
Inmaculada Medina-Bulo
Mercedes G. Merayo
Robert Hierons (Eds.)

 123

LN
CS

 1
11

46

30th IFIP WG 6.1 International Conference, ICTSS 2018 
Cádiz, Spain, October 1–3, 2018 
Proceedings

Testing Software  
and Systems



Lecture Notes in Computer Science 11146

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Inmaculada Medina-Bulo • Mercedes G. Merayo
Robert Hierons (Eds.)

Testing Software
and Systems
30th IFIP WG 6.1 International Conference, ICTSS 2018
Cádiz, Spain, October 1–3, 2018
Proceedings

123



Editors
Inmaculada Medina-Bulo
University of Cádiz
Cadiz, Spain

Mercedes G. Merayo
Complutense University of Madrid
Madrid, Spain

Robert Hierons
Brunel University London
Uxbridge, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99926-5 ISBN 978-3-319-99927-2 (eBook)
https://doi.org/10.1007/978-3-319-99927-2

Library of Congress Control Number: 2018952568

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the proceedings of the 30th IFIP International Conference on
Testing Software and Systems, ICTSS 2018. The conference was held in Cádiz, Spain,
during October 1–3, 2018. The purpose of the ICTSS conference is to bring together
researchers, developers, testers, and users from industry to review, discuss, and learn
about new approaches, concepts, theories, methodologies, tools, and experiences in the
field of testing of software and systems.

We received 29 submissions. After a careful reviewing process, the Program
Committee accepted eight regular papers and six short papers. Therefore, the accep-
tance rate of the conference stayed close to 48%. The conference program was enriched
by the keynote of Alexander Pretschner, on “Do We Care Enough About ‘Good’ Test
Cases?”

Several people contributed to the success of ICTSS 2018. We are grateful to the
Steering Committee for its support. We would like to thank the general chair, Francisco
Palomo-Lozano, the Program Committee, and the additional reviewers, for their work
in selecting the papers. The process of reviewing and selecting papers was significantly
simplified through using EasyChair. Finally, the proceedings are published by Springer
and we are grateful for the assistance provided by Alfred Hofmann and Anna Kramer.

On behalf of the ICTSS organizers, we hope that you find the proceedings useful,
interesting, and challenging.

October 2018 Inmaculada Medina-Bulo
Mercedes G. Merayo

Robert Hierons
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Do We Care Enough About “Good”
Test Cases?
(Invited Talk)

Alexander Pretschner

Technische Universität München, Germany

What is a good test case? While test automation certainly is a necessity, I believe that
this question really is at the core of what we struggle with when testing systems.
Structural and random tests have undoubted merits and, good news for academics, lend
themselves to automating the generation of tests. Yet, are these really the tests we want
to rely on when testing, say, advanced driver assistance systems? In this talk, I will
revisit the idea of defect-based testing, argue why only tests based on defect hypotheses
can be “good”, and present a framework and several examples of how to render defect
hypotheses operational.
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Interactive Testing and Repairing
of Regular Expressions

Paolo Arcaini1(B) , Angelo Gargantini2 , and Elvinia Riccobene3

1 National Institute of Informatics, Tokyo, Japan
arcaini@nii.ac.jp

2 University of Bergamo, Bergamo, Italy
angelo.gargantini@unibg.it

3 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
elvinia.riccobene@unimi.it

Abstract. Writing a regular expression that exactly captures a set of
desired strings is difficult, since regular expressions provide a compact
syntax that makes it difficult to easily understand their meaning. Testing
is widely used to validate regular expressions. Indeed, although a devel-
oper could have problems in writing the correct regular expression, (s)he
can easily assess whether a string should be accepted or not. Starting
from this observation, we propose an iterative mutation-based process
that is able to test and repair a faulty regular expression. The approach
consists in generating strings S that distinguish a regular expression r
from its mutants, asking the user to assess the correct evaluation of S,
and possibly substituting r with a mutant r ′ that evaluates S more cor-
rectly than r ; we propose four variants of the approach which differ in
the policy they employ to judge whether r ′ is better than r . Experiments
show that the proposed approach is able to actually repair faulty regular
expressions with a reasonable user’s effort.

1 Introduction

Regular expressions (regexp) are used in different contexts [4] (e.g., MySQL
injection prevention, DNA sequencing alignment, etc.) to validate data, perform
lexical analysis, or do string matching in texts. A regexp characterizes a set of
strings (i.e., a language). Several studies [6,12] show that regexps often contain
conformance faults, i.e., they do not exactly describe the intended language:
they either accept strings that should be refused, or refuse strings that should
be accepted, or both. Indeed, specifying a correct regexp is usually difficult, since
regexps provide a compact syntax that makes the understanding of their exact
meaning difficult.

P. Arcaini—The author is supported by ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST. Funding Reference number:
10.13039/501100009024 ERATO.
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Due to their tolerant syntax, most regexps are free of syntax errors and it is
unlikely to find conformance faults by syntax checking or static analysis [12]. For
this reason, the most used form of regexp validation is testing, i.e., generating
a set of strings S and comparing the behavior of the regexp under test r over
S w.r.t. an oracle. Often, the oracle is the tester, who has to check whether r
correctly evaluates the strings in S. A common assumption done by many val-
idation and testing techniques is that for a human evaluating if a given string
should belong to the desired language L is much easier than writing the regexp
that characterizes L. Based on this assumption, several programs and web ser-
vices allow to validate regexps by generating a set of strings [6] or allowing the
user to enter strings and check whether they are correctly rejected or accepted
by the regexp under test. However, two issues arise: (i) As checking all possible
strings is not feasible, which strings are more critical to validate a regexp? (ii)
Once a wrongly evaluated string is found, can a repair be suggested to the user?

In this paper, we address both issues. We start with the assumption that
syntactical faults usually done by developers are those described by a set of fault
classes identified in literature [2]. Based on this assumption, we can restrict the
testing activity to the strings able to distinguish a regexp from its mutants, i.e.,
the strings demonstrating the presence of particular syntactic faults. Regarding
what to do when a fault has been discovered (i.e., a string s which is rejected
but it should be accepted or vice versa), we propose to repair the regexp under
test by substituting it with its mutant which instead correctly evaluates s.

