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Abstract. In contrast to untimed FSMs, two minimal initialized FSMs with
timeouts can be equivalent but not isomorphic. Accordingly, we propose an
appropriate fault model and a method for complete test derivation for initialized
deterministic FSMs with timeouts based on an appropriate FSM abstraction of
the timed FSM specification. We also show how the same approach can be used
for deriving tests for FSMs with both time guards and timeouts.
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1 Introduction

A multitude of approaches are given for test derivation from formal specifications
modeled as Finite State Machines (FSMs). The W method [1] paved the way for many
derivatives to work on the test derivation considering various classes of FSM speci-
fications and Implementations Under Test (IUT). For related summary and experiments
the reader may refer to [2, 3]. Extensions to the W-based methods are also considered
in the context of systems with timed constraints [4, 5]. Merayo et al. [6] establish a
number of conformance relations for possibly non-deterministic FSM with input and
output timeouts; however, test derivation is not considered in [6]. El-Fakih et al. [7]
consider test derivation and assessment for timed FSMs with timed guards and single
clock that is reset at every transition. Zhigulin et al. [8] presented a method for deriving
complete test suites for FSMs with timeouts considering a traditional fault domain
assuming that the number of states of an implementation TFSM does not exceed that of
the reduced specification TFSM as well as the maximal finite timeout of the IUT does
not exceed this of the specification. Recently, Bersolin et al. [9] investigated many
timed FSM models with a single clock.

In this paper, we consider complete test derivation against FSMs with timeouts,
hereafter denoted as TFSMs. In contrast to untimed FSMs, we show that two minimal
initialized TFSMs can be equivalent but not isomorphic; moreover, we show that these
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TFSMs can have different number of states. According to [9], the behavior of a TFSM
can be completely described by its corresponding (untimed) FSM abstraction and the
reduced initially connected forms of corresponding FSM abstractions of two initialized
equivalent TFSMs are isomorphic. This hints that the fault model and complete test
derivation can be developed based on the reduced form of the FSM abstraction of a
given TFSM specification. We consider complete test derivation with respect to an
appropriate fault domain that contains every TFSM over the same input alphabet as the
specification such that the reduced form of the FSM abstraction of an IUT has at most
m[ 1 states, and thus, the proposed approach is easily extended to FSMs with
timeouts and timed guards.

2 Preliminaries

An initialized FSM is a 5-tuple S ¼ ðS; I;O; hS; s0Þ where I and O are input and output
alphabets, S is a finite non-empty set of states with the designated initial state s0, and
hS �ðS� I � O� SÞ is the transition relation. We consider complete and deterministic
FSMs, i.e., for each pair s; ið Þ 2 S� I there exists exactly one transition
ðs; i; o; s0Þ 2 hS. The equivalence and distinguishability relations between different
states of FSMs are defined in a usual way [3]. It is known that given a complete
deterministic initialized initially connected FSM, any two reduced initially connected
forms of this FSM are isomorphic.

An FSM with timeouts, a TFSM for short, is an FSM annotated with a clock that is
reset to zero at the execution of any transition. In addition, such a TFSM has input
timeout transitions. When an input timeout expires at a state, the TFSM can sponta-
neously move to the destination state of the timeout transition while resetting the time
to zero. An initialized TFSM is a 6-tuple S ¼ ðI; S;O; hS;DS; s1Þ where I and O are
input and output alphabets, S is the finite non-empty set of states, hS � S� I � O� S is
the transition relation and DS: DS : S ! S� ðN [f1gÞ is the timeout function, where
N is the set of positive integers: for each state, this function specifies the maximum time
for waiting for an input. Given state s of TFSM S such that DS sð Þ ¼ s0; Tð Þ, if no input
is applied before the timeout T expires, S moves to state s0 and the clock is set to zero. If
s ¼ s0 then the clock is set to zero when timeout is expired. The transition ðs; i; o; s0Þ 2
S� I � O� S means that S being at state s accepts an input i applied at time t\T
measured from the moment when the clock was reset at state s of S; the clock then is set
to zero and S produces o. Hereafter, the timeout at state s can be written as Ts or T when
s is known from the context, for short.

TFSM S is a deterministic complete TFSM if for each pair s; ið Þ 2 S� I, there is
exactly one transition ðs; i; o0; s0Þ 2 hS. In this paper, we consider only deterministic
complete TFSMs. TFSM is (initially) connected if each state is reachable from the
initial state. Given a TFSM S, a timed input is a pair (i, t) where i 2 I and t is a real; a
timed input (i, t) means that input i is applied to the TFSM at time instance t where t is a
local time. A sequence of timed inputs a ¼ i1; t1ð Þ . . . in; tnð Þ is a timed input sequence.
A sequence a=c ¼ i1; t1ð Þ=o1 . . . in; tnð Þ=on of consecutive pairs of timed inputs and
outputs starting at the state s is a timed trace of TFSM S at state s. Given complete
deterministic TFSMs S and P, states s of S and p of P are equivalent if output responses
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at these states coincide for each timed input sequence; otherwise, s and p are distin-
guishable. Two initialized TFSMs S and P are equivalent if their initial states are
equivalent. If any two different states of TFSM S are distinguishable then S is (state)
reduced or minimal.

