous work, we have developed a representation of state-
dependent objects, which we briefly describe in Sect. 3.3. This representation is
the basis for GUI event handlers in our library. We say that our library supports
state-dependent GUI applications since the GUI can dynamically change based
on the state of the model and since the GUI is itself a dynamically changing
state of the handler objects. We use state-dependent objects to define generic
handlers in Sect. 3.4 whose interfaces are generated from the GUIs they depend
on. We also introduce a data type that collects all of the components of a GUI
application together. Finally, in Sect. 3.5, we introduce an example of a GUI
having infinitely many states, where each state differs in the GUI elements used.

3.1 Introductory Example

Consider a GUI application with two states. In one state, the GUI has a sin-
gle button labelled “OK”, in the other it also has a button labelled “Cancel”.
Pressing the OK button in either state switches to the other state.

Creating a GUI application in our library consists of specifying the GUI,
including defining the GUI elements and their properties (e.g. the color of a
button), then defining the handler objects for events those elements can produce.
For our example, we first specify the GUI for the first state, which consists of
a frame and a single button labelled “OK”. Then, we specify the GUI for the
second state by adding a button labelled “Cancel” to . Both
and are of type .

Finally, we specify the initial properties of GUIs (e.g., properties for
), specifically the color of the button labels and the frame

layout.



94 S. Adelsberger et al.

Observe that the types of the property specifications are dependent on the
corresponding GUI values, ensuring consistency between the two.

Next we define handlers for our application’s two GUI states. The handler
for defines a method that handles the event generated by clicking the
OK button. The handler body is an interactive IO program that prints a string
indicating the button click, then uses the function to set the currently
active GUI to , updating the properties and handler accordingly.

This is an example of copattern matching [3]: The type of is a
which has one field . We define by determining the value for this
field, which is in postfix notation written as . . The result is a function
having further argument bt, so we apply it to this argument and define the result.
Although unused in , bt provides access to enclosing GUI elements, such
as the GUI’s frame.

Note that the type of the handler object is parameterized by
the corresponding GUI value, in this case, . The type of the handler
object ensures that it has methods available to handle each kind of event that
the given GUI can generate.

The hidden argument {i} is a size parameter required since handler objects
are coinductive data types. It is used to check that the definition of the handler
is productive, which is the copattern matching dual to termination checking.

The handler for defines a method that uses pattern matching on
the argument to determine which button was clicked; this is an example of
combined pattern/copattern matching.

If the click originated from the first button (OK), the active GUI is changed
back to . Otherwise, if it originated from the second button (Cancel),
then is retained using the library function .

Finally, we can compile our GUI application into a program in Agda.
is a type that represents IO programs in Haskell. This is done by call-

ing with the arguments , and . The
compiler of Agda translates the resulting program via special Haskell
FFI commands present in Agda into a GUI Haskell program which makes use
of the wxHaskell [37] GUI toolkit.



Developing GUI Applications in a Verified Setting 95

3.2 GUI Interface

The type defines commands for interacting with the console, the GUI
(e.g., changing a label), and communicating with a database, and the responses
to those commands. Here, we only list the commands used later in this paper
(console commands), see the repository [4] for the full list:

3.3 State-Dependent Interfaces

The handling of GUI commands will be implemented with state-dependent
objects where the interface may change according to the state of the object.
An object is similar to an interactive program except that it is a server-side pro-
gram. An object can receive commands, and depending on the responses to those
commands it returns a result and changes its internal state. With Agda being
a purely functional language, we model state changes by returning an updated
object together with the regular return value as a pair. In dependent type the-
ory we also have state-dependent objects, where the methods available depend
on the state of the object. Depending on the response for the method call, the
object switches to a new state. So an interface for a state-dependent interface

indicating that it is state-dependent) consists of a set of states, a
set of methods depending on the state, a set of responses depending on states
and methods, and a next state function, which depends on states, methods and
responses:

We note here that a method in this framework is what corresponds to the union
of all the methods together with all their arguments in normal object-oriented
languages. The reason why we can bundle them together is because the result
type can depend on the method, therefore there is no need for separate methods
with separate result types. An for this interface is a program that accepts
calls to objects methods . In response to an object method, it returns



96 S. Adelsberger et al.

a result and an updated . Since this interaction might go on forever, the
definition of an is coinductive.

3.4 Implementation of Generic GUIs

In the previous subsection, we saw that the type of a handler object depends on
the value of the GUI it supports. To help understand how handler objects work,
we start by taking a closer look at the type of generic handler objects.

This library function defines the type of a handler object, given a size index
and a frame that represents the GUI the handler processes events for. As

described in Sect. 3.1, i is used to ensure that the handler is productive, a well-
formedness property of co-inductive definitions.

The type of a handler is a state-dependent object that supports
commands (see Sect. 3.2). The state of the object is the GUI specification; it
is parameterized by a , which determines the interface of the object as
defined below.

We need a type for the methods, which depend on the frame. As mentioned
before all individual methods of an object are bundled together into one single
one. For each individual GUI component such as a button, and each event corre-
sponding to this component, we require one method for handling it. The method
for a component is the sum of all the methods for its events, and the
function creates the sum of all the methods of each component of the frame.
When an individual event is called, it obtains as arguments the parameters of
this call. Since the parameters are part of the method, an event method is the
product of the parameters of this method call together with an element repre-
senting all the components of the frame. It is the task of the user to implement
these methods, when he creates a handler object for a frame definition.

Since a handler object’s interface (i.e. what methods it provides to handle
GUI events) is determined by its state, the interface dynamically updates with
corresponding changes to the GUI specification.

An event handler method is an interactive program that has three possible
return options:



Developing GUI Applications in a Verified Setting 97

In the first case, the GUI remains unchanged. In the second case, we simply
return the changed properties. In the third case we transform the given
into a newly created GUI.

The function carries out the calculation of the new successor
state after a method is finished. The state is updated only in case of the return
option

3.5 A GUI with an Unbounded Number of States

In this subsection, we present an introductory example that both illustrates
the use of the data type and demonstrates that we can develop GUIs with
infinitely many states where each state differs in the GUI elements used. The
example is a GUI application with n buttons, where clicking any button expands
the GUI into one with n + 1 buttons.1 The helper function constructs a
GUI with n buttons, while defines its corresponding properties (a black
label for each button organized in a one-column layout). The function
constructs a GUI application with n buttons combining the GUI, its properties,
and a handler that for any button press replaces the GUI application with a new
one containing n + 1 buttons.

The type represents a GUI application. It is a record with three fields:
defines the GUI, specifies its properties, and contains the

GUI’s handler object, whose field is invoked when a button is clicked.
The argument m to the handler method indicates which button was clicked,
but in this case, we ignore it since clicking any button updates the GUI to add
one more button. Note that the GUI application defined above is dynamically
expanding, which is difficult to design using standard GUI builders since they
allow constructing only finitely many GUIs for a particular application.
1 The library contains a more interesting example [4] where clicking button bi extends

the GUI with i additional buttons.



98 S. Adelsberger et al.

4 Proof of Correctness Properties of GUIs

We reason about GUI applications by reasoning about the GUI’s states. The
state of a GUI is given by a frame, its properties, and its handler object. When
an event is triggered, an IO program is executed, and the return value determines
which state to transition to. Thus, we can reason about the transition graph for
a GUI application by reasoning about the exit points of the handler. However,
a complication is that IO programs are coinductive, meaning they may have an
unbounded number of interactions and never terminate. Ideally, IO programs
for event handlers would be inductive since we typically want event handlers
to always terminate so that the GUI is responsive. However, this is much more
difficult to integrate within a general GUI framework since GUI applications are
naturally coinductive.

4.1 A Simulator for GUI Applications

To cope with coinductive IO programs in event handlers, we do not reason
about GUI states directly, but instead introduce an intermediate model of a GUI
application, where the IO programs in handlers are unrolled into potentially
infinitely many states. This model is itself coinductive and we cannot reason
about it directly since an infinite sequence of IO commands will induce an infinite
number of states. Therefore, we instead reason about finite simulations of the
GUI model.

To define the model, we first introduce a data type to indicate whether an
event handler has been invoked or not. The constructor indicates that
the handler has not yet been invoked, while indicates the handler has been
invoked. The constructor has as an additional argument pr corresponding
to the IO program still to be executed.

The handler is parameterized by the size value . Sizes are ordinals that
limit the number of times a coinductive definition can be unfolded. There is
an additional size for coinductive definitions that can be unfolded arbitrarily
many times. A more detailed explanation of sizes and can be found in Sect. 3
of [17].

Now, a state in the GUI model can be represented by the GUI, its properties,
the handler, and the invocation state.



Developing GUI Applications in a Verified Setting 99

Using this model, we can simulate the execution of GUI applications. To
do this, we define a simulator for state-dependent IO programs. Depending on
the state of the GUI model, the simulator must trigger GUI events or provide
responses to IO commands, then move to the next state in the model. The
following function defines the available actions at each state in the model.

If the model is in a state, the event simulator can trigger an event
drawn from the methods supported by the GUI interface. If the model is in a

state, then there are two sub-cases: If the IO program has not finished, the
program has the form . This means that the next real-world command
to be executed is c and once the world has provided an answer r to it, the
interactive program continues as (f r). (Previously we used instead of ,
but has now become a keyword in Agda.) In this case the GUI is waiting on
a response to the IO command , which the event simulator must provide. The
second subcase is, if the remaining IO program has already returned. Then the
simulator can take the trivial action to return to the state.

Using this definition, we can define a transition function for the simulator
with the following type:

That is, given a model state and an action of the appropriate type, we can
transition to the next model state.

To simplify proofs over the model, the transition function makes a few opti-
mizations. First, in the case where the new state corresponds to a completed IO
program, we can skip to the next state directly rather than requiring
this unit step be made explicitly. Second, we reduce sequences (shorter than a
given finite length) of consecutive trivial IO actions, such as print commands,
into single transition steps.

We can define a state-dependent IO interface (an element of )
for the simulator (see Sect. 2), which incorporates the previous definitions in a
straightforward way.

Using this, we define a relation between states s and s′ of the GUI, which
states that s′ is reachable from s if running the simulator from s can produce s′.



100 S. Adelsberger et al.

Here, expresses that we can get from s to s′ in a finite number of
steps. It is therefore defined inductively which allows to reason about it induc-
tively. Finally, we introduce a one-step relation that states that s is reachable
from s′ by executing one step of the simulator.

The correctness proofs using the simulator are included in the code reposi-
tory [4].

5 State Transition Properties

In this section, we demonstrate the definition and proof of properties relating to
state transitions using an example from the healthcare domain. In Sect. 5.1, we
consider the property that any path from one state to another in a GUI appli-
cation must pass through a given intermediate state. In Sect. 5.2, we consider
the property that all paths through a GUI application end up in the same final
state. In both cases, the main challenge is to express the property to be proved,
while the proof is relatively straightforward.

Such properties are well covered by existing approaches based on model
checking [22]. However, the advantage of our approach is that we prove such
properties for the implementation of the GUI application directly, rather than
for an abstracted model of it.

Examination

Prescribe 
painkillers

Check X-ray 
pregnancy risk

X-Ray Treatment

Decide on
check ups

Patient
in pain?

Which
sex?

yes

no

female

male

Fig. 1. Process model of a fracture treatment process.

5.1 Intermediate-State Properties

Consider the healthcare process illustrated in Fig. 1, which is adapted from [24].
The relevant part of the process is highlighted. Specifically, it consists of four
states corresponding to steps in the process: an initial examination, performing
an X-ray, assigning treatment, and a risk check for pregnancy in which the
patient is asked about a potential pregnancy. The last state is only performed for
female patients. In this subsection, we will build a GUI application abstracting



Developing GUI Applications in a Verified Setting 101

this part of the process and prove that all paths from the initial examination
to treatment pass through the intermediate X-ray state. We define a generic
mechanism for expressing such intermediate-state properties, which illustrates
how other properties on GUI applications can be defined.

Below is the straightforward specification of the GUI for the initial examina-
tion state. The GUIs for other states are defined similarly.

The controller for the initial examination state is shown below. After pressing
the button, the system interactively asks whether the patient is female or male. If
the answer is female, the controller invokes to change the application
to the pregnancy-test state. (A version which includes a check of the correctness
of the user input is discussed in [5].) Otherwise, the controller changes to the
X-ray state. This is an example of a data-dependent GUI with interaction.

The GUI and controller for the X-ray state is not shown, but it provides a
single button that when pressed transitions to the treatment state.

To reason about our GUI application, we define the corresponding coinduc-
tive model as described in Sect. 4.1. We first model the initial examination state
as along with two intermediate states corresponding to interactions
with the user: is the state reached after querying the sex of the
patient, while is the state reached after the user provides a response.

Similarly, we model the perform-X-ray state as and the assign-
treatment state as .

We expect that our GUI application implements the healthcare process in
Fig. 1. As mentioned, we want to ensure that we never assign a treatment with-
out first performing an X-ray. To support stating such a property, we define



102 S. Adelsberger et al.

a predicate (path s′), which expresses that a path from states s to s′

passes through a state t. The path from s to s′ is a member of the type .
The predicate is defined inductively, where the constructors and
are the inductive forms of the usual and constructors for coinductive
programs.

In the case, the current state is either equal to t or all subsequent states
must pass through the t. In the case, the path is the trivial path, and
therefore the current state must be equal to t.

Now we can show that any path through the GUI application from the initial-
examination state to the treatment state passes through the X-ray state. We need
to prove this property not only for the initial state but also for all intermediate
states. The proof for the initial state is shown below by matching on and
showing that all subsequent states have this property. We match the case
with the empty case distinction (indicated by ()), which is always false.

Cases for most of the other states are similarly straightforward. However, we
show in detail the interesting case of in which we need to make a
case distinction on the value of ( str). For this, we use the magic
construct, which allows extending a pattern by matching on an additional expres-
sion. The symbol expresses that the previous pattern is repeated, extended
by a pattern matching on the -expression.

The main difficulty in this proof is to recognize the need for the intermedi-
ate states and . Once these intermediate states are made
explicit and the property is defined, the proof itself is straightforward.

5.2 Final-State Properties

Another property we might want to prove about our healthcare process applica-
tion is that all paths eventually lead to a treatment. To support the definition
and proof of such properties, we define the following inductive data type, which
states that all paths from an initial state start eventually reach a state final .



Developing GUI Applications in a Verified Setting 103

The constructors for this type state that the property holds if either the
current state is the state to be reached ( ) or all subsequent states
have this property ( ). Since the data type is inductive, this expresses that
eventually the final state is reached.

We now show that in the GUI application defined in Sect. 5.1, the treatment
state is always reached. Again we prove this property for all states between
the initial state and the treatment state. Once again, the interesting case is

, where we need to make a case distinction on as before.

Here we see the benefits of defining GUIs in a generic way—proving properties
about them is straightforward since one can follow the states of the GUI as given
by our data type.

6 Related Work

In our previous article [1], we introduced an Agda library for object-based pro-
grams. We demonstrated the development of basic, static GUIs. In this paper,
we have extended this work by adding a declarative specification of GUIs and
the GUI-creation process is now automatic. We also demonstrate the verification
of GUI applications in Sects. 4–5.

We have developed an alternative version of this library to use a simpler,
custom-built backend [5], rather than the wxHaskell backend used in this paper.
The newer backend supports a much simpler version of the GUI interface types
described in Sect. 3.2 and the handler objects described in Sect. 3.4 (in fact,
much of the complexity of these types is not exposed in this paper for pre-
sentation reasons; for full details, see the library [4]), which simplifies proofs
and improves the scalability of our approach. However, the more complex app-
roach described in this paper is more generic and has the advantage of being
built on an existing and widely used GUI toolkit (wxWidgets). In particular,
this version supports GUIs with nested frames, separates properties from the
GUIs they apply to, allows modifying properties without redrawing the entire
GUI, and supports adding new components from wxWidgets relatively easily.
Additionally, the wxHaskell backend supports concurrency and integrates bet-
ter with the host operating system than our custom backend. The downside is
that wxHaskell is an inherently imperative and concurrent toolkit, which makes



104 S. Adelsberger et al.

interfacing with Agda non-trival and leads to the increased complexity of this
version (for the technical details, again see the library [4]). In addition, in [5], we
add a representation of business processes in Agda and automatically compile
such processes into executable GUIs. Taking advantage of the simpler design,
in [5] we also implement a larger, realistic case study but proved only reachabil-
ity statements, whereas in this paper we perform a simpler case study but also
cover intermediate state properties.

Functional Reactive Programming (FRP) is another approach for writing
GUIs in functional languages [35], where a behaviour is a function from time
to values, and an event is a value with occurrence time. In connection with
dependent types, FRP has been studied from the foundational perspective [31]
and for verified programming [18].

Formlets [12] are abstract user interface that define static, HTML based
forms that combine several inputs into one output. However, they do not support
sequencing multiple intermediate requests.

Formalizations in Isabelle of end-user-facing applications have been studied
for distributed applications [8] and conference management systems [19]. How-
ever, only the respective core of the server is verified.

Process Models in the Healthcare Domain were specified using Declare [24],
also with extensions to model patient data [26]. In the current paper, in contrast
to [11,24,26] and other approaches, we apply formal verification using a theorem
prover (Agda) and provide machine-checked proofs. We found only two papers
using formal specifications: Debois [13] proves in Isabelle a general result of
orthogonality of events. Montali et al. [27] developed models via choreographies.
But the latter is limited to finite systems and doesn’t deal with interactive events.

Furthermore, healthcare processes are safety critical and testing GUI appli-
cations is a major challenge [21]. Sinnig et al. [32] argued that it is important to
formalize business processes together with the design information/requirements
of the user interface (e.g. GUI) in a single framework. This is directly supported
by our library and a benefit of our use of dependently typed GUI programming.

Verification of user interfaces for medical devices. An approach to the verifi-
cation of user interfaces based on a combination of theorem proving and model
checking is presented in [15]. In particular, [15] focuses on the problem of how to
demonstrate that a software design is compliant with safety requirements (e.g.,
certain FDA guidelines). Their solution is elegant in their combined use of model
checking, theorem proving, and simulation within one framework. A difference
to our work is that [15] verifies models of devices while we verify the software
(e.g., handlers of GUI events) directly. Furthermore, we allow the verification of
GUI software with an infinite number of states which is not the focus of [15].

Idris and Algebraic Effects. Bauer and Pretnar [7] introduced algebraic
effects. Brady [9] adapted this approach to represent interactive programs in
Idris [10]. In [1], Sect. 11 we gave a detailed comparison of the IO monad in
Agda and algebraic effects in Idris and a translation between the two approaches.
Regarding GUIs, we only found a forum post [29], which shows that GUI pro-



Developing GUI Applications in a Verified Setting 105

gramming should be possible using the FFI interface of Idris but has yet to be
performed.

7 Conclusion and Future Work

Verification of GUI-based programs is important because they are widely used,
difficult to test, and many programs are safety critical. We demonstrate a new
approach to generically representing and verifying GUI applications in Agda. Our
approach makes essential use of dependent types to ensure consistency between
the declarative GUI specification and the rest of the system. We demonstrated
a generic mechanism for expressing intermediate-state properties. For example,
we proved that between the initial examination and the treatment, the GUI
application must pass through the intermediate X-ray state. We also considered
the property that all paths through a GUI application arrive at a particular
final state. Finally, we presented the generation of working GUI applications,
including GUI programs with an unbounded number of states.

A limitation of our current approach is that, although the underlying GUI
framework supports concurrency, we do not have a way to represent or reason
about this explicitly in our library. Concurrency is important for defining GUI
applications that remain responsive while a long-running event handler executes.
We are working on an extension to our library that allows introducing and
reasoning about concurrency, such as defining multiple threads and proving that
they are fairly executed.

Acknowledgments. The first and second author were supported by the project
CA COST Action CA15123 European research network on types for programming
and verification (EUTYPES). The second author was additionally supported by
CORCON (Correctness by Construction, FP7 Marie Curie International Research
Project, PIRSES-GA-2013-612638), COMPUTAL (Computable Analysis, FP7 Marie
Curie International Research Project, PIRSES-GA-2011-294962), CID (Computing
with Infinite Data, Marie Curie RISE project, H2020-MSCA-RISE-2016-731143). The
third author was supported by AFRL Contract FA8750-16-C-0044 under the DARPA
BRASS program.

References

1. Abel, A., Adelsberger, S., Setzer, A.: Interactive programming in Agda - objects
and graphical user interfaces. J. Funct. Program. 27, 38 (2017). https://doi.org/
10.1017/S0956796816000319

2. Abel, A., Pientka, B.: Well-founded recursion with copatterns and sized types. JFP
26, e2 (2016). iCFP 2013 special issue

3. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: POPL 2013, pp. 27–38. ACM, New York (2013)

4. Adelsberger, S., Setzer, A., Walkingshaw, E.: Deveoping GUI applications in a ver-
ified setting (2017). https://github.com/stephanpaper/SETTA18, git respository

https://doi.org/10.1017/S0956796816000319
https://doi.org/10.1017/S0956796816000319
https://github.com/stephanpaper/SETTA18


106 S. Adelsberger et al.

5. Adelsberger, S., Setzer, A., Walkingshaw, E.: Declarative GUIs: simple, consistent,
and verified. In: International Conference on Principles and Practice of Declarative
Programming (PPDP). ACM (2018)

6. Agda Community: Agda Wiki (2017). http://wiki.portal.chalmers.se/agda
7. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers (2012).

http://arxiv.org/abs/1203.1539, arXiv
8. Bauereiß, T., Gritti, A.P., Popescu, A., Raimondi, F.: CoSMeDis: a distributed

social media platform with formally verified confidentiality guarantees. In: 2017
Symposium on Security and Privacy, pp. 729–748. IEEE (2017)

9. Brady, E.: Resource-dependent algebraic effects. In: Hage, J., McCarthy, J. (eds.)
TFP 2014. LNCS, vol. 8843, pp. 18–33. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-14675-1 2

10. Brady, E.: Type-Driven Development with Idris, 1st edn. Manning Publications,
Greenwich (2017)

11. Chiao, C.M., Künzle, V., Reichert, M.: Towards object-aware process support in
healthcare information systems. In: eTELEMED 2012. IARIA, Delaware (2012)

12. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: The essence of form abstraction.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 205–220. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-1 15

13. Debois, S., Hildebrandt, T., Slaats, T.: Concurrency and asynchrony in declarative
workflows. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 72–89. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-23063-4 5

14. Hancock, P., Setzer, A.: Interactive programs in dependent type theory. In: Clote,
P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 317–331. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44622-2 21

15. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Verification of user inter-
face software: the example of use-related safety requirements and programmable
medical devices. IEEE Trans. Hum.-Mach. Syst. 47(6), 834–846 (2017)

16. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL 1996, pp. 410–423. ACM, New York (1996)

17. Igried, B., Setzer, A.: Defining trace semantics for CSP-Agda, 30 January
2018. http://www.cs.swan.ac.uk/∼csetzer/articles/types2016PostProceedings/
igriedSetzerTypes2016Postproceedings.pdf. Accepted for Publication in Postpro-
ceedings TYPES 2016, 23 p.

18. Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as types, proofs
as functional reactive programs. In: PLPV 2012. ACM, New York (2012)

19. Kanav, S., Lammich, P., Popescu, A.: A conference management system with ver-
ified document confidentiality. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 167–183. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 11

20. Krasner, G.E., Pope, S.T.: A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80. JOOP 1(3), 26–49 (1988)

21. Memon, A.M.: GUI testing: pitfalls and process. Computer 35(8), 87–88 (2002)
22. Memon, A.M.: An event-flow model of GUI-based applications for testing. Softw.

Test. Verif. Reliab. 17(3), 137–157 (2007)
23. Memon, A.M., Xie, Q.: Studying the fault-detection effectiveness of GUI test cases

for rapidly evolving software. IEEE Trans. Softw. Eng. 31(10), 884–896 (2005)

http://wiki.portal.chalmers.se/agda
http://arxiv.org/abs/1203.1539
https://doi.org/10.1007/978-3-319-14675-1_2
https://doi.org/10.1007/978-3-319-14675-1_2
https://doi.org/10.1007/978-3-540-89330-1_15
https://doi.org/10.1007/978-3-319-23063-4_5
https://doi.org/10.1007/978-3-319-23063-4_5
https://doi.org/10.1007/3-540-44622-2_21
http://www.cs.swan.ac.uk/~csetzer/articles/types2016PostProceedings/igriedSetzerTypes2016Postproceedings.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/types2016PostProceedings/igriedSetzerTypes2016Postproceedings.pdf
https://doi.org/10.1007/978-3-319-08867-9_11
https://doi.org/10.1007/978-3-319-08867-9_11


Developing GUI Applications in a Verified Setting 107

24. Mertens, S., Gailly, F., Poels, G.: Enhancing declarative process models with DMN
decision logic. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.)
CAISE 2015. LNBIP, vol. 214, pp. 151–165. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-19237-6 10

25. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
26. Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints

in Declare. In: SAC 2013, pp. 1391–1396. ACM (2013)
27. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:

Declarative specification and verification of service choreographies. ACM Trans.
Web 4(1), 3:1–3:62 (2010)

28. Petersson, K., Synek, D.: A set constructor for inductive sets in Martin-Löf’s type
theory. In: Pitt, D.H., Rydeheard, D.E., Dybjer, P., Pitts, A.M., Poigné, A. (eds.)
Category Theory and Computer Science. LNCS, vol. 389, pp. 128–140. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0018349

29. Pinson, K.: GUI programming in Idris? (2015). https://groups.google.com/
forum/#!topic/idris-lang/R 7oixHofUo, google groups posting

30. Ruiz, A., Price, Y.W.: Test-driven GUI development with TestNG and Abbot.
IEEE Softw. 24(3), 51–57 (2007)

31. Sculthorpe, N., Nilsson, H.: Safe functional reactive programming through depen-
dent types. In: ICFP 2009, pp. 23–34. ACM (2009)

32. Sinnig, D., Khendek, F., Chalin, P.: Partial order semantics for use case and task
models. Formal Asp. Comput. 23(3), 307–332 (2011)

33. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open
source software. Empir. Softw. Eng. 19(6), 1665–1705 (2014)

34. Valaer, L.A., Babb, R.G.: Choosing a user interface development tool. IEEE Softw.
14(4), 29–39 (1997)

35. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In:
PLDI 2000, pp. 242–252. ACM, New York (2000)

36. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Softw. 31(3), 79–85 (2014)

37. wiki: WxHaskell. https://wiki.haskell.org/WxHaskell. Accessed 9 Feb 2017

https://doi.org/10.1007/978-3-319-19237-6_10
https://doi.org/10.1007/978-3-319-19237-6_10
https://doi.org/10.1007/BFb0018349
https://groups.google.com/forum/#!topic/idris-lang/R_7oixHofUo
https://groups.google.com/forum/#!topic/idris-lang/R_7oixHofUo
https://wiki.haskell.org/WxHaskell


Interleaving-Tree Based Fine-Grained
Linearizability Fault Localization

Yang Chen1,2, Zhenya Zhang3, Peng Wu1,2(B), and Yu Zhang1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

wp@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 National Institute of Informatics, Tokyo, Japan

Abstract. Linearizability is an important correctness criterion for con-
current objects. Existing work mainly focuses on linearizability verifi-
cation of coarse-grained traces with operation invocations and responses
only. However, when linearizability is violated, such coarse-grained traces
do not provide sufficient information for reasoning about the underlying
concurrent program faults. In this paper, we propose a notion of critical
data race sequence (CDRS), based on our fine-grained trace model, to
characterize concurrent program faults that cause violation of lineariz-
ability. We then develop a labeled tree model of interleaved program
executions and show how to identify CDRSes and localize concurrent
program faults automatically with a specific node-labeling mechanism.
We also implemented a prototype tool, FGVT, for real-world Java con-
current programs. Experiments show that our localization technique is
effective, i.e., all the CDRSes reported by FGVT indeed reveal the root
causes of linearizability faults.

Keywords: Linearizability · Bug localization · Concurrency
Testing

1 Introduction

Localization of concurrency faults has been a hot topic for a long time. Multiple
trials on a concurrent program with the same inputs may result in nondetermin-
istic outputs. Hence, it is non-trivial to decide whether a concurrent program is
buggy. Moreover, even if a concurrent program is known to contain a bug, it is
difficult to reproduce the bug or to determine its root cause.

Efforts have been devoted to addressing the challenge of the localization of
concurrency faults. The very basic way is to exhaustively explore the thread
schedule space to replay and analyze the buggy executions. A thread schedule
is usually described as a sequence of thread identifiers that reflects the order

Z. Zhang—The work was partially done when the author was a student at the
Institute of Software, Chinese Academy of Sciences.

c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 108–126, 2018.
https://doi.org/10.1007/978-3-319-99933-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_7&domain=pdf


Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 109

of thread executions and context switches. In [5,7,26], the thread schedule in a
buggy execution is recorded and then replayed to reproduce the same bug. An
execution of a concurrent program can be represented as a fine-grained trace,
which is defined as a sequence of memory access instructions with respect to a
specific thread schedule. In [14], fine-grained traces and correctness criteria are
encoded as logical formulas to diagnose and repair concurrency bugs through
model checking. Generally speaking, such fine-grained analysis suffers from the
well-known state space explosion problem. Acceleration techniques have been
presented to address this problem with, e.g., heuristic rules [2] or iterative context
bounding [20]. However, most of these works aim at general concurrency faults,
without cares about their nature or root causes.

