
Interactive Testing and Repairing
of Regular Expressions

Paolo Arcaini1(B) , Angelo Gargantini2 , and Elvinia Riccobene3

1 National Institute of Informatics, Tokyo, Japan
arcaini@nii.ac.jp

2 University of Bergamo, Bergamo, Italy
angelo.gargantini@unibg.it

3 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
elvinia.riccobene@unimi.it

Abstract. Writing a regular expression that exactly captures a set of
desired strings is difficult, since regular expressions provide a compact
syntax that makes it difficult to easily understand their meaning. Testing
is widely used to validate regular expressions. Indeed, although a devel-
oper could have problems in writing the correct regular expression, (s)he
can easily assess whether a string should be accepted or not. Starting
from this observation, we propose an iterative mutation-based process
that is able to test and repair a faulty regular expression. The approach
consists in generating strings S that distinguish a regular expression r
from its mutants, asking the user to assess the correct evaluation of S,
and possibly substituting r with a mutant r ′ that evaluates S more cor-
rectly than r ; we propose four variants of the approach which differ in
the policy they employ to judge whether r ′ is better than r . Experiments
show that the proposed approach is able to actually repair faulty regular
expressions with a reasonable user’s effort.

1 Introduction

Regular expressions (regexp) are used in different contexts [4] (e.g., MySQL
injection prevention, DNA sequencing alignment, etc.) to validate data, perform
lexical analysis, or do string matching in texts. A regexp characterizes a set of
strings (i.e., a language). Several studies [6,12] show that regexps often contain
conformance faults, i.e., they do not exactly describe the intended language:
they either accept strings that should be refused, or refuse strings that should
be accepted, or both. Indeed, specifying a correct regexp is usually difficult, since
regexps provide a compact syntax that makes the understanding of their exact
meaning difficult.

P. Arcaini—The author is supported by ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST. Funding Reference number:
10.13039/501100009024 ERATO.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
I. Medina-Bulo et al. (Eds.): ICTSS 2018, LNCS 11146, pp. 1–16, 2018.
https://doi.org/10.1007/978-3-319-99927-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99927-2_1&domain=pdf
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0002-4035-0131
http://orcid.org/0000-0002-1400-1026

2 P. Arcaini et al.

Due to their tolerant syntax, most regexps are free of syntax errors and it is
unlikely to find conformance faults by syntax checking or static analysis [12]. For
this reason, the most used form of regexp validation is testing, i.e., generating
a set of strings S and comparing the behavior of the regexp under test r over
S w.r.t. an oracle. Often, the oracle is the tester, who has to check whether r
correctly evaluates the strings in S. A common assumption done by many val-
idation and testing techniques is that for a human evaluating if a given string
should belong to the desired language L is much easier than writing the regexp
that characterizes L. Based on this assumption, several programs and web ser-
vices allow to validate regexps by generating a set of strings [6] or allowing the
user to enter strings and check whether they are correctly rejected or accepted
by the regexp under test. However, two issues arise: (i) As checking all possible
strings is not feasible, which strings are more critical to validate a regexp? (ii)
Once a wrongly evaluated string is found, can a repair be suggested to the user?

In this paper, we address both issues. We start with the assumption that
syntactical faults usually done by developers are those described by a set of fault
classes identified in literature [2]. Based on this assumption, we can restrict the
testing activity to the strings able to distinguish a regexp from its mutants, i.e.,
the strings demonstrating the presence of particular syntactic faults. Regarding
what to do when a fault has been discovered (i.e., a string s which is rejected
but it should be accepted or vice versa), we propose to repair the regexp under
test by substituting it with its mutant which instead correctly evaluates s.

We devised an iterative process which starts with a developer who has written
a regexp r and (s)he wants to check if r is correct, i.e., if it correctly evaluates
the intended language. Then, the process proceeds through a sequence of steps
in which each iteration consists in: (i) generating some mutants of the regexp
r under test, (ii) computing a set S of distinguishing strings that permit to
distinguish r from its mutants, (iii) checking the quality of the mutated regexps
and the original regexp over S by asking the user to assess the correctness of the
strings evaluation, (iv) and choosing the best regexp r ′ (i.e., the one evaluating
correctly the majority of generated strings), and updating r with r ′. The process
iterates until no r ′ better than r is found. We propose four versions of the
previous general process. The greedy one changes the regexp as soon as it finds a
better candidate among the mutants. The multiDSs mitigates the greediness by
evaluating several strings before changing the candidate. The breadth approach,
before changing the candidate, evaluates all the mutants. The collecting approach
aims at distinguishing multiple mutants at the same time. Experiments show that
the approach is able to repair 85% of faulty regexps; on average, the user must
evaluate around 40 strings and the whole process (also considering the user’s
effort) lasts, at most, 4.5 min.

Paper Structure. Section 2 gives background on regexps and mutation oper-
ators for them. Section 3 introduces the notions of conformance and mutation
fault. Section 4 presents our approach for repairing a (possibly faulty) regexp.
Section 5 describes the experiments we performed, Sect. 6 reviews related work,
and Sect. 7 concludes the paper.