We devised an iterative process which starts with a developer who has written
a regexp r and (s)he wants to check if r is correct, i.e., if it correctly evaluates
the intended language. Then, the process proceeds through a sequence of steps
in which each iteration consists in: (i) generating some mutants of the regexp
r under test, (ii) computing a set S of distinguishing strings that permit to
distinguish r from its mutants, (iii) checking the quality of the mutated regexps
and the original regexp over S by asking the user to assess the correctness of the
strings evaluation, (iv) and choosing the best regexp r ′ (i.e., the one evaluating
correctly the majority of generated strings), and updating r with r ′. The process
iterates until no r ′ better than r is found. We propose four versions of the
previous general process. The greedy one changes the regexp as soon as it finds a
better candidate among the mutants. The multiDSs mitigates the greediness by
evaluating several strings before changing the candidate. The breadth approach,
before changing the candidate, evaluates all the mutants. The collecting approach
aims at distinguishing multiple mutants at the same time. Experiments show that
the approach is able to repair 85% of faulty regexps; on average, the user must
evaluate around 40 strings and the whole process (also considering the user’s
effort) lasts, at most, 4.5 min.

Paper Structure. Section 2 gives background on regexps and mutation oper-
ators for them. Section 3 introduces the notions of conformance and mutation
fault. Section 4 presents our approach for repairing a (possibly faulty) regexp.
Section 5 describes the experiments we performed, Sect. 6 reviews related work,
and Sect. 7 concludes the paper.
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2 Background

In our context, regular expressions are intended as valid regular expressions from
formal automata theory, i.e., only regular expressions that describe regular lan-
guages. The proposed approach is indeed based on the use of the finite automata
accepting the language described by the regular expressions.

Definition 1 (Regular expression). A regular expression ( regexp) r is a
sequence of constants, defined over an alphabet Σ, and operator symbols. The
regexp r accepts a set of words L(r) ⊆ Σ∗ (i.e., a language).

We also use r as predicate: r(s) = true if s ∈ L(r), and r(s) = false other-
wise.

As Σ we support the Unicode alphabet (UTF-16); the supported operators
are union, intersection, concatenation, complement, character class, character
range, and wildcards.

Normally, acceptance is computed by converting r into an automaton R, and
then checking whether R accepts the string. In this paper, we use the library
dk.brics.automaton1 to transform a regexp r into an automaton R (by means
of function toAutomaton(r)) and perform standard operations (complement,
intersection, and union) on it. Moreover, we use the operator pickAword(R)
that returns a string s accepted by R, i.e., s ∈ L(R).

For our purposes, we give the notion of a string distinguishing two languages.

Definition 2 (Distinguishing string). Given two languages L1 and L2, we
say that a string s is distinguishing if it is a word of the symmetric difference
L1 ⊕ L2 = L1 \ L2 ∪ L2 \ L1 between L1 and L2.

Fault Classes and Mutation Operators. Our approach is based on the
idea that conformance faults (see Definition 4) can be discovered by means of
mutation analysis. In mutation analysis for regexps, a fault class represents a
possible kind of mistake done by a developer when writing a regexp; a muta-
tion operator for a fault class is a function that given a regexp r , returns a
list of regexps (called mutants) obtained by mutating r (possibly removing the
fault); a mutation slightly modifies the regexp r under the assumption that the
programmer has defined r close to the correct version (competent programmer
hypothesis [10]).

We use the fault classes and the related mutation operators proposed in [2].
In the following, given a regexp r , we identify with mut(r) its set of mutants.

3 Conformance Faults and Mutation Faults

In this section, we describe how to compare the language characterized by a
developed regexp with the intended language. Given a regexp r , we suppose to
have a reference oracle that represents the intended meaning of r . Formally:
1 http://www.brics.dk/automaton/.

http://www.brics.dk/automaton/
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Definition 3 (Oracle). An oracle or is a predicate saying whether a string
must be accepted or not by a regexp r, i.e., or (s) = true if s must be accepted by
a correct regexp. We identify with L(or ) the set of strings accepted by or .

The oracle (a program or a human) can be queried and it must say whether
a string belongs to L(or ) or not, i.e., whether it must be rejected or accepted
by r . Usually, the oracle is the developer who can correctly assess whether a
string should be accepted or not (but (s)he may be not able to correctly write
the correct regexp). A correct regexp is indistinguishable from its oracle (i.e.,
they share the same language) while a faulty one wrongly accepts or rejects some
strings. We here define such strings.

Definition 4 (Conformance Fault). A regexp r (supposed to behave as spec-
ified by or ) contains a conformance fault if

∃s ∈ Σ∗ : distStr(s, r , or )

where distStr(s, r , or ) indicates that s is a distinguishing string between the lan-
guages of r and or , i.e., s ∈ L(r) ∧ s �∈ L(or ) or s �∈ L(r) ∧ s ∈ L(or ). We name
the first case as inclusion fault, and the second case as exclusion fault.

A fault shows that the user specified the regexp wrongly, possibly misunder-
standing the semantics of the regexp notation. Finding all conformance faults
would require to compute L(r) ⊕ L(or ); however, we do not know L(or ) in
advance, and we can only invoke the oracle or to check whether a string belongs
to L(or ) or not. Therefore, proving the absence of conformance faults in r would
require to evaluate, for all the strings s ∈ Σ∗, distStr(s, r , or ) by checking
whether s belongs to L(r) and not to L(or ), or vice versa. Such exhaustive
testing is infeasible and so we aim at finding a subset of strings of Σ∗ that are
more likely faulty. Following a fault-based approach, we claim that the syntac-
tic faults that are more likely done by developers are those described by the
fault classes we introduced in [2]. If such assumption holds, most conformance
faults should be those strings that are evaluated differently by the regexp and its
mutants. For this reason, we introduce a stronger type of fault defined in terms
of mutations.

Definition 5 (Mutation Fault). A regexp r (that is supposed to behave as
specified by or ) contains a mutation fault if

∃r ′ ∈ mut(r),∃s ∈ (L(r) ⊕ L(r ′)) : distStr(s, r , or )

We call (r ′,s) failure couple.

A regexp r contains a mutation fault if, given a mutant r ′, a distinguishing
string s between r and r ′ shows that r is faulty. To find a mutation fault, we
do not need to consider all the strings in Σ∗, since we know how to compute
L(r) ⊕ L(r ′). Targeting mutation faults is beneficial thanks to this theorem.