Consider two complete deterministic TFSMs in Fig. 1 which are equivalent. Each
state in S1 að Þ and S2 bð Þ is reachable from the initial state and both machines are
reduced. However, these two equivalent machines are not isomorphic; moreover, they
have different number of states.

In order to calculate an output for a timed input (i, t) for each state s of TFSM S we
consider the function time s; tð Þ ¼ s0 that determines state s0 that will be reached by
S through timeouts if no input was applied during t time units. The output response b of
S to a sequence a ¼ i1; t1ð Þ i2; t2ð Þ . . . in; tnð Þ at state s is iteratively determined starting
from state s.

Determining if two states of a TFSM S are equivalent or distinguishable can be
done using the (untimed) FSM-abstraction AS of S defined in [9].

FSM Abstraction: Given a complete deterministic TFSM S ¼ ðS; I;O; hS;DS; s0Þ, we
derive the FSM abstraction of S as the FSM AS ¼ ðSA; IA;OA; kAS; s0; 0ð Þ, where
IA ¼ I [f1g;OA ¼ O[f1g. The input (output) 1 is a special input (output) of the FSM
abstraction denoting the time duration. For each state s, the set SA has a state (s, 0).
Moreover, for each state s where the timeout Ts is finite, the set SA has the states
f s; 1ð Þ; ::; ðs; Ts� 1Þg. Given state s; tj

� � 2 SA of AS and input i, a transition
ððs; tjÞ; i; o; ðs0; 0ÞÞ is a transition of the abstraction AS iff there exists a transition
ðs; i; o; s0Þ 2 hS. Transitions under the input 1 correspond to timeout transition between
states. Given state s such that DS sð Þ ¼ s0; Tsð Þ where 1\Ts\1, there are transitions
ððs; 0Þ; 1; 1; ðs; 1ÞÞ; . . .; ððs; Ts � 2Þ; 1; 1; ðs; Ts � 1ÞÞ; ððs; Ts � 1ÞÞ, in kAS. If DS sð Þ ¼
s0; Tsð Þ then there is a transition ððs; Ts � 1Þ; 1; 1; ðs0; 0ÞÞ while there is a transition
ððs; 0Þ; 1; 1; ðs; 0ÞÞ 2 kAS iff Ts ¼ 1. In [9], it is shown that the FSM abstraction of a
complete and deterministic TFSM S is also complete and deterministic. As an example,
consider the FSMs S1 and S2 in Fig. 1(a) and (b), their corresponding isomorphic FSM
abstractions AS1 and AS2 are also shown in Fig. 1.

By definition, given an FSM with timeouts with n states and k inputs, the corre-
sponding FSM abstraction has kþ 1ð Þ inputs and the number of states of the FSM
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Fig. 1. Two equivalent yet not isomorphic TFSMs S1 (a) and S2 (b) and their FSM abstractions.
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abstraction equals
P

s2S0 ðTs þ SnS0j j where S0 is the subset of all FSM states for which
the timeout Ts is finite.

A timed input sequence a of TFSM S can be transformed into a corresponding
input sequence aFSM of the FSM abstraction AS. In this case, each timed input (i, t) is
replaced by sequence 1:1 . . . 1. i of inputs of the FSM abstraction where the number of
inputs 1 equals t. At the same time the response of the FSM abstraction to sequence
1:1 . . . 1. i is the sequence 1:1 . . . 1. o where the number of outputs 1 is the same as for
the timed input (i, t) and o is the response of the TFSM to timed input (i, t). Thus, the
output sequence of the FSM abstraction cFSM is exactly the output sequence c after
removing all outputs 1. As there is no ambiguity, we further do not distinguish
sequences cFSM and c.

Proposition 1. Given a complete deterministic TFSM S and its corresponding FSM
abstraction AS, a timed trace a=c exists for TFSM S if and only if there exists a trace
aFSM=c for the FSM abstraction AS.

Proposition 2 [9]. Two complete deterministic TFSMs are equivalent if and only if
their FSM abstractions are equivalent.

The following proposition describes an input sequence that distinguishes two non-
equivalent TFSMs.

Proposition 3. Given two non-equivalent complete deterministic TFSMs S and P over
the same input and output alphabets, let AS and AP be their FSM abstractions. If an
input sequence aFSM ¼ 1:1 . . . 1: i1 . . . 1:1 . . . 1. ik distinguishes FSM abstractions AS

and AP, then the timed input sequence ði1; t1Þ . . . ðik; tkÞ where tj is the number of inputs
before the input ij, 1� j� k, distinguishes machines S and P.