Interactive Testing and Repairing of Regular Expressions 3

2 Background

In our context, regular expressions are intended as valid regular expressions from
formal automata theory, i.e., only regular expressions that describe regular lan-
guages. The proposed approach is indeed based on the use of the finite automata
accepting the language described by the regular expressions.

Definition 1 (Regular expression). A regular expression (regexp) r is a
sequence of constants, defined over an alphabet Σ, and operator symbols. The
regexp r accepts a set of words L(r) ⊆ Σ∗ (i.e., a language).

We also use r as predicate: r(s) = true if s ∈ L(r), and r(s) = false other-
wise.

As Σ we support the Unicode alphabet (UTF-16); the supported operators
are union, intersection, concatenation, complement, character class, character
range, and wildcards.

Normally, acceptance is computed by converting r into an automaton R, and
then checking whether R accepts the string. In this paper, we use the library
dk.brics.automaton1 to transform a regexp r into an automaton R (by means
of function toAutomaton(r)) and perform standard operations (complement,
intersection, and union) on it. Moreover, we use the operator pickAword(R)
that returns a string s accepted by R, i.e., s ∈ L(R).

For our purposes, we give the notion of a string distinguishing two languages.

Definition 2 (Distinguishing string). Given two languages L1 and L2, we
say that a string s is distinguishing if it is a word of the symmetric difference
L1 ⊕ L2 = L1 \ L2 ∪ L2 \ L1 between L1 and L2.

Fault Classes and Mutation Operators. Our approach is based on the
idea that conformance faults (see Definition 4) can be discovered by means of
mutation analysis. In mutation analysis for regexps, a fault class represents a
possible kind of mistake done by a developer when writing a regexp; a muta-
tion operator for a fault class is a function that given a regexp r , returns a
list of regexps (called mutants) obtained by mutating r (possibly removing the
fault); a mutation slightly modifies the regexp r under the assumption that the
programmer has defined r close to the correct version (competent programmer
hypothesis [10]).

We use the fault classes and the related mutation operators proposed in [2].
In the following, given a regexp r , we identify with mut(r) its set of mutants.

3 Conformance Faults and Mutation Faults

In this section, we describe how to compare the language characterized by a
developed regexp with the intended language. Given a regexp r , we suppose to
have a reference oracle that represents the intended meaning of r . Formally:
1 http://www.brics.dk/automaton/.

http://www.brics.dk/automaton/

4 P. Arcaini et al.

Definition 3 (Oracle). An oracle or is a predicate saying whether a string
must be accepted or not by a regexp r, i.e., or (s) = true if s must be accepted by
a correct regexp. We identify with L(or) the set of strings accepted by or .

The oracle (a program or a human) can be queried and it must say whether
a string belongs to L(or) or not, i.e., whether it must be rejected or accepted
by r . Usually, the oracle is the developer who can correctly assess whether a
string should be accepted or not (but (s)he may be not able to correctly write
the correct regexp). A correct regexp is indistinguishable from its oracle (i.e.,
they share the same language) while a faulty one wrongly accepts or rejects some
strings. We here define such strings.

Definition 4 (Conformance Fault). A regexp r (supposed to behave as spec-
ified by or) contains a conformance fault if

∃s ∈ Σ∗ : distStr(s, r , or)

where distStr(s, r , or) indicates that s is a distinguishing string between the lan-
guages of r and or , i.e., s ∈ L(r) ∧ s �∈ L(or) or s �∈ L(r) ∧ s ∈ L(or). We name
the first case as inclusion fault, and the second case as exclusion fault.

A fault shows that the user specified the regexp wrongly, possibly misunder-
standing the semantics of the regexp notation. Finding all conformance faults
would require to compute L(r) ⊕ L(or); however, we do not know L(or) in
advance, and we can only invoke the oracle or to check whether a string belongs
to L(or) or not. Therefore, proving the absence of conformance faults in r would
require to evaluate, for all the strings s ∈ Σ∗, distStr(s, r , or) by checking
whether s belongs to L(r) and not to L(or), or vice versa. Such exhaustive
testing is infeasible and so we aim at finding a subset of strings of Σ∗ that are
more likely faulty. Following a fault-based approach, we claim that the syntac-
tic faults that are more likely done by developers are those described by the
fault classes we introduced in [2]. If such assumption holds, most conformance
faults should be those strings that are evaluated differently by the regexp and its
mutants. For this reason, we introduce a stronger type of fault defined in terms
of mutations.

Definition 5 (Mutation Fault). A regexp r (that is supposed to behave as
specified by or) contains a mutation fault if

∃r ′ ∈ mut(r),∃s ∈ (L(r) ⊕ L(r ′)) : distStr(s, r , or)

We call (r ′,s) failure couple.

A regexp r contains a mutation fault if, given a mutant r ′, a distinguishing
string s between r and r ′ shows that r is faulty. To find a mutation fault, we
do not need to consider all the strings in Σ∗, since we know how to compute
L(r) ⊕ L(r ′). Targeting mutation faults is beneficial thanks to this theorem.

Theorem 1. Given a regexp r, if it contains a mutation fault with failure couple
(r ′,s), then ¬distStr(s, r ′, or), i.e., r ′ correctly evaluates s.