In this paper, we focus on linearizability faults. Linearizability [12] is a
widely accepted correctness criterion for concurrent data structures or con-
current objects. Intuitively, it means that every operation on a shared object
appears to take effect instantaneously at some point, known as a linearization
point, between the invocation and response of the operation, and the behavior
exposed by the sequence of operations serialized at their linearization points
must conform to the sequential specification of the shared object.

More attentions have been paid on linearizability verification recently [3,4,
13,17,18]. In these works, an execution of a concurrent program is represented as
a coarse-grained trace, which is defined as a partial order set of object methods.
The basic approach of linearizability checking is to examine whether all the
possible topologically sorted sequential traces satisfy the correctness criterion
of the shared object. This approach also suffers from the state space explosion
problem. Acceleration strategies have been proposed in these works to address
this problem, too. However, since the coarse-grained trace model concerns only
method invocations and responses, these techniques cannot determine the root
causes of linearizability faults.

It is worth mentioning that data races and linearizability faults are different
but related concepts. The occurrence of linearizability faults is due to the exis-
tence of data races. But not all the data races are critical to the linearizability
faults. In this paper, we propose a notion called Critical Data Race Sequence
(CDRS ) based on the fine-grained trace model. Intuitively, a CDRS contains
a sequence of data races that can decisively cause a linearizability fault in a
concurrent program. Thus, the existence of a CDRS implies that the concurrent
program can potentially produce a non-linearizable trace. In order to identify a
CDRS, we model all the possible fine-grained traces of a concurrent execution as
an interleaving tree, where each node corresponds to a data race, and each path
from the root to a leaf node corresponds to a fine-grained trace. We label each
node with a pre-defined symbol, depending on the linearizability of all the paths
passing through the node. Then, the existence of a CDRS can be determined
based on certain pattern of the node sequences in the labeled interleaving tree.

In order to overcome the state space explosion problem, we divide the local-
ization process into two levels: the coarse-grained level and the fine-grained level.
On the coarse-grained level, a minimum test case is to be synthesized that



110 Y. Chen et al.

Fig. 1. Labels of nodes

Table 1. Abbreviations

CDRS HLDR CAS FGVT

Critical Dara Race Sequence High Level Data Race Compare And Swap Fine-Grained VeriTrace

contains a sufficiently small number of operations to trigger a linearizability
fault [29]. With such a small test case, the number of memory access instruc-
tions examined at the fine-grained level is greatly reduced. Together with the
linearizability checking technique [18] and the coarse-grained linearizability fault
localization technique [29], the overall localization process is shown in Fig. 1,
where stage C is concerned by this paper.

For the brevity of presentation, Table 1 lists the abbreviations used through-
out the paper.
Contributions. The main contributions of this paper are as follows:

– We extend the traditional coarse-grained trace model to a fine-grained trace
model by including memory access events. We also extend the notion of lin-
earizability onto fine-grained traces.

– We propose the notion of Critical Data Race Sequence (CDRS), which plays
a key role in characterizing the data races that can decisively result in lin-
earizability faults.

– We develop a labeled interleaving tree model that contains all the possible
fine-grained traces of a concurrent execution. Each node is marked automat-
ically in a way that can reflect the existence of a CDRS through certain
pattern.

– We implement a prototype tool, FGVT, for real-world Java concurrent pro-
grams. Experiments show that FGVT is rather effective in that all the
CDRSes reported by FGVT indeed reveal the root causes of linearizability
faults.

Related Work. Automated linearizability checking algorithms have been pre-
sented in [4,28], but exhibit a performance bottleneck. Based on [28], optimized
algorithms have been proposed in [13,18] through partial order reduction and
compositional reasoning, respectively. Model checking has been adopted in [3,8]
for linearizability checking with simplified first-order formulas, which can help
improve efficiency. Fine-grained traces have been introduced in [17] to accelerate



Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 111

linearizability checking. These works lay a firm foundation for the localization
of linearizability faults.

Active testing approaches have been proposed for concurrency bug local-
ization based on bug patterns. The characteristics of bug patterns have been
discussed in [9,19] in details. Memory access patterns have been proposed in
[16,23,24] for ranking bug locations. A fault comprehension technique has fur-
ther been presented in [22] for bug patterns. Definition-use invariants have been
presented in [25] for detecting concurrency bugs through pruning and ranking
methods. A constraint-based symbolic analysis method has been proposed in
[14] to diagnose concurrency bugs.

Some other concurrency bug localization techniques are based on the bug
localization techniques for sequential programs. In [10], concurrent predicates
are derived by an assertion mechanism to determine whether a data race causes
a concurrency bug. Concurrent breakpoints, an adaption of the breakpoint mech-
anism, have been proposed in [21] for concurrent program debugging.

This paper aims at linearizability faults in fine-grained traces. It present a
novel localization approach based on interleaving trees, which we propose for
characterizing fine-grained traces in an effective manner. Hence, it opens a pos-
sibility to exploit the existing tree-based search techniques, e.g., partial order
reduction, for efficient localization of the linearizability faults.
Organization. The rest of the paper is organized as follows. Section 2 presents
an example to illustrate our motivation. Section 3 introduces our fine-grained
trace model. Section 4 presents the key notion of CDRS based on our fine-grained
trace model. Section 5 shows the labeled interleaving tree model, and the patterns
of CDRSes. Section 6 reports the implementation and experiments about our
prototype tool FGVT. Section 7 concludes the paper with future work.

2 Motivating Example

In this section, we illustrate the motivation of this work through a buggy con-
current data structure PairSnapShot [17].

Figure 2 shows a simplified version of PairSnapShot, where it holds an array
d of size 2. A write(i,v) operation writes v to d[i], while a read → 〈v0, v1〉
operation reads the values of d[0] and d[1], which are v0 and v1, respectively.

A correctness criterion of PairSnapShot is that read should always return
the values of the same moment. However, Fig. 3 shows a concurrent execution in
which the return values of read do not exist at any moment of the execution.
In Fig. 3, time moves from left to right; dark lines indicate the time intervals of
operations and the short vertical lines at the both ends of a dark line represent
the moment when an operation is invoked and returned, respectively. A label
t : 〈v0, v1〉 indicates that at the moment t, d[0] is v0 and d[1] is v1. The opera-
tion read on Thread 2 returns a value 〈1, 2〉, which is not consistent with value
of any moment.



112 Y. Chen et al.

PairSnapShot:

int d[2];

write(i,v){

d[i] = v; #1

}

Pair read(){

while(true){

int x = d[0]; #2

int y = d[1]; #3

if(x == d[0]) #4

return <x,y>;

}

}

Fig. 2. A concurrent data structure:
PairSnapShot

The reason of this violation can be found
out by enumerating the possible executing
orders of memory access events which is
labeled by # in Fig. 2. One possible order
that can trigger the violation is illustrated
in Fig. 4, in which “x” indicate the execut-
ing moments of the corresponding memory
access events. Actually, this model check-
ing approach is the most common way to
locate the root cause of concurrency bugs,
and has been studied in many existing lit-
eratures. Here, our focus is not on how to
find this fine-grained executing order, but
to study how the thread execution order,
which causes data race, influences the final result of linearizability.

Fig. 3. A buggy trace of PairSnapShot

Fig. 4. An executing order of memory access events triggering the violation in Fig. 3

3 Preliminary

In this section, we extend the traditional coarse-grained trace model [3], recalled
in Sect. 3.1, to the fine-grained trace model presented in Sect. 3.2. Compared to
the traditional one, our new model includes memory access instructions such as
read, write and atomic primitive compare-and-swap (CAS). This enables us to
reason about the causes of linearizability faults on the fine-grained level.



Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 113

3.1 Coarse-Grained Trace Model

A trace S is a finite sequence of events e(Arg)〈o,t〉, where e is an event symbol
ranging over a pre-defined set E, Arg represents the list of arguments, o belongs
to a set O of operation identifiers and t belongs to a set T of thread identifiers.
In the coarse-grained trace model, the set E contains the following subsets:

– C contains symbols that represent operation invocation events. An invocation
event is represented as c(va)〈o,t〉 (c ∈ C), where va is the argument of the
operation;

– R contains symbols that represent operation response events. A response event
is represented as r(vr)〈o,t〉 (r ∈ R), where vr is the return value of the opera-
tion.

In this paper we also use C,R to represent the set of the corresponding events
indiscriminately, and symbol e ∈ C∪R to represent an event. The order relation
between events in a trace S is written as ≺S (or ≺), i.e., e1 ≺S e2 if e1 is ordered
before e2 in S. We denote the operation identifier of an event e as op(e), and
thread identifier as td(e). An invocation event c ∈ C and a response event r ∈ R
match if op(c) = op(r), written as c � r. A pair of matching events forms an
operation instance with an operation identifier in O, and we usually represent
such an operation instance as m(va) → vr, where m is the operation name.

A trace S = e1e2 · · · en is well-formed if it satisfies that:

– Each response is preceded by a matching invocation:
ej ∈ R implies ei � ej for some i < j

– Each operation identifier is used in at most one invocation/response:
op(ei) = op(ej) and i < j implies ei � ej

A well-formed trace S can also be treated as a partial order set 〈S,�S〉 of
operations on happen-before relation �S between operations, where S is called a
coarse-grained trace (or coarse-grained history). The happen-before relation �S

is defined as that: assuming two operations O1, O2 in S are formed by c1, r1 and
c2, r2 respectively, then O1 �S O2 if and only if r1 ≺ c2.

Example 1. Figure 3 shows such a well-formed trace: S = cw1crrw1cw2rw2

cw3rw3cw4rrrw4, where cwi and rwi represents the invocation and response events
of the i-th write operation respectively, and cr and rr represent the invocation
and response events of the read operation.

In this example, it is obvious that write(0, 2) �S write(1, 2) �S write(1, 1) �S

write(0, 1), but there is no happen-before relation between the read operation
and any of the write operations.

A coarse-grained trace S is sequential if �S is a total order. We define that
a specification of an object is the set of all sequential traces that satisfy the
correctness criteria of that object. Note that here correctness criterion is specified
by concurrent data structures, such as first-in-first-out rule of FIFO-Queue, first-
in-last-out rule of Stack.



114 Y. Chen et al.

Fig. 5. Five possible sequential traces but none of them satisfies the criterion of
PairSnapShot

Definition 1 (Linearizability). A coarse-grained trace S of an object is lin-
earizable if there exists a sequential trace S′ in the specification of the object such
that:

1. S = S′, i.e., operations in S and S′ are the same;
2. �S ⊆�S′ , i.e., given two operations O1 and O2 respectively in S and S′, if

O1 �S O2, then O1 �S′ O2.

Note that this definition speaks only complete traces, neglecting the existence
of pending operations, that is, the operations without response events. Since
this paper focuses on analysis of linearizability faults rather than detection, we
consider complete traces only.

Example 2. Figure 5 shows 5 sequential traces that satisfy requirements 1 and 2
in Definition 1 with respect to the coarse-grained trace shown in Fig. 3. However,
neither of them satisfies the correctness criteria of PairSnapShot, by which the
read operation should not return 〈1, 2〉, so that neither of them belongs to the
specification set of PairSnapShot. Therefore we can say that the coarse-grained
trace in Fig. 3 is non-linearizable.

3.2 Fine-Grained Trace Model

In the fine-grained trace model, the symbol set E has other subsets of events in
addition to C and R:

– Wr contains symbols that represent the memory writing events. An event of
memory writing is represented as wr(addr, v)〈o,t〉 (wr ∈ Wr), where addr is
the memory location to be modified to a value v;

– Rd contains symbols that represent the memory reading events. An event of
memory reading is represented as rd(addr)〈o,t〉 (rd ∈ Rd), where addr is the
memory location to be read;

– CAS contains symbols that represent some atomic primitives, such as
compare-and-swap (CAS ), in the modern architecture. A CAS event can
be represented as cas(addr, ve, vn)〈o,t〉 (cas ∈ CAS), where addr represents
a memory location, ve and vn are two values. The functionality of this atomic
primitive is that if the value at addr equals to ve, it will be updated to vn
and return true, otherwise it would do nothing but return false.



Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 115

Similarly, in this paper Wr,Rd,CAS also represent the corresponding sets of
events. Let M = Wr ∪ Rd ∪ CAS, events e such that e ∈ M are called memory
access events.

A fine-grained trace Sf is a total order set 〈Sf ,≺〉 of events over set E =
C∪R∪Wr∪Rd∪CAS. We define a projection Fc that maps a fine-grained trace
Sf to a coarse-grained trace Sc by dropping all memory access events in Sf , i.e.,
Fc(Sf ) = Sf |{C,R}. A fine-grained trace Sf is well-formed if it satisfies that:

– Fc(Sf ) is well-formed;
– Let em(Arg)〈o,t〉 be a memory access event in Sf with thread identifier o. Then

o must occur in a pair of matching invocation and response events c(Arg)〈o,t〉

and r(Arg)〈o,t〉 in Sf .
– Let c(Arg)〈o,t〉, r(Arg)〈o,t〉 be a pair of matching invocation and response

events in Sf with thread identifier o. All the memory access events e with
thread identifier o in Sf should satisfy c ≺ e ≺ r.

We claim that all fine-grained traces in this paper are well-formed.

Example 3. Figure 4 presents a well-formed fine-grained trace:
Sf = cw1cr#2#1rw1cw2#1#3rw2cw3#1rw3cw4#1#4rrrw4

and the ≺ relations between events are obvious. Application of Fc to this fine-
grained trace results in the coarse-grained trace in Fig. 3.

Definition 2 (Linearizability of fine-grained trace). The linearizability of
Sf depends on the linearizability of Fc(Sf ), i.e., if Fc(Sf ) is linearizable, then
Sf is linearizable.

We define a predicate Ln to denote the linearizability of Sf , i.e., if Sf is
linearizable, then Ln(Sf ) is true.

4 Critical Data Race Sequence

In this section, we analyze linearizability faults on the fine-grained level, and
propose critical data race sequence (CDRS ) which exposes the root cause of
linearizability faults.

Definition 3 (Concurrent program). Given a coarse-grained trace Sc, we
define a concurrent program P: P is a set of fine-grained traces such that every
fine-grained trace Sf ∈ P can be mapped to a coarse-grained trace S′

c, which
satisfies that:

– S′
c = Sc, i.e., operations in S′

c and Sc are the same;
– �Sc

⊆�S′
c
, i.e., S′

c preserves the happen-before relation in Sc.

Intuitively, a program P maintains all fine-grained traces that preserve the
happen-before relation of Sc. If Sc is sequential, then we say the program P

w.r.t. Sc is sequential. And, if there exists a non-linearizable fine-grained trace
in a program P, we say that P is non-linearizable.



116 Y. Chen et al.

Definition 4 (Linearizability fault). Let P be a non-linearizable concurrent
program. A linearizability fault F is defined as a non-linearizable fine-grained
trace Sf in P.

We define the prefix relation ⊆pre between two fine-grained trace S1 and S2,
that is, S1 ⊆pre S2 says that S1 is a prefix of S2. We use · to represent the
concatenation of a sequence of events and another sequence of events, that is, if
S1 = e1 · · · en and S2 = en+1 · · · en+m, then S1 · S2 = e1 · · · enen+1 · · · en+m.

Definition 5 (High-level data race [1]). Let P be a concurrent program. A
high-level data race (HLDR) D in P is defined as a triple 〈Var , Ie ,Me〉. Here,
Var is a set of one or more shared variables, each corresponding to a memory
location. Ie is a sequence of events. Me is a set of two or more memory access
events e(Arg)〈o,t〉, such that:

– each event e has a distinct thread identifier o;
– each event e accesses some shared variables in Var;
– for any permutation Sp of events in Me , there exists a fine-grained trace S ∈ P

such that Ie · Sp ⊆pre S.

Note that here the elements of Var depends on the algorithm of the object.
The most common situation is that Var contains one shared variable which
is accessed by several events simultaneously. However, there also exist other
situations, such as PairSnapShot in Sect. 2, in which several memory locations
should be considered globally.

Given a HLDR D = 〈Var , Ie ,Me〉 where e1, e2 ∈ Me , we say e1 wins e2 with
respect to a fine-grained trace Sf if Ie · e1e2 ⊆pre Sf .

Given a program P, we define a partial order relation <dr between two HLDRs
D1 = 〈Var1, Ie1,Me1〉 and D2 = 〈Var2, Ie2,Me2〉 as that if Ie1 ⊆pre Ie2, then
D1 <dr D2.

Theorem 1. If there is a linearizability fault, then there is a high-level data
race.

Proof. To prove Theorem 1, it suffices to prove the contrapositive proposition
that if there is no high-level data race, then there is no linearizability fault.
According to Definition 5, the premise, no high-level data race, means that in
Me :

∃Sp ∀S(Ie · Sp �pre S)

Here, if P is a concurrent program, this condition is not satisfied according
to Definition 3. Therefore, the P that satisfies this condition corresponds to a
sequential program, and the sequential trace surely has no linearizability fault.

Definition 6 (Critical data race sequence). Let P be a concurrent program,
F be a linearizability fault. A Critical Data Race Sequence (CDRS) with respect
to F is a total order set of data races {D1,D2, · · · ,Dn} =



Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 117

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈Var1, Ie1,Me1 = {e11, e12, · · · , e1m1}〉,
〈Var2, Ie2,Me2 = {e21, e22, · · · , e2m2}〉,

...
〈Varn, Ien,Men = {en1, en2, · · · , enmn

}〉

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

where the relation <dr exists as D1 <dr D2 <dr · · · <dr Dn. A CDRS satisfies
that there exist two events ei1, ei2 ∈ Me i (i ∈ 1, . . . , n) that ei1’s win and ei2’s
win lead the program to “inverse” consequences. Here,“inverse” includes two
cases:

– If all the fine-grained traces Sf1 satisfying Iei · ei1 ⊆pre Sf1 are linearizable,
then there exist non-linearizable fine-grained traces Sf2 satisfying Ie i ·ei2 ⊆pre

Sf2;
– If all the fine-grained traces Sf1 satisfying Iei · ei1 ⊆pre Sf1 are non-

linearizable, then there exist linearizable fine-grained traces Sf2 satisfying
Ie i · ei2 ⊆pre Sf2.

Intuitively, a CDRS contains all the HLDRs which are decisive to the lin-
earizability of the trace. Note that although different CDRSes in a program P

may lead to different linearizability faults, we only focus on the consequence that
linearizability is violated and thus we treat all linearizability faults identical in
the sense that they all lead the trace non-linearizable.

Example 4. Take a look at the example of a HLDR D = 〈Var , Ie ,Me〉 in
PairSnapShot in which Me = {#1,#2}. If #1 wins, then a non-linearizable trace
will never occur; but if #2 wins like Fig. 4, there exists at least one such fine-
grained trace that is non-linearizable. In this case, D is included in a CDRS with
respect to the linearizability fault F shown in Fig. 4.

5 Identify CDRS on Interleaving Tree

From Sect. 4, we know that it is the competitions happening in CDRSes that
trigger the linearizability faults. In order to identify CDRS, we propose an app-
roach based on a model called labeled interleaving tree in this section. Firstly,
we express the fine-grained traces in an interleaving tree, and then we label the
nodes of the tree with a symbol system. We will show that all CDRSes follow
a certain pattern and thus we can identify them based on the characteristics of
the nodes.

5.1 Interleaving Tree

Firstly, we define a projection FM mapping a fine-grained trace Sf to a trace
SM
f composed of only memory access events in Sf , i.e., FM (Sf ) = Sf |M. The

linearizability of SM
f is decided by that of Sf , i.e., Ln(SM

f ) = Ln(Sf ). We define
a state St of an object to be a map from a memory locations to its value, e.g.,
in Fig. 3, St(d[0]) = 1, St(d[1]) = 1 at t1.



118 Y. Chen et al.

Definition 7 (Interleaving Tree). An Interleaving Tree of P is a tree, where
each node corresponds to a state, and each edge corresponds to a memory access
event. A subtree rooted at node Nd is represented as T ree(Nd). The set of the
leaves of the tree is represented as Nlf .

Fig. 6. Interleaving tree of PairSnapShot

Algorithm 1 presents how to build an interleaving tree recursively. In line 1,
St is initialized to the initial state of the object. The set enS in line 2 initially
contains the events which are minimal w.r.t. ≺ over the events with the same
thread identifier, and thus the number of elements in enS is the same as the
number of threads. Line 3–11 is the process of building the tree. Firstly, a node is
built as line 4 shows. Then, events in enS are traversed, each accessing a memory
location addr as line 5 shows. When an event is accessed, a corresponding edge
is built as in line 6. Then the state is updated by substituting the value of addr
with vn as in line 7. Here note that if e is an Rd event, St will not be modified.
And enS is updated as line 8 shows, where e will be replaced by its successor
w.r.t. ≺ over the events with the same thread identifier. Finally, the updated St

and enS are applied as arguments to another invocation of BuildTree as line
9 shows to build a subtree recursively.

Example 5. According to Algorithm1, we build the interleaving tree of the con-
current program P corresponding to Fig. 3 and present it in Fig. 6. Each node
represents a state, and each edge represents a memory access event.

Although due to the limitation of space we have omitted many paths, we can
still see that this tree maintains all the fine-grained traces in P, and among these
traces the one with bold paths corresponds to the non-linearizability situation
in Fig. 4.



Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 119

Algorithm 1. Building of Interleaving Tree
1: St = Sinit

t � St is initialized
2: enS = {e|∀ε ∈ M.(td(ε) = td(e) −→ e ≺ ε)} � Foremost events of each thread
3: function BuildTree(St, enS)
4: New Node(St)
5: for e(addr, vn)〈o,t〉 ← enS do
6: New Edge(e)
7: St ← St [vn/addr ] � Update state
8: enS ← enS \ {e} ∪ {e′} � Update enS
9: BuildTree(St, enS) � Recursively build the tree

10: end for
11: end function

5.2 Identify CDRS on Labeled Interleaving Tree

After building an interleaving tree, we design a symbol system to label the tree
in order for the identification of CDRS.

Since each leaf lf ∈ Nlf corresponds to a fine-grained trace from root to
itself, we directly apply Ln to lf to check the linearizability of the corresponding
fine-grained trace. Here, we take a binary interleaving tree built by traces with
two threads to illustrate our symbol system.

In our system, a subtree T ree(Nd) rooted at Nd and holding a leaf set Nlf

can be grouped into one of the following categories:

– OK -tree — all fine-grained traces are linearizable,
∀lf (lf ∈ Nlf → Ln(lf ))

– ERR-tree — all fine-grained traces are non-linearizable,
∀lf (lf ∈ Nlf → ¬Ln(lf ))

– MIX -tree — both linearizable and non-linearizable fine-grained traces exist,
∃lf1(lf1 ∈ Nlf ∧ Ln(lf1)) ∧ ∃lf2(lf2 ∈ Nlf ∧ ¬Ln(lf2))

Definition 8 (Node Labeling). Based on the categories of subtrees, a node
Nd can be labeled as one of the following symbols,

– W-node — if T ree(Nd) is an OK-tree.
– B-node — if T ree(Nd) is an ERR-tree.
– G-node — if one subtree of Nd is an OK-tree, and the other is an ERR-tree.
– GG-node — if two subtrees of Nd are both MIX-trees.
– WG-node — if one subtree of Nd is an OK-tree, and the other is a MIX-tree.
– BG-node — if one subtree of Nd is an ERR-tree, and the other is a MIX-tree.

where W represents white, B represents black and G represents grey actually.
Figure 7 illustrates this labeling rule.

The algorithm of labeling an interleaving tree is presented in Algorithm2.
The function LabelNode recursively labels the nodes of a tree. Firstly, it checks
whether the node being labeled has left or right child in line {3, 6, 8, 10}, where



120 Y. Chen et al.

Fig. 7. Labels of nodes

Left(Nd) gets the left child of Nd, and Right(Nd) gets the right child. !Left(Nd)
means that Nd has no left child, and !Right(Nd) is in a similar way. So if both
!Left(Nd) and !Right(Nd) are true, it means Nd is a leaf and thus it is labeled
depending on the linearizability of itself as line 3–5 shows. Otherwise, the node
is labeled depending its left and right child as line 6–27 shows.

Theorem 2 (Completeness). Each node of the interleaving tree belongs to
one kind of the nodes in Definition 8.

Actually, each node Nd of an interleaving tree together with all of its out-
edges corresponds to a data race D = 〈Var , Ie ,Me〉. The set Var is a subset of
the domain of St, where St is represented by the value in a node Nd (e.g., Fig. 6),
Ie is a prefix composed of events represented by edges from the root to Nd, and
Me contains all events e each corresponding to an out-edge of Nd. Therefore, we
can uniquely identify a data race by a node.

Theorem 3 (Identifying CDRS). A CDRS is equivalent to a subset of nodes
in a root-to-leaf path, satisfying a regular expression form

(Wg|Bg)∗(Bg|G)

where Wg, Bg, G respectively represent WG-node, BG-node, G-node.

Proof. – Firstly we show that the node sequence following (Wg|Bg)∗(Bg|G) in
an interleaving tree is a CDRS. From the definition of Wg-node, Bg-node,
and G-node, it is obvious that the HLDRs composed by these 3 kinds of node
and their out-edges all belong to the data races described in the Definition 6.

– Then we show that a CDRS appears as (Wg|Bg)∗(Bg|G) in an interleaving
tree. According to Definition 6, the two different cases for “inverse” conse-
quences correspond to the Wg-node and Bg-node. Furthermore, since CDRS
implies a linearizability fault F, the ending of a CDRS should be that there
exists an event whose win can lead all fine-grained trace non-linearizable,
and that is just the case of BG-node and G-node, which corresponds to the
expression in the theorem.

Example 6. Take a look at Fig. 6. We label the tree according to Definition 8,
and get a labeled tree in Fig. 8. As we can see, the thickened path with a red leaf
is non-linearizable, the nodes on which include a CDRS. The CDRS is shown
by the sequence of yellow nodes, in the form of WgWgWgWgWgG , which is
accepted by the regular expression in Theorem3.



Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 121

Algorithm 2. Labeling Interleaving Tree
1: Label = {W, B, G, GG, WG, BG}
2: function LabelNode(Nd)
3: if !Left(Nd)&!Right(Nd) then � Nd is a leaf
4: if Ln(Nd) then return W
5: else return B
6: else if Left(Nd)&!Right(Nd) then � Nd has only left child
7: return LabelNode(Left(Nd))
8: else if !Left(Nd)&Right(Nd) then � Nd has only right child
9: return LabelNode(Right(Nd))

10: else � Nd has both children
11: Labell = LabelNode(Left(Nd))
12: Labelr = LabelNode(Right(Nd))
13: switch 〈Labell ,Labelr 〉 � The label depends on 2 children
14: case 〈W ,W 〉:
15: return W
16: case 〈B ,B〉:
17: return B
18: case 〈B ,W 〉|〈W ,B〉
19: return G
20: case 〈(B |W |G)?G,W 〉|〈W , (B |W |G)?G〉:
21: return WG
22: case 〈(B |W |G)?G,B〉|〈B , (B |W |G)?G〉:
23: return BG
24: case 〈(B |W |G)?G, (B |W |G)?G〉:
25: return GG
26: end switch
27: end if
28: end function

6 Implementation and Evaluation

We have integrated what we presented in Sect. 5 into a prototype tool called
FGVT (Fine-grained VeriTrace), and experiments show that given a minimum
test case [29], our tool is able to localize the CDRS. In this section, we will give
a brief introduction about our tool and experiments, and display the experiment
results to show the power of FGVT.

6.1 Implementation

Our tool FGVT is based on the framework of JavaPathFinder (JPF), which
encapsulates a Java virtual machine and can be customized for use of model
checking of Java programs. JPF is employed to generate interleaving trees, and
it applies a dynamic reduction mechanism to eliminate duplicated program states
and simplify the interleaving tree. Then, we label the tree based on Algorithm2,
and report the CDRSes which cause linearizability faults.