Theorem 1. Given a regexp r, if it contains a mutation fault with failure couple
(r ′,s), then ¬distStr(s, r ′, or ), i.e., r ′ correctly evaluates s.
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Algorithm 1. Meta-algorithm for testing and repairing regular expressions
Require: r : initial regexp, or : oracle

Ensure: result : r ′ repaired regexp
1: A ← ∅ R ← ∅ � strings Accepted and Rejected by the oracle
2: loop

3: muts ← mutate(r)
4: r ′ ← testAndRep(r , or , muts, A, R)

5: if r �= r ′ then r ← r ′
6: else return r ′
7: end if

8: end loop

Proof. Let us assume that s ∈ L(r) ⊕ L(r ′) and it is distinguishing w.r.t. the
oracle, i.e., distStr(s, r , or ). This also means s ∈ L(r) ⊕ L(or ). We can identify
two cases. (1) s is accepted by r , i.e., s ∈ L(r), then s is rejected by both r ′ and
or . (2) s is rejected by r , i.e., s �∈ L(r), then s is accepted by both r ′ and or . In
both cases, s is equally evaluated by r ′ and or , so s /∈ L(r ′) ⊕ L(or ). 	


Theorem 1 is central in our approach that combines testing and repairing:
if we test a regexp r with strings distinguishing r from one of its mutants r ′

(instead of other strings, like random ones), then in case of failure (the test
distinguishes r from its oracle) we also know how to repair r to remove that
particular fault, by taking r ′ as new regexp. However, note that r ′ may still
contain other faults.

4 Testing and Repairing Regular Expressions

Our repairing approach exploits Theorem1 in order to test and repair a regexp
in an interactive way. It is based on the assumption that the mistakes done by
a developer are those described by the fault classes proposed in [2]. However, if
we showed to the developer a mutated regexp, (s)he could still have problems
in understanding whether that is the correct regexp. On the other hand, if we
showed her/him a string s, (s)he would have no difficulty in assessing the correct
evaluation. We therefore propose an approach that generates strings distinguish-
ing a regexp r from its mutants and that selects one of the mutants in case of
mutation fault. The approach is formalized by the meta-algorithm presented in
Algorithm 1. The algorithm takes in input the regexp r we want to repair, and
an oracle or (usually the oracle is the user able to assess the correct evaluation
of all the strings). Two sets A and R are created for memorizing the strings
that are known to be accepted and rejected by the oracle. Then, the following
instructions are repeatedly executed:

– r is mutated with the operators defined in [2] (mutants are stored in muts);
– function testAndRep checks whether in muts there exists a regexp r ′ better

than r , asking the user to evaluate some distinguishing strings;
– if a better regexp is found, the process is iterated again using r ′ as new regexp

under test (line 5), otherwise r ′ is returned as final regexp (line 6).
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Algorithm 2. testAndRep – Greedy approach
1: function testAndRep(r , or , muts,

A, R)

2: for all m ∈ muts do

3:
(ds, oEv) ←

EvMut(m, r , or ,muts, A, R)

4: if ds �= null ∧ m(ds) = oEv then
5: return m

6: end if
7: end for

8: return r

9: end function

10: function EvMut(m, r , or , muts, A, R)

11: if (∃s ∈ A : s �∈ L(m)) ∨ (∃s ∈ R : s ∈
L(m)) then return (null ,null)

12: end if

13: ds ← genDs(r , m)

14: if ds = null then return (null ,null)

15: end if
16: oEv ← or (ds)
17: MarkDs(ds, oEv , A, R)

18: return (ds, oEv)

19: end function

20: procedure MarkDs(ds, oEv , A, R)

21: if oEv then A ← A ∪ {ds}
22: else R ← R ∪ {ds}
23: end if
24: end procedure

We identify four possible ways to select the new repaired regexp (function
testAndRep), described in the following sections. Note that Algorithm1 does
not guarantee to always terminate with any approach and, in any case, it could
iterate through several regexps (asking the user to evaluate several distinguishing
strings) before terminating. For this reason, the user should specify a maximum
number of evaluations MaxEval, after which the process is interrupted2.

4.1 Greedy Approach

Algorithm 2 shows the greedy version of testAndRep. The function, for each
mutant m in muts, performs the following instructions:

– m is evaluated by function EvMut (line 3), working as follows:
• if m evaluates wrongly a string in A or R, it returns (null ,null), meaning

that m must not be considered (line 11);
• it generates a distinguishing string ds between r and m, using function

genDs (line 13); see [2] for the implementation of genDs;
• if no string is generated, r and m are equivalent; in this case, it returns

(null ,null), meaning that m must not be considered (line 14);
• if a ds is generated, it stores the oracle evaluation of ds in oEv (line 16);
• depending on the oracle evaluation, it adds ds either to A or R, using

procedure MarkDs (line 17);
• it returns the ds and its evaluation oEv (line 18);

– if a ds is returned, it checks whether the mutant m and the oracle assess the
validity of ds in the same way (line 4). If this is the case, a mutation fault in
r has been found, and m is returned as the new repaired regexp (line 5).

If no better mutant is found, r is returned (line 8). The approach guarantees to
return a regexp that correctly accepts all strings in A and refuses those in R,
while each of its mutants wrongly evaluates at least one of these strings.
2 For the sake of simplicity, MaxEval is not shown in Algorithms 2, 3, 4, and 5.
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Algorithm 3. testAndRep – MultiDSs approach (diff w.r.t. Alg. 2)
Require: N: number of strings to generate

2: . . .
3: DSsEvs ← EvMut(m, r , or , muts, A, R)
4: numOK←|{(ds, oEv)∈DSsEvs : m(ds) = oEv}|
5: numNO←|{(ds, oEv)∈DSsEvs : r(ds) = oEv}|
6: if numOK > numNO then
7: return m
8: end if

9: . . .

12: . . .