Interactive Testing and Repairing of Regular Expressions 5

Algorithm 1. Meta-algorithm for testing and repairing regular expressions
Require: r : initial regexp, or : oracle

Ensure: result : r ′ repaired regexp
1: A ← ∅ R ← ∅ � strings Accepted and Rejected by the oracle
2: loop

3: muts ← mutate(r)
4: r ′ ← testAndRep(r , or , muts, A, R)

5: if r �= r ′ then r ← r ′
6: else return r ′
7: end if

8: end loop

Proof. Let us assume that s ∈ L(r) ⊕ L(r ′) and it is distinguishing w.r.t. the
oracle, i.e., distStr(s, r , or). This also means s ∈ L(r) ⊕ L(or). We can identify
two cases. (1) s is accepted by r , i.e., s ∈ L(r), then s is rejected by both r ′ and
or . (2) s is rejected by r , i.e., s �∈ L(r), then s is accepted by both r ′ and or . In
both cases, s is equally evaluated by r ′ and or , so s /∈ L(r ′) ⊕ L(or). 	

Theorem 1 is central in our approach that combines testing and repairing:
if we test a regexp r with strings distinguishing r from one of its mutants r ′

(instead of other strings, like random ones), then in case of failure (the test
distinguishes r from its oracle) we also know how to repair r to remove that
particular fault, by taking r ′ as new regexp. However, note that r ′ may still
contain other faults.

4 Testing and Repairing Regular Expressions

Our repairing approach exploits Theorem1 in order to test and repair a regexp
in an interactive way. It is based on the assumption that the mistakes done by
a developer are those described by the fault classes proposed in [2]. However, if
we showed to the developer a mutated regexp, (s)he could still have problems
in understanding whether that is the correct regexp. On the other hand, if we
showed her/him a string s, (s)he would have no difficulty in assessing the correct
evaluation. We therefore propose an approach that generates strings distinguish-
ing a regexp r from its mutants and that selects one of the mutants in case of
mutation fault. The approach is formalized by the meta-algorithm presented in
Algorithm 1. The algorithm takes in input the regexp r we want to repair, and
an oracle or (usually the oracle is the user able to assess the correct evaluation
of all the strings). Two sets A and R are created for memorizing the strings
that are known to be accepted and rejected by the oracle. Then, the following
instructions are repeatedly executed:

– r is mutated with the operators defined in [2] (mutants are stored in muts);
– function testAndRep checks whether in muts there exists a regexp r ′ better

than r , asking the user to evaluate some distinguishing strings;
– if a better regexp is found, the process is iterated again using r ′ as new regexp

under test (line 5), otherwise r ′ is returned as final regexp (line 6).

6 P. Arcaini et al.

Algorithm 2. testAndRep – Greedy approach
1: function testAndRep(r , or , muts,

A, R)

2: for all m ∈ muts do

3:
(ds, oEv) ←

EvMut(m, r , or ,muts, A, R)

4: if ds �= null ∧ m(ds) = oEv then
5: return m

6: end if
7: end for

8: return r

9: end function

10: function EvMut(m, r , or , muts, A, R)

11: if (∃s ∈ A : s �∈ L(m)) ∨ (∃s ∈ R : s ∈
L(m)) then return (null ,null)

12: end if

13: ds ← genDs(r , m)

14: if ds = null then return (null ,null)

15: end if
16: oEv ← or (ds)
17: MarkDs(ds, oEv , A, R)

18: return (ds, oEv)

19: end function

20: procedure MarkDs(ds, oEv , A, R)

21: if oEv then A ← A ∪ {ds}
22: else R ← R ∪ {ds}
23: end if
24: end procedure

We identify four possible ways to select the new repaired regexp (function
testAndRep), described in the following sections. Note that Algorithm1 does
not guarantee to always terminate with any approach and, in any case, it could
iterate through several regexps (asking the user to evaluate several distinguishing
strings) before terminating. For this reason, the user should specify a maximum
number of evaluations MaxEval, after which the process is interrupted2.

4.1 Greedy Approach

Algorithm 2 shows the greedy version of testAndRep. The function, for each
mutant m in muts, performs the following instructions:

– m is evaluated by function EvMut (line 3), working as follows:
• if m evaluates wrongly a string in A or R, it returns (null ,null), meaning

that m must not be considered (line 11);
• it generates a distinguishing string ds between r and m, using function

genDs (line 13); see [2] for the implementation of genDs;
• if no string is generated, r and m are equivalent; in this case, it returns

(null ,null), meaning that m must not be considered (line 14);
• if a ds is generated, it stores the oracle evaluation of ds in oEv (line 16);
• depending on the oracle evaluation, it adds ds either to A or R, using

procedure MarkDs (line 17);
• it returns the ds and its evaluation oEv (line 18);

– if a ds is returned, it checks whether the mutant m and the oracle assess the
validity of ds in the same way (line 4). If this is the case, a mutation fault in
r has been found, and m is returned as the new repaired regexp (line 5).

If no better mutant is found, r is returned (line 8). The approach guarantees to
return a regexp that correctly accepts all strings in A and refuses those in R,
while each of its mutants wrongly evaluates at least one of these strings.
2 For the sake of simplicity, MaxEval is not shown in Algorithms 2, 3, 4, and 5.