122 Y. Chen et al.

Fig. 8. Labeled interleaving tree

Table 2. Evaluation result

Concur. object Initial State Operations CDRS Relating data race

LockFreeList {1} thd1:remove(1) WgG curr.next.get()

thd2:remove(1) attemptMark()

OptimisticQueue {1,2} thd1:poll() G head.getItem()

thd2:poll() casHead()

PairSnapshot 〈1, 1〉 thd1: write(0, 2), Wg{5}G d[i]=v

write(1, 2), x=d[0],y=d[1]

write(1, 1), if(x==d[0])

write(0, 1)

thd2:read()

Snark {1} thd1:popRight() WgWgG rh=RightHat

thd2:pushRight(2), DCAS(&RightHat,...)

popLeft() DCAS(&LeftHat,...)

if(rh.R==rh)

SimpleList {1} thd1:add(3) Bg or BgG pred.next=node

thd2:add(4) curr.val<v

LinkedList {1,5} thd1:remove(1), WgWgG node.next==tail

add(9) synchronized(){...}
thd2:size()



Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 123

6.2 Benchmark

In this section, we will introduce some concurrent objects in our experiment.
In addition to PairSnapShot, we also do experiments on many other concurrent
objects, which have been proved to be non-linearizable by other tools.

– LockFreeList [11] — It is a concurrent Set that violates linearizability when
two removes compete to mark a bit without synchronization protection.

– OptimisticQueue [15] — It is a concurrent Queue that violates linearizability
when two poll operations compete to get the head of the queue. Without
proper synchronization between reading head pointer and modifying it, two
polls may return the same value.

– Snark [6] — It is a Deque with the use of DCAS (double-compare-and-swap),
and violates linearizability when the object has few elements and operations
originally accessing different ends compete for the same memory location.

– SimpleList [27] — It is a concurrent Set and the bug is typical. The Add
function inserts a node by modifying the next pointer of its predecessor, but
without protection, next may be modified by other threads leading the node
removed from the list unexpectedly.

– Operation size of Linked List — As we know, size is used for counting the
number of nodes in a list. However, if there is no synchronization, a situation
that violates linearizability happens when size traverses the list, another
thread preempts the execution and deletes a node which has been accessed
and inserts a node at a position that has not been accessed, so size will
return a value that is larger than the expected length.

6.3 Evaluation

We evaluate our tool by 6 test cases either from prior work or from real applica-
tions as Sect. 6.2 introduced. In our experiments, all the concurrent objects are
executed by two threads, and the operations being tested, initial states of each
concurrent object and arguments are listed in Columns 2–3 of Table 2.

The node sequence patterns found based on the labeled interleaving tree are
listed in Column 4 of Table 2. As we expect, these patterns exactly correspond
to the CDRSes of each test case, and here we got some conclusions from the
experimental results:

– All the patterns follow the form of regular expression in Theorem3.
– Most of the test cases end with a G-node, and SimpleList shows us a sequence

ending with a BG-node.
– We can see the case where not only one CDRS exists.

In this experiments, the executing time for each example is acceptable. That
is because the inputs for the experiments are all small traces containing less
than 5 operations obtained by the coarse-grained localization tool [29] as we
introduced in Sect. 1, though such tree structures suffer from the state space
explosion problem.



124 Y. Chen et al.

Column 5 lists the source code in the original program that causes the data
races in the CDRSes. The reason we project the CDRSes to the source code is
that we try to locate the critical data races on the code level and find approaches
to repair them. For example, we can repair the linearizability faults in Lock-
FreeList by transforming attemptMark into compareAndSet. However, this is
not always feasible such as the situation in PairSnapShot, where we cannot point
out exactly modifying which lines can lead the object linearizable. Despite such
situations, our approach manages to give helpful information on the location of
critical data races that triggering linearizability faults and further facilitate bug
repair.

7 Conclusion

This paper proposes the notion of critical data race sequence (CDRS ) that char-
acterizes the root causes of linearizability faults based on a fine-grained trace
model. A CDRS is a set of data races that are decisive to trigger linearizability
faults. Therefore, the existence of a CDRS implies that a concurrent execu-
tion has potential to be non-linearizable. We also present a labeled interleaving
tree model to support automated identification of CDRS. A tool called FGVT
is then developed to automatically identify CDRSes and localize the causes of
linearizability faults. Experiments have well demonstrated its effectiveness and
efficiency.

This work reveals the pattern of the data races that are decisive on the
linearizability of a trace. These data races can be mapped to certain parts of the
source code. In the future work, it would be interesting to establish a stronger
relationship between CDRSes and the source code for the sake of bug analysis
and repair.

Acknowledgements. We thank the anonymous referees for their valuable comments.
This work is partially supported by the National Key Basic Research Program of China
under the Grant No. 2014CB340701, the National Key Research and Development Pro-
gram of China under the Grant No. 2017YFB0801900, the CAS-INRIA Joint Research
Program under the Grant No. GJHZ1844, and the ERATO HASUO Metamathematics
for Systems Design Project (No. JPMJER1603), JST.

References

1. Artho, C., Havelund, K., Biere, A.: High-level data races. Softw. Test. Verif. Reliab.
13(4), 207–227 (2003)

2. Ben-Asher, Y., Farchi, E., Eytani, Y.: Heuristics for finding concurrent bugs. In:
International Symposium on Parallel and Distributed Processing, p. 288a (2003)

3. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking
for concurrent objects. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, 15–17 January 2015, pp. 651–662. ACM
(2015)



Interleaving-Tree Based Fine-Grained Linearizability Fault Localization 125

4. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: Zorn, B.G., Aiken, A. (eds.) Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2010, Toronto, Ontario, Canada, 5–10 June 2010, pp. 330–340.
ACM (2010)

5. Choi, J.D., Srinivasan, H.: Deterministic replay of java multithreaded applications.
In: Proceedings of the Sigmetrics Symposium on Parallel & Distributed Tools, pp.
48–59 (2000)

6. Doherty, S., et al.: DCAS is not a silver bullet for nonblocking algorithm design.
In: Gibbons, P.B., Adler, M. (eds.) Proceedings of the Sixteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2004, 27–30
June 2004, Barcelona, Spain, pp. 216–224. ACM (2004)

7. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for
testing multi-threaded Java programs. Concurr. Comput.: Pract. Exp. 15(3–5),
485–499 (2003)

8. Emmi, M., Enea, C., Hamza, J.: Monitoring refinement via symbolic reasoning. In:
Grove, D., Blackburn, S. (eds.) Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
15–17 June 2015, pp. 260–269. ACM (2015)

9. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In:
17th International Parallel and Distributed Processing Symposium (IPDPS 2003),
22–26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings, p. 286. IEEE
Computer Society (2003)

10. Gottschlich, J.E., Pokam, G., Pereira, C., Wu, Y.: Concurrent predicates: a debug-
ging technique for every parallel programmer. In: Fensch, C., O’Boyle, M.F.P.,
Seznec, A., Bodin, F. (eds.) Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, Edinburgh, United Kingdom,
7–11 September 2013, pp. 331–340. IEEE Computer Society (2013)

11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier (2012)
12. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
13. Horn, A., Kroening, D.: Faster linearizability checking via P -compositionality.

In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 50–65.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19195-9 4

14. Khoshnood, S., Kusano, M., Wang, C.: Concbugassist: constraint solving for diag-
nosis and repair of concurrency bugs. In: Young, M., Xie, T. (eds.) Proceedings of
the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
Baltimore, MD, USA, 12–17 July 2015, pp. 165–176. ACM (2015)

15. Ladan-Mozes, E., Shavit, N.: An optimistic approach to lock-free FIFO queues. In:
Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 117–131. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30186-8 9

16. Liu, B., Qi, Z., Wang, B., Ma, R.: Pinso: precise isolation of concurrency bugs via
delta triaging. In: 30th IEEE International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, 29 September–3 October 2014, pp. 201–210.
IEEE Computer Society (2014)

17. Long, Z., Zhang, Y.: Checking linearizability with fine-grained traces. In: Ossowski,
S. (ed.) Proceedings of the 31st Annual ACM Symposium on Applied Computing,
Pisa, Italy, 4–8 April 2016, pp. 1394–1400. ACM (2016)

18. Lowe, G.: Testing for linearizability. Concurr. Comput.: Pract. Exp. 29(4), e3928
(2017)

https://doi.org/10.1007/978-3-319-19195-9_4
https://doi.org/10.1007/978-3-540-30186-8_9


126 Y. Chen et al.

19. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: Eggers, S.J., Larus, J.R. (eds.)
Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2008, Seattle, WA,
USA, 1–5 March 2008, pp. 329–339. ACM (2008)

20. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Ferrante, J., McKinley, K.S. (eds.) Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and Imple-
mentation, San Diego, California, USA, 10–13 June 2007, pp. 446–455. ACM (2007)

21. Park, C., Sen, K.: Concurrent breakpoints. In: Ramanujam, J., Sadayappan, P.
(eds.) Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2012, New Orleans, LA, USA, 25–29
February 2012, pp. 331–332. ACM (2012)

22. Park, S.: Fault comprehension for concurrent programs. In: Notkin, D., Cheng,
B.H.C., Pohl, K. (eds.) 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, 18–26 May 2013, pp. 1444–1446. IEEE Com-
puter Society (2013)

23. Park, S., Vuduc, R.W., Harrold, M.J.: Falcon: fault localization in concurrent pro-
grams. In: Kramer, J., Bishop, J., Devanbu, P.T., Uchitel, S. (eds.) Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE 2010, Cape Town, South Africa, 1–8 May 2010, pp. 245–254. ACM (2010)

24. Park, S., Vuduc, R.W., Harrold, M.J.: A unified approach for localizing non-
deadlock concurrency bugs. In: Antoniol, G., Bertolino, A., Labiche, Y. (eds.) Fifth
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2012, Montreal, QC, Canada, 17–21 April 2012, pp. 51–60. IEEE Computer
Society (2012)

25. Shi, Y., et al.: Do I use the wrong definition?: Defuse: definition-use invariants
for detecting concurrency and sequential bugs. In: Cook, W.R., Clarke, S., Rinard,
M.C. (eds.) Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010,
17–21 October 2010, Reno/Tahoe, Nevada, USA, pp. 160–174. ACM (2010)

26. Stoller, S.D.: Testing concurrent java programs using randomized scheduling.
Electr. Not. Theor. Comput. Sci. 70(4), 142–157 (2002)

27. Vechev, M.T., Yahav, E.: Deriving linearizable fine-grained concurrent objects.
In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, 7–13 June 2008, pp. 125–135. ACM (2008)

28. Wing, J.M., Gong, C.: Testing and verifying concurrent objects. J. Parallel Distrib.
Comput. 17(1–2), 164–182 (1993)

29. Zhang, Z., Wu, P., Zhang, Y.: Localization of linearizability faults on the coarse-
grained level. In: He, X. (ed.) The 29th International Conference on Software
Engineering and Knowledge Engineering, Wyndham Pittsburgh University Cen-
ter, Pittsburgh, PA, USA, 5–7 July 2017, pp. 272–277. KSI Research Inc. and
Knowledge Systems Institute Graduate School (2017)



Miscellaneous (Short Papers)



Improvement in JavaMOP by Simplifying
Büchi Automaton

Junyan Qian(B), Cong Chen, Wei Cao, Zhongyi Zhai, and Lingzhong Zhao

Guangxi Key Laboratory of Trusted Software,
Guilin University of Electronic Technology, Guilin 541004, China

qjy2000@gmail.com, chen362076297@gmail.com, swuncv2015@gmail.com,

zhaizhongyi@guet.edu.cn, zhaolingzhong@126.com

Abstract. Runtime verification is a lightweight verification structure
with the advantages of formal verification and software testing. In this
paper, we studied JavaMOP that is an instance of the MOP (monitoring
oriented programming) runtime verification structure. In the LTL plu-
gin of JavaMOP, the LTL formula was translated into a nondeterministic
büchi automaton (NBA) and then the NBA was translated into a deter-
ministic finite automaton (DFA). While in the translation process, the
number of states of the automata could increase exponentially. So we
first use a procedure to remove the redundant states in the NBA, then
we use an algorithm based on fair simulation which was used in model
checking to further simplify the NBA. Experimental results show that
the memory usage at runtime of JavaMOP can be reduced.

Keywords: Runtime verification · LTL · Fair simulation
Nondeterministic büchi automaton

1 Introduction

Software system plays an important role in modern society. It becomes more
and more important to improve the reliability, security and credibility of soft-
ware system. While exhaustive validation of a system is often not suitable for
the verification, because of the dynamic loading of some additional libraries. In
this case, runtime verification [1] which is a new direction of verification and
provides an alternative lightweight framework for program verification. Runtime
verification is an effective technique to ensure at execution time that a system
meets a desirable behavior. It can be used in numerous application domains.

Runtime monitoring of properties can increase the reliability and stability in
the software systems. So there is increasing interest in monitoring in software
development and analysis. Many approaches have been proposed in [2]. Vari-
ous runtime verification techniques and tools such as Tracematches [3], PQL [4],
JavaMOP [5,6], etc., have been developed in recent years. RV-Android [7] is a
tool which is designed by Daian et al., it is used for monitoring formal safety
properties on Android. Yamagata et al. [8] developed a runtime monitoring
framework for concurrent system.
c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 129–134, 2018.
https://doi.org/10.1007/978-3-319-99933-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_8&domain=pdf


130 J. Qian et al.

A method of constructing the monitor based on Büchi automata was pro-
posed in [9]. Then this method becomes a major monitor construction method.
In model checking, temporal logic specifications are usually converted into büchi
automata. While in runtime verification, it is different from model checking that
the temporal logic specifications are converted into DFA. In JavaMOP [10] which
is a runtime verification tool, an algorithm in [11] was used to translate the LTL
specifications into a NBA. But this algorithm can’t ensure that the size of the
NBA is optimal.

In this paper, we present an algorithm to simplify the NBA. Through using
this algorithm, we can reduce the number of states in the NBA and then can
reduce the size of the monitor in JavaMOP. In detail, we have provided the
following major contributions:

– We first use a procedure to determine whether the accepting language of the
NBA starting with a state is empty. Then, we mark these states that accepting
language of the NBA is empty with a redundant flag, and we remove some
states which are marked with redundant flag.

– After removing the redundant states, we use an algorithm proposed in [12]
which is based on fair simulation [16] to further simplify the NBA.

– Finally, the translation from the NBA to nondeterministic finite automaton
(NFA) and then from the NFA to DFA can be accelerated. And the memory
usage in JavaMOP can also be reduced.

The rest of the paper is organized as follows. The next section recalls the
definition of LTL and original transition processes of LTL plugin in the Java-
Mop. Section 3 focuses on new translation algorithm. Section 4 is devoted to
experimental results. The last section provides some concluding remarks.

2 Preliminary

2.1 Linear Temporal Logic (LTL)

We define the set of LTL formulae by using the atomic proposition p and some
temporal operators such as ∨ (disjunction), X (next), U (until), and ¬ (nega-
tion). The semantics of LTL can be seen in [13].

Definition 1 (Syntax of LTL). Let AP be a finite and non-empty set of
atomic propositions, p be an atomic proposition in a finite set of atomic proposi-
tions AP. The set of LTL formulae could be defined inductively by the following
grammar:
ϕ ::=p | ¬ϕ |ϕ ∨ ϕ |ϕUϕ |Xϕ

2.2 JavaMOP

JavaMOP [10] is a MOP [14] development tool for Java. In JavaMOP, there are
many plugins which are used to translate the specifications into monitors, for
example, LTL, ERE and CFG, et al.. In this paper, we focus on LTL plugin



Improvement in JavaMOP by Simplifying Büchi Automaton 131

which deals with the specified properties by using LTL. In runtime verification,
when we use the LTL to specify the property, the LTL formula will be translated
into DFA. There are five steps in the translation process.

– Translating the LTL formula into an alternating automaton.
– Translating the alternating automaton into a generalized büchi automaton.
– The generalized automaton was translated into a NBA.
– Translating the NBA to a NFA.
– Translating the NFA to a DFA.

In this translation process, a LTL formula was translated into a NBA first.
The algorithm used in this phase was proposed in [11]. When translating the
LTL formula into a NBA, the size of the NBA was not optimal and it still
can be simplified. However, translating the NFA to a DFA, we use the powerset
construction algorithm which will lead to the size of the automata growing expo-
nentially. So we need to reduce the size of the DFA. And we add an algorithm
to simplify the NBA.

3 Improvement in JavaMOP

In this section, we will introduce a translation algorithm that is used to simplify
the NBA. This simplification algorithm has been used in model checking, for
the purpose of state space reduction. In this paper, we add this simplification
algorithm in JavaMOP to simplify intermediate states during execution. And we
use the algorithm to reduce the size of the NBA in JavaMOP so that improving
verification efficiency. Therefore, we have a new process for translating LTL
formula into DFA as shown in Fig. 1.

Deterministic 
Finite Automaton

LTL 
formula

Alternating 
Automaton

Generalized Büchi 
Automaton

Nondeterministic
Büchi Automaton

Nondeterministic 
Finite Automaton

Simplifying Büchi
Automaton

Fig. 1. The new process of translation from LTL formula to the deterministic finite
automaton

In this algorithm, we first remove the redundant states in the NBA. For this
purpose, we use an algorithm (denoted as NDFS) from [15] to identify a strong
connected component in B(is a NBA). For every state s in the büchi automaton,
we first determine whether the accepting language of the automaton starting
with s is empty. If it is empty, then we mark the state with a redundant flag.
And then the state will be removed from the set of states Q. The detail of the
algorithm is shown in Algorithm 1.



132 J. Qian et al.

Algorithm 1. RRS(s)
/*remove the redundant state form büchi automaton.*/

Input: : a nondeterministic büchi automaton B = (Σ, Q, Q0, δ, F )
Output: : a nondeterministic büchi automaton B′ with less states
1: for s ∈ Q do
2: if NDFS(s) does not report cycle then
3: mark s with the redundant flag
4: end if
5: end for
6: for s ∈ Q do
7: if s is marked with redundant flag then
8: Q := Q \ {s}
9: end if

10: end for

After removing the redundant states of the NBA, then we use an algorithm
from [12]. The algorithm first computes the fair simulation relation by using an
algorithm Enhanced version of Jurdzinskis algorithm from [16]. Then we can get
the set of the state pairs simulate each other and the set of some transitions that
would be removed. The algorithm will check whether the accepting language of
the automaton B changes after merging these state pairs and removing these
transitions. If the accepting language of B is not changed, and this procedure
will simplify B.

4 Experimental Results

We have implemented the algorithm in Java. A Linux PC with an Inter(R)
Core(TM) i5-4690 3.50 GHz CPU and 8.0 GB of memory was used to run the
experiments. For the Comparison with JavaMOP, we compare the overhead of
our algorithm with that of JavaMOP. We choose JavaMOP, because it is the
most efficient runtime verification tool, when we write this paper. We collected
the execution time and memory usage for the benchmark, as shown in Table 1,
under a steady state using DaCapo [17] 9.12’s. We took the average performance
of five executions. improvement stands for the improvement over JavaMOP in
terms of the consumption of memory in Table 1. It is calculated by:

(1 − mem N

mem
) × 100%

From Table 1 we can see that our new translation algorithm performs bet-
ter than JavaMOP for the consumption of memory, because we simplified the
NBA so that the size of the DFA was reduced and thus cause a reduction of the
memory usage. For the property HasNext , the memory used in JavaMOP is
632.19 MB, while it is 618.59 MB in ours. The improvement is 2.15%. For the
property SafeSyncCollection , the memory used in JavaMOP is 1002.44 MB,
while it is 952.22 MB in ours. The improvement is 5.01% which is higher than



Improvement in JavaMOP by Simplifying Büchi Automaton 133

Table 1. The runtime performance comparison of JavaMOP and JM FS

Property Performance Improvement

JavaMOP JM FS

times (s) mem (MB) times (s) mem N (MB)

HasNext 93.75 632.19 99.85 618.59 2.15

SafeSyncCollection 164.88 1002.44 173.88 952.22 5.01

UnsafeIterator 235.31 799.37 238.49 768.27 3.89

UnsafeMapIterator 225.61 766.05 229.91 737.48 3.73

2.15%, because this property is more complicated than HasNext and the sim-
plification algorithm could remove more states in the NBA. The running time
of our new translation algorithm is longer than JavaMOP, because we added a
new procedure to the original translation process. So it causes some time con-
sumption to run the simplification algorithm.

5 Conclusion

In this paper, we introduce the runtime verification, then we also introduce the
MOP framework and JavaMOP. For the purpose of improving the performance
of JavaMOP, we added a simplifying procedure to reduce the NBA which is an
intermediate in the translation of a LTL formula to a DFA. After the process-
ing of the simplification procedure, the runtime memory of JavaMOP also can
be reduced. In the future, we will consider to use a more efficient simplifying
algorithm which has less time and memory consumption, or we can use a more
efficient translation algorithm which is used to translate a LTL formula to a
NBA.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under grant No. 61562015 and 61572146, the High Level Innova-
tion Team of Guangxi Colleges and Universities and Outstanding Scholars Fund,
Guangxi Natural Science Foundation of China under grant No. 2015GXNSFDA139038,
2016GXNSFAA380054, Innovation Project of GUET Graduate Education (2017
YJCX51,2016YJCX12), Guangxi Key Laboratory of Trusted Software Focus Fund,
Program for Innovative Research Team of Guilin University of Electronic Technology.

References

1. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

2. Allan, C., Avgustinov, P., Christensen, A.S., et al.: Adding trace matching with
free variables to AspectJ. ACM SIGPLAN Not. 40(10), 345–364 (2005)

3. Avgustinov, P., Tibble, J., Moor, O.D.: Making trace monitors feasible. ACM SIG-
PLAN Not. 42(10), 589–608 (2007)



134 J. Qian et al.

4. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using PQL: a program query language. ACM SIGPLAN Not. 40(10), 365–383
(2005)

5. Chen, F., Roşu, G.: Java-MOP: a monitoring oriented programming environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-
1 36

6. Chen, F., D’Amorim, M., Roşu, G.: Checking and correcting behaviors of Java
programs at runtime with Java-MOP. Electron. Notes Theor. Comput. Sci. 144(4),
3–20 (2006)

7. Daian, P., et al.: RV-android: efficient parametric android runtime verification, a
brief tutorial. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp.
342–357. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3 24

8. Yamagata, Y., et al.: Runtime monitoring for concurrent systems. In: Falcone,
Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 386–403. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46982-9 24

9. Giannakopoulou, D., Havelund, K.: Runtime analysis of linear temporal logic spec-
ifications. In: IEEE International Conference on Automated Software Engineering
2001 (2001)

10. Jin, D., Griffith, D., Chen, F.: An overview of the MOP runtime verification frame-
work. Int. J. Softw. Tools Technol. Transf. 14(3), 249–289 (2012)

11. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 6

12. Tischner, D.: Minimization of Büchi Automata using Fair Simulation (2016)
13. Pnueli, A.: The Temporal Logic of Programs. Weizmann Science Press of Israel,

pp. 46–57 (1977)
14. Chen, F., D’Amorim, M., Roşu, G.: A formal monitoring-based framework for

software development and analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, pp. 357–372. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30482-1 31

15. Schwoon, S., Esparza, J.: A note on On-the-Fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 12

16. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and
state space reduction for Büchi automaton. SIAM J. Comput. 34(5), 1159–1175
(2005)

17. Blackburn, S.M., Garner, R., Hoffmann, C., et al.: The DaCapo benchmarks: Java
benchmarking development and analysis. ACM SIGPLAN Not. 41(10), 169–190
(2006)

https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-319-23820-3_24
https://doi.org/10.1007/978-3-319-46982-9_24
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-3-540-30482-1_31
https://doi.org/10.1007/978-3-540-30482-1_31
https://doi.org/10.1007/978-3-540-31980-1_12


Developing A New Language to Construct
Algebraic Hierarchies for Event-B

James Snook(B), Michael Butler, and Thai Son Hoang

ECS, University of Southampton, Southampton, UK
{jhs1m15,mjb,t.s.hoang}@ecs.soton.ac.uk

Abstract. This paper proposes a new extension to the Event-B mod-
elling method to facilitate the building of hierarchical mathematical
libraries to ease the formal modelling of many systems. The challenges
are to facilitate building mathematical theories, be compatible with the
current method and tools, and to be extensible by users within the Rodin
Platform supporting Event-B.

Our contribution is a new language, called B�, which includes the
additional features of type classes and sub-typing. The B� language
compiles to the current language used by the Rodin’s Theory Plug-in,
which ensures consistency, and also gives compatibility with the current
Rodin tools. We demonstrate the advantages of the new language by
comparative examples with the existing Theory Plug-in language.

Keywords: Formal methods · Event-B · Theorem prover
Mathematical extensions

1 Introduction

The Event-B method [1] and its supporting Rodin [2] are designed specifically
for system modelling. Event-B incorporates mechanisms such as refinement and
decomposition to cope with the system complexity. Rodin includes facilities such
as animation, model checking, and theorem proving for validating and verify-
ing the Event-B models. Often, during system development, in order to ensure
system dependability, developers need to model the system’s operating environ-
ment. Having extensive mathematical libraries makes this modelling task faster
and easier. Building these libraries of mathematical definitions and theorems is
made considerably easier with the right tools and language features.

The challenges addressed in this paper are designing a language with the
required features to enable the development of consistent mathematical theo-
ries, in such a way that minimises repeated proofs. Moreover, the mathematical
theories can be used within the Event-B models.

Our contribution therefore is the design of a new language, called B�, with
features to aid the construction of mathematical libraries. The new features are
designed to reason about abstract and concrete mathematical types. The B�

language is mapped to the current Event-B syntax as supported by Rodin and
c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 135–141, 2018.
https://doi.org/10.1007/978-3-319-99933-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_9&domain=pdf


136 J. Snook et al.

its Theory Plug-in. The mapping phase will generate necessary theorems that
required to be discharged by the developers. Other proof rules will be generated
which would (normally) have required a manual proof in Event-B, however, the
new language will generate the proof itself.

Structure. The rest of this paper is structured as follows. Section 2 examines the
mathematics that we want to model, and the relationships between mathemat-
ical types. We also summarise the modelling task in Event-B and its Theory
extension. Section 3 shows the problems with the current tools by describing a
case study, and presents elements of the B� language to facilitate the construc-
tion of mathematical definitions and theorems. Section 4 discusses the related
work and gives some conclusion of our work.

2 Background

2.1 Mathematical Data Structures

Within mathematics, the study of abstract algebra deals with abstract struc-
tures. Rather than dealing with specific functions and sets, they generalise to
deal with all sets and functions that have given properties. For instance, the
abstract structure of a monoid is a set S and a binary function f and an identity
element e, such that:

∀x, y, z ∈ S · f(x, f(y, z)) = f(f(x, y), z), and (1)
∀x ∈ S · f(x, e) = x ∧ f(e, x) = x. (2)

Property (1) declares that the function f is associative. Property (2) defines e as
an identity element.

Many concrete structures are examples of this abstract type such as, addi-
tion and zero on the real numbers, or matrix multiplication with the identity
matrix. Theorems and functions on the abstract type apply to all of the concrete
examples, so the proof only has to be done on the abstract type.

Axioms can be added to abstract types to form new types e.g., a group is a
monoid where all elements have an inverse. A group can utilise all the results
from a monoid (as the group has all of the monoid’s axioms), and can have new
theorems provable with the new axioms.

Reasoning like this reduces the proof burden as proofs done on the abstract
type do not need to be repeated by either concrete instances, or abstract types
that extend the current type. The proofs are inherited by the new types.

2.2 Event-B and the Theory Plug-In

The Event-B modelling method [1] allows the modelling of discrete event sys-
tems. The Event-B modelling language is supported by the Rodin Platform
[2], an open and extensible toolset for constructing formal models. To increase
the ability of Event-B to model systems the Theory Plug-in [5] was added to



Developing A New Language to Construct Algebraic Hierarchies 137

Rodin Platform (Rodin) allowing the extension of the Event-B mathematical
language with user-defined operators and proof rules. The Theory Plug-in can
be used as a theorem prover to create domain-specific mathematical theories. In
[4] a 3-D Euclidean space was modelled, and used to formally verify the safety of
a set of paths of Unmanned Aerial Vehicles (UAVs). The Euclidean space model
would be useful to any other system requiring a safe distance is maintained.
Other mathematical structures that model environment are also widely reusable
e.g., two’s complement arithmetic would be useful to many software system mod-
els. The aim of creating the new language B� is to improve the tools for building
these mathematical models for Event-B.

3 A Language for Mathematical Libraries in Event-B

3.1 A Case Study Using Theory Plug-In

This section summarises the result of a case study evaluating the ability of the
current Theory Plug-in to build and use algebraic hierarchies. The case study
used the Theory Plug-in to construct abstract and concrete mathematical classes,
and then see how they can be related.

On the one hand, our case study shows that abstract mathematical types
were representable within in the Event-B syntax. It also found that abstract
types could be extended to make new abstract types, and that concrete types
could be related to the abstract types. On the other hand, the following issues
with the representation were identified:

1. Event-B operators are not first class members of the language, resulting in
the need to encapsulate them within total functions to relate concrete types
to abstract types, e.g., showing addition and zero form a monoid required a
theorem such as: zero �→ (λx, y|x add y) ∈ Monoid(pNat) (the operator is
encapsulated within a lambda construct).

2. Demonstrating that a concrete object forms an algebraic type does not make
it inherit the theorems/proof rules of the algebraic type. These have to be re-
written and proved (although the proof can be constructed by instantiating
the theorems/proof rules of the algebraic type).