13: DSs ← genDs(r , m, N)
14: if DSs = ∅ then return ∅
15: end if
16: DSsEvs ← ∅
17: for all ds ∈ DSs do
18: oEv ← or (ds)
19: DSsEvs←DSsEvs∪{(ds, oEv)}
20: MarkDs(ds, oEv , A, R)
21: end for

22: return DSsEvs

4.2 MultiDSs Approach

The greedy approach returns the mutant m (line 5 of Algorithm 2) as new
repaired regexp if it evaluates the generated string as the oracle. However,
m may be distinguished by other strings and, so, changing the regexp could
be a too greedy choice. To mitigate this problem, the MultiDSs approach (see
Algorithm 3) generates N distinguishing strings (with N ≥ 2) at line 13 (differ-
ence w.r.t. line 13 of Algorithm 2) and, at lines 6–7, takes m as the new repaired
regexp only if it evaluates correctly more strings than r (difference w.r.t. lines 4–5
in Algorithm 2).

4.3 Breadth Approach

The approach in Sect. 4.1 and its extension in Sect. 4.2 are both greedy as they
change the regexp under test as soon as a better regexp is found (it correctly eval-
uates the majority of generated strings). We here present a less greedy approach;
Algorithm 4 shows the breadth search version of testAndRep. The algorithm
evaluates all the mutants of a regexp under test and selects the best one (by
function bestCand). If a better regexp is found, it is returned, otherwise r is
returned.

In testAndRep, after the generation of the ds by EvMut (line 4), if the
mutant m correctly evaluates ds, it is stored in a set of possible candidates
cands (line 6). Then, all the previously generated candidates that do not cor-
rectly evaluate ds are removed from cands (line 8). When all the mutants have
been evaluated, if there is no candidate, then the algorithm terminates and r is
returned as final regexp (line 10). Otherwise, a candidate is selected by function
bestCand as follows. As long as there is more than one candidate:

– two candidates c1 and c2 are randomly selected (line 18);
– a ds is generated for c1 and c2 (line 19);
– if ds is null (i.e., c1 and c2 are equivalent), c1 is removed from cands (line 25);

otherwise, the following instructions are executed;
– the candidates not evaluating ds correctly are removed from cands (line 22);
– ds is added either to A or R using procedure MarkDs (line 23).
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Algorithm 4. testAndRep – Breadth approach
1: function testAndRep(r , or , muts, A, R)
2: cands ← ∅
3: for all m ∈ muts do
4: (ds, oEv)←EvMut(m,r ,or ,muts,A,R)
5: if ds �= null ∧ m(ds) = oEv then
6: cands ← cands ∪ {m}
7: end if
8: cands←{c ∈ cands|c(ds) = oEv}
9: end for
10: if |cands| = 0 then return r

11: else
12: return bestCand(cands, A, R)
13: end if
14: end function

16: function bestCand(cands, A, R)
17: while |cands| > 1 do
18: (c1,c2)←pick2Cands(cands)

19: ds ← genDs(c1, c2)

20: if ds �= null then
21: oEv ← or (ds)

22: cands←{c∈cands|c(ds)=oEv}
23: MarkDs(ds, oEv , A, R)
24: else
25: cands ← cands \ {c1}
26: end if
27: end while
28: return cands[0]

29: end function

At the end of the while loop, the only survived candidate (it is guaranteed to
exist) is selected as best candidate and returned as new repaired regexp (line 28).

4.4 Collecting Approach

Fig. 1. Distinguish-
ing automata

The previous approaches always generate a string ds for
distinguishing a regexp r from one of its mutants m;
often ds does not distinguish r from other mutants and
other strings must be generated for distinguishing them,
so requiring more effort from the user who must evalu-
ate more strings. The aim of the collecting approach is
to generate strings that distinguish as many mutants as
possible. A string ds distinguishes r from a set of mutants
M = {m1, . . . ,mn} if ds is accepted by r and not accepted
by any mutant in M , or if ds is not accepted by r and
accepted by all the mutants in M ; the distinguishing string
is a word of one of these two automata:

D+ = R ∩
n⋂

i=1

M�
i D− = R� ∩

n⋂

i=1

Mi

being R, M1, . . . , Mn the automata of r , m1, . . . , mn. We name D+ and D−

as positive and negative distinguishing automata. Figure 1 shows a positive and
a negative distinguishing automaton for two mutants m1 and m2 of a regexp r3.

Algorithm 5 shows the collecting approach that exploits the definition of dis-
tinguishing automaton. It initially selects all the mutants muts as candidates in
cands (line 2). Then, it performs the following actions as long as cands contains
at least one regexp:

3 In this case, they can be collected both in a positive and negative automaton; in
some cases, only one kind of automaton is suitable for collecting them, or also none.
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Algorithm 5. testAndRep – Collecting approach
Require: CollTh: collection limit

1: function testAndRep(r , or ,
muts, A, R)

2: cands ← muts

3: while |cands| > 0 do

4: D ← collect(r , cands)

5: if D = ∅ then
6: return r
7: end if

8: ds ← pickAword(D)

9: oEv ← o(ds)

10:
cands ←
{m ∈ cands|m(ds) = oEv}

11: if oEv �= r(ds) then

12: r ← pickAregexp(D)
13: end if

14: end while
15: return r

16: end function

17: function collect(r , cands)

18: R ← toAutomaton(r)
19: for D ∈ {R, R�} do

20: for m ∈ cands do

21: M ← toAutomaton(m)

22: if isPos(D) then D′ ← D ∩ M�

23: else D′ ← D ∩ M
24: end if
25: if D′ �= ∅ then

26: D ← D′
27: if numColl(D) = CollTh then return D
28: end if
29: end if

30: end for

31: if D �= ∅ then return D
32: end if

33: end for
34: return ∅
35: end function

– it collects as many regexp as possible using function collect:
• it randomly initializes a positive or a negative distinguishing automaton

D (line 19);
• for each mutant m, it tries to add it to D considering the polarity

(lines 21–23); D is modified only if the addition does not produce an
empty automaton (lines 25–26); if the addition has been performed and
CollTh regexps have been collected (being CollTh a parameter of the
approach), it returns D (line 27).

• if after trying all the candidates, at least one regexp has been collected, it
returns D (line 31); otherwise, it tries the distinguishing automaton with
the opposite polarity (if any);

• if no regexp can be collected in any distinguishing automaton of any
polarity, the empty automaton is returned (line 34).

– if the returned automaton D is empty (meaning that all the candidates are
equivalent to r), r is returned as selected regexp (line 6); otherwise, a word is
randomly selected from D (line 8) and cands is updated with only the regexps
that evaluate ds correctly (lines 9–10);

– if r does not evaluate ds correctly, it is changed with one mutant randomly
selected among those collected in D (lines 11–12).