Interactive Testing and Repairing of Regular Expressions 7

Algorithm 3. testAndRep – MultiDSs approach (diff w.r.t. Alg. 2)
Require: N: number of strings to generate

2: . . .
3: DSsEvs ← EvMut(m, r , or , muts, A, R)
4: numOK←|{(ds, oEv)∈DSsEvs : m(ds) = oEv}|
5: numNO←|{(ds, oEv)∈DSsEvs : r(ds) = oEv}|
6: if numOK > numNO then
7: return m
8: end if

9: . . .

12: . . .

13: DSs ← genDs(r , m, N)
14: if DSs = ∅ then return ∅
15: end if
16: DSsEvs ← ∅
17: for all ds ∈ DSs do
18: oEv ← or (ds)
19: DSsEvs←DSsEvs∪{(ds, oEv)}
20: MarkDs(ds, oEv , A, R)
21: end for

22: return DSsEvs

4.2 MultiDSs Approach

The greedy approach returns the mutant m (line 5 of Algorithm 2) as new
repaired regexp if it evaluates the generated string as the oracle. However,
m may be distinguished by other strings and, so, changing the regexp could
be a too greedy choice. To mitigate this problem, the MultiDSs approach (see
Algorithm 3) generates N distinguishing strings (with N ≥ 2) at line 13 (differ-
ence w.r.t. line 13 of Algorithm 2) and, at lines 6–7, takes m as the new repaired
regexp only if it evaluates correctly more strings than r (difference w.r.t. lines 4–5
in Algorithm 2).

4.3 Breadth Approach

The approach in Sect. 4.1 and its extension in Sect. 4.2 are both greedy as they
change the regexp under test as soon as a better regexp is found (it correctly eval-
uates the majority of generated strings). We here present a less greedy approach;
Algorithm 4 shows the breadth search version of testAndRep. The algorithm
evaluates all the mutants of a regexp under test and selects the best one (by
function bestCand). If a better regexp is found, it is returned, otherwise r is
returned.

In testAndRep, after the generation of the ds by EvMut (line 4), if the
mutant m correctly evaluates ds, it is stored in a set of possible candidates
cands (line 6). Then, all the previously generated candidates that do not cor-
rectly evaluate ds are removed from cands (line 8). When all the mutants have
been evaluated, if there is no candidate, then the algorithm terminates and r is
returned as final regexp (line 10). Otherwise, a candidate is selected by function
bestCand as follows. As long as there is more than one candidate:

– two candidates c1 and c2 are randomly selected (line 18);
– a ds is generated for c1 and c2 (line 19);
– if ds is null (i.e., c1 and c2 are equivalent), c1 is removed from cands (line 25);

otherwise, the following instructions are executed;
– the candidates not evaluating ds correctly are removed from cands (line 22);
– ds is added either to A or R using procedure MarkDs (line 23).

8 P. Arcaini et al.

Algorithm 4. testAndRep – Breadth approach
1: function testAndRep(r , or , muts, A, R)
2: cands ← ∅
3: for all m ∈ muts do
4: (ds, oEv)←EvMut(m,r ,or ,muts,A,R)
5: if ds �= null ∧ m(ds) = oEv then
6: cands ← cands ∪ {m}
7: end if
8: cands←{c ∈ cands|c(ds) = oEv}
9: end for
10: if |cands| = 0 then return r

11: else
12: return bestCand(cands, A, R)
13: end if
14: end function

16: function bestCand(cands, A, R)
17: while |cands| > 1 do
18: (c1,c2)←pick2Cands(cands)

19: ds ← genDs(c1, c2)

20: if ds �= null then
21: oEv ← or (ds)

22: cands←{c∈cands|c(ds)=oEv}
23: MarkDs(ds, oEv , A, R)
24: else
25: cands ← cands \ {c1}
26: end if
27: end while
28: return cands[0]

29: end function

At the end of the while loop, the only survived candidate (it is guaranteed to
exist) is selected as best candidate and returned as new repaired regexp (line 28).

4.4 Collecting Approach

Fig. 1. Distinguish-
ing automata

The previous approaches always generate a string ds for
distinguishing a regexp r from one of its mutants m;
often ds does not distinguish r from other mutants and
other strings must be generated for distinguishing them,
so requiring more effort from the user who must evalu-
ate more strings. The aim of the collecting approach is
to generate strings that distinguish as many mutants as
possible. A string ds distinguishes r from a set of mutants
M = {m1, . . . ,mn} if ds is accepted by r and not accepted
by any mutant in M , or if ds is not accepted by r and
accepted by all the mutants in M ; the distinguishing string
is a word of one of these two automata:

D+ = R ∩
n⋂

i=1

M�
i D− = R� ∩

n⋂

i=1

Mi

being R, M1, . . . , Mn the automata of r , m1, . . . , mn. We name D+ and D−

as positive and negative distinguishing automata. Figure 1 shows a positive and
a negative distinguishing automaton for two mutants m1 and m2 of a regexp r3.

Algorithm 5 shows the collecting approach that exploits the definition of dis-
tinguishing automaton. It initially selects all the mutants muts as candidates in
cands (line 2). Then, it performs the following actions as long as cands contains
at least one regexp:

3 In this case, they can be collected both in a positive and negative automaton; in
some cases, only one kind of automaton is suitable for collecting them, or also none.