3. When making theorems about an abstract type the type required construction
from its constituent parts, resulting in verbose theorem definitions. Alter-
natively the abstract types can be passed in and deconstructed with the
Event-B projection operators making the theorem difficult to read/under-
stand (this can be helped by the user making operators to deconstruct the
abstract types).

4. The Event-B language is not able to reason about subsets as types, this
resulted in the user having to manually do many well-definedness proofs.

5. Predicates in Event-B are not expressions. This makes it difficult to reason
about relations (instead the BOOL type was used and turned back into a
predicate where necessary using equality).

6. Abstract types definitions and declarations rapidly increased in complexity.



138 J. Snook et al.

3.2 The B� Language

This section gives a brief introduction to the B� language, in particular focusing
on the Class declaration, allowing the user to create new type classes, and new
subtypes, fully supported by the language. A type class allows the definition of
a subtype of some existing type structure such that the subtype has additional
properties and operators. A type class also allows us to constrain polymorphism.
For example, the following declaration defines the ReflexRel class:

Class ReflexRel〈T 〉 : T × T → Pred

where ∀x : T, rel : ReflexRel〈T 〉 · rel(x, x){} (3)

This class declaration creates a type class ReflexRel a subtype of T ×T → Pred,
any relation in ReflexRel must have the additional property that all elements
are related to themselves.

Some differences to the Event-B syntax can be seen immediately. The poly-
morphic type T can be a subtype i.e., a type created using the subtyping mech-
anism above. In Event-B this is the equivalent of allowing entities created with
the subset syntax to be treated as types. The B� language does extra work to
reason about subtypes and reduce well-definedness proofs. In Event-B predicates
are a different syntactic category to boolean expressions and are not first class.
In B�, predicates are first class of type Pred.. It allows the language to create
functions that return predicates without having to use the BOOL type as an
intermediate.

This class declaration maps to the following underlying Event-B statement:

ReflexRel(t : P(T ))=̂{rel|rel ∈ P(t × t)
∧ ∀x · x ∈ t ⇒ x �→ x ∈ rel} (4)

To allow the ReflexRel operator to work on subtypes the Event-B power
set operator P is used to give the type of t. Pred is replaced by constricting the
set of rel. When using rel within an expression the mapping to Event-B will
become x �→ x ∈ rel when the Event-B language requires a predicate value (e.g.,
as in the quantifier in (4)).

The class declaration can also be used to create type classes where the type
class is required to have certain elements, e.g., a monoid:

Class Monoid : Setoid(ident : Monoid, op : AssocOp〈Monoid〉)
where ∀x : Monoid · op(x, ident) Monoid.equ x

∧ op(ident, x) Monoid.equ x{}
(5)

Type classes create templates for new classes. For a class to become part of the
monoid type class it needs to have an identity and an associative operator that
follows the rules in the where clauses. Monoid : Setoid means that Monoid is a
subtype of the Setoid type class, which is a type which has an equivalence relation



Developing A New Language to Construct Algebraic Hierarchies 139

(this is created using a class declaration similar to the one above). Definition (5)
maps to the following Event-B:

Monoid(t : P(T )) =̂ {setoid �→ ident �→ op |
setoid ∈ Setoid(t) ∧ ident ∈ t ∧
op ∈ AssocOp(t, setoid) ∧
∀x · x ∈ t ⇒

op(x �→ ident) �→ x ∈ Setoid equ(setoid) ∧
op(ident �→ x) �→ x ∈ Setoid equ(setoid)}

(6)

Monoid Setoid(m : Monoid(P(T ))) =̂ prj1(m) (7)

Monoid ident(m : Monoid(P(T ))) =̂ prj1(prj2(m)) (8)

Monoid op(m : Monoid(P(T ))) =̂ prj2(prj2(m)) (9)

Given a instance a = b1 �→ b2 . . . �→ bn prj1(a) will give b1 and prj2(a) will give
b2 �→ . . . bn. From (6) it can be seen that the B� syntax is much more concise.
It is useful to see how a type becomes a member of the Monoid type class:

Instance Monoid(zero, add); (10)

This will make the pNat type (inferred from the zero and add arguments) an
instance of a Monoid. A proof obligation to demonstrate that addition and zero
form a monoid will be generated. Proof rules, theorems and functions from the
Monoid are re-written to rules about zero and addition and added to the pNat
type. As these have been proved in the Monoid type class they do not need to
be reproved.

Polymorphic types can be restricted to a given type class, e.g.:

Class AssocOp <T : Setoid> T × T → T

where ∀x, y, z : T · AssocOp(AssocOp(x, y), z) T.eq AssocOp(x, AssocOp(y, z))
(11)

The polymorphic type T has to be a member of the Setoid type class (it has to
have an equivalence relation). This will map to the following Event-B:

AssocOp(t : P(T), setoid : Setoid(t))=̂{op|op ∈ t × t → t

∧ ∀x, y, z · x ∈ t ∧ y ∈ t ∧ z ∈ t

⇒ op(op(x �→ y) �→ z) �→ op(x �→ op(y �→ z)) ∈ Setoid Eq(setoid)
(12)

The polymorphic context in (11) (<T : Setoid>) becomes the arguments to the
Event-B operator in (12). Setoid Eq is an Event-B deconstructor created from
the Setoid type class mapping, in the Event-B mapping this is mapped from the
B� T.eq statement.

The syntax for a Class statement is:

Class γ〈τ1 : γ1, . . . , τn : γn〉 : S1 . . . Sm (s1 : T1, . . . , sp : Tp) where e1; . . . ; el; {} (13)



140 J. Snook et al.

This declaration has the following meanings:

1. γ is the name chosen for the new class, e.g., ReflexRel in Example (3), this
maps to the Event-B operator name.

2. 〈τ1 : γ1, . . . , τn : γn〉 is the polymorphic context. γi are optional, and restrict
τi to a given type class. These map to the arguments of the Event-B operator.

3. S1 . . . Sm are super types and (s1 : T1, . . . , sp : Tp) define addition struc-
ture. In the Event-B syntax they are mapped to a statement such as
{γ �→ s1 �→ . . . �→ sp|γ ∈ S1 ∧ . . . ∧ γ ∈ Sm ∧ s1 ∈ T ′

1 · · · ∧ sp ∈ T ′
p| . . . }.

With multiple inheritance any shared supertypes remain shared, the map-
ping for these is more complex than shown above (it requires the supertypes
to be deconstructed to their last shared ancestor). This is omitted for brevity.

4. Properties e1; . . . ; el are predicate expressions. These create the subtype from
the supertypes. Each ei is translated to the Event-B syntax and they constrain
the set returned.

Due to the space limit, we omit other features of B�, such as B� functions,
and their mapping to Event-B, or the generation of proof rules from the B� class
statements (to make proving easier).

4 Related Work and Conclusion

There are many examples of similar constructs in other languages. Of particu-
lar interest is Coq [3] for which there has been an extensive library of abstract
algebraic structures developed [6]. The language feature which makes building
this library possible is called type classes [11] originally created for Haskell. Type
classes set out a structure, which types can adopt, and inherit functions from the
type class. Isabelle [10] also has a similar feature allowing abstract specifications
called locales [9]. Algebraic Specification [8] languages give a formal specification
to datatypes rather than describing the structure of the datatype. This abstrac-
tion means that many concrete datatypes could comply with the specification,
giving a similar concept to the ones described above. For example, OBJ3 [7] has
a similar concepts with parameterised modules and theories. Theories define a
structure for an module, parameterised types can then be restricted to models
with this structure.

The novelty in the B� language is not the invention of new language features
but of tailoring and applying these to the Rodin toolset, mapping the extended
B� features to the Event-B syntax for consistency and proof purposes. The work
above demonstrates a method by which this can be achieved. These new features
will allow for the development of hierarchies of generic theories and the ability
to develop domain-specific specialisations of these, while avoiding the need to
redo proofs over similar structures for each specialisation.



Developing A New Language to Construct Algebraic Hierarchies 141

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

4. Bogdiukiewicz, C., et al.: Formal development of policing functions for intelligent
systems. In: 28th IEEE International Symposium on Software Reliability Engi-
neering, ISSRE 2017, Toulouse, France, 23–26 October 2017, pp. 194–204. IEEE
Computer Society (2017)

5. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

6. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive Coq repository
at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS,
vol. 3119, pp. 88–103. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27818-4 7

7. Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Intro-
ducing OBJ. In: Goguen, J., Malcolm, G. (eds.) Software Engineering with OBJ.
Advances in Formal Methods, pp. 3–167. Springer, Boston (2000). https://doi.org/
10.1007/978-1-4757-6541-0 1

8. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Inform. 10(1), 27–52 (1978)

9. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales a sectioning concept for isabelle.
In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs
1999. LNCS, vol. 1690, pp. 149–165. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48256-3 11

10. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

11. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 60–76. ACM (1989)

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1007/978-1-4757-6541-0_1
https://doi.org/10.1007/978-1-4757-6541-0_1
https://doi.org/10.1007/3-540-48256-3_11
https://doi.org/10.1007/3-540-48256-3_11
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9


Towards the Existential Control
of Boolean Networks:
A Preliminary Report

Soumya Paul1(B), Jun Pang1,2, and Cui Su1

1 Interdisciplinary Centre for Security, Reliability and Trust,
Esch-sur-Alzette, Luxembourg

2 Faculty of Science, Technology and Communication, University of Luxembourg,
Esch-sur-Alzette, Luxembourg

{soumya.paul,jun.pang,cui.su}@uni.lu

Abstract. Given a Boolean network BN and a subset A of attractors of
BN, we study the problem of identifying a minimal subset CBN of vertices
of BN, such that the dynamics of BN can reach from a state s in any
attractor As ∈ A to any attractor At ∈ A by controlling (toggling) a sub-
set of vertices in CBN in a single time step. We describe a method based
on the decomposition of the network structure into strongly connected
components called ‘blocks’. The control subset can be locally computed
for each such block and the results then merged to derive the global
control subset CBN. This potentially improves the efficiency for many
real-life networks that are large but modular and well-structured. We
are currently in the process of implementing our method in software.

1 Introduction

Systems biology, with the help of mathematical modelling, has revolutionised
the human diseasome research and paved the way towards the development of
new therapeutic approaches and personalised medicine. Such therapies target
specific proteins within the cellular systems aiming to drive it from a ‘diseased’
state to a ‘healthy’ state. However, it has been observed that disease-networks
are intrinsically robust against perturbations due to the inherent diversity and
redundancy of compensatory signalling pathways [2]. This greatly reduces the
efficacy of single-target drugs. Hence, rather than trying to design selective lig-
ands that target individual receptors only, network polypharmacology seeks to
modify multiple cellular targets to tackle the compensatory mechanisms and
robustness of disease-associated cellular systems. This motivates the question
of identifying multiple drug targets using which the network can be ‘fully con-
trolled’, i.e. driven from any (diseased) state to any desired target (healthy)
state. Furthermore, for the feasibility of the synthesis of such drugs, the number
of such targets should be minimised. However, biological networks are intrinsi-
cally large (number of components, parameters, interactions, etc.) which results

c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 142–149, 2018.
https://doi.org/10.1007/978-3-319-99933-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_10&domain=pdf


Existential Control of Boolean Networks 143

in an exponentially increasing number of potential drug target combination mak-
ing a purely experimental approach quickly infeasible. This reinforces the need
of mathematical modelling and computational techniques.

Boolean networks (BNs), first introduced by Kauffman [5], is a popular and
well-established framework for modelling gene regulatory networks (GRNs) and
their associated signalling pathways. Its main advantage is that it is simple and
yet able to capture the important dynamical properties of the system under
study, thus facilitating the modelling of large biological systems as a whole.
The states of a BN are tuples of 0s and 1s where each element of the tuple
represents the level of activity of a particular protein in the GRN or the signalling
pathway it models - 0 for inactive and 1 for active. The BN is assumed to
evolve dynamically by moving from one state to the next governed by a Boolean
function for each of its components. The steady state behaviour of a BN is
given by its subset of states called attractors to one of which the dynamics
eventually settles down. In biological context, attractors are hypothesised to
characterise cellular phenotypes [5] and also correspond to functional cellular
states such as proliferation, apoptosis, differentiation, etc. [3]. The control of a
BN therefore refers to the reprogramming/changing of the parameters of the
BN (functions, values of variables, etc.) so that its dynamics eventually reaches
a desired attractor or steady state.

The full control of linear networks is a well-studied problem [4] and such
control strategies have been proposed over the years. Recent work on network
controllability has shown that full controllability and reprogramming of inter-
cellular networks can be achieved by a minimum number of control targets [7].
However, the full control of non-linear networks is apparently more challeng-
ing predominantly due to the explosion of the potential search space with the
increase in the network size. There has not been a lot of work in this regard. Kim
et al. [6] developed a method to identify the so-called ‘control kernel’ which is a
minimal set of nodes for fully controlling a biological network. But, their method
is based on the construction of the full state transition graph of the network and
as such does not scale well for large networks.

In many cases, only some of the attractors of the BNs are ‘biologically rel-
evant’, i.e. correspond to meaningful expressions of the modelled GRNs. Thus,
focussing on only the relevant attractors might help reduce the complexity of
the control problem while still being biologically meaningful.

Our Contributions. In this work, we report the initial results on a method for
the control of Boolean networks that exploits both their structural and dynamic
properties, as shown inevitable in [1]. More precisely, given a Boolean network
BN and a set of ‘relevant’ attractors A of BN, the method computes a minimal set
of variables (the minimal control set), such that starting from an initial attractor
As ∈ A and by controlling specific subsets of these variables in a single time-
step, the BN can (potentially) reach any desired target attractor At ∈ A when
left to evolve on its own according to its original dynamics. A welcome side-
effect of the method is that when A is the set of all attractors of BN, it gives the
minimal set of vertices for fully controlling BN. We use an approach that we have



144 S. Paul et al.

developed for the problem of target control (driving the BN to a given single
target attractor) of BNs, based on the decomposition of its network structure
into strongly connected components called ‘blocks’. Although the method can
be applied on the entire BN in one-go, we believe that using the decomposition-
based approach can greatly increase its efficiency on large real-life biological
networks whose BN models have well-behaved modular structure. This is work-
in-progress and we are currently implementing our method in software to test
its effectiveness on various networks.

2 Background and Notations

Let N = {1, 2, . . . , n} where n ≥ 1. A Boolean network is a tuple BN = (x, f)
where x = (x1, x2, . . . , xn) such that each xi is a Boolean variable and f =
(f1, f2, . . . , fn) is a tuple of Boolean functions over x. In what follows, i will
always range over N , unless stated otherwise. A Boolean network BN = (x, f)
may be viewed as a directed graph GBN = (V,E), where V = {v1, v2 . . . , vn} is
the set of vertices or nodes (intuitively, vi corresponds to the variable xi for all
i) and for every i, j ∈ N , there is a directed edge from vj to vi, often denoted
as vj → vi, if and only if fi depends on xj . Thus V is ordered according to the
ordering of x. For any vertex vi ∈ V , we let ind(vi) = i be the index of vi in
this ordering. For any subset W of V , ind(W ) = {ind(v)| v ∈ W}. A path from a
vertex v to a vertex v′ is a (possibly empty) sequence of edges from v to v′ in GBN.
For any vertex v ∈ V we define its set of parents as par(v) = {v′ ∈ V | v′ → v}
and for any subset W of V , par(W ) = {par(v) | v ∈ W}. For the rest of the
exposition, we assume that an arbitrary but fixed network BN of n variables is
given to us and GBN = (V,E) is its associated directed graph.

A state s of BN is an element in {0, 1}n. Let S be the set of states of BN.
For any state s = (s1, s2, . . . , sn), and for every i, the value of si, often denoted
as s[i], represents the value that the variable xi takes when the BN ‘is in state
s’. For some i, suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) will denote
the value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the Hamming distance
between s and s′ will be denoted as hd(s, s′) and arg(hd(s, s′)) ⊆ N will denote
the set of indices in which s and s′ differ. For a state s and a subset S′ ⊆ S, the
Hamming distance between s and S′ is defined as hd(s,S′) = mins′∈S′ hd(s, s′).
We let arg(hd(s,S′)) denote the set of subsets of N such that I ∈ arg(hd(s,S′))
if and only if I is a set of indices of the variables that realise hd(s,S′).

We assume that the Boolean network starts initially in a state s0 and its state
changes in every discrete time-step according to the update functions f . In this
work, we shall deal with the asynchronous updating scheme but all our results
transfer to the synchronous updating scheme as well. Suppose s0 ∈ S is an initial
state of BN. The asynchronous evolution of BN is a function ξ : N → ℘(S) such
that ξ(0) = s0 and for every j ≥ 0, if s ∈ ξ(j) then s′ ∈ ξ(j + 1) if and only if
either hd(s, s′) = 1 and s′[i] = fi(s) where i = arg(hd(s, s′)) or hd(s, s′) = 0 and
there exists i such that s′[i] = fi(s).

The dynamics of a Boolean network can be represented as a state transition
graph or a transition system (TS). The transition system of BN, denoted as TSBN



Existential Control of Boolean Networks 145

is a tuple (S,→) where the vertices are the set of states S and for any two states
s and s′ there is a directed edge from s to s′, denoted s → s′, if and only if either
hd(s, s′) = 1 and s′[i] = fi(s) where i = arg(hd(s, s′)) or hd(s, s′) = 0 and there
exists i such that s′[i] = fi(s).

For any state s ∈ S, preTS(s) = {s′ ∈ S | s′ → s} contains all the states
that can reach s by performing a single transition in TS. For a subset S′ of S,
preTS(S′) =

⋃
s∈S′ preTS(s). A path from a state s to a state s′ is a (possibly

empty) sequence of transitions from s to s′ in TSBN. A path from a state s to a
subset S′ of S is a path from s to any state s′ ∈ S′. For a state s ∈ S, reachTS(s)
denotes the set of states s′ such that there is a path from s to s′ in TS.

An attractor A of TSBN (or of BN) is a subset of states of S such that for
every s ∈ A, reachTSBN

(s) = A. Any state which is not part of an attractor
is a transient state. An attractor A of BN is said to be reachable from a state
s if reachTSBN

(s) ∩ A �= ∅. Attractors represent the stable behaviour of the BN
according to the dynamics. For an attractor A of BN, the weak basin or simply the
basin of attraction of A, denoted basTSBN

(A), is a subset of states of S such that
s ∈ basTSBN

(A) if reachTSBN
(s) ∩ A �= ∅. A control C is a (possibly empty) subset

of N . For a state s ∈ S, the application of control C to s, denoted C(s) is defined
as the state s′ ∈ S such that s′[i] = (1 − s[i]) if i ∈ C and s′[i] = s[i], otherwise.
Henceforth, we drop the subscripts TS or BN or both when no ambiguity arises.

Control Problems: In this work we shall exclusively deal with the notion of
existential control in that, after the control C is applied to a state s, there ‘exists’
a path from C(s) to the desired target attractor and also perhaps to other non-
target attractors. This is different from the notion of absolute control dealt with
in [10] where after the control, C(s) is ‘guaranteed’ to reach the target attractor.
Although the techniques applied for the computation of the minimal control are
similar in both cases, there are certain fundamental differences. Therefore, here
we are interested in the following control problems given a network BN. Note
that for us, the control is applied in a single time step (hence simultaneously)
to the state s under consideration.

1. Minimal existential target control: Given a state s ∈ S and a ‘target
attractor’ At of BN, it is a control Cs→At

such that after the application of
Cs→At

(s), BN can eventually reach At and Cs→At
is a minimal such subset.

2. Minimal existential all-pairs control: Given a set A = {A1, A2, . . . , Ap},
p ≥ 2, of attractors of BN, it is a minimal subset CA of N such that for any
pair Ai, Aj ∈ A of attractors, there is a state s ∈ Ai, such that Cs→Aj

⊆ CA.
3. Minimal existential full control: CBN is the minimal existential all-pairs

control CA when A is the set of all attractors of BN.

In this work we shall use ideas from the decomposition-based approach of
[10] to compute (2) and (3). We first give the relevant definitions and results.

Let SCC denote the set of maximal strongly connected components (SCCs)
of GBN. A basic block B is a subset of nodes of BN such that B = (S ∪ par(S))
where S is a maximal SCC of GBN. Let B denote the set of basic blocks of BN.
The union of two or more basic blocks will also be called a block. Using the set of



146 S. Paul et al.

basic blocks as vertices, we can form a directed graph GB = (B, EB), called the
block graph of BN, where for any pair of basic blocks B′, B ∈ B, B′ �= B, there is
a directed edge from B′ to B if and only if B′ ∩B �= ∅ and for every v ∈ B′ ∩B,
par(v) ∩ B = ∅. In such a case, B′ is called a parent block of B and v is called a
control node for B. The set of parent blocks of B is denoted as par(B).

A block is called elementary if par(B) = ∅ and non-elementary otherwise.
We shall henceforth assume that BN has k basic blocks, |B| = k, and GBN is
topologically sorted as {B1, B2, . . . , Bk}. Given how GBN is constructed, it will
be a directed acyclic graph and hence can always be topologically sorted. Note
that for every j : 1 ≤ j ≤ k, (

⋃j
�=1 B�) is an elementary block. We shall denote

it as Bj and let B−
j = (Bj \ Bj−1). For two basic blocks B and B′ where B

is non-elementary, B′ is said to be an ancestor of B if there is a path from B′

to B in the block graph GB. The ancestor-closure of a basic block B, denoted
ac(B) is defined as the union of B with all its ancestors. Note that ac(B) is an
elementary block and so is (ac(B) \ B−), denoted as ac(B)−.

For a block B of BN, its state space is {0, 1}|B| and is denoted as SB . For
any state s ∈ S, where s = (s1, s2, . . . , sn), the projection of s to B, denoted s|B
is the tuple obtained from s by suppressing the values of the variables not in B.
Let B1 and B2 be two blocks of BN and let s1 and s2 be states of B1 and B2,
respectively. s1⊗s2 is defined (called crossable) if there exists a state s ∈ SB1∪B2

such that s|B1 = s1 and s|B2 = s2. s1 ⊗ s2 is then defined to be this unique state
s. For any subsets S1 and S2 of SB1 and SB2 resp. S1 ⊗S2 is a subset of SB1∪B2

and is defined as: S1 ⊗S2 = {s1 ⊗ s2 | s1 ∈ S1, s2 ∈ S2 and s1, s2 are crossable}.
The cross operation can be defined for more than two states s1, s2, . . . , sk, as
s1 ⊗ s2 ⊗ . . . sk = (((s1 ⊗ s2) ⊗ . . .) ⊗ sk). The cross operation can be similarly
lifted to more than two sets of states.

The TS TSB of an elementary block B of BN is defined similarly to the TS of
BN, which can indeed be done as the update functions do not depend on vertices
outside B. The attractors, basin of attractions, etc. of such a TS is also defined
similarly. The TSs of a non-elementary basic block B are ‘realised’ by the basins
of attractions of the attractors of ac(B)−, each such attractor realising a different
TS. Thus, if A is an attractor of ac(B)− then TSB realised by bas(A) has set of
states S which the maximum subset of Sac(B) such that S|ac(B)− = bas(A). The
transitions are then defined as usual. The following is a key result, a counterpart
of which was proved in [10], saying that the ‘global’ attractors of BN and their
basins can be computed by first computing the ‘local’ attractors and basins of
the basic blocks and then merging them using the cross operation.

Theorem 1 ([10]). A is an attractor of BN iff there exist attractors Aj of Bj

where Aj = A|Bj
for all j : 1 ≤ j ≤ k and A = ⊗jAj. Furthermore, A|ac(Bj) is

an attractor of ac(Bj) and bas(A) = ⊗jbas(Aj) w.r.t. their TSs.

3 Results

In this section we develop our method for solving control problem (2). We first
describe a ‘global’ approach that works on the entire BN and then modify it



Existential Control of Boolean Networks 147

to exploit the decomposition-based approach of [10]. For simplicity, we assume
that every attractor of BN is a single state with a self loop. The methods can be
generalised for the case where an attractor can comprise of two or more states.

First, note that given a state s and an attractor A, for BN to potentially
end up in A after the application of a control C, it is necessary and sufficient
that there is a path from C(s) to A in TSBN which means, by definition, that
C(s) ∈ bas(A). Thus given a set A of attractors of BN to compute CA it is enough
to compute the basins of the attractors in A. This can be done by a repeated
application of the pre(·) operator on an attractor till a fixed point is reached.
See [9] for a detailed description of this fixed point procedure.

So, assume that the given set of attractors A is sorted as {A1, A2, . . . , Ap}.
We then construct a p × p matrix M whose entries are subsets of N and are
defined as: for every I ⊆ N , I ∈ Mij if and only if I = arg(hd(s, s′)) where
s ∈ Ai and s′ ∈ bas(Aj). That is, for every pair of attractors Ai and Aj the
entries of Mij record the indices of the variables that need to be toggled in state
s ∈ Ai to end up in any of the states of the basin of Aj . The minimal all-pairs
control CA is then nothing but a minimal subset of N such that for every i, j
there exists I ∈ Mij such that I ⊆ CA.

We now describe a method to compute the set CA based on the power-set
lattice of N , denoted by L. Let � : L → ℘(N × N) be a labelling function
that labels the elements of L with tuples in (N × N) defined as follows. For
any element L of L, (i, j) ∈ �(L) iff L ∈ Mij . Let �∗ denote the closure of
the labelling function of L under subsets, defined as: for every element L of
L, �∗(L) =

⋃
L′⊆L �(L′). Finally, CA is any minimal element L of L such that

�∗(L) = ({1, 2, . . . , p}×{1, 2, . . . , p})\{(i, i) | i ∈ {1, 2, . . . , p}}. Control problem
(3) is a special case of (2) where A is the set of all attractors of BN. For solving
(3), given a BN as input, we can first apply any of the methods available in the
literature (e.g., see [8]) to compute the set of all attractors A of BN, and then
invoke the above method.

In general, the problem of computing CA given the matrix M is NP-hard.
Moreover, given a BN and an attractor A as input, the problem of computation
of the strong basin of A is PSPACE hard. Hence, the control problem (2) is at
least PSPACE-hard and so unlikely to have efficient algorithms for the general
case. However, in [10] we show that using a decomposition-based approach we
can improve the efficiency for many modular well-structured networks. We now
describe a similar approach for solving control problem (2) [and hence (3)].

The method is iterative where instead of computing the basin of attractions
of the given attractors for the entire BN in one-go, we decompose the BN into
blocks, as described in the previous section, and compute the basins and also the
minimal control w.r.t the basins of each such block. The basin of an attractor in
a block can once again be computed using a repeated application of the pre(·)
operator in that block. The details are given in [9].

Suppose we are given a BN and a set of attractors A sorted as
{A1, A2, . . . , Ap} as input. We proceed in the following steps:



148 S. Paul et al.

1. We decompose BN into basic blocks B, form the block graph GB and topo-
logically sort it to obtain an ordering of the blocks as B = {B1, B2, . . . , Bk}.

2. Proceeding in the sorted order, for each block Bj we repeat the steps below:
(a) Let B̂j = (Bj \ (

⋃
r<j Br)) and Ij = ind(B̂j).

(b) Let Mj be a p × p matrix whose entries are subsets of Ij .
(c) Note that by Theorem 1, Ar|ac(Bj) is an attractor of Bj , for every r : 1 ≤

r ≤ p. For every r, we compute bas(Ar|ac(Bj)).
(d) We populate the matrix Mj as: for every I ⊆ Ij , I ∈ Mj

qr if and only if
I = (arg(hd(s|B̂j

, s′|B̂j
))) for some s ∈ Aq|ac(Bj) and s′ ∈ bas(Ar|ac(Bj)).

(e) Let Lj be the subset lattice of Ij and let �j label the elements of Lj with
tuples in (Ij × Ij) such that for L ∈ Lj , (q, r) ∈ �j(L) iff L ∈ Mj

qr.
(f) Let �∗

j denote the closure of �j under subsets and let Cj
A be any mini-

mal element L of Lj such that �∗(L) = (({1, 2, . . . , p} × {1, 2, . . . , p}) \
{(i, i) | i ∈ {1, 2, . . . , p}})

3. Finally we let CA =
⋃k

j=1 C
j
A.

The above approach is worked-out in details on a toy example in [9].

4 Conclusion

In this report, we describe work-in-progress on the development of a procedure
for the computation of a minimal subset of nodes required for the existential
control of a given BN. Our procedure can be applied on the entire BN in one-go
or on the ‘blocks’ of the BN locally and then later combined to derive the global
control, whereby taking advantage of the decomposition-based approach towards
the problem of target control of BNs that we have developed in [10]. We are cur-
rently implementing our procedure in software to test its efficacy and efficiency
on various real-life and random BNs. We believe that our decomposition-based
approach has great potential to efficiently solve the control problem for large real-
life biological networks modelled as BNs that are modular and well-structured.