When there are no more candidates, r is returned as selected regexp (line 15).

TearRex. We implemented the approach in the tool TearRex (TEst And
Repair Regular EXpressions)4. Figure 2 shows an interaction with the tool. At
the beginning, the user inserts the regexp [a-z]* for accepting all the strings

4 The tool and all benchmarks are available at http://foselab.unibg.it/tearrex/.

http://foselab.unibg.it/tearrex/
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Fig. 2. TearRex– Testing and repairing of [a-z]* with oracle [a-zA-Z]+

containing only Latin letters; however, since (s)he misunderstood the semantics
of operator * and of character classes, the developed regexp also accepts the
empty string and does not accept upper-case Latin letters. The tool asks her/him
to evaluate two strings, “a” and “A”, and (s)he assesses that both strings should
be accepted. Since the developed regexp does not accept “A”, the tool modifies
the regexp in [A-z]* that also accepts “A”. The process continues by evaluating
strings “0”, “z”, and “AA”, that are all correctly evaluated. The empty string
“”, instead, is wrongly evaluated and the tool changes the regexp in the more
correct version [A-z]+ that does not accept it. Since no possible mutation fault
exists between [A-z]+ and its mutants, it is returned as final regexp.

5 Experiments

Websites http://www.regular-expressions.info/ and http://www.regexlib.com
report, for different matching tasks (e.g., email addresses, credit cards, social
security numbers, etc.), some regexps implementing them. To build the bench-
mark set Bench, we considered 20 tasks and, for each task, we selected two
regexps, one acting as initial (possibly faulty) regexp and the other one as ora-
cle; for 19 couples the initial regexp is indeed faulty, while in one couple the
initial regexp is correct5. The initial regexps are between 17 and 279 chars long
(60 on average) and have between 7 and 112 operators (24.45 on average).

Note that, in our approach, the oracle should be the user able to assess the
evaluation of strings; in the experiments, we use another regexp as oracle for the
sake of automation. However, in RQ2 we estimate which is the burden required
to the user in evaluating the generated strings during the repair process.

We run the approaches Greedy, MultiDSs3 (MultiDSs with N = 3), Breadth,
and Coll5 (collecting with CollTh = 5) on the selected regexps and fixing the
maximum number of evaluations MaxEval to 10, 30, 100, and 200 strings.

Experiments have been executed on a Linux machine, Intel(R) Core(TM) i7,
4 GB RAM. All the reported data are the averages of 10 runs of the experiments.

Tables 1a and b report experimental results aggregated by type of repair
process and maximum number of evaluations MaxEval. They both report the
average number of strings generated and shown to the user for evaluation E, the
average process time T, the percentage R of regexps that have been repaired (i.e.,
the final regexp has lower failure index than the initial one), and the percentage

5 Note that the process guarantees to not worsen correct regexps; we introduced this
correct regexp to double-check that this is indeed the case.

http://www.regular-expressions.info/
http://www.regexlib.com
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Table 1. Experiment results for Bench (E: avg # evaluations, T: avg time (secs),
R: repaired (%), CR: completely repaired (%), R′: avg # r ′)

CR of regexps that have been completely repaired (i.e., all the faults have been
removed). Table 1a also reports the average number R′ of regexps r ′ that are
changed during the process. The cells in gray highlight the best results. We
evaluate our approach with a series of research questions.

RQ1. How many distinguishing strings are generated?

Since the correct evaluation of the generated strings must be assessed by the
user, we want to keep their number low. Table 1a (column E) shows that the four
approaches generate, on average, between 41 and 53 strings; the limited number
of strings allows the manual evaluation by the user. MultiDSs3 generates more
strings than Greedy as three strings are generated for each mutant (if possible).
Breadth generates slightly fewer strings than Greedy because, on average, the
third changed regexp is the final expression (see column R′); Greedy changes on
average 20 regexps, so producing more strings. Coll5 also produces few strings,
as it directly generates strings for set of mutants.

Table 1b (column E) shows that a higher maximum number of evaluations
allows to generate more strings. However, with MaxEval equal to 10 and 30, the
number of generated strings is close to MaxEval itself, while with MaxEval equal
to 100 and 200 the number of strings is much lower than the limit: this means
that, on average, the process requires less than 100 strings to terminate.

RQ2. How long does the repair process take and how much is the estimated
user’s effort?

Table 1a (column T) shows that MultiDSs3 is twice slower than Greedy, as it
generates more strings. Breadth is more than three times slower than Greedy;
a possible reason is that although Greedy generates more strings than Breadth,
it creates much fewer mutants (that is a costly operation). Coll5 is the slowest
one, as automata intersection (see lines 22 and 23 in Algorithm 5) is a costly
operation. Table 1b shows that increasing the limit of evaluated strings also
increments the time (as the process can continue the search).

All the experiments show that, regardless of the process configuration, the
process is rather fast. However, the final time should be computed as pTime +
|A∪R|× eTime, being pTime the time of the generation and repair process (the
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one we measured), and eTime the time taken by a user to evaluate a string6. For
example, considering 5 s per string as eTime, the average times would be: 4 min
for Greedy, 4.5 min for MultiDSs3, 3.5 min for Breadth, and 3.6 min for Coll5.
This means that the whole process involving the user’s evaluations is feasible.
Note that Greedy and MultiDSs3 would be equivalent from the time point of
view (break-even) to Breadth and Coll5 if the user could evaluate the strings
in less than 0.2 s, which seems impossible; so, Breadth and Coll5 are always
advantageous in terms of time if the user’s effort is taken into account.

RQ3. Is the proposed process able to repair regular expressions?

We are here interested in assessing whether the proposed approach is actually
able to repair faulty regexps. We are able to assess whether a starting regexp
r has been completely repaired by checking the equivalence between the final
regexp r ′ and the oracle or . For not completely repaired regexps, we introduce
the measure Fx counting the number of strings that a regexp x wrongly accepts
or rejects, i.e., that are misclassified. As the number of misclassified strings is
possibly infinite, we need to restrict the length of the considered strings to n.
Being Ln(x) = L(x) ∩ Σn, Fn

x is defined as follows:

Fn
x = |Ln(x) ⊕ Ln(ox)|

In order to know if the repaired regexp r ′ is better than r , we can compute
ΔF = Fn

r ′ − Fn
r with a fixed n. In the experiments, we set n to 20, to count the

strings of length n up to 20. If ΔF < 0 or the final regexp is completely repaired,
the regexp under test is considered repaired, otherwise, it means that the process
did not remove any fault (or removed and introduced faults equally).