Interactive Testing and Repairing of Regular Expressions 9

Algorithm 5. testAndRep – Collecting approach
Require: CollTh: collection limit

1: function testAndRep(r , or ,
muts, A, R)

2: cands ← muts

3: while |cands| > 0 do

4: D ← collect(r , cands)

5: if D = ∅ then
6: return r
7: end if

8: ds ← pickAword(D)

9: oEv ← o(ds)

10:
cands ←
{m ∈ cands|m(ds) = oEv}

11: if oEv �= r(ds) then

12: r ← pickAregexp(D)
13: end if

14: end while
15: return r

16: end function

17: function collect(r , cands)

18: R ← toAutomaton(r)
19: for D ∈ {R, R�} do

20: for m ∈ cands do

21: M ← toAutomaton(m)

22: if isPos(D) then D′ ← D ∩ M�

23: else D′ ← D ∩ M
24: end if
25: if D′ �= ∅ then

26: D ← D′
27: if numColl(D) = CollTh then return D
28: end if
29: end if

30: end for

31: if D �= ∅ then return D
32: end if

33: end for
34: return ∅
35: end function

– it collects as many regexp as possible using function collect:
• it randomly initializes a positive or a negative distinguishing automaton

D (line 19);
• for each mutant m, it tries to add it to D considering the polarity

(lines 21–23); D is modified only if the addition does not produce an
empty automaton (lines 25–26); if the addition has been performed and
CollTh regexps have been collected (being CollTh a parameter of the
approach), it returns D (line 27).

• if after trying all the candidates, at least one regexp has been collected, it
returns D (line 31); otherwise, it tries the distinguishing automaton with
the opposite polarity (if any);

• if no regexp can be collected in any distinguishing automaton of any
polarity, the empty automaton is returned (line 34).

– if the returned automaton D is empty (meaning that all the candidates are
equivalent to r), r is returned as selected regexp (line 6); otherwise, a word is
randomly selected from D (line 8) and cands is updated with only the regexps
that evaluate ds correctly (lines 9–10);

– if r does not evaluate ds correctly, it is changed with one mutant randomly
selected among those collected in D (lines 11–12).

When there are no more candidates, r is returned as selected regexp (line 15).

TearRex. We implemented the approach in the tool TearRex (TEst And
Repair Regular EXpressions)4. Figure 2 shows an interaction with the tool. At
the beginning, the user inserts the regexp [a-z]* for accepting all the strings

4 The tool and all benchmarks are available at http://foselab.unibg.it/tearrex/.

http://foselab.unibg.it/tearrex/

10 P. Arcaini et al.

Fig. 2. TearRex– Testing and repairing of [a-z]* with oracle [a-zA-Z]+

containing only Latin letters; however, since (s)he misunderstood the semantics
of operator * and of character classes, the developed regexp also accepts the
empty string and does not accept upper-case Latin letters. The tool asks her/him
to evaluate two strings, “a” and “A”, and (s)he assesses that both strings should
be accepted. Since the developed regexp does not accept “A”, the tool modifies
the regexp in [A-z]* that also accepts “A”. The process continues by evaluating
strings “0”, “z”, and “AA”, that are all correctly evaluated. The empty string
“”, instead, is wrongly evaluated and the tool changes the regexp in the more
correct version [A-z]+ that does not accept it. Since no possible mutation fault
exists between [A-z]+ and its mutants, it is returned as final regexp.

5 Experiments

Websites http://www.regular-expressions.info/ and http://www.regexlib.com
report, for different matching tasks (e.g., email addresses, credit cards, social
security numbers, etc.), some regexps implementing them. To build the bench-
mark set Bench, we considered 20 tasks and, for each task, we selected two
regexps, one acting as initial (possibly faulty) regexp and the other one as ora-
cle; for 19 couples the initial regexp is indeed faulty, while in one couple the
initial regexp is correct5. The initial regexps are between 17 and 279 chars long
(60 on average) and have between 7 and 112 operators (24.45 on average).

Note that, in our approach, the oracle should be the user able to assess the
evaluation of strings; in the experiments, we use another regexp as oracle for the
sake of automation. However, in RQ2 we estimate which is the burden required
to the user in evaluating the generated strings during the repair process.

We run the approaches Greedy, MultiDSs3 (MultiDSs with N = 3), Breadth,
and Coll5 (collecting with CollTh = 5) on the selected regexps and fixing the
maximum number of evaluations MaxEval to 10, 30, 100, and 200 strings.

Experiments have been executed on a Linux machine, Intel(R) Core(TM) i7,
4 GB RAM. All the reported data are the averages of 10 runs of the experiments.