References

1. Gates, A.J., Rocha, L.M.: Control of complex networks requires both structure and
dynamics. Sci. Rep. 6, 24456 (2016)

2. Hopkins, A.L.: Network pharmacology: the next paradigm in drug discovery. Nat.
Chem. Biol. 4, 682–690 (2008)

3. Huang, S.: Genomics, complexity and drug discovery: insights from Boolean net-
work models of cellular regulation. Pharmacogenomics 2(3), 203–222 (2001)

4. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind.
Appl. Math. 1(2), 152–192 (1963)

5. Kauffman, S.: Homeostasis and differentiation in random genetic control networks.
Nature 224, 177–178 (1969)

6. Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling biomolecular
regulatory networks. Sci. Rep. 3, 2223 (2013)



Existential Control of Boolean Networks 149

7. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature
473, 167–173 (2011)

8. Mizera, A., Pang, J., Qu, H., Yuan, Q.: Taming asynchrony for attractor detection
in large Boolean networks. In: IEEE/ACM TCBB (2018, in press)

9. Paul, S., Pang, J., Su, C.: Towards the existential control of boolean networks
(extended abstract). Technical report, UL (2018). http://arxiv.org/abs/1806.10927

10. Paul, S., Su, C., Pang, J., Mizera, A.: A decomposition-based approach towards
the control of Boolean networks. In: Proceedings of ACM-BCB 2018. ACM (2018,
in press)

http://arxiv.org/abs/1806.10927


Timing and Scheduling



Statistical Model Checking of Response
Times for Different System Deployments

Bernhard K. Aichernig1, Severin Kann2, and Richard Schumi1(B)

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{aichernig,rschumi}@ist.tugraz.at

2 AVL List GmbH, Graz, Austria
Severin.Kann@avl.com

Abstract. Performance testing is becoming increasingly important for
interactive systems. Evaluating their performance with respect to user
expectations is complex, especially for different system deployments. Var-
ious load-testing approaches and performance-simulation methods aim
at such analyses. However, these techniques have certain disadvantages,
like a high testing effort for load testing, and a questionable model accu-
racy for simulation methods. Hence, we propose a combination of both
techniques. We apply statistical model checking with a learned timed
model and evaluate the results on the real system with hypothesis test-
ing. Moreover, we check the established hypotheses of a reference system
on various system deployments (configurations), like different hardware
or network settings, and analyse the influence on the performance. Our
method is realised with a property-based testing tool that is extended
with algorithms from statistical model checking. We illustrate the feasi-
bility of our technique with an industrial case study of a web application.

Keywords: Statistical model checking · Model-based testing
System deployments · Property-based testing · Performance
Response time · Stochastic user profiles · Web-service application

1 Introduction

Analysing the performance of a system for specific usage scenarios is a difficult
task. It becomes even more cumbersome, when a system is deployed to customers
and should still provide certain performance properties for different hardware or
network settings. We propose a performance evaluation method that applies sta-
tistical model checking (SMC) on a timed model from a reference system in order
to derive hypotheses that allow us to verify system deployments. SMC [1] is an
evaluation method that answers qualitative or quantitative questions, which are
expressed as properties of a stochastic model or system. In contrast to existing
load-testing approaches, we can perform a fast evaluation with a model, and in
contrast to model-based methods, we verify the results of the model evaluation
on real systems.
c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 153–169, 2018.
https://doi.org/10.1007/978-3-319-99933-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_11&domain=pdf


154 B. K. Aichernig et al.

Model-Based
Testing

Reference
SUT

Functional
Model

Log-Files
Linear

Regression

Response-Time
Distributions+

Timed
Model (STA)

Monte Carlo
of the Model
(virtual time)

Probabilities
as Hypotheses

Hypothesis Test
(SPRT) of SUTs

(real time)

User
Profiles

Accepted/Rejected
Hypotheses

SUT
Deployments

Fig. 1. Overview of the data flow of our method.

Our approach is realised with a property-based testing (PBT) tool that was
extended with SMC algorithms [5]. PBT is a random testing method that tries
to falsify properties that define the expected behaviour of a system-under-test
(SUT). PBT tools generate random inputs and check if a property holds.

Previously, we have demonstrated how learned models can be applied to esti-
mate the probability that a system can satisfy certain response-time thresholds,
and we verified the resulting probability with hypothesis testing on the SUT.
Now, we derive hypotheses about the response time from a reference SUT, in
order to check, if deployments of this SUT with a different hardware/network
setup have a similar performance, i.e. they satisfy the same hypotheses.

The process of our method is illustrated in Fig. 1. (1) We perform model-
based testing with a functional model and capture the response times of requests
of a reference SUT as log-data. We run multiple testing processes concurrently
in order to obtain response times for simultaneous requests. (2) The log-files are
then taken as input for a linear regression, which gives us response-time distribu-
tions. (3) These distributions and stochastic user profiles are integrated into the
functional model, resulting in a combined stochastic timed automata (STA) [8]
model. (4) Next, we perform a Monte Carlo simulation of this model in order to
obtain answers for the question: “What is the probability that the response time
of each user within a user population is under a certain threshold?”. (5) The
resulting probabilities serve us as hypotheses in order to check if deployments of
the SUT can satisfy the same response-time thresholds as the reference system.
We test the deployments with the sequential probability ratio test (SPRT) [38],
a form of hypothesis testing that can usually be performed with fewer samples
than a Monte Carlo simulation.

Related Work. A number of related approaches in the area of PBT are concerned
with testing concurrent software [16,22,31]. The closest related work we found in
this area was from Arts [7]. It shows a load-testing approach with QuickCheck
that can run user scenarios on an SUT in order to determine the maximum
supported number of users. In contrast to our approach, Arts does not consider
stochastic user profiles and the user scenarios are only tested on an SUT, but
not simulated at model-level.



Statistical Model Checking of Response Times 155

Related work is also in the area of load testing [9,29]. For example, Dra-
heim et al. [17] demonstrated a load-testing approach that simulates realistic
user behaviour with stochastic models. Moreover, a number of related tools,
like Neoload perform load testing with user populations [35]. In contrast to
our work, load testing is mostly performed directly on an SUT. With our app-
roach, we want to simulate user populations on the model-level as well. There
are also many approaches that focus only on a simulation on the model-level
[10,12,14,27,32,40], but with our method we can also directly test an SUT
within the same tool.

Another domain with related work, is deployment testing. For example, var-
ious related approaches apply a performance analysis of system deployments
[28,36,39]. However, in contrast to our work, they do not apply a model that
is derived from a reference SUT in order to evaluate the performance of SUT
deployments under specific usage scenarios.

The most related tool is UPPAAL SMC [13]. Similar to our approach, it
provides SMC of priced timed automata, which can simulate user populations.
It also supports testing implementations, but for this a test adapter is required,
which, e.g., handles the form-data creation. In contrast, we can use PBT features,
like data generators in order to automatically generate form data, and we can
model in a programming language. This helps testers, who are already familiar
with this language, since they do not have to learn new notations.

To the best of our knowledge our work is novel: no other work performs
SMC on a learned timed model of a reference SUT to derive hypotheses that
are verified on SUT deployments in order to check, if they provide comparable
response times for given user profiles.

Contribution. This paper builds upon our previous work [37], where we intro-
duced our model-based prediction method that enables an efficient test of the
predictions on the SUT. We evaluated this approach on an industrial web-service
application. However, it was only tested on one reference system without any
deployments. Hence, this work presents the following novel contributions. (1) The
major contribution is the new application of our method to analyse the perfor-
mance of system deployments applying hypotheses that were derived from a
reference SUT. This allows software companies to give their customers recom-
mendations for the hardware/network requirements of a system that should sat-
isfy certain performance properties. (2) Another contribution is the additional
evaluation of our method by applying it to several deployments of an industrial
web-service application. This helps to find possible limitations of our approach
and emphasizes its generality.

Structure. First, Sect. 2 introduces the background of SMC, PBT and stochastic
timed automata based on previous work [37]. Then, in Sect. 3 we illustrate our
method with an example. In Sect. 4, we evaluate our approach with an industrial
web-service application as reference SUT, and we check multiple deployments
with other hardware/network configurations. Finally, we conclude in Sect. 5.



156 B. K. Aichernig et al.

2 Background

2.1 Statistical Model Checking (SMC)

SMC is a verification method that evaluates certain properties of a stochastic
model. These properties are usually defined with (temporal) logics, and they
can describe quantitative and qualitative questions. For example, questions, like
“What is the probability that the model satisfies a property?” or “Is the proba-
bility that the model satisfies a property above or below a certain threshold?”. In
order to answer such questions, a statistical model checker produces samples, i.e.
random walks on the stochastic model and checks whether the property holds
for these samples. Various SMC algorithms are applied, in order to compute
the total number of samples needed to find an answer for a specific question,
or to compute a stopping criterion. This criterion determines when we can stop
sampling, because we have found an answer with a required certainty. In this
work, we focus on the following algorithms, which are commonly used in the
SMC literature [13,25,26].

Monte Carlo Simulation with Chernoff-Hoeffding Bound. The algorithm com-
putes the required number of simulations n in order to estimate the probability
γ that a stochastic model satisfies a Boolean property. The procedure is based on
the Chernoff-Hoeffding bound [20] that provides a lower limit for the probability
that the estimation error is below a value ε. Assuming a confidence 1 − δ, the
required number of simulations n can be calculated as follows:

n ≥ 1
2ε2

ln
(

2
δ

)

The n simulations represent Bernoulli random variables X1, . . . , Xn with out-
come xi = 1, if the property holds for the i-th simulation run, and xi = 0
otherwise. Let the estimated probability be γ̄n = (

∑n
i=1 xi)/n, then the proba-

bility that the estimation error is below ε is greater than our required confidence.
Formally, we have: Pr(|γ̄n −γ| ≤ ε) ≥ 1− δ. After the calculation of the number
of samples n, a simple Monte Carlo simulation is performed [26].

Sequential Probability Ratio Test (SPRT). This sequential method [38] is a
form of hypothesis testing, which can answer qualitative questions. Given a ran-
dom variable X with a probability density function f(x, θ), we want to decide,
whether a null hypothesis H0 : θ = θ0 or an alternative hypothesis H1 : θ = θ1
is true for desired type I and II errors (α, β). In order to make the decision, we
start sampling and calculate the log-likelihood ratio after each observation of xi:

log Λm = log
pm
1

pm
0

= log

m∏
i=1

f(xi, θ1)

m∏
i=1

f(xi, θ0)
=

m∑
i=1

log
f(xi, θ1)
f(xi, θ0)



Statistical Model Checking of Response Times 157

We continue sampling as long as log β
1−α < log Λm < log 1−β

α . H1 is accepted
when log Λm ≥ log 1−β

α , and H0 when log Λm ≤ log β
1−α [18].

In this work, we form a hypothesis about the expected response time with
the Monte Carlo method on the model. Then, we check with the SPRT if this
hypothesis holds on a deployment of the SUT. This is faster than running a
Monte Carlo simulation directly on the deployment, since the SPRT requires a
far lower number of samples, i.e. test cases.

2.2 Property-Based Testing (PBT)

PBT is a random-testing technique that aims to check the correctness of prop-
erties. A property is a high-level specification of the expected behaviour of a
function-under-test that should always hold. For example, the length of a con-
catenated list is always equal to the sum of lengths of its sub-lists:

∀ l1, l2 ∈ Lists[T ] : length(concatenate(l1, l2)) = length(l1) + length(l2)

With PBT, we automatically generate inputs for such a property by apply-
ing data generators, e.g., the random list generator. The inputs are fed to the
function-under-test and the property is evaluated. If it holds, then this indicates
that the function works as expected, otherwise a counterexample is produced.

PBT also supports model-based testing. Models encoded as extended finite
state machines (EFSMs) [23] can serve as source for state-machine properties.
An EFSM is a 6-tuple (S, s0, V, I, O, T ). S is a finite set of states, s0 ∈ S is the
initial state, V is a finite set of variables, I is a finite set of inputs, O is a finite
set of outputs, T is a finite set of transitions. A transition t ∈ T is a 5-tuple
(ss, i, g, op, st), ss is the source state, i is an input, g is a guard, op is a sequence
of output and assignment operations, st is the target state [23]. In order to
derive a state-machine property from an EFSM, we have to write a specification
comprising the initial state, commands and a generator for the next transition
given the current state of the model. Commands encapsulate (1) preconditions
that define the permitted transition sequences, (2) postconditions that specify
the expected behaviour and (3) execution semantics of transitions for the model
and the SUT. A state-machine property states that for all permitted transition
sequences, the postcondition must hold after the execution of each transition
resp. command [21,33]. Simply put, such properties can be defined as follows:

cmd .runModel , cmd .runActual : S × I → S × O

cmd .pre : I × S → Boolean, cmd .post : (S × O) × (S × O) → Boolean
∀s ∈ S, i ∈ I, cmd ∈ Cmds :

cmd .pre(i , s) =⇒ cmd .post(cmd .runModel(i , s), cmd .runActual(i , s))

There are two functions to execute a command on the model and on the SUT:
cmd .runModel and cmd .runActual . The precondition cmd .pre defines the valid
inputs for a command. The postcondition cmd .post compares the outputs and
states of the model and the SUT after the execution of a command.



158 B. K. Aichernig et al.

State-Machine
Property

SUT

Model

SMC Property

SMC Algorithm

Configurations

Parameter

Result

Fig. 2. Data flow diagram of an SMC property.

PBT is a powerful testing technique that allows a flexible definition of gener-
ators and properties via inheritance or composition. The first implementation of
PBT was QuickCheck for Haskell [15]. Numerous reimplementations followed for
other programming languages, like Hypothesis1 for Python or ScalaCheck [30].
We developed our method with FsCheck2. FsCheck is a .NET port of QuickCheck
with influences of ScalaCheck. It supports a functional programming style with
F# and an object-oriented style with C#. We work with C#, since it is the
programming language of our SUT.

2.3 Stochastic Timed Automata

Timed automata (TA) were originally introduced by Alur and Dill [6]. Several
extensions of TA have been proposed, including stochastically enhanced TA [11]
and continuous probabilistic TA [24]. We follow the definition of stochastic timed
automata (STA) by Ballarini et al. [8]: An STA can be expressed as a tuple
(L, l0, A,C, I, E, F,W ), where the first part is a normal TA (L, l0, A,C, I, E)
and additionally it contains probability density functions F = (fl)l∈L for the
sojourn time and natural weights W = (we)e∈E for the edges. L is a finite set of
locations, l0 ∈ L is the initial location, A is a finite set of actions, C is a finite
set of clocks with real-valued valuations u(c) ∈ R>0, I : L �→ B(C) is a finite
set of invariants for the locations and E ⊆ L × A × B(C) × 2C × L is a finite
set of transitions between locations, with an action, a guard and a set of clock
resets. The transition relation can be described as follows. For a state (l, u),
where l ∈ L is a location and u ∈ C → R≥0 is a clock valuation, the probability
density functions fl is used to choose the sojourn time d, which changes the state
to (l, u + d), where u + d means that the clock valuation is changed (u + d)(c) =
u(c) + d for all c ∈ C. After this change, an edge e is selected out of the set
of enabled edges E(l, u + d) with the probability we/

∑
h∈E(l,u+d) wh. Then, a

transition to the target location l′ of e and u′ = u + d is performed. For our
models, the underlying stochastic process is a semi-Markov process since the
clocks are reset at every transition, but we do not assume exponential delays,
and therefore, it is not a standard continuous-time Markov chain.

1 https://pypi.python.org/pypi/hypothesis
2 https://fscheck.github.io/FsCheck

https://pypi.python.org/pypi/hypothesis
https://fscheck.github.io/FsCheck


Statistical Model Checking of Response Times 159

2.4 Integration of SMC into Property-Based Testing

We have demonstrated that SMC can be integrated into a PBT tool in order to
perform SMC of PBT properties [3,5], which were explained in Sect. 2.2. These
PBT properties can be evaluated on stochastic models, like in classical SMC, as
well as on stochastic implementations. For the integration, we introduced our
own new SMC properties, which take a PBT property, configurations for the
PBT execution, and parameters for the specific SMC algorithm as input. Then,
our properties perform an SMC algorithm by utilizing the PBT tool as simu-
lation environment and they return either a quantitative or qualitative result,
depending on the algorithm. Figure 2 shows how we can evaluate a state-machine
property within an SMC property. Such a state-machine property can, e.g., be
applied for a statistical conformance analysis by comparing an ideal model to a
stochastic faulty implementation or it can also simulate a stochastic model. We
evaluated our SMC properties by repeating case studies from the SMC literature
and we were able to reproduce the results.

3 Method

In this section, we present the necessary steps to apply our method, based on
the overview presented in Fig. 1. The steps are illustrated with an example of an
incident manager that was introduced in our previous work [2,4].

Model-Based Testing. First, we perform model-based testing within PBT in
order to produce log-data. This initial testing phase is conducted with a func-
tional EFSM model. The SUT is a web-based tool that supports tasks, like cre-
ating, editing or closing incident objects, which can, e.g., be bug reports. These
objects include attributes (form data) that are stored in a database. We automat-
ically generate data for the attributes with PBT generators. An example model
of the incident manager is illustrated in Fig. 3. This model is a hierarchical state
machine [19]. There are sub-state machines for each incident object and select
transitions can switch between these objects. We have a variable activeObj that
identifies the currently open incident and a map (stateMap) that has an object
identifier as key and stores the state of all incidents. Each sub-state machine
shows the tasks that can be performed for an incident object. In reality, each of
these tasks represents a page of the incident manager with required form fields
(attributes). Hence, the transitions are parametrised with attributes [4].

With this functional model, we perform classical PBT, which generates ran-
dom sequences of commands with form data. We run several testing processes
concurrently in order to produce log-data that includes response times of simul-
taneous requests. Note that the tasks of the sub-state machines in Fig. 3 consist
of multiple subtasks that are not shown in this figure for clarity. For example,
there are subtasks for opening the page (StartTask), for setting attributes (SetAt-
tribute), and for saving the page (Commit). Most of these subtasks are requests,
hence, we record them in our logs. An example log from a non-productive test
system with low computing resources (virtual machine) is represented in Table 1.



160 B. K. Aichernig et al.

Fig. 3. Functional EFSM model of the incident manager [4].

Table 1. Example log-data of the incident manager.

Task From To Subtask #ActiveUsers Attribute ResponseTime[ms]

Create Global Submitted StartTask 7 - 334

Create Global Submitted SetAttribute 8 Assignee 77

Edit Submitted Submitted StartTask 5 - 286

Create Global Submitted Commit 6 - 918

Edit Submitted Submitted SetAttribute 4 TestOrder 347

The log contains response times of tasks, subtasks, attributes, states (From, To)
and simultaneous requests (#ActiveUsers). For this initial testing phase, we
selected transitions with a uniform distribution.

Linear Regression. We apply a multiple linear regression in order to obtain distri-
butions for response times. First, we performed data cleaning and preprocessing,
where we, e.g., filter outliers. For example, we are not interested in unusual long
response times that are caused by network disruptions. Our aim is to maximise
the user satisfaction. Hence, we are mainly interested in average response times
under normal conditions, but not in worst-case scenarios. Next, we select the
log variables, which have a high influence on the response time. This phase is
called feature selection. This and all other steps are facilitated with the help of
data visualisations, e.g., scatter plots or correlation matrices. Finally, we can run
the linear regression by applying R, which is a standard statistics tool.3 A more
detailed description of the regression can be found in our previous work [37] and
in the work of Rencher and Christensen [34].

As a result, we obtain estimates of the mean response time and standard
errors for the regression variables. We combine these values with a linear com-
bination to obtain parameters for the normal distribution for specific variable
assignments. This combination is done inside the function rtime (response time).
This function takes a task, a subtask the number of active users and an optional
attribute as input and returns the parameters μ and σ of the normal distribution.

3 https://www.r-project.org

https://www.r-project.org


Statistical Model Checking of Response Times 161

rtime : Task × Subtask × N>0 × Attribute → R × R

{TaskWeights : { Create : 70 , Edit : 45 , Close : 25 , S e l e c t : 30 } ,
TaskWaitMin :500 ,TaskWaitMax :1500 , SubTaskWaitMin :300 , SubTaskWaitMax :500 ,
WaitPerReference : 10 , WaitPerCharacter : 30 }

Listing 1.1: User profile in the JavaScript Object Notation (JSON) format. .

Monte Carlo Simulation. In order to apply SMC for a realistic usage scenario,
we integrate a given user profile and response-time distributions from the linear
regression into the functional model. An example user profile for the incident
manager is shown in Listing 1.1. It includes weights for tasks, user input (waiting)
time intervals between tasks/subtasks that represent the time that a user needs
for the input and data specific waiting factors, e.g., a delay per character, or a
delay per reference for the number of options of a drop-down menu.

The extension of the initial functional model with a user profile and response-
time distributions gives us a combined model that is a stochastic timed automa-
ton (Sect. 2.3). Figure 4 illustrates this automaton for one incident object. Note,
we only show the combined model of one sub-state machine of the hierarchi-
cal EFSM in Fig. 3 for brevity. All locations (states) l in this combined model
include a sojourn time that is defined with a probability density function fl.
The tasks of the functional model where separated into subtasks in order to
represent the response times of individual requests. Each subtask comprises an
edge that calls the rtime function to receive the parameters (μ, σ) and a loca-
tion (di) that applies these parameters in a normal distribution for fl. All other
locations describe fl with a uniform distribution given by an upper and lower
bound [a, b]. The locations Submitted and Closed have bounds from the user
input time intervals between tasks of the user profile and for the other locations
(wi) the bounds are calculated in a separate edge with a function utime (user
time). This function takes into account the user-time intervals between subtasks
and the data-dependent time, e.g., the wait per character, from the user profile,
and returns according bounds. The task weights of the user profile are attached
to the edge weights we and they are shown before a edge name (in bold). It
can be seen that each transition or task of the initial functional model is now
represented as a sequence of edges with a silent edge at the end. Note, we also
included the select tasks, which were explained earlier. A create task is also pos-
sible in the submitted and closed location, but we omit additional edges for this,
in order to keep the figure simple. Note that we also omit parameters and their
assignments for the rtime and utime functions. The parameters for rtime were
already explained before and utime takes the generated attribute data as input
and returns associated intervals for the user-input time.

With this combined model, we can evaluate user profiles by simulating their
expected response times. Furthermore, we can analyse a user population con-
sisting of multiple users, by running several models concurrently. We execute
this model to answer questions, like “What is the probability that the response
time of each Commit subtask of a user within a population is under a cer-
tain threshold?”. Such questions can be answered with a Monte Carlo simula-
tion with Chernoff-Hoeffding bound. For example, checking the probability for



162 B. K. Aichernig et al.

d1

N (μ, σ)
w1

[a, b]
d2

N (μ, σ)

w2

[a, b]
. . .d3

N (μ, σ)

Submitted
[500,1500]

Create

d4

N (μ, σ)

. . .

d5

N (μ, σ)
Closed

[500,1500]

Close

d6

N (μ, σ)
w3

[a, b]
. . .

d7

N (μ, σ)

Edit

d8

N (μ, σ)
w4

[a, b]
. . .

Select

d9

N (μ, σ)
w5

[a, b]
. . .

Select

70. StartTask
(μ, σ) := rtime(. . .) (a, b) := utime(. . .)

SetAttribute1
(μ, σ) := rtime(. . .)

(a, b) := utime(. . .)

SetAttribute2
(μ, σ) := rtime(. . .)

Commit
(μ, σ) := rtime(. . .)

45. Start
Task

(μ, σ) :
= rtim

e(. . .
)

(a, b) := utime(. . .)
SetAttribute1
(μ, σ) := rtime(. . .) Commit

(μ, σ) := rtime(. . .)

25. StartTask
(μ, σ) := rtime(. . .)

(a, b) := utime(. . .)

Commit
(μ, σ) := rtime(. . .)

30. Load(μ, σ) := rtime(. . .)
(a, b) := utime(. . .)

30. Load
(μ, σ) := rtime(. . .) (a, b) := utime(. . .)

Fig. 4. Stochastic timed automata model for one incident object.

a response-time threshold of one second for each user of a population of 10 users
with parameters ε = 0.05 and δ = 0.01, requires 1060 samples and returns a
probability of 0.593, when a test-case length of three tasks is considered. Fortu-
nately, the SPRT requires fewer samples and is, therefore, better suited for the
evaluation of the reference SUT or SUT deployments.

Hypothesis Testing with the SPRT. The probability that was computed on the
model with a Monte Carlo simulation serves as a hypothesis in order to check, if
SUT deployments are at least as good as the reference SUT. However, first we
evaluate the hypothesis on the reference SUT. We apply the computed probabil-
ity as alternative hypothesis and select a probability of 0.493 as null hypothesis,
which is 0.1 smaller, because we want to be able to reject the hypothesis that the
SUT has a smaller probability. By running the SPRT (with 0.01 as type I and II
error parameters) for each user of the population, we can check these hypotheses.
The alternative hypothesis was accepted for all users and on average 76.8 sam-
ples were needed for the decision. After we have evaluated the hypotheses on the
reference SUT, we can reuse the hypotheses to check if deployments of this SUT
provide a similar performance. For example, an evaluation of a deployment with
less RAM might result in the acceptance of the same hypotheses. The accep-
tance of the same hypotheses means that the deployment provides the same or a
similar performance as the reference SUT for our usage scenario, otherwise the
deployment has worse response times.

Note that our method was implemented in the same way, as described in
our previous work [37], by introducing custom generators for the response- and
user-input time. For brevity, we omit the details of the implementation.

4 Evaluation

System-Under-Test. We evaluated our method by applying it to a web-service
application from the automotive domain, which was provided by our indus-



Statistical Model Checking of Response Times 163

Created

ToCreate
Duplicate

AdminEdit
EditCreated

InWork

MakeReady AdminEdit

Executed

AdminEdit

Finished AdminEdit

Cancelled

AdminEdit

CancelInCreated

DeletedAdminEdit

Invalid

Invalidate Duplicate Reject AdminEdit

AdminEdit EditStandardWorkInWork

AdminEdit

AdminEdit

AdminEditCancelInStandardWorkInWork

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEdit EditStandardWorkExecuted

Finish AdminEdit

AdminEdit CancelInStandardWorkExecuted

AdminEdit

Duplicate
AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit CancelInFinished

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

Activate

CancelInInvalid

Fig. 5. Example sub-state machine of one test order object.

trial partner AVL4. The application is called Testfactory Management Suite
(TFMS) and it enables various management activities of test beds, like test
definition, planning, preparation, execution and data management/analysis for
testing engines. TFMS is based on a client/server architecture. The server is con-
nected to an external MongoDB database. Client and server communicate via
(SOAP) web services hosted on a Microsoft Internet Information Server (IIS).
There are several client types that support different activities, e.g., one client
for managing test orders for test beds. As part of the software quality verifica-
tion process, there is a test framework that simulates a client. This framework
facilitates the creation of requests to the server, and hence, supports our testing
method which works from a client’s perspective [4].

TFMS consists of several modules which group together objects of the appli-
cation domain and associated activities. For our evaluation, we focused on one
main module, the Test Order Manager. This module enables the configuration
and execution of test orders, which are basically a composition of steps that
are necessary for a test sequence at an automotive test bed. Figure 5 shows an
example sub-state machine for the tasks of one test order object. The complete
model of the Test Order Manager is also a hierarchical state machine, like Fig. 3,
but it is even more complex and therefore not presentable. Each task of the state
machine represents the invocation of a page, entering data for form fields and
saving the page, e.g., the page of one task is shown in Fig. 6. The Test Order
Manager contains further sub-state machines for the creation of test orders, like
Business Process Templates, but they are similar to this state machine, and are
therefore omitted [2].

Test Setup. We evaluated a TFMS server (version 1.8) that was running on
a virtual machine with Windows Server 2012. Note that the example given in
Sect. 3, was done with TFMS 1.7. Our reference SUT (D0) had 15 GB of RAM
and 7 Intel Xeon E5-2690v4 2.6 GHz CPUs. A similar virtual machine with
6 GB RAM and 3 CPUs was used to run the test clients. We defined a set

4 https://www.avl.com

https://www.avl.com


164 B. K. Aichernig et al.

Fig. 6. Screen shot of a Test Order Manager web form for one task.

of deployments by varying values for the CPUs, the RAM size, the network
bandwidth, and the network delay. These deployments (Di) are shown in Table 2.
Since the server was running on a virtual machine, the hardware settings could
easily be changed. A tool called Network Emulator for Windows helped us to
configure the network setup of the test client, e.g., it allowed us to decrease
the network bandwidth. The testing phase and also the model evaluation were
performed with the PBT tool FsCheck 2.8.2.