By Table 1a, we can see that the processes can repair (column R) between
72% and 85% of regexps, but they can completely repair (column CR) a small
amount of them (between 2.92% and 4.58%). Thus, the proposed techniques are
not reliable in finding the completely correct regexp, but they are very efficient
in removing some faults. However, some regexps are not repaired. This can be
due to two reasons. First, the new changed regexp r ′ behaves better than the
original r on the strings that are generated and tested, but it fails to correctly
accept/reject other strings that are not tested, so ΔF is actually greater than 0.
Secondly, we are trying to repair a regexp r that is too far from the oracle, so
each mutation of r is not better than it; indeed, when selecting the benchmarks,
we did not assume the competent programmer hypothesis, so a regexp and its
oracle may be very different. In RQ5, we will evaluate how the results change if
the competent programmer hypothesis holds.

Table 1b (columns R and CR) shows that increasing the number of maximum
number of evaluations permits to (completely) repair more regexps.

RQ4. Which is the best approach?

6 Note that we could also specify two different evaluation times for accepted and
rejected strings (supposing that one of the two tasks is easier).
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Table 2. Experiment results for MutBench (E: avg # evaluations, T: avg time (secs),
R: repaired (%), CR: completely repaired (%), R′: avg # r ′)

From Table 1a, we observe that MultiDSs3 under-performs in all the mea-
sures. Breadth and Coll5, instead, are better approaches. Breadth repairs 7.5%
more regexps than Greedy using fewer strings. Although Breadth is more than
three times slower than Greedy, we saw in RQ2 that the program time (without
string evaluation by the user) is negligible w.r.t. the evaluation time of the user:
therefore, in order to contain the total time of the process, it makes sense to keep
the number of generated strings limited. Coll5 is the approach that completely
repairs more regexps, although it does not behave so well in the repaired ones:
this probably means that the strings generated over the collection are good to
drive towards correct candidates, but also that Coll5 is not incremental enough
and it tends not to choose regexps that are only slightly better.

RQ5. How are the results if the competent programmer hypothesis hold?

When building Bench, we did not make any assumption and most of the
selected couples of regexps are very different. However, the common assumption
that is done in fault-based approaches is the competent programmer hypothesis,
i.e., the programmer defined the regexp close to the correct one (only with one
or few of the syntactic faults defined by the fault classes [2]). We here evaluate
the approach performances when the competent programmer hypothesis holds.
We built a second benchmark set, MutBench, as follows. We took the oracles of
Bench and we randomly modified them introducing n faults (with n = 1, . . . , 3),
obtaining three faulty versions of the oracle; we therefore added to MutBench 60
couples of regexps. The regexps are between 43 and 302 characters long (108.15
on average) and contain between 11 and 63 operators (25.52 on average). We then
applied our approach to MutBench. Table 2 reports the aggregated results for the
experiments performed over the regexps in MutBench. Most of the observations
we did for Bench are still valid for MutBench, although there are some interesting
differences. First of all, by Table 2a, we observe that Greedy now behaves as
good as Breadth in terms of repaired regexps (actually slightly better): this
means that if the syntactic faults of the regexp under test are those identified
by our fault classes, applying a greedy approach that changes the regexp as
soon as a fault is found pays off. Moreover, for both approaches, the numbers of
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evaluated strings and of changed regexps are lower w.r.t. Bench: this means that
the approaches converge faster to the final solution as they are able to apply
the correct mutations to remove the syntactic faults. MultiDSs3 is now the best
approach in terms of repaired regexps: this probably means that generating more
strings w.r.t. Greedy for reinforcing the decision makes sense only if there are
few faults, otherwise additional strings are useless.

Remark. A threat to external validity is that the obtained results could be
not generalizable to all regexps. In order to mitigate this threat, we tried to
select the most diverse regexps performing different tasks; in order to evaluate
the approach on the worst case scenario, we also did not assume the competent
programmer hypothesis. We saw in RQ5 that, if the hypothesis holds (as it is
assumed by fault-based approaches), the performance of the approach improves.

6 Related Work

As far as we know, no approach exists to repair regexps. The approaches pro-
posed in literature mainly focus on regexps testing or on their synthesization.

Regarding test generation of labeled strings, MutRex [2] is an open source
tool able to generate fault-detecting strings. We exploit its mutation operators
and its string generation facility (i.e., function genDs).

Another test generator is EGRET [6] that generates evil strings that should
be able to expose errors commonly made by programmers. EGRET takes a
regexp as input and generates both accepted and rejected strings. The user can
estimate the regexp correctness by evaluating these strings and identifying those
that are wrongly classified. As in our approach, the user is the oracle. Also
EGRET applies mutation, but on the strings accepted by the regexp under test,
and not on the regexp itself as in our case. The advantage of the strings we use
in our approach is that, once we detect a failure, we also know how to remove the
corresponding syntactic fault in the regexp; instead, using the strings generated
by EGRET would leave open the problem to localize the syntactic fault.

Another tool that can be used for labeled string generation is Rex [13], a
solver of regexps constraints. Rex translates a given regexp into a symbolic finite
automaton; the Z3 SMT solver is used for satisfiability checking. Since Z3 is able
to generate a model as witness of the satisfiability check, Rex can be used to
build strings accepted by the regexp.

Reggae [7] is a tool based on dynamic symbolic execution that generates
string inputs that are accepted by a regexp. Reggae aims at achieving branch
coverage of programs containing complex string operations.

Several other tools for testing regexps exist, as EXREX, Generex, and
regldg7. However, they are based on exhaustive or random generation of strings
matching a given regexp, and the strings they generate are not useful for repair-
ing regexps.

7 https://github.com/asciimoo/exrex, https://github.com/mifmif/Generex, https://
regldg.com/.

https://github.com/asciimoo/exrex
https://github.com/mifmif/Generex
https://regldg.com/
https://regldg.com/
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A different use of labeled strings is the synthesization of regexps. ReLIE [8]
is a learning algorithm that, starting from an initial regexp and a set of labeled
strings, tries to learn the correct regexp. It performs some regexp transformations
(a kind of regexp mutation); however, no definition of fault class is given. Our
approach could be adapted for regexps synthesis as well.