An FSM abstraction of a TFSM can be reduced using a traditional way. Then the
FSM abstraction of a TFSM implementation can be compared with the FSM
abstraction of the specification TFSM and if they are not equivalent then corresponding
TFSMs can be distinguished by some input sequence aFSM . Moreover, a corresponding
timed input sequence a will distinguish the TFSM implementation from the specifi-
cation TFSM (Proposition 3). Correspondingly, a complete test suite can be derived
based on the minimal form of the FSM abstraction of the specification TFSM. Such a
test suite is derived for timed sequences over local time and later we discuss how the
test cases can be written over global time. We also note that when distinguishing two
initialized deterministic complete FSMs AS and AP, a distinguishing input can be only
i 2 I, as input 1 is defined at each state with the output 1. The sequence aFSM . i dis-
tinguishes FSMs AS and AP and based on it a corresponding distinguishing sequence
for TFSMs S and P can be constructed (Proposition 3).

When applying test cases to an IUT, we reasonably assume that each transition is
performed with some small output delay h such that the sum of all delays during a test
case application is less than 1 and since timeouts are integers and these delays are very
small they do not effect a proposed fault model.
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3 Fault Models and Test Derivation

Given a specification TFSM S, we consider the fault model \S;ffi;FDm [ , where
FDm contains every TFSM P over the same input alphabet as S such that the reduced
form of the FSM abstraction of P has at most m[ 1 states. We note that it can well
happen that some timed FSMs with less states than the specification TFSM are not
included into the fault domain and vice versa a number of timed FSMs with more states
than the specification TFSM are included into the fault domain.

Theorem 1. The test suite TS obtained by Algorithm 1 is complete with respect to the
fault model \S;ffi;FDm [ .

4 Deriving Tests for FSMs with Timed Guards and Timeouts

In [9], FSMs with timed guards and timeouts are considered. Input timed guards
describe the behavior at a given state for inputs, which arrive at different time instances.
Formally, an initialized TFSM is a 6-tuple S ¼ ðI; S;O; hS;DS; s0Þ where I and O are
input and output alphabets, S is the finite non-empty set of states, hS � S� I � O�
S�P is the transition relation and DS is the timeout function. The set P is a set of
input timed guards. An input timed guard g 2 P describes the time domain when a
transition can be executed and is given in the form of interval ⌈min, max⌉ from [0; T),
where ⌈ 2 {(, [},⌉ 2}, ), ]} and T is the value of the (input) timeout at the current state.
The transition ðs; i; o; s0; gÞ 2 S� I � O� S�P means that TFSM S being at state
s accepts an input i applied at time t 2 g measured from the moment when S entered
state s; the clock then is set to zero and S produces output o. TFSM S is a deterministic
complete TFSM if for each two transitions s; i; o1; s1; g1ð Þ; s; i; o2; s2; g2ð Þ 2 hs it holds
that g1 \ g2 ¼ ; and the union of all input timed guards at state s under input i equals
[0; T) when DS sð Þ ¼ s0; Tð Þ. Given a complete deterministic TFSM S, the largest finite
boundary BS of input timed guards and timeouts, we derive the FSM abstraction of S as
the FSM ASðBÞ ¼ ðSA; I [f1g;O[f1g; kAS; ðs0; 0ÞÞ;B�BS, where SA ¼ f s; 0ð Þ; s;ð
0; 1ð ÞÞ; . . .; s; B�1;Bð Þð Þ; s;Bð Þ; ðs; ðB;1ÞÞ : s 2 Sg. In [9], it is shown that such an
FSM abstraction of a complete and deterministic TFSM S is also complete and
deterministic and a timed input sequence a of TFSM S can be transformed into a
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corresponding input sequence aFSM of the FSM abstraction AS Bð Þ similar to an FSM
with timeouts. We then consider the fault model \S;ffi;FDmðBÞ[ , where FDmðBÞ
contains every TFSM P over the same input alphabet as S such that the reduced form of
the FSM abstraction of P has at most m[ 1 states and the largest finite boundary of
input timed guards and timeouts is B�BS. In our case, the test derivation technique
completely coincides with Algorithm 1 where the FSM abstraction AS is considered
and the test suite TS obtained by Algorithm 1 is complete w.r.t. the fault model
\S;ffi;FDmðBÞ[ .

5 Conclusion

A proper fault domain is considered for complete test derivation against timed FSMs.
The fault domain takes into account the fact that a reduced TFSM specification and a
reduced TFSM implementation with timeouts can be equivalent yet not isomorphic.
A proper characterization of the fault domain is then considered using the unique
reduced form of the FSM abstraction of the given timed FSM specification. The fault
domain is extended to consider FSMs with timeouts and timed guards.
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