Monte Carlo Simulation. We applied our method in order to answer the following
question: “What is the probability that the response time of all requests within
a task sequence of a fixed length, i.e. a test case, is under a specific threshold for
each user within a population?”. For this evaluation, a user profile was created in
cooperation with domain experts from AVL. This profile was similar to the one
of Listing 1.1, and is hence, omitted. Also the stochastic timed automata model
was similar to that of Fig. 4, but more complex, since the Test Order Manager
comprises multiple sub-state machines for different object types. We also omit
this model for brevity. We applied the model in the same way as described in
Sect. 3, in order to evaluate user populations of different sizes, and we checked
various response-time thresholds with a fixed test-case size of four tasks.

The model was analysed with a Monte Carlo simulation with Chernoff-
Hoeffding bound with parameters ε = 0.05 and δ = 0.01, which requires 1060
samples (per data point). Figure 7 shows the results. As expected, a decrease in
the probability of our given question can be observed, when the number of users
increases or the threshold decreases. Note that an advantage of the evaluation



Statistical Model Checking of Response Times 165

Table 2. Different system deployments with various hardware/network settings.

Deplyoment Hardware Network

#CPUs RAM [GB] Bandwidth [Mbps] Delay [ms]

D0 7 15 1000 0

D1 7 4 1000 0

D2 2 15 1000 0

D3 7 15 500 0

D4 7 15 100 0

D5 7 15 50 0

D6 7 15 1000 25

D7 7 15 1000 10

20 40 60 80 100 120
0

0.2
0.4
0.6
0.8
1

threshold[ms]

pr
ob

ab
ili
ty

5 Users
25 Users
45 Users

Fig. 7. Test Order Manager Monte Carlo simulation results of the model.

of the model is that the model execution can be accelerated with a virtual time.
We apply a virtual time of 1/10 of the actual time, which speeds up the model
execution by a factor of ten (compared to the SUT).

Hypothesis Testing with the SPRT. Next, we applied the probabilities of the
Monte Carlo simulation as hypotheses (H1) for SPRTs of the different deploy-
ments. We selected six data points of Fig. 7 with interesting thresholds and
different user numbers in order to form the hypotheses shown in Table 3. We
evaluate all deployments as explained in Sect. 3 by applying the SPRT with the
same parameters. Figure 8 summarises the results in three groups: one for the
deployments (and SPRTs), where all clients accepted H1, one where there was
no clear consensus among the clients, and one where all clients accepted H0. It
can be seen that H1 was accepted by most of the deployments, which means that
they provide a similar performance. For one deployment (D5) only SPRT 1–4
were successful, SPRT 5–6 were inconclusive, i.e. 48 % of the clients accepted H1

for SPRT 5 and 44 % for SPRT 6. For two deployments, H0 was accepted, which
means that their response time was worse than that of the reference SUT. In
summary, it can be said that a change in the server hardware did not significantly
affect the performance, as H1 was accepted for all deployments with a changed
hardware. Also, a change in the network bandwidth had only a weak influence



166 B. K. Aichernig et al.

Table 3. Different SPRTs for various numbers of users and thresholds.

SPRT No. #Users Threshold [ms] H0 H1

1 5 50 0.478 0.729

2 25 50 0.400 0.650

3 45 50 0.201 0.451

4 5 100 0.746 0.996

5 25 100 0.744 0.994

6 45 100 0.738 0.988

InconclusiveH1 accepted by all clients H0 accepted by all clients

D5

(SPRT 5–6)

D6 D7D0

D1

D2

D3

D4

D5

(SPRT 1–4)

Fig. 8. SPRT results of the different deployments.

on the performance. A clear change in the performance was only observed for
deployments with a higher network delay.

Additionally, we evaluated the number of needed samples of the SPRTs. Note
that in order to obtain an average number of needed samples, we run the SPRT
concurrently for each user of the population and calculate the average of these
runs. Multiple independent SPRT runs would produce a better average, but the
computation time was too high. Figure 9 shows the average number of needed
samples for the SPRTs of different deployments. It can be seen that certain
SPRTs are quite easy to check, e.g., SPRT 3 only needs about 6–13 samples,
other SPRTs take more than twice as many samples. However, a maximum of
about 30 samples is still very low compared to the 1060 samples of the Monte

D0 D1 D2 D3 D4 D5 D6 D7

10

20

30

av
er
ag

e
#
sa
m
pl
es

SPRT 1 SPRT 2 SPRT 3 SPRT 4 SPRT 5 SPRT 6

Fig. 9. Average number of samples (test cases) for the SPRTs of our deployments.



Statistical Model Checking of Response Times 167

Carlo simulation. This low number of samples allows us to evaluate multiple
SUT deployments within a feasible time.

5 Conclusion

We have demonstrated that we can apply SMC with learned timed models in
order to answer questions about the expected response time of given usage sce-
narios, like “What is the probability that the response time of each user within
a population, is under a specific threshold?”. Moreover, we have illustrated that
we can verify the results of such evaluations with hypothesis testing on a real sys-
tem. Additionally, we checked deployments of an SUT by reusing the hypotheses
of a reference SUT.

A major benefit of our approach is that it enables an efficient performance
comparison of a reference system with system deployments for specific usage
scenarios. This is especially helpful, when customer recommendation for the
hardware or network settings are needed for a deployment that should satisfy
certain user expectations. Another advantage of our method is that it is realised
within a PBT tool, which increases the accessibility for testers from industry,
because the models and properties can be defined in a high-level programming
language. Hence, there is no need to learn new notations.

We have evaluated our method with an industrial case study of a web-service
application, and it showed promising results. We analysed various deployments of
an SUT with different hardware and network settings. This analysis showed that
deployments with different server hardware provide a comparable performance
as the reference system for our given usage scenarios. Only deployments with
higher network delays showed a significant performance loss.

In the future, we plan to combine our technique with different learning meth-
ods. Since a linear regression requires still a high manual effort, we aim to eval-
uate learning methods that support a higher degree of automation. Moreover,
an analysis of the applicability of our method for other performance indicators
than response times, e.g., for energy, has a great potential for future work.

Acknowledgements. This research was funded by the Austrian Research Promotion
Agency (FFG), project TRUCONF, No. 845582. We are grateful to the project team
and to the anonymous reviewers for their remarks.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018)

2. Aichernig, B.K., Schumi, R.: Property-based testing with FsCheck by deriving
properties from business rule models. In: ICSTW, pp. 219–228. IEEE (2016)

3. Aichernig, B.K., Schumi, R.: Towards integrating statistical model checking into
property-based testing. In: MEMOCODE, pp. 71–76. IEEE (2016)



168 B. K. Aichernig et al.

4. Aichernig, B.K., Schumi, R.: Property-based testing of web services by deriving
properties from business-rule models. Softw. Syst. Model. 1–23 (2017). https://
doi.org/10.1007/s10270-017-0647-0

5. Aichernig, B.K., Schumi, R.: Statistical model checking meets property-based test-
ing. In: ICST, pp. 390–400. IEEE (2017)

6. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

7. Arts, T.: On shrinking randomly generated load tests. In: Erlang 2014, pp. 25–31.
ACM (2014)

8. Ballarini, P., Bertrand, N., Horváth, A., Paolieri, M., Vicario, E.: Transient anal-
ysis of networks of stochastic timed automata using stochastic state classes. In:
Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS,
vol. 8054, pp. 355–371. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40196-1 30

9. Banga, G., Druschel, P.: Measuring the capacity of a web server under realistic
loads. World Wide Web 2(1–2), 69–83 (1999)

10. Becker, S., Koziolek, H., Reussner, R.H.: The Palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

11. Blair, L., Jones, T., Blair, G.: Stochastically enhanced timed automata. In: Smith,
S.F., Talcott, C.L. (eds.) FMOODS 2000. IAICT, vol. 49, pp. 327–347. Springer,
Boston, MA (2000). https://doi.org/10.1007/978-0-387-35520-7 17

12. Book, M., Gruhn, V., Hülder, M., Köhler, A., Kriegel, A.: Cost and response time
simulation for web-based applications on mobile channels. In: QSIC, pp. 83–90.
IEEE (2005)

13. Bulychev, P.E., et al.: UPPAAL-SMC: statistical model checking for priced timed
automata. In: QAPL. EPTCS, vol. 85, pp. 1–16. Open Publishing Association
(2012)

14. Chen, X., Mohapatra, P., Chen, H.: An admission control scheme for predictable
server response time for web accesses. In: WWW, pp. 545–554. ACM (2001)

15. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP, pp. 268–279. ACM (2000)

16. Claessen, K., et al.: Finding race conditions in Erlang with QuickCheck and
PULSE. In: ICFP, pp. 149–160. ACM (2009)

17. Draheim, D., Grundy, J.C., Hosking, J.G., Lutteroth, C., Weber, G.: Realistic load
testing of web applications. In: CSMR, pp. 57–70. IEEE (2006)

18. Govindarajulu, Z.: Sequential Statistics. World Scientific (2004)
19. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-

gram. 8(3), 231–274 (1987)
20. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.

Am. Stat. Assoc. 58(301), 13–30 (1963)
21. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.

LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-69611-7 1

22. Hughes, J., Pierce, B.C., Arts, T., Norell, U.: Mysteries of Dropbox: property-
based testing of a distributed synchronization service. In: ICST, pp. 135–145. IEEE
(2016)

23. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible transition paths for test-
ing from an extended finite state machine. In: ICST, pp. 230–239. IEEE (2009)

https://doi.org/10.1007/s10270-017-0647-0
https://doi.org/10.1007/s10270-017-0647-0
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1007/978-0-387-35520-7_17
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1


Statistical Model Checking of Response Times 169

24. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative
properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 11

25. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

26. Legay, A., Sedwards, S.: On statistical model checking with PLASMA. In: TASE,
pp. 139–145. IEEE (2014)

27. Lu, Y., Nolte, T., Bate, I., Cucu-Grosjean, L.: A statistical response-time analysis
of real-time embedded systems. In: RTSS, pp. 351–362. IEEE (2012)

28. Malik, H., Shakshuki, E.M.: Classification of post-deployment performance diag-
nostic techniques for large-scale software systems. Procedia Comput. Sci. 37, 244–
251 (2014)

29. Menascé, D.A.: Load testing of web sites. IEEE Internet Comput. 6(4), 70–74
(2002)

30. Nilsson, R.: ScalaCheck: The Definitive Guide. IT Pro, Artima Incorporated (2014)
31. Norell, U., Svensson, H., Arts, T.: Testing blocking operations with QuickCheck’s

component library. In: Erlang 2013, pp. 87–92. ACM (2013)
32. Nourikhah, H., Akbari, M.K., Kalantari, M.: Modeling and predicting measured

response time of cloud-based web services using long-memory time series. J. Super-
comput. 71(2), 673–696 (2015)

33. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifica-
tions with property-based testing. In: Erlang 2011, pp. 39–50. ACM (2011)

34. Rencher, A., Christensen, W.: Methods of Multivariate Analysis. Wiley, Hoboken
(2012)

35. Rina, S.T.: A comparative study of performance testing tools. Int. J. Adv. Res.
Comp. Sci. Softw. Eng. IJARCSSE 3(5), 1300–1307 (2013)

36. Roloff, E., Diener, M., Carissimi, A., Navaux, P.O.A.: High performance computing
in the cloud: Deployment, performance and cost efficiency. In: CloudCom, pp. 371–
378. IEEE Computer Society (2012)

37. Schumi, R., Lang, P., Aichernig, B.K., Krenn, W., Schlick, R.: Checking response-
time properties of web-service applications under stochastic user profiles. In: Yev-
tushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp.
293–310. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67549-7 18

38. Wald, A.: Sequential Analysis. Courier Corporation (1973)
39. Yu, J., Han, J., Schneider, J., Hine, C.M., Versteeg, S.: A Petri-Net-based virtual

deployment testing environment for enterprise software systems. Comput. J. 60(1),
27–44 (2017)

40. Zhang, F., et al.: Modeling and evaluation of wireless sensor network protocols by
stochastic timed automata. Electr. Notes Theor. Comput. Sci. 296, 261–277 (2013)

https://doi.org/10.1007/3-540-44618-4_11
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-67549-7_18


Probabilistic Analysis of Timing
Constraints in Autonomous Automotive
Systems Using Simulink Design Verifier

Eun-Young Kang1,2(B) and Li Huang2

1 University of Namur, Namur, Belgium
eykang@unamur.be

2 School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
huangl223@mail2.sysu.edu.cn

Abstract. Modeling and analysis of timing constraints is crucial in
automotive systems. East-adl is a domain specific architectural lan-
guage dedicated to safety-critical automotive embedded system design.
In most cases, a bounded number of violations of timing constraints in
systems would not lead to system failures when the results of the vio-
lations are negligible, called Weakly-Hard (WH). We have previously
specified East-adl timing constraints in Clock Constraint Specification
Language (Ccsl) and transformed timed behaviors in Ccsl into formal
models amenable to model checking. Previous work is extended in this
paper by including support for probabilistic analysis of timing constraints
in the context of WH: Probabilistic extension of Ccsl, called PrCcsl,
is defined and the East-adl timing constraints with stochastic proper-
ties are specified in PrCcsl. The semantics of the extended constraints
in PrCcsl is translated into Proof Objective Models that can be veri-
fied using Simulink Design Verifier. Furthermore, a set of mapping
rules is proposed to facilitate guarantee of translation. Our approach
is demonstrated on an autonomous traffic sign recognition vehicle case
study.

Keywords: East-adl · Timing constraints · Probabilistic Ccsl
Simulink Design Verifier · Weakly-hard system

1 Introduction

Software development for Cyber-Physical Systems (CPS) requires both func-
tional and non-functional quality assurance to guarantee that CPS operate in a
safety-critical context under timing constraints. Automotive electric/electronic
systems are ideal examples of CPS in which the software controllers interact with
physical environments. The continuous time behaviors of those systems often rely
on complex dynamics as well as on stochastic behaviors. Formal verification and
validation (V&V) technologies are indispensable and highly recommended for
development of safe and reliable automotive systems [3,5].
c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 170–186, 2018.
https://doi.org/10.1007/978-3-319-99933-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_12&domain=pdf


Probabilistic Analysis of Timing Constraints 171

Conventional formal analysis of timing models addresses worst case designs,
typically used for hard deadlines in safety critical systems, however, there is
great incentive to include “less-than-worst-case” designs with a view to improv-
ing efficiency without affecting the quality of timing analysis in the systems. The
challenge is the definition of suitable model semantics providing reliable predic-
tions of system timing, given the timing of individual components and their
compositions. While the standard worst case models are well understood in this
respect, the behavior and the expressiveness of “less-than-worst-case” models is
far less investigated. In most cases, a bounded number of violations of timing
constraints in systems would not lead to system failures when the results of the
violations are negligible, called Weakly-Hard (WH) [9,27]. In this paper, we pro-
pose a formal probabilistic modeling and analysis technique by extending the
known concept of WH constraints to what is called “typical” worst case model
and analysis.

East-adl (Electronics Architecture and Software Technology - Architecture
Description Language) [4,6], aligned with AUTOSAR (Automotive Open Sys-
tem Architecture) standard [1], is the model-based development approach for
the architectural modeling of safety-critical automotive embedded systems. A
system in East-adl is described by Functional Architectures (FA) at dif-
ferent abstraction levels. The FA are composed of a number of interconnected
functionprototypes (fp), and the fps have ports and connectors for communica-
tion. East-adl relies on external tools for the analysis of specifications related
to requirements. For example, behavioral description in East-adl is captured
in external tools, i.e., Simulink/Stateflow [31]. The latest release of East-
adl has adopted the time model proposed in the Timing Augmented Descrip-
tion Language (Tadl2) [10]. Tadl2 expresses and composes the basic timing
constraints, i.e., repetition rates, end-to-end delays, and synchronization con-
straints. The time model of Tadl2 specializes the time model of MARTE, the
UML profile for Modeling and Analysis of Real-Time and Embedded systems
[28]. MARTE provides Ccsl, a time model and a Clock Constraint Specifi-
cation Language, that supports specification of both logical and dense timing
constraints for MARTE models, as well as functional causality constraints [24].

We have previously specified non-functional properties (timing and energy
constraints) of automotive systems specified in East-adl and MARTE/Ccsl,
and proved the correctness of specification by mapping the semantics of the con-
straints into Uppaal models for model checking [22]. Previous work is extended
in this paper by including support for probabilistic analysis of timing con-
straints of automotive systems in the context WH: 1. Probabilistic extension of
Ccsl, called PrCcsl, is defined and the East-adl/Tadl2 timing constraints
with stochastic properties are specified in PrCcsl; 2. The semantics of the
extended constraints in PrCcsl is translated into verifiable Proof Objective Mod-
els (POMs) for formal verification using Simulink Design Verifier (SDV) [2];
3. A set of mapping rules is proposed to facilitate guarantee of translation. Our
approach is demonstrated on an autonomous traffic sign recognition vehicle (AV)
case study.



172 E.-Y. Kang and L. Huang

The paper is organized as follows: Sect. 2 presents an overview of Ccsl,
Simulink/Stateflow and SDV. The AV is introduced as a running example in
Sect. 3. Section 4 presents the formal definition of PrCcsl. Section 5 describes a
set of translation patterns from Ccsl/PrCcsl to POMs and how our approaches
provide support for formal analysis at the design level. The applicability of our
method is demonstrated by performing verification on the AV case study in
Sect. 6. Sections 7 and 8 present related work and the conclusion.

2 Preliminary

In our framework, we consider a subset of Ccsl and its extension with stochastic
properties that is sufficient to specify East-adl timing constraints in the context
of WH automotive systems. Simulink and Embedded Matlab (EML) are
utilized for modeling purposes, and V&V are performed by the Simulink built-
in verification tool, Simulink Design Verifier (SDV).

Clock Constraint Specification Language (Ccsl): Ccsl [8,24] clocks
describe events in a system and measure occurrences of the events. The physical
time is represented by a dense clock (with a base) and discretized into a logical
clock. idealClock is a predefined dense clock whose unit is second. We define
a universal clock ms based on idealClock: ms = idealClock discretizedBy
0.001, where ms is a periodic clock that ticks every 1 ms. A step is a tick of the
universal clock. Hence the length of one step is 1 ms in this paper.

Ccsl provides two types of clock constraints, relation and expression: A
relation limits the occurrences among different events/clocks. Let C be a set of
clocks, c1, c2 ∈ C, Coincidence relation (c1 ≡ c2) specifies that two clocks must
tick simultaneously. Precedence relation (c1 ≺ c2) limits that c1 runs faster
than c2, i.e., ∀k ∈ N

+, where N
+ is the set of positive natural numbers, the kth

tick of c1 must occur prior to the kth tick of c2. Causality relation (c1 � c2)
represents a relaxed version of Precedence, allowing the two clocks to tick at
the same time. Subclock (c1 ⊆ c2) indicates the relation between two clocks,
superclock (c1) and subclock (c2), s.t. each tick of the subclock must correspond
to a tick of its superclock at the same step. Exclusion (c1 # c2) prevents the
instants of two clocks from being coincident. An expression derives new clocks
from the already defined clocks: PeriodicOn builds a new clock found on a base
clock and a period parameter, s.t., the instants of the new clocks are separated by
a number of instants of the base clock. The number is given as period. DelayFor
results in a clock by delaying the base clock for a given number of ticks of a
reference clock. Infimum, denoted Inf, is defined as the slowest clock that is
faster than both c1 and c2. Supremum, denoted Sup, is defined as the fastest
clock that is slower than c1 and c2.

Simulink and SDV: Simulink [31] is a synchronous data flow language, which
provides different types of blocks for modeling and simulation of dynamic systems
and code generation. Simulink supports the definition of custom blocks via
Stateflow diagrams or user-defined function blocks written in EML, C, and



Probabilistic Analysis of Timing Constraints 173

C++. SDV is a formal verification tool that performs reachability analysis on
Simulink/Stateflow (S/S) model with Prover plugin. The satisfiability of
each reachable state is determined by a SAT solver. A proof objective model is
specified in Simulink/SDV and illustrated in Fig. 1. A set of data (predicates) on
the input flows of System is constrained via �Proof Assumption� blocks during
proof construction. A set of proof objectives are constructed via a function F
block and the output of F is specified as input to a property P block. P passes its
output signal to an �Assertion� block and returns true when the predicates set
on the input data flows of the outline model are satisfied. Whenever �Assertion�
is utilized, SDV verifies whether the specified input data flow is always true. Any
failed proof attempt ends in the generation of a counterexample representing an
execution path to an invalid state. A harness model is generated to analyze the
counterexample and refine the model.

Fig. 1. General verification models in SDV

3 Running Example: Traffic Sign Recognition Vehicle

An autonomous vehicle (AV) [20,21] application using Traffic Sign Recog-
nition is adopted to illustrate our approach. The AV reads the road signs,
e.g., “speed limit” or “right/left turn”, and adjusts speed and movement
accordingly. The functionality of AV, augmented with timing constraints and
viewed as Functional Design Architecture (FDA) (designFunctionTypes),
consists of the following fps in Fig. 2: System function type contains four fps,
i.e., the Camera captures sign images and relays the images to SignRecognition
periodically. Sign Recognition analyzes each frame of the detected images and
computes the desired images (sign types). Controller determines how the speed
of the vehicle is adjusted based on the sign types and the current speed of
the vehicle. VehicleDynamic specifies the kinematics behaviors of the vehicle.
Environment function type consists of three fps, i.e., the information of traffic
signs, random obstacles, and speed changes caused by environmental influences
described in TrafficSign, Obstacle, and Speed fps respectively.

We consider the Periodic, Execution, End-to-End, Synchronization,
Sporadic, and Comparison timing constraints on top of the AV East-adl
model, which are sufficient to capture the constraints described in Fig. 2. Fur-
thermore, we extend East-adl/Tadl2 with an Exclusion timing constraint
(R8 in Fig. 2) that integrates relevant concepts from the Ccsl constraint, i.e.,
two events cannot occur simultaneously.



174 E.-Y. Kang and L. Huang

Fig. 2. AV in East-adl augmented with Tadl2 timing constraints (R.ID), specified
in PrCcsl (Spec.R.ID)

R1. The camera must capture an image every 50 ms. In other words, a Periodic
acquisition of Camera must be carried out every 50 ms.

R2. The captured image must be recognized by an AV every 200 ms, i.e., a
Periodic constraint on SignRecognition fp.

R3. The detected image should be computed within [100, 150] ms in order to gen-
erate the desired sign type, the SignRecognition must complete its execution
within [100, 150] ms.

R4. When a traffic sign is recognized, the speed of AV should be updated within
[150, 250] ms. An End-to-End constraint on Controller and VehicleDynamic,
i.e., the time interval from the input of Controller to the output of
VehicleDynamic must be within a certain time.

R5. The required environmental information should arrive to the controller
within 40 ms. Input signals (speed, signType, direct, gear and torque ports)
must be detected by Controller within a given time window, i.e., the tolerated
maximum constraint is 40 ms.



Probabilistic Analysis of Timing Constraints 175

R6. If the mode of AV switches to “emergency stop” due to a certain obstacle,
it should not revert back to “automatic running” mode within a specific time
period. That is interpreted as a Sporadic constraint, i.e., the mode of AV is
changed to Stop because of the encounter with an obstacle and it should not
revert back to Run mode within 500 ms.

R7. The execution time interval from Controller to VehicleDynamic must be
less than or equal to the sum of the worst case execution time interval of each
fp.

R8. While AV turns left, the “turning right” mode should not be activated. The
events of turning left and right are considered as exclusive and specified as an
Exclusion constraint.

Delay constraint gives duration bounds (minimum and maximum) between
two events source and target. This is specified using lower, upper values given as
either Execution constraint (R3) or End-to-End constraint (R4). Synchroniza-
tion constraint describes how tightly the occurrences of a group of events follow
each other. All events must occur within a sliding window, specified by the
tolerance attribute, i.e., the maximum time interval allowed between events (R5).
Periodic constraint states that the period of successive occurrences of a single
event must have a time interval (R1–R2). Sporadic constraint states that events
can arrive at arbitrary points in time, but with defined minimum inter-arrival
times between two consecutive occurrences (R6). Comparison constraint delimits
that two consecutive occurrences of an event should have a minimum inter-arrival
time (R7). Exclusion constraint states that two events must not occur at the
same time (R8). Those timing constraints are formally specified (seen as Spec.
R. IDs in Fig. 2) using clock relation and expression in the context of WH then
verified utilizing probabilistic analysis techniques that are described further in
the following sections.

4 Probabilistic Extension of Relations in CCSL

To perform the formal specification and probabilistic verification of East-adl
timing constraints (R1 – R8 in Sect. 3.), Ccsl relations are augmented with
probabilistic properties, called PrCcsl, based on WH [9]. To describe the bound
on the number of allowed constraint violations in WH, we extend Ccsl relations
with a probabilistic parameter p, where p is the probability threshold. PrCcsl
is satisfied if and only if the probability of relation constraint being satisfied is
greater than or equal to p.

Definition 1 (PrCCSL). Let c1, c2 and M be two logical clocks and a system
model. The probabilistic extension of relation constraints, denoted c1∼p c2, is
satisfied if the following condition holds:

M � c1∼p c2 ⇐⇒ Pr(c1∼ c2) ≥ p

where ∼ ∈ {⊆,≡,≺,�,#}, Pr(c1∼ c2) is the probability of the relation c1∼ c2
being satisfied, and p ∈ [0, 1] is the probability threshold.



176 E.-Y. Kang and L. Huang

Pr(c1∼ c2) is calculated based on clock ticks: Pr(c1∼ c2) = m
k , where k is the

total number of ticks and m is a number of ticks satisfying the clock relation
c1∼ c2.

Definition 2 (Tick and History). For c ∈ C, the tick of c is indicated by
a function tc: N → {0, 1}. For i ∈ N, tc(i) is a boolean variable that indicates
whether c ticks at the ith step, which is defined as: if c ticks at step i, tc(i) =
1; otherwise tc(i) = 0. The history of c is a function hc: N → N. hc(i) that
represents the number of ticks of c that have been fired prior to the ith step, which
can be defined as: (1) hc(0) = 0; (2) ∀ i ∈ N

+, tc(i) = 0 =⇒ hc(i + 1) = hc(i);
(3) ∀ i ∈ N

+, tc(i) = 1 =⇒ hc(i + 1) = hc(i) + 1.

The five Ccsl relations, Subclock, Coincidence, Exclusion, Causality
and Precedence, are considered and the related probabilistic extensions are
defined.

Definition 3 (Probabilistic Subclock). The probability of subclock relation
between c1 and c2, denoted c1⊆p c2, is satisfied if the following conditions hold:

M � c1⊆p c2 ⇐⇒ Pr(c1⊆ c2) ≥ p

where Pr(c1⊆ c2) = m
k , k =

n∑

i=0

tc1(i), m =
n∑

i=0

{tc1(i) ∧ (tc1(i) =⇒ tc2(i))}

n refers to the simulation bound (number of steps of an execution). k is the
total number of ticks of the subclock c1 during the execution. m is the number
of ticks of c1 satisfying the subclock relation. A tick of the subclock c1 satisfies
the relation if at the step it occurs, its superclock c2 ticks. An example is shown
in Fig. 3: among the 30 steps, c1 ticks seven times, and six of them (denoted by
the arrows) satisfy subclock relation. In this case, n = 30, k = 7 and m = 6.

Fig. 3. Example of subclock relation

Coincidence relation states that two clocks should tick at the same step.
i.e., they are subclocks of each other.

Definition 4 (Probabilistic Coincidence). The probability of coincidence
relation between c1 and c2, denoted c1≡p c2, is satisfied if the following con-
ditions hold:

M � c1≡p c2 ⇐⇒ Pr(c1≡ c2) ≥ p

where Pr(c1≡ c2) = m
k , k =

n∑

i=0

{tc1(i) ∨ tc2(i)}, m =
n∑

i=0

{tc1(i) ∧ tc2(i)}



Probabilistic Analysis of Timing Constraints 177

Pr(c1≡ c2) represents the probability of the instants c1 that are coincident with
the instants of c2. Coincidence relation is bidirectional, which means that c1
and c2 are equivalent in the relation. In this case, k is the total number of
steps at which either c1 or c2 ticks. m is the number of ticks of steps at which
coincidence relation is satisfied, i.e., the steps at which both c1 and c2 tick.

The inverse of coincidence relation, called exclusion, hinders two clocks
from ticking simultaneously.

Definition 5 (Probabilistic Exclusion). The probability of exclusion relation
between c1 and c2, denoted c1#p c2, is satisfied if the following conditions hold:

M � c1#p c2 ⇐⇒ Pr(c1# c2) ≥ p, where Pr(c1# c2) =
m

k
,

k =
n∑

i=0

{tc1(i) ∨ tc2(i)},

m =
n∑

i=0

{(tc1(i) ∧ ¬tc2(i)) ∨ (¬tc1(i) ∧ tc2(i))}

k is the total number of steps at which either c1 or c2 ticks. m indicates the
number of steps at which exclusion relation is satisfied, i.e., the steps at which
only one of the two clocks ticks.