Our approach has some similarities with automatic software repair. The auto-
matic repair of software requires an oracle: in our approach, the oracle is the user,
while in software repair the oracle is usually specified using test suites [3,14],
pre- and post-conditions [11], etc. Moreover, such approaches also identify tech-
niques to repair the software when a fault is detected: in [9], for example, some
repair actions are proposed, that are similar to our mutation operators.

Automatic repair has also been proposed for specifications, as, for example,
automatic repair of feature models describing software product lines. The app-
roach in [5] applies a cycle of test-and-fix to a feature model in order to remove
its wrong constraints; the approach uses configurations derived both from the
model and from the real system and checks whether these are correctly evalu-
ated by the feature model. The approach has similarity with ours in alternating
testing and fixing (similar to our repair phase); however, since the evaluation of
configurations is done automatically on the system, the approach can produce
several configurations, while in our approach we need to keep the number of
generated labeled strings limited, as these must be assessed by the user.

The aim of our work is similar to that in [1] in which a student tries to learn
an unknown regular set S by posing two types of queries to a teacher. In a
membership query, the student gives a string t and the teacher tells whether it
belongs to S or not. In a conjecture query, the student provides a regular set S′

and the teacher answers yes if S′ corresponds to S, or with a wrong string t (as
our distinguishing string) otherwise. In our approach, the user plays the role of
the teacher only for the first kind of query, but not for the second kind (if (s)he
could, (s)he would also be able to write the correct regexp). Our tool, instead,
plays the role of the student by providing membership queries.

7 Conclusions

The paper presents an approach able to detect and remove conformance faults in
a regular expression, i.e., faults that make a regular expression to wrongly accept
or reject some strings. The approach consists in an iterative process composed
of a testing phase in which the user who wrote the regular expression is asked
to assess the correct evaluation of some strings that are able to distinguish a
regular expression from its mutants, and in a repair phase in which the mutant
evaluating correctly all the generated strings is taken as new version of the
regular expression. The approach terminates when it is no more possible to
repair the regular expression under test. Experiments show that the approach is
indeed able to remove conformance faults from regular expressions, in particular
if the competent programmer hypothesis holds, i.e., the user did some small
syntactical faults as those described by the fault classes proposed in literature.
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In the experiments, we performed different evaluations regarding the effect of
the process configuration on the final results, without assessing their statistical
significance. As future work, we plan to perform experiments on a wider set of
regular expressions and to conduct some statistical tests to assess the statistical
significance of the drawn conclusions.
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Abstract. The automatic transformation of models to code is one of the
most important cornerstones in the model-driven engineering paradigm.
Starting from system models, users are able to automatically generate
machine code in a seamless manner with an assurance of potential bug
freeness of the generated code. Asm2C++ [4] is the tool that transforms
Abstract State Machine models to C++ code. However, no validation
activities have been performed in the past to guarantee the correctness of
the transformation process. In this paper, we define a mechanism to test
the correctness of the model-to-code transformation with respect to two
main criteria: syntactical correctness and semantic correctness, which is
based on the definition of conformance between the specification and the
code. Using this approach, we have devised a process able to test the
generated code by reusing unit tests. Coverage measures give a user the
confidence that the generated code has the same behavior as specified
by the ASM model.

1 Introduction

The Abstract State Machines (ASM) method [6] is a formalism that is used
to guide the rigorous development of software and systems. The ASM-inspired
development starts with an abstract specification of a system and then contin-
ues until all details of the system have been captured through a sequence of
refinements. During this process, the specifier can apply classical validation and
verification (V&V) techniques like simulation, scenarios validation, and model
checking. The last step of the development process is the transformation of mod-
els into code. If not performed carefully, this step can be critical and error-prone.
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The automatic transformation of models into code is an important corner-
stone of model-driven engineering [12]. This is also a common practice in indus-
try. For example, Airbus uses automatic code synthesis from SCADE models to
generate the code for embedded controllers in the Airbus A380 [3]. Following this
paradigm, we have built the tool Asm2C++ [4], which is able to generate C++
code from formal specifications given in terms of ASMs. Furthermore, it is able
to produce unit test cases [5], which can be used, for example, for regression
testing.

The code generation activity, however, may introduce new issues in the devel-
opment process, e.g., an error in model transformation may introduce faults in
the code that jeopardize all the V&V activities performed during the modeling
phase. Therefore, it is very critical that the generated code is syntactically well
formed and, mostly, it faithfully transforms the specification into code. This also
means that the code transformation process must also be analyzed, validated,
and verified, which at times can become a difficult task [3].

There exist several techniques for the validation of a transformation, includ-
ing the use of theorem proving or model checking [1]. In this paper, we propose an
approach based on testing. In principle, testing a generated code could be a use-
less activity if the transformation could be formally proven correct. In practice,
however, specifiers want to test code transformations in order to gain confidence
that errors are not inadvertently introduced at any step (including code compil-
ing, for example)1. In order to address such issues, in this paper, we tackle the
problem of validation of model-to-code transformation τ by contributing in the
following directions:

1. we formally define when the generated code is correct both syntactically and
semantically w.r.t. the original specification,

2. we show that generated tests can detect possible errors in τ and help the
designer to fix them in the implementation of τ,

3. we setup a methodology that uses a combination of code compiling and exe-
cution in order to validate τ, and

4. we provide a user with a measure (coverage) that helps in building the con-
fidence that τ is correct.

The rest of the paper is organized as follows. We present ASMs in Sect. 2. In
Sect. 3, we present the process applied to transform ASMs into C++ code. The
validation of the transformation is presented in Sect. 4 and corresponding results
are presented in Sect. 5. The related work is presented in Sect. 6. The paper is
concluded in Sect. 7.