Tables 1a and b report experimental results aggregated by type of repair
process and maximum number of evaluations MaxEval. They both report the
average number of strings generated and shown to the user for evaluation E, the
average process time T, the percentage R of regexps that have been repaired (i.e.,
the final regexp has lower failure index than the initial one), and the percentage

5 Note that the process guarantees to not worsen correct regexps; we introduced this
correct regexp to double-check that this is indeed the case.

http://www.regular-expressions.info/
http://www.regexlib.com

Interactive Testing and Repairing of Regular Expressions 11

Table 1. Experiment results for Bench (E: avg # evaluations, T: avg time (secs),
R: repaired (%), CR: completely repaired (%), R′: avg # r ′)

CR of regexps that have been completely repaired (i.e., all the faults have been
removed). Table 1a also reports the average number R′ of regexps r ′ that are
changed during the process. The cells in gray highlight the best results. We
evaluate our approach with a series of research questions.

RQ1. How many distinguishing strings are generated?

Since the correct evaluation of the generated strings must be assessed by the
user, we want to keep their number low. Table 1a (column E) shows that the four
approaches generate, on average, between 41 and 53 strings; the limited number
of strings allows the manual evaluation by the user. MultiDSs3 generates more
strings than Greedy as three strings are generated for each mutant (if possible).
Breadth generates slightly fewer strings than Greedy because, on average, the
third changed regexp is the final expression (see column R′); Greedy changes on
average 20 regexps, so producing more strings. Coll5 also produces few strings,
as it directly generates strings for set of mutants.

Table 1b (column E) shows that a higher maximum number of evaluations
allows to generate more strings. However, with MaxEval equal to 10 and 30, the
number of generated strings is close to MaxEval itself, while with MaxEval equal
to 100 and 200 the number of strings is much lower than the limit: this means
that, on average, the process requires less than 100 strings to terminate.

RQ2. How long does the repair process take and how much is the estimated
user’s effort?

Table 1a (column T) shows that MultiDSs3 is twice slower than Greedy, as it
generates more strings. Breadth is more than three times slower than Greedy;
a possible reason is that although Greedy generates more strings than Breadth,
it creates much fewer mutants (that is a costly operation). Coll5 is the slowest
one, as automata intersection (see lines 22 and 23 in Algorithm 5) is a costly
operation. Table 1b shows that increasing the limit of evaluated strings also
increments the time (as the process can continue the search).

All the experiments show that, regardless of the process configuration, the
process is rather fast. However, the final time should be computed as pTime +
|A∪R|× eTime, being pTime the time of the generation and repair process (the

12 P. Arcaini et al.

one we measured), and eTime the time taken by a user to evaluate a string6. For
example, considering 5 s per string as eTime, the average times would be: 4 min
for Greedy, 4.5 min for MultiDSs3, 3.5 min for Breadth, and 3.6 min for Coll5.
This means that the whole process involving the user’s evaluations is feasible.
Note that Greedy and MultiDSs3 would be equivalent from the time point of
view (break-even) to Breadth and Coll5 if the user could evaluate the strings
in less than 0.2 s, which seems impossible; so, Breadth and Coll5 are always
advantageous in terms of time if the user’s effort is taken into account.

RQ3. Is the proposed process able to repair regular expressions?

We are here interested in assessing whether the proposed approach is actually
able to repair faulty regexps. We are able to assess whether a starting regexp
r has been completely repaired by checking the equivalence between the final
regexp r ′ and the oracle or . For not completely repaired regexps, we introduce
the measure Fx counting the number of strings that a regexp x wrongly accepts
or rejects, i.e., that are misclassified. As the number of misclassified strings is
possibly infinite, we need to restrict the length of the considered strings to n.
Being Ln(x) = L(x) ∩ Σn, Fn

x is defined as follows:

Fn
x = |Ln(x) ⊕ Ln(ox)|

In order to know if the repaired regexp r ′ is better than r , we can compute
ΔF = Fn

r ′ − Fn
r with a fixed n. In the experiments, we set n to 20, to count the

strings of length n up to 20. If ΔF < 0 or the final regexp is completely repaired,
the regexp under test is considered repaired, otherwise, it means that the process
did not remove any fault (or removed and introduced faults equally).

By Table 1a, we can see that the processes can repair (column R) between
72% and 85% of regexps, but they can completely repair (column CR) a small
amount of them (between 2.92% and 4.58%). Thus, the proposed techniques are
not reliable in finding the completely correct regexp, but they are very efficient
in removing some faults. However, some regexps are not repaired. This can be
due to two reasons. First, the new changed regexp r ′ behaves better than the
original r on the strings that are generated and tested, but it fails to correctly
accept/reject other strings that are not tested, so ΔF is actually greater than 0.
Secondly, we are trying to repair a regexp r that is too far from the oracle, so
each mutation of r is not better than it; indeed, when selecting the benchmarks,
we did not assume the competent programmer hypothesis, so a regexp and its
oracle may be very different. In RQ5, we will evaluate how the results change if
the competent programmer hypothesis holds.

Table 1b (columns R and CR) shows that increasing the number of maximum
number of evaluations permits to (completely) repair more regexps.

RQ4. Which is the best approach?

6 Note that we could also specify two different evaluation times for accepted and
rejected strings (supposing that one of the two tasks is easier).