The probabilistic extension of causality and precedence relations are
defined based on the history of the clocks. Recall that hc1(i) (hc2(i)) indicates
how many times c1 (c2) has ticked before the step i. If the history of c1 is greater
than the one of c2 at the same step, we say that c1 runs faster than c2 at that
step. Causality relation specifies that an event causes another one, i.e., the
effect cannot occur if the cause has not.

Definition 6 (Probabilistic Causality). The probabilistic causality relation
between c1 and c2 (c1 is the cause and c2 is the effect), denoted, c1�p c2, is
satisfied if the following conditions hold:

M � c1�p c2 ⇐⇒ Pr(c1� c2) ≥ p

where Pr(c1� c2) = m
k , k =

n∑

i=0

tc1(i), m =
n∑

i=0

{tc1(i) ∧ hc1(i) ≥ hc2(i)}

k is the total number of ticks of c1. m is the number of ticks of c1 satisfying
causality relation. A tick of c1 satisfies causality relation if c2 does not occur
prior to c1, i.e., the history of c2 is less than or equal to the history of c1 at the
current step.

The strict causality, called precedence, constrains that one clock must
always run faster than the other.



178 E.-Y. Kang and L. Huang

Definition 7 (Probabilistic Precedence). The probabilistic precedence rela-
tion between c1 and c2, denoted, c1≺p c2, is satisfied if the following conditions
hold:

M � c1≺p c2 ⇐⇒ Pr(c1≺ c2) ≥ p, where

Pr(c1≺ c2) =
m

k
, k =

n∑

i=0

tc1(i),

m =
n∑

i=0

tc1(i) ∧ hc1(i) ≥ hc2(i)
︸ ︷︷ ︸

(1)

∧ (hc1(i) = hc2(i) =⇒ ¬tc2(i)
︸ ︷︷ ︸

(2)

)

k indicates the total number of ticks of c1. m is the number of ticks of c1
satisfying precedence and holding the two conditions: (1) the history of c1 is
greater than or equal to the history of c2 at the same step; (2) c1 and c2 must
not be coincident, i.e., when the history of c1 and c2 are equal, c2 must not tick.

5 Translation of CCSL and PrCCSL into SDV

In order to formally prove the East-adl timing constraints (given in Sect. 3)
using Simulink Design Verifier (SDV), we investigate how those con-
straints, specified in Ccsl expressions and PrCcsl relations (Spec. R.ID in
Fig. 2), can be translated into Proof Objective Models (POM). Ccsl expressions
construct new clocks and the relations between the new clocks are specified
using PrCcsl. We first provide strategies that represent Ccsl expressions in
Simulink/Stateflow (S/S). We then present how the East-adl timing con-
straints defined in PrCcsl can be translated into the corresponding POMs,
which are integrated with the S/S models of Ccsl expressions, based on the
strategies.

5.1 Mapping CCSL Expressions into S/S

We first describe how tick and history of Ccsl can be mapped to corresponding
S/S models. Using the mapping, we show Ccsl expressions can be modeled in
S/S. A “step” (defined in Sect. 2) is represented as a sample time in Simulink
and set to 0.001 s. The clock ticks are expressed as boolean variables (1 “ticking”
or 0 “non-ticking”) during simulation. The history of clock (expressed as integer)
is increased as the clock ticks and is interpreted as a function His(c) in Fig. 4:
Since hc, the history of clock c, is determined by the value of c at the immediate
precedent step, a �Delay� block is employed to delay c by one step. Whenever
c ticks at the prior step, �ES� is executed and increases hc by 1.

Based on the mapping patterns of tick and history, we present how
PeriodicOn, DelayFor, Infimum and Supremum expressions can be represented
as S/S models.



Probabilistic Analysis of Timing Constraints 179

Fig. 4. hc = His(c)

PeriodicOn: res � PeriodicOn base period p, where � means “is defined
as”, builds a new clock res based on base clock and a period parameter p, i.e., res
ticks at every pth tick of base. The Simulink model of PeriodicOn is illustrated
in Fig. 5: When base ticks, the �Matlab Function� (code is shown in the box),
embedded in the �ES� subsystem, is triggered and checks if the history of the
base, His(base), is an integral multiple of p. When base ticks and its history
is equal to the integral multiple of p, res ticks. The PeriodicOn S/S model is
employed for the translation of East-adl Periodic timing constraint (R1 in
Fig. 2) into its POM in SDV.

Fig. 5. res � PeriodicOn base period p

Infimum (resp. Supremum): res � Inf(c1, c2) (resp. Sup(c1, c2)), creates a
new clock res, which is the slowest (resp. fastest) clock faster (resp. slower) than
the two clocks, c1 and c2. In other words, res ticks at the step whereby the faster
(slower) clock between c1 and c2 ticks. The Simulink model of Infimum (resp.
Supremum) is depicted in Fig. 6. When c1 or c2 ticks, the inf (resp. sup) function
embedded in �ES� is executed and decides which clock is faster (resp. slower)
than the other by comparing the history of c1 and c2 (h1 and h2). If the clock
(either c1 or c2) ticking at the current step is the faster (resp. slower) clock, res
ticks. The Infimum and Supremum S/S models are utilized for the translation of
East-adl Synchronization timing constraint (R5 in Sect. 3) into POM.

Fig. 6. res � Inf(c1, c2) (rep. Sup(c1, c2))



180 E.-Y. Kang and L. Huang

Fig. 7. res � base DelayFor d on ref

DelayFor: res � base DelayFor d on ref , constructs a new clock res based
on base clock and reference clock (ref), i.e., each time base ticks, res ticks at
the dth tick of ref . The Simulink model of DelayFor is shown in Fig. 7: A
Stateflow chart is utilized to observe the ticks of base and ref . A queue,
Q, and its enqueue/dequeue operation is implemented in the function queue.
y indicates whether ref has ticked d times since base ticked. When base ticks
(base == 1), an element with value d is enqueued, and each time ref ticks,
the value of the element is decreased by 1. After d ticks of ref , the element
becomes 0 and y becomes true. An �And� block is applied to delimit that the
tick of res must coincide with the tick of ref (i.e., res is a subclock of ref).
The DelayFor S/S model is adapted to construct the POM models of East-adl
timing requirements R3–R7 in Sect. 3.

5.2 Representation of PrCCSL in SDV

We present how the translation of East-adl timing constraints (specified in
PrCcsl relations and Ccsl expressions) can be interpreted as POMs in the
view point of analysis engine SDV. Recall the definitions of PrCcsl in Sect. 4.
A PrCcsl relation is valid if the probability of a relation φ being satisfied is
greater than or equal to the given probability threshold p. It can be interpreted as
Hypothesis Testing [30]: Decide whether M � Pr(φ)≥ p (hypothesis H0) against
M � Pr(φ)< p (alternative hypothesis H1).

Probabilistic Subclock is employed to specify East-adl Periodic timing
constraint, given as signRecTrig ⊆p cTrig (Spec. R2 in Fig. 2). The correspond-
ing POM is shown in Fig. 8: The Stateflow chart Obs in Fig. 8(b) is utilized
for Hypothesis Testing, where k is the total number of ticks of signRecTrig
(subclock) and m is the number of ticks satisfying the subclock relation.

Whenever signRecTrig ticks, k is increased by 1, and if the subclock relation
holds on that tick (i.e., the condition “signRecTrig =⇒ cTrig” is true), m is
increased by 1. When k is increased to the sample size N , the Stateflow chart
then judges whether the number of “success” ticks of signRecTrig is greater
than or equal to “p ∗ k” (i.e., whether m

k ≥ p is valid), and it activates either
valid (“H0” is accepted) or fail state (“H1” is accepted). A �Proof Objective�



Probabilistic Analysis of Timing Constraints 181

(a) signRecTrig ⊆p cTrig (b) Obs Chart

Fig. 8. POM of Probabilistic Subclock

block with false value is employed to check whether the probabilistic subclock
relation is satisfied, i.e., fail is never reached. Similarly, using the Obs chart,
other PrCcsl relations can be represented as POMs. Further details are given
below.

Probabilistic Coincidence is adapted to specify East-adl Periodic tim-
ing constraint, given as cTrig ≡p {PeriodicOn ms period 50} (Spec. R1 in
Fig. 2). The representative POM is shown in Fig. 9(a): A PeriodicOn subsys-
tem (whose internal blocks are shown in Fig. 5) is utilized to generate a periodic
clock res that ticks every 50 ms. According to Definition 4 in Sect. 4, if either
cTrig or res ticks (“cTrig OR res” is true), c becomes true and k is increased
by 1. Meanwhile, if cTrig and res tick simultaneously (“cTrig AND res” is true),
r becomes true and m is increased by 1. Based on the value of m and k, Obs
checks whether the probability of coincidence relation being satisfied is greater
than or equal to p and activates either valid or fail state. �Proof Objective�
block checks whether fail state is always inactive, i.e., H0 is accepted.

(a) cTrig ≡p {PeriodicOn ms period 50} (b) turnLeft #p rightOn

Fig. 9. POM of Probabilistic Coincidence and Exclusion

Probabilistic Exclusion is utilized to specify East-adl Exclusion timing
constraint, given as turnLeft #p rightOn (Spec. R8 in Fig. 2). The correspond-
ing POM is shown in Fig. 9(b): k is increased by 1 when either turnLeft or
rightOn ticks. If only one of the two clocks ticks at the current step, i.e., r (the
input of Obs) is true, m is increased by 1. �Proof Objective� block with false
value checks whether fail state is never reached, i.e., H0 is accepted.

Probabilistic Causality is employed to specify East-adl Synchroniza-
tion timing constraint, sup �p {inf DelayFor 40 on ms} (Spec. R5 in Fig. 2),
where sup (inf ) is the fastest (slowest) event slower (faster) than the five input
events, speed, signType, direct, gear and torque. sup and inf are defined as:



182 E.-Y. Kang and L. Huang

sup � Sup(Sup(speed, signType), Sup(Sup(direct, gear), torque)) (1)

inf � Inf(Inf(speed, signType), Inf(Inf(direct, gear), torque)) (2)

The representative POM is illustrated in Fig. 10: The S/S models of Inf and Sup
(shown in Fig. 6) are utilized in order to construct inf (1) and sup (2), modeled as
INF and SUP subsystems, respectively. A new clock dinf is generated by delaying
inf for 40 ticks of ms, i.e., dinf � {inf DelayFor 40 on ms}, and it is represented
by using the S/S model of DelayFor (shown in Fig. 7). Then Probabilistic
Causality relation between sup and dinf is checked. According to Definition
6, when sup ticks, k is increased by 1. At the same step, if the causality
relation between sup and dinf is satisfied, i.e., the history of sup is greater than
or equal to the history of dinf , m is increased by 1. �Proof Objective� block
analyzes if the Probabilistic Causality relation is satisfied, i.e., the fail state
is never activated. Similarly, East-adl Execution (R3) and Comparison (R7)
timing constraints specified in Probabilistic Causality using DelayFor can
be translated into corresponding POMs. For further details, refer to [17].

Fig. 10. sup �p {inf DelayFor 40 on ms}

Probabilistic Precedence is used to specify East-adl Sporadic timing
constraint, given as {obstc DelayFor 500 on ms} ≺p veRun (Spec. R6 in Fig. 2).
The constraint delimits that two events obstc and veRun must have a minimum
delay 500 ms, and its corresponding POM is illustrated in Fig. 11: A new clock
res is generated by delaying obstc by 500 ticks of ms, i.e., res � {obstc DelayFor
500 on ms}, and it is modeled using the S/S model of DelayFor. Then R6 can be
checked by verifying res ≺p veRun. As presented in Fig. 11, whenever res ticks, c
becomes true and k is increased by 1. If the tick of obstc satisfies the precedence
relation, i.e., the history of res is greater than or equal to the history of veRun
(excludes res and veRun are coincident), r becomes true and m is increased
by 1. �Proof Objective� block checks whether Probabilistic Precedence is

Fig. 11. {obstc DelayFor 500 on ms} ≺p veRun



Probabilistic Analysis of Timing Constraints 183

satisfied, i.e., the fail state is never activated. Similarly, East-adl End-to-End
timing constraint (R4) specified in Probabilistic Precedence can be trans-
lated into its corresponding POM [17].

6 Experiments: Verification and Validation

We have presented how the East-adl timing constraints, specified in PrCcsl
relations and Ccsl expressions are converted to POMs. To enable verification
of the timed and stochastic behaviors of AV using SDV, the behavior of each fp
is described in S/S. The FASY S , consisting of a set of S/S is considered the entire
behavior model of AV. To describe the stochastic environments of AV, a pseudo
random number generator, Mersenne Twister [26] implemented in MATLAB
script is employed: 1. The traffic signs (6 types) are randomly recognized by AV
and the probability of each sign type occurring is equally set as 16.7%; 2. The
probability of AV being obstructed by any obstacles is set to maximum 5%; 3.
Since AV runs under different road conditions, speed variation influenced by the
conditions ranges within [0, 2] m/s. We have formally specified and analyzed over
30 properties (associated with timing constraints) of the AV system [17]. A list
of selected properties (Sect. 3) are verified using SDV and the results are listed
in Table 1. The simulation bound and the probability threshold are set to 60000
steps and 95% respectively. A maximum of 4 properties per East-adl timing
constraint are verified and all properties are established as valid. For further
details regarding the full POMs and S/S models used in the experiment, refer
to [7,17].

Table 1. Consolidated Verification Results in SDV

Req Category Expression Result Time

(Min)

Mem

(Mb)

CPU

(%)

R1 Periodic cTrig ≡0.95 {PeriodicOnmsperiod 50} valid 22.10 1303 11.90

R2 Periodic signRTrig ⊆0.95 cTrig valid 60.15 1455 11.24

R3 Execution {imInDelayFor 100 onms} �0.95 signOut valid 38.20 1319 9.94

signOut �0.95 {imInDelayFor 150 onms} valid 33.96 879 9.66

R4 End-to-End {signInDelayFor 150 onms} ≺0.95 tqOut valid 35.95 1334 11.69

tqOut ≺0.95 {signInDelayFor 250 onms} valid 24.95 1219 14.24

R5 Synchronization sup �0.95 {inf DelayFor 40 onms} valid 38.95 1282 12.15

R6 Sporadic {obstcDelayFor 500 onms} ≺0.95 veRun valid 100.5 1212 12.79

R7 Comparison {signInDelayFor 250 onms} �0.95

{signInDelayFor (Wctrl + Wvd) onms}
valid 17.88 1050 6.87

R8 Exclusion turnLeft#0.95 rightOn valid 387.76 1139 8.25

7 Related Work

Considerable research efforts have been devoted to formal analysis of CPS by
applying SDV [12,14], which are however, limited to the functional proper-
ties without consideration of non-functional properties, i.e., timing constraints.



184 E.-Y. Kang and L. Huang

In the context of East-adl, efforts on the integration of East-adl and for-
mal techniques based on timing constraints were investigated in several works
[13,16,23,29], which are however, restricted to the executional aspects of system
functions without addressing stochastic behaviors. Kang [22] and Suryadevara
[32,33] defined the execution semantics of both the controller and the environ-
ment of industrial systems in Ccsl which are given as mapping to Uppaal
models amenable to model checking. In contrast to our current work, those
approaches lack precise probabilistic annotations specifying stochastic proper-
ties. Zhang [34] transformed Ccsl into first order logics that are verifiable using
SMT solver. However, this work is limited to functional properties, and no tim-
ing constraints are addressed. Though, Kang et al. [15,19] and Marinescu et al.
[25] presented both simulation and model checking approaches of Simulink and
Uppaal-SMC on East-adl models, neither formal specification nor verifica-
tion of extended East-adl timing constraints with probability were conducted.
Our approach is a first application on the integration of East-adl and for-
mal V&V techniques based on probabilistic extension of East-adl/Tadl2 con-
straints using SDV. An earlier study [18,20,21] defined a probabilistic extension
of East-adl timing constraints and presented model checking approaches on
East-adl models, which inspires our current work. Specifically, the techniques
provided in this paper define new operators of Ccsl with stochastic extensions
(PrCcsl) and formally verify the extended East-adl timing constraints of CPS.
Du et al. [11] proposed the use of Ccsl with probabilistic logical clocks to enable
stochastic analysis of hybrid systems by limiting the possible solutions of clock
ticks. Whereas, our work is based on the probabilistic extension of East-adl
timing constraints with the focus on probabilistic verification of the extended
constraints, particularly, in the context of WH.

8 Conclusion

We present an approach to perform probabilistic analysis of East-adl timing
constraints in automotive systems at the early design phase: 1. Probabilistic
extension of Ccsl, called PrCcsl, is defined and the East-adl/Tadl2 timing
constraints with stochastic properties are specified in PrCcsl; 2. The semantics
of the extended constraints in PrCcsl, captured in Simulink/Stateflow, is
translated into verifiable POMs for formal verification; 3. A set of mapping rules
is proposed to facilitate guarantee of translation. Our approach is demonstrated
on an autonomous traffic sign recognition vehicle (AV) case study. Although, we
have shown that defining and translating a subset of Ccsl with probabilistic
extension into POMs is sufficient to verify East-adl timing constraints, as
ongoing work, advanced techniques covering a full set of Ccsl constraints are
further studied. Despite the fact that SDV supports probabilistic analysis of
the timing constraints of AV, the computational cost of verification in terms of
time is rather expensive. Thus, we continuously investigate complexity-reducing
design/mapping patterns for CPS to improve effectiveness and scalability of
system design and verification.



Probabilistic Analysis of Timing Constraints 185

Acknowledgment. This work is supported by the NSFC 46000-41030005.

References

1. Automotive open system architecture. https://www.autosar.org/
2. Simulink Design Verifier. https://www.mathworks.com/help/sldv
3. IEC 61508: Functional safety of electrical electronic programmable electronic safety

related systems. International Organization for Standardization, Geneva (2010)
4. EAST-ADL specification v2.1.9. Technical report, MAENAD (2011). https://www.

maenad.eu/public/EAST-ADL-Specification M2.1.9.1.pdf
5. ISO 26262–6: Road vehicles functional safety part 6. Product development at the

software level. International Organization for Standardization, Geneva (2011)
6. MAENAD (2011). http://www.maenad.eu/
7. Simulink library of PrCCSL (2018). https://github.com/huangl223/PrCCSL
8. André, C.: Syntax and semantics of the clock constraint specification language

(CCSL). Ph.D. thesis, INRIA (2009)
9. Bernat, G., Burns, A., Llamosi, A.: Weakly hard real-time systems. Trans. Comput.

50(4), 308–321 (2001)
10. Blom, H., et al.: TIMMO-2-USE timing model, tools, algorithms, languages,

methodology, use cases. Technical report, TIMMO-2-USE (2012)
11. Du, D., Huang, P., Jiang, K., Mallet, F., Yang, M.: MARTE/pCCSL: modeling

and refining stochastic behaviors of CPSs with probabilistic logical clocks. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 111–
133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4 8

12. Gholami, M.R.: Verifying timed LTL properties using Simulink Design Verifier.
Ph.D. thesis, École Polytechnique de Montréal (2016)

13. Goknil, A., Suryadevara, J., Peraldi-Frati, M.-A., Mallet, F.: Analysis support for
TADL2 timing constraints on EAST-ADL models. In: Drira, K. (ed.) ECSA 2013.
LNCS, vol. 7957, pp. 89–105. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39031-9 8

14. Etienne, J.-F., Fechter, S., Juppeaux, E.: Using simulink design verifier for proving
behavioral properties on a complex safety critical system in the ground transporta-
tion domain. Sci. Comput. Program. 77(10), 1151–1177 (2010)

15. Kang, E.Y., Chen, J., Ke, L., Chen, S.: Statistical analysis of energy-aware real-
time automotive systems in EAST-ADL/Stateflow. In: ICIEA, pp. 1328–1333.
IEEE (2016)

16. Kang, E.Y., Enoiu, E.P., Marinescu, R., Seceleanu, C., Schobbens, P.Y., Petters-
son, P.: A methodology for formal analysis and verification of EAST-ADL models.
Reliab. Eng. Syst. Saf. 120(12), 127–138 (2013)

17. Kang, E.Y., Huang, L.: Formal specification & analysis of autonomous systems in
PrCCSL/Simulink Design Verifier. Technical report, SYSU (2018). https://sites.
google.com/site/kangeu/home/publications

18. Kang, E.Y., Huang, L., Mu, D.: Formal verification of energy and timed require-
ments for a cooperative automotive system. In: SAC, pp. 1492–1499. ACM (2018)

19. Kang, E.Y., Ke, L., Hua, M.Z., Wang, Y.X.: Verifying automotive systems in
EAST-ADL/Stateflow using UPPAAL. In: APSEC, pp. 143–150. IEEE (2015)

20. Kang, E.Y., Mu, D., Huang, L., Lan, Q.: Model-based analysis of timing and energy
constraints in an autonomous vehicle system. In: QRS, pp. 525–532. IEEE (2017)

21. Kang, E.Y., Mu, D., Huang, L., Lan, Q.: Verification and validation of a cyber-
physical system in the automotive domain. In: QRS, pp. 326–333. IEEE (2017)

https://www.autosar.org/
https://www.mathworks.com/help/sldv
https://www.maenad.eu/public/EAST-ADL-Specification_M2.1.9.1.pdf
https://www.maenad.eu/public/EAST-ADL-Specification_M2.1.9.1.pdf
http://www.maenad.eu/
https://github.com/huangl223/PrCCSL
https://doi.org/10.1007/978-3-319-57666-4_8
https://doi.org/10.1007/978-3-642-39031-9_8
https://doi.org/10.1007/978-3-642-39031-9_8
https://sites.google.com/site/kangeu/home/publications
https://sites.google.com/site/kangeu/home/publications


186 E.-Y. Kang and L. Huang

22. Kang, E.Y., Schobbens, P.Y.: Schedulability analysis support for automotive sys-
tems: from requirement to implementation. In: SAC, pp. 1080–1085. ACM (2014)

23. Kang, E.-Y., Schobbens, P.-Y., Pettersson, P.: Verifying functional behaviors of
automotive products in EAST-ADL2 using UPPAAL-PORT. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 243–256.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24270-0 18

24. Mallet, F., De Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci.
Comput. Program. 106, 78–92 (2015)

25. Marinescu, R., Kaijser, H., Mikučionis, M., Seceleanu, C., Lönn, H., David, A.:
Analyzing industrial architectural models by simulation and model-checking. In:
Artho, C., Ölveczky, P.C. (eds.) FTSCS 2014. CCIS, vol. 476, pp. 189–205.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17581-2 13

26. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. TOMACS 8(1), 3–30 (1998)

27. Nicolau, G.B.: Specification and analysis of weakly hard real-time systems. Trans.
Comput. pp. 308–321 (1988)

28. Object Management Group: UML profile for MARTE: modeling and analysis of
real-time embedded systems. Technical report (2011)

29. Qureshi, T.N., Chen, D.J., Persson, M., Törngren, M.: Towards the integration of
UPPAAL for formal verification of EAST-ADL timing constraint specification. In:
TiMoBD workshop (2011)

30. Reijsbergen, D., Boer, P.T.D., Scheinhardt, W., Haverkort, B.: On hypothesis test-
ing for statistical model checking. STTT 17(4), 377–395 (2015)

31. Simulink and Stateflow. https://www.mathworks.com/products.html
32. Suryadevara, J.: Validating EAST-ADL timing constraints using UPPAAL. In:

SEAA, pp. 268–275. IEEE (2013)
33. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL

mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M.
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40561-7 1

34. Zhang, M., Ying, Y.: Towards SMT-based LTL model checking of clock constraint
specification language for real-time and embedded systems. ACM SIGPLAN Not.
52(4), 61–70 (2017)

https://doi.org/10.1007/978-3-642-24270-0_18
https://doi.org/10.1007/978-3-319-17581-2_13
https://www.mathworks.com/products.html
https://doi.org/10.1007/978-3-642-40561-7_1
https://doi.org/10.1007/978-3-642-40561-7_1


Mixed-Criticality Scheduling
with Limited HI-Criticality Behaviors

Zhishan Guo1,2(B), Luca Santinelli3, and Kecheng Yang4,5

1 University of Central Florida, Orlando, USA
2 Missouri University of Science and Technology, Rolla, USA

guozh@mst.edu
3 ONERA, Toulouse, France
luca.santinelli@onera.fr

4 Texas State University, San Marcos, USA
5 University of North Carolina at Chapel Hill, Chapel Hill, USA

yangk@cs.unc.edu

Abstract. Due to size, weight, and power considerations, there is an
emerging trend in real-time embedded systems design towards imple-
menting functionalities of different levels of importance upon a shared
platform, or implementing Mixed-Criticality (MC) systems. Much exist-
ing work on MC scheduling focuses on the classic Vestal model, where
upon a mode switch, it is pessimistically assumed that all tasks may
simultaneously exceed their less pessimistic execution time estimations,
or lo-WCETs. In this paper, a less pessimistic MC model is proposed
for system designers to specify the maximum number of tasks that may
simultaneously exceed their lo-WCETs. The applicability and schedula-
bility of the classic EDF-VD scheduler under this newly proposed model
are studied, and a new schedulability test is presented. Experiments
demonstrate that, by applying the proposed model and new schedulabil-
ity test, significantly better schedulability can be achieved.

1 Introduction and Motivation

The Worst-Case Execution Time (WCET) abstraction models the execution
behavior of real-time tasks. Given a piece of code to execute upon a specified
platform, the WCET is an upper bound to the time duration needed to finish
the execution of a single invocation of that piece of code. Unfortunately, even
when severe restrictions are placed upon the structure of the code e.g., known
loop bounds, it is still difficult to determine the exact WCET. Furthermore,
the occurrence of the WCET is usually extremely unlikely, unless under highly
pathological circumstances such as faults.

In order to utilize the significant gap between the actual running time and the
WCET, it has been proposed to implement functionalities of different degrees

Supported by NSF grants CNS 1850851, CNS 1563845, and CNS 1717589, ARO
grant W911NF-17-1-0294, and fundings from General Motors and Center for Advanc-
ing Faculty Excellence of the University of Missouri System.

c© Springer Nature Switzerland AG 2018
X. Feng et al. (Eds.): SETTA 2018, LNCS 10998, pp. 187–199, 2018.
https://doi.org/10.1007/978-3-319-99933-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99933-3_13&domain=pdf


188 Z. Guo et al.

of importance (or criticalities) upon a shared platform. Under such design, for
each of the more important tasks, a less pessimistic execution time estimation is
also provisioned in addition to the most pessimistic WCET. When the more
important tasks actually complete by these less pessimistic estimations, less
important tasks are allowed to execute as well, so that processor capacities are
not wasted. In contrast, in occasional situations where the more important tasks
execute beyond their less pessimistic estimations, the less important tasks may
be dropped. In order to validate systems under this design approach, Mixed-
Criticality (MC) scheduling techniques are needed.

Prior research on MC scheduling (see [7] for an up-to-date review) focused
on the Vestal model [14], which assigns multiple WCET estimations for each
individual task. Typically, in the two-criticality-level case, each task is designated
as being of either higher (hi) or lower (lo) criticality. Two WCETs are specified
for each hi-criticality task: a lo-WCET and a larger hi-WCET which could
be larger than the lo-WCET by several orders of magnitude. One WCET is
specified for each lo-criticality task: the lo-WCET.

The Vestal model defines two system modes, each associated with different
guarantees. In the normal mode, every hi-criticality task completes its execution
by its lo-WCET, and each lo-criticality task should be guaranteed to execute
up to its lo-WCET as well. On the other hand, whenever any hi-criticality
task does not signal its completion after exhausting its lo-WCET, a system
mode switch will be triggered; in the new mode, all of the lo-criticality tasks
are dropped in order to guarantee every hi-criticality task to execute up to
its hi-WCET. In this traditional MC Scheduling model, all hi-criticality tasks
may simultaneously exceed their lo-WCETs, requiring executions up to their
hi-WCETs in the new mode.

Motivation. However, in some cases, this assumption about the execution of
hi-criticality tasks in the classic Vestal model could be too pessimistic. Indeed,
having all hi-criticality tasks simultaneously exceeding their lo-WCETs could
be non-representative of many real-world real-time embedded systems.

Fig. 1. Two example tasks in a safety critical system.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors 189

The following two pieces of codes shown in Fig. 1 is a toy example to illustrate
this motivation in more details.

Let us assume both tasks are hi-criticality tasks as they perform some impor-
tant safety features of the system, dealing with either frozen (task Anti Frozen)
or over-heating (task Over Heat) situation. Under normal circumstances, actions
in f2() and g2() are more than enough to bring the ambient temperature
(around the platform) back to normal range (0 to 50), such that f3() and
g3() will not need to be executed. As a result, we may assign lo-WCET of
task Anti Frozen as the maximum time to execute f1() and f2(); hi-WCET
of task Anti Frozen as the maximum time to execute f1(), f2(), and f3();
lo-WCET of task Over Heat as the maximum time to execute g1() and g2();
and hi-WCET of task Over Heat as the maximum time to execute g1(), g2(),
and g3().