Interactive Testing and Repairing of Regular Expressions 13

Table 2. Experiment results for MutBench (E: avg # evaluations, T: avg time (secs),
R: repaired (%), CR: completely repaired (%), R′: avg # r ′)

From Table 1a, we observe that MultiDSs3 under-performs in all the mea-
sures. Breadth and Coll5, instead, are better approaches. Breadth repairs 7.5%
more regexps than Greedy using fewer strings. Although Breadth is more than
three times slower than Greedy, we saw in RQ2 that the program time (without
string evaluation by the user) is negligible w.r.t. the evaluation time of the user:
therefore, in order to contain the total time of the process, it makes sense to keep
the number of generated strings limited. Coll5 is the approach that completely
repairs more regexps, although it does not behave so well in the repaired ones:
this probably means that the strings generated over the collection are good to
drive towards correct candidates, but also that Coll5 is not incremental enough
and it tends not to choose regexps that are only slightly better.

RQ5. How are the results if the competent programmer hypothesis hold?

When building Bench, we did not make any assumption and most of the
selected couples of regexps are very different. However, the common assumption
that is done in fault-based approaches is the competent programmer hypothesis,
i.e., the programmer defined the regexp close to the correct one (only with one
or few of the syntactic faults defined by the fault classes [2]). We here evaluate
the approach performances when the competent programmer hypothesis holds.
We built a second benchmark set, MutBench, as follows. We took the oracles of
Bench and we randomly modified them introducing n faults (with n = 1, . . . , 3),
obtaining three faulty versions of the oracle; we therefore added to MutBench 60
couples of regexps. The regexps are between 43 and 302 characters long (108.15
on average) and contain between 11 and 63 operators (25.52 on average). We then
applied our approach to MutBench. Table 2 reports the aggregated results for the
experiments performed over the regexps in MutBench. Most of the observations
we did for Bench are still valid for MutBench, although there are some interesting
differences. First of all, by Table 2a, we observe that Greedy now behaves as
good as Breadth in terms of repaired regexps (actually slightly better): this
means that if the syntactic faults of the regexp under test are those identified
by our fault classes, applying a greedy approach that changes the regexp as
soon as a fault is found pays off. Moreover, for both approaches, the numbers of

14 P. Arcaini et al.

evaluated strings and of changed regexps are lower w.r.t. Bench: this means that
the approaches converge faster to the final solution as they are able to apply
the correct mutations to remove the syntactic faults. MultiDSs3 is now the best
approach in terms of repaired regexps: this probably means that generating more
strings w.r.t. Greedy for reinforcing the decision makes sense only if there are
few faults, otherwise additional strings are useless.

Remark. A threat to external validity is that the obtained results could be
not generalizable to all regexps. In order to mitigate this threat, we tried to
select the most diverse regexps performing different tasks; in order to evaluate
the approach on the worst case scenario, we also did not assume the competent
programmer hypothesis. We saw in RQ5 that, if the hypothesis holds (as it is
assumed by fault-based approaches), the performance of the approach improves.

6 Related Work

As far as we know, no approach exists to repair regexps. The approaches pro-
posed in literature mainly focus on regexps testing or on their synthesization.

Regarding test generation of labeled strings, MutRex [2] is an open source
tool able to generate fault-detecting strings. We exploit its mutation operators
and its string generation facility (i.e., function genDs).

Another test generator is EGRET [6] that generates evil strings that should
be able to expose errors commonly made by programmers. EGRET takes a
regexp as input and generates both accepted and rejected strings. The user can
estimate the regexp correctness by evaluating these strings and identifying those
that are wrongly classified. As in our approach, the user is the oracle. Also
EGRET applies mutation, but on the strings accepted by the regexp under test,
and not on the regexp itself as in our case. The advantage of the strings we use
in our approach is that, once we detect a failure, we also know how to remove the
corresponding syntactic fault in the regexp; instead, using the strings generated
by EGRET would leave open the problem to localize the syntactic fault.

Another tool that can be used for labeled string generation is Rex [13], a
solver of regexps constraints. Rex translates a given regexp into a symbolic finite
automaton; the Z3 SMT solver is used for satisfiability checking. Since Z3 is able
to generate a model as witness of the satisfiability check, Rex can be used to
build strings accepted by the regexp.

Reggae [7] is a tool based on dynamic symbolic execution that generates
string inputs that are accepted by a regexp. Reggae aims at achieving branch
coverage of programs containing complex string operations.

Several other tools for testing regexps exist, as EXREX, Generex, and
regldg7. However, they are based on exhaustive or random generation of strings
matching a given regexp, and the strings they generate are not useful for repair-
ing regexps.

7 https://github.com/asciimoo/exrex, https://github.com/mifmif/Generex, https://
regldg.com/.

https://github.com/asciimoo/exrex
https://github.com/mifmif/Generex
https://regldg.com/
https://regldg.com/

Interactive Testing and Repairing of Regular Expressions 15

A different use of labeled strings is the synthesization of regexps. ReLIE [8]
is a learning algorithm that, starting from an initial regexp and a set of labeled
strings, tries to learn the correct regexp. It performs some regexp transformations
(a kind of regexp mutation); however, no definition of fault class is given. Our
approach could be adapted for regexps synthesis as well.

Our approach has some similarities with automatic software repair. The auto-
matic repair of software requires an oracle: in our approach, the oracle is the user,
while in software repair the oracle is usually specified using test suites [3,14],
pre- and post-conditions [11], etc. Moreover, such approaches also identify tech-
niques to repair the software when a fault is detected: in [9], for example, some
repair actions are proposed, that are similar to our mutation operators.

Automatic repair has also been proposed for specifications, as, for example,
automatic repair of feature models describing software product lines. The app-
roach in [5] applies a cycle of test-and-fix to a feature model in order to remove
its wrong constraints; the approach uses configurations derived both from the
model and from the real system and checks whether these are correctly evalu-
ated by the feature model. The approach has similarity with ours in alternating
testing and fixing (similar to our repair phase); however, since the evaluation of
configurations is done automatically on the system, the approach can produce
several configurations, while in our approach we need to keep the number of
generated labeled strings limited, as these must be assessed by the user.

The aim of our work is similar to that in [1] in which a student tries to learn
an unknown regular set S by posing two types of queries to a teacher. In a
membership query, the student gives a string t and the teacher tells whether it
belongs to S or not. In a conjecture query, the student provides a regular set S′

and the teacher answers yes if S′ corresponds to S, or with a wrong string t (as
our distinguishing string) otherwise. In our approach, the user plays the role of
the teacher only for the first kind of query, but not for the second kind (if (s)he
could, (s)he would also be able to write the correct regexp). Our tool, instead,
plays the role of the student by providing membership queries.

7 Conclusions

The paper presents an approach able to detect and remove conformance faults in
a regular expression, i.e., faults that make a regular expression to wrongly accept
or reject some strings. The approach consists in an iterative process composed
of a testing phase in which the user who wrote the regular expression is asked
to assess the correct evaluation of some strings that are able to distinguish a
regular expression from its mutants, and in a repair phase in which the mutant
evaluating correctly all the generated strings is taken as new version of the
regular expression. The approach terminates when it is no more possible to
repair the regular expression under test. Experiments show that the approach is
indeed able to remove conformance faults from regular expressions, in particular
if the competent programmer hypothesis holds, i.e., the user did some small
syntactical faults as those described by the fault classes proposed in literature.

16 P. Arcaini et al.

In the experiments, we performed different evaluations regarding the effect of
the process configuration on the final results, without assessing their statistical
significance. As future work, we plan to perform experiments on a wider set of
regular expressions and to conduct some statistical tests to assess the statistical
significance of the drawn conclusions.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Arcaini, P., Gargantini, A., Riccobene, E.: Fault-based test generation for regular
expressions by mutation. Softw. Test. Verif. Reliab. e1664 (2018)

3. Arcuri, A.: Evolutionary repair of faulty software. Appl. Soft Comput. 11(4), 3494–
3514 (2011)

4. Chapman, C., Stolee, K. T.: Exploring regular expression usage and context in
Python. In: Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, pp. 282–293. ACM, New York (2016)

5. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Le Traon, Y.: Towards auto-
mated testing and fixing of re-engineered feature models. In: Proceedings of the
2013 International Conference on Software Engineering, ICSE 2013, pp. 1245–1248.
IEEE Press, Piscataway (2013)

6. Larson, E., Kirk, A.: Generating evil test strings for regular expressions. In: 2016
IEEE 9th International Conference on Software Testing, Verification and Valida-
tion (ICST), pp. 309–319, April 2016

7. Li, N., Xie, T., Tillmann, N., Halleux, J.D., Schulte, W.: Reggae: automated test
generation for programs using complex regular expressions. In: Proceedings of the
2009 IEEE/ACM International Conference on Automated Software Engineering,
pp. 515–519. IEEE Computer Society (2009)

8. Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Jagadish, H. V.: Reg-
ular expression learning for information extraction. In: Proceedings of EMNLP
2008, pp. 21–30. Association for Computational Linguistics (2008)

9. Martinez, M., Monperrus, M.: Mining software repair models for reasoning on the
search space of automated program fixing. Empir. Softw. Eng. 20(1), 176–205
(2015)

10. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M.: Mutation
testing advances: an analysis and survey. Adv. Comput. (2018). Elsevier

11. Pei, Y., Furia, C.A., Nordio, M., Wei, Y., Meyer, B., Zeller, A.: Automated fixing
of programs with contracts. IEEE Trans. Softw. Eng. 40(5), 427–449 (2014)

12. Spishak, E., Dietl, W., Ernst. M.D.: A type system for regular expressions. In:
Proceedings of the 14th Workshop on Formal Techniques for Java-like Programs,
FTfJP 2012, pp. 20–26. ACM, New York (2012)

13. Veanes, M., Halleux, P.D., Tillmann, N.: Rex: symbolic regular expression explorer.
In: Proceedings of the 3rd International Conference on Software Testing, Verifica-
tion and Validation, ICST 2010, pp. 498–507. IEEE Computer Society (2010)

14. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with
evolutionary computation. Commun. ACM 53(5), 109–116 (2010)

	Interactive Testing and Repairing of Regular Expressions
	1 Introduction
	2 Background
	3 Conformance Faults and Mutation Faults
	4 Testing and Repairing Regular Expressions
	4.1 Greedy Approach
	4.2 MultiDSs Approach
	4.3 Breadth Approach
	4.4 Collecting Approach

	5 Experiments
	6 Related Work
	7 Conclusions
	References