A straightforward observation is that, even under extreme situations, only
one of the above two tasks will need to execute their final if branches; i.e.,
there will not be any time instant that both tasks require executions of their
hi-WCETs simultaneously. As a result, any analysis following the Vestal model
is over pessimistic in this example, as it will need to take the impossible case
into consideration, where both tasks exceed their lo-WCETs at the same time.

Note that, when all hi-criticality tasks simultaneously exceed their lo-WCET
due to certain system degradation or failure, it is computationally more efficient
to characterize such behaviors with the MC varying speed model [5,6,8–10],
which better represents the uncertainties arising from the executing speed of
the platform, rather than with Vestal model by using multiple estimations of
WCETs (due to the NP-hardness [1]).

Contribution. In this work, we propose a new MC system model to cope with
more realistic assumptions for real-time embedded systems. The proposed model
is more general than the existing well-studied Vestal model in the sense that it
allows a system designer to specify the number of hi-criticality tasks that can
exceed their lo-WCET simultaneously. We then analyze how this additional
specification could impact the schedulability and develop an MC scheduler for
this new model. We finally conduct schedulability experiments and compare the
results from our scheduler and a classic MC scheduler, namely EDF-VD. The
advantages from having only subsets of hi-criticality tasks exceeding their lo-
WCET thresholds simultaneously are validated by these experimental results.

Organization. Section 2 describes the proposed MC system model. Section 3
adapts an existing scheduler for the problem, and proves its correctness. Section 4
evaluates the performance of the proposed scheduler under various parameter
settings, and compares it with an existing MC task scheduler. Section 5 concludes
the work and points out some future directions.

2 Model and Definitions

Mixed-Criticality Tasks. A MC periodic task set τ is specified as a finite
collection of MC periodic tasks, each of which generates an unbounded number



190 Z. Guo et al.

of MC jobs. Each task τi has a period, Ti, modeling the time separation between
two consecutive jobs of this task, and each job of τi has to complete its execution
by Di time units. In this paper, the tasks are assumed to have implicit deadlines,
i.e., Di = Ti. The integer time model is also assumed—all task periods are non-
negative integers and all job arrivals occur at integer time instants.

We consider a uniprocessor system where all tasks execute on and share the
single processor, while the scheduler determines how it is shared.

A task exhibits lo-criticality behavior if all of its jobs complete execution by
its lo-WCET. In contrast, a task is in hi-criticality behavior if any of its jobs
requires an execution longer than its lo-WCET, but no more than its hi-WCET.
Any other behavior is considered erroneous.

A hi-criticality task τi can be specified by τi = ([ci(lo), ci(hi)], Ti). Ti is
the period and the relative deadline of task τi; [ci(lo), ci(hi)] is the tuple of
WCET estimations, ci(lo) for the lo-WCET and ci(hi) for the hi-WCET, where
ci(lo) ≤ ci(hi).

A lo-criticality task τj is represented with two parameters τj = (cj(lo), Tj).
Tj is the period and the deadline of the task and cj(lo) characterizes the lo-
criticality mode worst-case execution time. For lo-criticality tasks only the lo-
criticality behavior is possible.

The two WCETs specified for each hi-criticality task τi may come from timing
analysis tools with different levels of pessimism:

– ci(lo), which is determined by a less pessimistic timing analysis tool (or with
less guarantees of being the worst-case for any possible execution condition)
— a hi-criticality task may require an execution length of more than c(lo);
and

– ci(hi), which is sometimes larger than the lo-WCET by several orders of
magnitude — it may be determined by a more conservative timing analy-
sis, and it presents the worst-case execution time for any possible execution
condition the task may experience.

The utilizations of tasks are defined for hi- and lo-criticality tasks respec-
tively. Each hi-criticality task has two associated utilizations—one in each mode,
whereas each lo-criticality task has only one associated utilization as follows:

– Uhi
hi (τi) = ci(hi)/Ti - hi-criticality task utilization in hi-criticality mode;

– U lo
hi (τi) = ci(lo)/Ti - hi-criticality task utilization in lo-criticality mode;

– U lo
lo (τi) = ci(lo)/Ti - lo-criticality utilization.

Mixed-Criticality Systems. An MC system is defined to run under two pos-
sible modes: a normal mode (lo-criticality mode) where every job completes
upon executing for no more than its lo-WCET and a hi-criticality mode where
some hi-criticality job executes for more than its lo-WCET but imperatively
completes upon execution for no more than its hi-WCET.

The system mode will be switched from lo-criticality mode to hi-criticality
mode if any hi-criticality task has exhausted its lo-WCET but has not com-
pleted. Only hi-criticality tasks are guaranteed to be met their deadlines under
hi-criticality mode.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors 191

Definition 1 (MC Task Instance). A MC task instance I is composed of an
MC task set τ = {τ1, τ2, . . . , τn}, where both hi-criticality tasks and lo-criticality
tasks may be in τ . nhi denotes the number of hi-criticality tasks in τ , and nhi ≤
n. Each hi-criticality task τi is represented as τi = ([ci(lo), ci(hi)], Ti), while
each lo-criticality tasks τj is represented as τj = (cj(lo), Tj).

The notion of utilization difference for hi-criticality tasks is defined as follows.

Definition 2 (Utilization Difference). The utilization difference of a hi-
criticality task τi is defined by

δi =
ci(hi) − ci(lo)

Ti
. (1)

We assume that the tasks are indexed by criticality—from hi-criticality
ones to lo-criticality ones; and hi-criticality tasks are indexed by utilization
difference—the larger the utilization difference the lower the index, and utiliza-
tion difference ties are broken arbitrarily. That is, the hi-criticality tasks are
indexed 1, 2, . . . , nhi, and δi ≥ δj for any 1 ≤ i ≤ j ≤ nhi.

Then, the per mode utilizations of either criticality task set are defined:

Uhi
hi =

nhi∑

i=1

ci(hi)/Ti; (2)

U lo
hi =

nhi∑

i=1

ci(lo)/Ti; (3)

U lo
lo =

n∑

i=nhi+1

ci(lo)/Ti. (4)

Mixed-Critical Scheduling. The MC scheduling objective is to determine a
run-time scheduling strategy which ensures that: (i) all jobs of all tasks complete
by their deadlines if no job exceeds its lo-WCET; (ii) all jobs of tasks designated
as being of hi-criticality continue to complete by their deadlines (although the
lo-criticality jobs may not) if any hi-criticality job requires execution for more
than its lo-WCET (but no larger than its hi-WCET) to complete.

Limited hi-Criticality Behaviors. As motivated in Sect. 1, in some systems, it
could be reasonable to assume that only a limited number N of hi-criticality
tasks that may exceed their lo-WCET and reach their hi-WCET simultane-
ously, where N ≤ nhi. In contrast, existing MC analysis usually makes the most
pessimistic assumption that all of the nhi hi-criticality tasks may execute beyond
their lo-WCET and reach its hi-WCET simultaneously. Even if this could actu-
ally happen, it can also be viewed as a special case (N = nhi) under the new
MC model we propose in this paper By saying simultaneously (or “at the same



192 Z. Guo et al.

time”), we mean within any time window of length T = maxi{Ti}1. That is, at
most N hi-criticality tasks can require an execution time larger than their ci(lo)
within any time window of length T . Again, please note that the Vestal model is
a special case of our model, by assigning N = nhi.

Determine N . In this paper, we generally assume that the parameter N is
a parameter given offline, instead of to be determined online by the scheduler.
That is, how to determine N is not the focus of this paper, and we mainly focus
on the problem of how to schedule the tasks with a valid schedulability test
when N is given as an input parameter. Nonetheless, for the sake of inspiring
future work, we also briefly discuss a couple of potential sources for where the
N parameter could come from.

First, it could come from physical constraints in the systems. Different set
of hi-criticality tasks may be triggered to perform their hi-criticality behaviors
by different physical measurements. Such difference may be significant enough
so that they cannot have simultaneous impacts on the system.

Second, it could come from contradicting logic control flows in the code.
When the code of tasks has branches, which branch is chosen to execute may
depend on some global variables. Different task might have the same global
variables in their code, and the same global variables control the branch choices in
multiple tasks. As a result, it could be logically impossible for some hi-criticality
tasks to take their worst branch choices simultaneously. That is, they cannot
have their hi-criticality behaviors to have simultaneous impacts on the system.

Third, it could also come from probabilistic analysis if the WCETs of hi-
criticality tasks are independent [12]. In this approach, the probability of multiple
hi-criticality tasks performing hi-criticality behaviors could be calculated as a
product of multiple (hopefully small) probabilities for each individual task to
perform its hi-criticality behavior. When this product is sufficiently small, the
simultaneous hi-criticality behaviors of these tasks could be probabilistically
deemed impossible.2 This setting was also considered in [11,13], which more
focuses on the various detailed combinations of tasks that may not perform their
hi-criticality behaviors. Therefore, a somewhat complicated scheduling approach
was studied there. In this paper, we mainly focused on the maximum number
of such tasks only, and therefore enable the applicability of the relatively simple
scheduler, EDF-VD.

3 EDF-VD Schedulability Analysis

In this section, we review a commonly used and adapted MC scheduler, namely
EDF-VD [2], which was proposed for the classic Vestal model. We will refine the
1 When considering a certain time window of length T , any task τi with a par-

tially overlapping scheduling window that experience hi-criticality behavior counts
(although it may be already finished by the beginning of the period of interest, or it
did not start executing by the end of the period of interest).

2 Or equivalently, even if it does happen, it is viewed as erroneous, and the system
design does not take care of it.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors 193

original analysis of EDF-VD to cope with our less pessimistic assumptions, and
derive a new schedulability test for EDF-VD under the new model proposed in
this paper.

EDF-VD. Similar to the classic EDF scheduler, EDF-VD is a deadline-based,
dynamic-priority scheduler. In contrast to EDF, EDF-VD assigns virtual dead-
lines, which are earlier than the actual deadlines, to hi-criticality jobs. In the
runtime, their priorities are determined by their virtual deadlines in the lo-
criticality mode; upon a mode switch, their priorities are changed back to their
actual deadlines in the hi-criticality mode. Intuitively, the virtual deadlines in
the lo-criticality mode provide the room for the hi-criticality tasks to still meet
their actual deadlines in the hi-criticality mode, when they occasionally overrun
their lo-WCETs.

Let τ denote the MC implicit-deadline sporadic task system that is to be
scheduled on a preemptive uniprocessor. Prior to run-time, EDF-VD performs
a schedulability test to determine whether τ can be correctly scheduled by it or
not. If τ is deemed schedulable, then an additional parameter x is computed for
setting virtual deadlines to hi-criticality tasks. Each virtual relative deadline T ′

i

can be calculated by “shrinking” the actual relative deadline Ti by the scaling
factor x.

Next, we describe a schedulability test for EDF-VD under the proposed new
model and prove its correctness. Note that, when N = nhi, this schedulability
test reduces to the one for the classic Vestal model in [2].

Schedulability Test. First, given an MC task instance, the parameter x is
calculated as follows:

x ← U lo
hi

1 − U lo
lo

. (5)

By Theorem 1 (to be presented later), this assignment of x will be able to guar-
antee the schedulability under lo-criticality mode.

Then, the schedulability under hi-criticality mode can also be guaranteed if
the following inequality holds:

xU lo
lo + U lo

hi +
N∑

i=1

δi ≤ 1. (6)

That is, given an MC task instance, the schedulability test needs to check
whether Inequality (6) is satisfied.

The schedulability test returns success if Inequality (6) is satisfied, and failure
otherwise.

Upon success, EDF-VD assigns virtual deadline parameters for all hi-
criticality tasks as follows:

T ′
i ← x · Ti. (7)

Correctness Proof. The correctness proof of the above schedulability test con-
tains two parts: (i) all deadlines being met under lo-mode (Theorem 1) and (ii)
hi-criticality deadlines under hi-mode (Theorem 2).



194 Z. Guo et al.

Theorem 1. Under EDF-VD, all tasks meet their deadlines in lo-mode (where
all jobs complete upon receiving execution time up to their lo-WCETs) if

x ≥ U lo
hi

1 − U lo
lo

. (8)

Proof: By the density test in [12], U lo
lo + U lo

hi /x ≤ 1 is sufficient to ensure that
EDF-VD successfully schedules all lo-criticality behaviors of τ . Theorem follows
by rearranging this inequality. ��
Lemma 1. For any period of length t, total demand by hi-criticality tasks can
not exceed (U lo

hi +
∑N

i=1 δi)t.

Proof: It is assumed that hi-criticality tasks are ordered (decreasingly) accord-
ing to their δi values. Consider the scenario that tasks τ1, ..., τN requires for
executions more than its ci(lo), than it is obvious that the total demand by
hi-criticality tasks can not exceed (U lo

hi +
∑N

i=1 δi)t.
We prove by contradiction. Assume there is another scenario with total

demand larger than the above mentioned case. We can always identify the differ-
ence between this new release pattern with the one we have – by “replacing” one
job that is released by one of the tasks from τ1, ..., τN by a job released by some
task other than τ1, ..., τN , one at a time. We can not directly add any task since
we have reached the maximum number (N) of tasks that can require demands
higher than their lo-WCETs. However, since tasks are ordered by their δi val-
ues decreasingly, the demand of new tasks in the period of interest (between the
release and the deadline of the job being replaced) cannot exceed the one created
by the original job. Therefore, such “swaps” will always result into a decreasing
of the total demand, which contradicts our assumption. ��
Theorem 2. Under EDF-VD, all hi-criticality tasks meet their deadlines in
hi-mode if Inequality (6) holds. In the hi-mode, some but no more than N hi-
criticality job(s) have not completed upon receiving execution time up to their lo-
WCETs but will complete upon receiving execution time up to their hi-WCETs.

Proof: It is assumed that the reader is familiar with the correctness proof for
EDF-VD in [2], so we will skip many parts of the proof that will look identical.
We also adopt all notations there: tf as the first hi-criticality deadline that is
missed, 0 as the last idle instant before tf , t∗ < tf as the mode switch point, ηi

denote the amount of execution over the interval [0, tf ) that is needed by jobs
generated by task τi. a1 as the release time of the job with the earliest release
time amongst all those that execute in [t∗, tf ), and ηi.

The proofs of Facts 1 and 2 remain unchanged due to the minimal set assump-
tion and the same strategy used under lo mode. Regarding Fact 3, here we
calculate the maximum total hi-criticality demand over [0, tf ) instead, and then
sum the cumulative demand of all the tasks over [0, tf ).



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors 195

From Lemma 1 we know that during interval [a1, tf ), the total hi-criticality
demand will not exceed (tf − a1)(U lo

hi +
∑N

i=1 δi). As a result, we have the
following upper bound for cumulative demand of all hi-criticality tasks over
[0, tf ):

∑

χi=hi

ηi ≤ a1

x
U lo
hi + (tf − a1)(U lo

hi +
N∑

i=1

δi). (9)

From the infeasibility of the instance (due to deadline miss at tf ), we have

a1 + (tf − a1)(xU lo
lo + U lo

hi +
N∑

i=1

δi) > tf (10)

⇔ (tf − a1)(xU lo
lo + U lo

hi +
N∑

i=1

δi) > tf − a1 (11)

⇔ xU lo
lo + U lo

hi +
N∑

i=1

δi > 1 (12)

The contrapositive is exactly Inequality (6), which is sufficient to ensure hi-
criticality schedulability by EDF-VD. ��
Runtime Behavior. During runtime, if a lo-criticality job of task τi arrives at
time-instant ta, then the priority of this job is determined by its deadline ta +Ti,
whereas its priority will be determined by its virtual deadline ta + T ′

i if it is a
hi-criticality job. If any hi-criticality job executes for a duration exceeding its
lo-WCET without signaling completion, the scheduler immediately discards all
lo-criticality jobs3 and executes hi-criticality hi-criticality tasks according to
EDF order with their actual (instead of virtual) deadlines. Moreover, idleness
always serves as the trigger to lo-criticality mode of the system.

Additional Discussions. Under the MC scheduling approach, lo-criticality
jobs will be dropped in the hi-criticality mode, and any hi-criticality job over-
running its lo-WCET will trigger the mode switch. With the proposed model,
this dropping may not be necessary. The following inequality should be examined
before the system starts any execution:

U lo
lo + U lo

hi +
N∑

i=1

δi ≤ 1. (13)

If Inequality (13) is true, then actually no mode switch nor virtual deadline is
needed. The system can be scheduled by ordinary preemptive EDF scheduler
and all deadlines will be met. This result directly follows from Lemma1. If
Inequality (13) is false, we then apply the MC scheduling techniques described
earlier in this section, and examine Inequality (6) to verify the schedulability.
3 An efficient implementation of such a run-time dispatcher may be obtained using

the technique described in [2, Sect. V-A], to have runtime that is logarithmic in the
number of tasks.



196 Z. Guo et al.

4 Experimental Evaluation

In Sect. 2, we have proposed a new MC system model that specifies the maximum
number of tasks N that can simultaneously experience hi-criticality behaviors
within any time window of length maxi{Ti}. With this additional information
in the model comparing to the classic Vestal model, we are expecting a “better”
schedulability result for EDF-VD under the new model.

In this section, we conduct schedulability experiments to evaluate the effec-
tiveness of the proposed model against the classic Vestal model. Various per-
mode utilizations as well as N ’s are considered in our experiments. The MC task
instances in our experiments are generated by the MC task generator described
in [3], which has passed artifact evaluation.

In each set of our experiments, the average normalized utilization [4] of the
generated task set range from 0.5 to 1 with increasing at step size 0.05. For
every average utilization, 1000 task sets are generated and the acceptance ratio
indicates how many of them passed the corresponding schedulability test (and
thus can be scheduled correctly).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Normalized Utilization Bound

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
ce

pt
an

ce
 R

at
io

Our Model N=nHI/8

Our Model N=nHI/4

Our Model N=nHI/2

Vestal Model

Fig. 2. Schedulability ratio comparison of our proposed model and the classic Vestal
model under various N ’s, with nhi = 16.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors 197

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Normalized Utilization Bound

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ac

ce
pt

an
ce

 R
at

io

Our Model N=nHI/8

Our Model N=nHI/4

Our Model N=nHI/2

Vestal Model

Fig. 3. Schedulability ratio comparison of our proposed model and the classic Vestal
model under various N ’s, with nhi = 32.

Figures 2, 3, and 4 demonstrate the effectiveness of the new model along
with the corresponding EDF-VD schedulability test under various settings of
numbers of hi-criticality tasks (16, 32, and 64) and sizes of N (i.e., number of
hi-criticality tasks that can simultaneously exceed lo-WCETs. It is natral that
the acceptance ratios will drop when system is more heavily loaded (with higher
utilization). However, we notice that our methods maintains relatively higher
acceptance ratio even when normalized utilization gets close to 1.

These results also show that, if less pessimistic assumptions (about the N)
can be made, the schedulability can be significantly increased. We do not notice
much different in the trends when total number of hi-criticality tasks varies.



198 Z. Guo et al.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Normalized Utilization Bound

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ac

ce
pt

an
ce

 R
at

io

Our Model N=nHI/8

Our Model N=nHI/4

Our Model N=nHI/2

Vestal Model

Fig. 4. Schedulability ratio comparison of our proposed model and the classic Vestal
model under various N ’s, with nhi = 64.

5 Conclusion

This paper extends the classic Vestal model for MC scheduling by allowing sys-
tem designers to specify an additional parameter, representing the maximum
number of hi-criticality tasks that may simultaneously exceed their lo-WCETs
during runtime. By simultaneously, we mean within any sliding time window
of length less than or equal to the maximum period among all tasks. The well-
known scheduler, namely EDF-VD, has been studied under the proposed model,
and a new schedulability test has been proposed and analyzed. Schedulability
experiments have demonstrated that by applying the proposed model in place of
the classic Vestal model, significant schedulability improvements can be achieved.

For future work, we would like to consider fixed-priority schedulers under
the proposed model, in addition to the deadline-based scheduler, EDF-VD, we
considered in this paper. The results may also be extended (at a measurable
cost) into multi-processor and/or multi-criticality-level cases.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors 199

References

1. Baruah, S.: Mixed criticality schedulability analysis is highly intractable (2008).
http://www.cs.unc.edu/∼baruah/Submitted/02cxty.pdf

2. Baruah, S., et al.: The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In: The 24th Euromicro Conference on
Real-Time Systems (ECRTS 2012) (2012)

3. Baruah, S., Burns, A., Guo, Z.: Scheduling mixed-criticality systems to guarantee
some service under all non-erroneous behaviors. In: The 28th Euromicro Conference
on Real-Time Systems (ECRTS 2016) (2016)

4. Baruah, S., Eswaran, A., Guo, Z.: MC-Fluid: simplified and optimally quantified.
In Proceedings of the 36th IEEE Real-Time Systems Symposium (RTSS 2015)
(2015)

5. Baruah, S., Guo, Z.: Mixed-criticality scheduling upon varying-speed processors.
In: The 34th IEEE Real-Time Systems Symposium (RTSS 2013) (2013)

6. Baruah, S., Guo, Z.: Scheduling mixed-criticality implicit-deadline sporadic task
systems upon a varying-speed processor. In: Proceedings of the 35th IEEE Real-
Time Systems Symposium (RTSS 2014) (2014)

7. Burns, A., Davis, R.: Mixed-criticality systems: a review (2016). http://www-users.
cs.york.ac.uk/∼burns/review.pdf

8. Guo, Z., Baruah, S.: Mixed-criticality scheduling upon varying-speed multiproces-
sors. Leibniz Trans. Embed. Syst. 1(2), 3:1–3:19 (2014)

9. Guo, Z., Baruah, S.: Mixed-criticality scheduling upon varying-speed multiproces-
sors. In: Proceedings of the 12th IEEE International Conference on Dependable,
Autonomic and Secure Computing (DASC 2014) (2014)

10. Guo, Z., Baruah, S.: The concurrent consideration of uncertainty in WCETs and
processor speeds in mixed-criticality systems. In: The 23rd International Confer-
ence on Real-Time and Network Systems (RTNS 2015) (2015)

11. Hansen, J., Hissam, S., Moreno, G.A.: Statistical-based WCET estimation and
validation. In: The 9th International Workshop on Worst-Case Execution Time
Analysis (WCET 2009) (2009)

12. Cucu-Grosjean, L.: Independence - a misunderstood property of and for (proba-
bilistic) real-time systems. Invited paper to the 60th birthday of A. Burns (2013)

13. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-
time environment. J. ACM 20(1), 46–61 (1973)

14. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: The 28th IEEE Real-Time Systems Symposium
(RTSS 2007) (2007)

http://www.cs.unc.edu/~baruah/Submitted/02cxty.pdf
http://www-users.cs.york.ac.uk/~burns/review.pdf
http://www-users.cs.york.ac.uk/~burns/review.pdf


Author Index

Adelsberger, Stephan 89
Aichernig, Bernhard K. 153

Butler, Michael 135

Cao, Wei 129
Chen, Cong 129
Chen, Yang 108

Eakman, Gregory 31

Giannakopoulos, Theophilos 31
Guo, Zhishan 187

Heinrich, Robert 50
Hoang, Thai Son 135
Huang, Li 170

Kang, Eun-Young 170
Kann, Severin 153

Lee, Insup 31
Li, Guangyuan 11
Li, Yangjia 69
Lin, Chung-Ling 11
Liu, Bo 50
Liu, Zhiming 50

Pang, Jun 142
Paul, Soumya 142
Pit-Claudel, Clément 31

Qian, Junyan 129

Santinelli, Luca 187
Schumi, Richard 153
Setzer, Anton 89
Shen, Wuwei 11
Snook, James 135
Sokolsky, Oleg 31
Su, Cui 142

Tyszberowicz, Shmuel 50

Walkingshaw, Eric 89
Wang, Qiuye 69
Wiegley, John 31
Wu, Peng 108

Xie, Tao 3
Xue, Bai 69

Yang, Kecheng 187
Yue, Tao 11

Zhai, Zhongyi 129
Zhan, Naijun 69
Zhang, Teng 31
Zhang, Yu 108
Zhang, Zhenya 108
Zhao, Lingzhong 129


	Preface
	Organization
	Abstracts of Invited Talks
	Intelligent Software Engineering: Synergy between AI and Software Engineering
	Formal Semantics of Probabilistic Programming Languages: Issues, Results and Opportunities
	Contents
	Abstracts of Invited Talks
	Intelligent Software Engineering: Synergy Between AI and Software Engineering
	1 Introduction
	2 Instilling Intelligence in Software Engineering
	3 Software Engineering for Intelligence Software
	References

	Software Assurance
	Automatic Support of the Generation and Maintenance of Assurance Cases
	Abstract
	1 Introduction
	2 GSN and the Problem Statement
	3 An Illustrative Example
	4 The Framework Overview and Its Main Algorithms
	4.1 Overview of the Framework
	4.2 Generation of Assurance Case and Its Algorithms
	4.3 Maintenance of an Assurance Case and Its Algorithm

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgement
	References

	Refinement
	Correct-by-Construction Implementation of Runtime Monitors Using Stepwise Refinement
	1 Introduction
	2 Preliminaries
	3 An Operational Semantics of SMEDL
	4 Towards a Well-Formed Monitor Specification
	4.1 Well-Formedness Predicates
	4.2 Proof of Termination and Determinism

	5 Refinement of a Monitor Specification Using Fiat 
	5.1 Definition of an ADT
	5.2 Refinement Process

	6 Case Study
	7 Related Work
	8 Discussion and Conclusions
	References

	Identifying Microservices Using Functional Decomposition
	1 Introduction
	2 State of the Art
	3 Running Example: CoCoME
	4 Identifying Microservices
	5 Architecture-Based Change Impact Analysis
	6 Evaluation
	7 Conclusion
	References

	Verification
	Robust Non-termination Analysis of Numerical Software
	1 Introduction
	2 Preliminaries
	2.1 Computer Programs of Interest
	2.2 Piecewise Discrete-Time Systems

	3 Robust Non-termination Set Generation
	3.1 Characterization of R0
	3.2 Semi-definite Programming Implementation

	4 Experiments
	5 Related Work
	6 Conclusion and Future Work
	References

	Developing GUI Applications in a Verified Setting
	1 Introduction
	2 Background
	3 State-Dependent GUI Applications
	3.1 Introductory Example
	3.2 GUI Interface
	3.3 State-Dependent Interfaces
	3.4 Implementation of Generic GUIs
	3.5 A GUI with an Unbounded Number of States

	4 Proof of Correctness Properties of GUIs
	4.1 A Simulator for GUI Applications

	5 State Transition Properties
	5.1 Intermediate-State Properties
	5.2 Final-State Properties

	6 Related Work
	7 Conclusion and Future Work
	References

	Interleaving-Tree Based Fine-Grained Linearizability Fault Localization
	1 Introduction
	2 Motivating Example
	3 Preliminary
	3.1 Coarse-Grained Trace Model
	3.2 Fine-Grained Trace Model

	4 Critical Data Race Sequence
	5 Identify CDRS on Interleaving Tree
	5.1 Interleaving Tree
	5.2 Identify CDRS on Labeled Interleaving Tree

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Benchmark
	6.3 Evaluation

	7 Conclusion
	References

	Miscellaneous (Short Papers)
	Improvement in JavaMOP by Simplifying Büchi Automaton
	1 Introduction
	2 Preliminary
	2.1 Linear Temporal Logic (LTL)
	2.2 JavaMOP

	3 Improvement in JavaMOP
	4 Experimental Results
	5 Conclusion
	References

	Developing A New Language to Construct Algebraic Hierarchies for Event-B
	1 Introduction
	2 Background
	2.1 Mathematical Data Structures
	2.2 Event-B and the Theory Plug-In

	3 A Language for Mathematical Libraries in Event-B
	3.1 A Case Study Using Theory Plug-In
	3.2 The B Language

	4 Related Work and Conclusion
	References

	Towards the Existential Control of Boolean Networks: A Preliminary Report
	1 Introduction
	2 Background and Notations
	3 Results
	4 Conclusion
	References

	Timing and Scheduling
	Statistical Model Checking of Response Times for Different System Deployments
	1 Introduction
	2 Background
	2.1 Statistical Model Checking (SMC)
	2.2 Property-Based Testing (PBT)
	2.3 Stochastic Timed Automata
	2.4 Integration of SMC into Property-Based Testing

	3 Method
	4 Evaluation
	5 Conclusion
	References

	Probabilistic Analysis of Timing Constraints in Autonomous Automotive Systems Using Simulink Design Verifier
	1 Introduction
	2 Preliminary
	3 Running Example: Traffic Sign Recognition Vehicle
	4 Probabilistic Extension of Relations in CCSL
	5 Translation of CCSL and PrCCSL into SDV
	5.1 Mapping CCSL Expressions into S/S
	5.2 Representation of PrCCSL in SDV

	6 Experiments: Verification and Validation
	7 Related Work
	8 Conclusion
	References

	Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors
	1 Introduction and Motivation
	2 Model and Definitions
	3 EDF-VD Schedulability Analysis
	4 Experimental Evaluation
	5 Conclusion
	References

	Author Index