2 Abstract State Machines and Asmeta Framework

Abstract State Machines (ASMs) [6] are an extension of Finite State Machines
(FSMs), where unstructured control states are replaced by states with arbitrarily
1 Rephrasing what Ed Brinksma said in his 2009 keynote at the Testcom/FATES
conference: “Who would want to fly in an airplane with software automatically
generated with a code generator that has never been tested?”.
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complex data. ASM states are mathematical structures, i.e., domains of objects
with functions and predicates defined on them. An ASM location - defined as
the pair (function-name, list-of-parameter-values) - represents the abstract ASM
concept of basic object containers. The ordered pair (location, value) represents
a machine memory unit.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef ). Location updates are given as assignments of
the form loc := v, where loc is a location and v is its new value. They are the
basic units of rule construction. There is a limited but powerful set of rule con-
structors to express: guarded actions, simultaneous parallel actions, sequential
actions, nondeterminism, and unrestricted synchronous parallelism.

An ASM computation or run is, therefore, defined as a finite or infinite
sequence of states s1, s2, . . . , sn, . . . of the machine. s1 is an initial state and
each si+1 is obtained from si by firing the unique main rule, which could fire
other transitions rules (see Fig. 1).

State0 State1 StatenTransition1 Transition2 Transitionn

Fig. 1. An ASM run with a sequences of states and state-transitions (steps)

During a machine computation, not all the locations can be updated. Func-
tions are classified as static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment) and controlled (read in the current state and
updated by the machine in the next state). A further classification is between
basic and derived functions, i.e., those coming with a specification or computa-
tion mechanism given in terms of other functions.

An ASM can be nondeterministic due to the presence of monitored func-
tions (external nondeterminism) and of choose rules (internal nondeterminism).
Our code translation supports both types of nondeterminism, however, testing
the generated code in the presence of internal nondeterminism is challenging as
explained in Sect. 4.4.

Asmeta Framework. The ASM method can facilitate the entire life cycle of
software development, i.e., from modeling to code generation. Figure 2 shows the
development process based on ASMs. The process is supported by the Asmeta
(ASM mETAmodeling) framework2 [2] which provides a set of tools to help the
developer in various activities:

2 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/
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Fig. 2. The ASM development process powered by the Asmeta framework

– modeling: the system is modeled using the language AsmetaL. The user is
supported by the editor AsmEE and by AsmetaVis, the ASMs visualizer which
transforms the textual model into a graphical representation. The user can
directly define the last ASM model or s/he can reach it through refinement.
The refinement process is adopted in case the model is complex. In this case,
the designer can start from the first model (also called the ground model) and
can refine it through the refinement steps by adding details to the behavior of
the ASM. The AsmRefProver tool ensures whether the current ASM model
is a correct refinement of the previous ASM model.

– validation: the process is supported by the model simulator AsmetaS, the
scenarios AsmetaV, and the model reviewer AsmetaMA. The simulator AsmetaS
allows to perform two types of simulation: interactive simulation and random
simulation. The difference between the two types of simulation is the way
in which the monitored functions are chosen. During interactive simulation
the user inserts the value of functions, while in random simulation the tool
randomly chooses the value of functions among those available. AsmetaS exe-
cutes scenarios written using the Avalla language. Each scenario contains
the expected system behavior and the tool checks whether the machine runs
correctly. The model reviewer AsmetaMA performs static analysis. It deter-
mines whether a model has sufficient quality attributes (e.g., minimality -
the specification does not contain elements defined or declared in the model
but never used, completeness - requires that every behavior of the system
is explicitly modeled, and consistency - guarantees that locations are never
simultaneously updated to different values).

– verification: the properties derived from the requirements document are
verified to check whether the behavior of the model complies with the intended
behavior. The AsmetaSMV tool supports this process.

– testing: the tool ATGT generates abstract unit tests starting from the ASM
specification by exploiting the counter example generation of a model checker.

– code generation: given the final ASM specification, the Asm2C++ automati-
cally translates it into C++ code. Moreover, the abstract tests, generated by
the ATGT tool, are translated to C++ unit tests.
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Fig. 3. Asm2C++ tool

3 Code Generation

The Asm2C++ tool implements the model-to-code transformation. The tool is
divided into two activities: transformation of the ASMs specifications into C++

code and generation of C++ unit tests starting from the ASMs specifications (see
Fig. 3). Asm2C++ is based on Xtext3, a framework for the development of domain-
specific languages, which provides facilities for parsing and code generation and is
fully compatible with the Eclipse Modeling Framework. The code generator has
been developed as a model-to-text (M2T) transformation. The transformation
code is written mainly in Xtend - a Java dialect provided by the Xtext framework
with features for code generation and text transformation.

3.1 C++ Code Generation

The Asm2C++ tool transforms an ASM to a C++ class [4]. The generated C++

class is split into a header (.h) and a source (.cpp) file. The header file (see
Code 1) contains the translation of the ASM signature: domains declaration,
domains definition, functions declaration and rules declaration. The rules imple-
mentation, the functions/domains initialization and the functions definitions are
contained in the source file (see Code 2). The simulation of an ASM step, has
been implemented using the step() method which calls sequentially the main
method and the fireUpdateSet() method. The main method corresponds to the
translation of the main rule into C++ code, while the fireUpdateSet method
updates the locations to the next state values.

3.2 C++ Unit Tests Generation

The Asm2C++ tool is also able to produce unit tests from ASM specifications [5].
It generates abstract tests starting from the ASM specification and then the
tests are translated into C++ unit tests using the Boost Test C++ library.4

The abstract tests are generated in two different ways. The first is based on
the Asmeta simulator while the second exploits the ATGT tool. Once the unit
tests and the C++ code of the ASM specification are compiled, they are linked
together and the tests are run on the code.

3 https://www.eclipse.org/Xtext/.
4 https://www.boost.org/.

https://www.eclipse.org/Xtext/
https://www.boost.org/
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#ifndef asmSpecification H
#define asmSpecification H

#include ... /∗ include libraries ∗/

/∗ Domain declaration ∗/
namespace asmSpecificationnamespace{
/∗ enumerative domain ∗/
enum domainName {value0 , value1 , ...};
/∗ concrete domain ∗/
typedef domainType domainName;
}
using namespace asmSpecificationnamespace;
class asmSpecification{
/∗ Domain containers declaration:
concrete domain and enumerative domain ∗/
const std::set<domainName>

domainName elems;
public:
/∗ Function declaration ∗/
domainName functionName[2];
/∗ controlled function ∗/
domainName functionName;
/∗ monitored function ∗/
/∗ Rule declaration ∗/
void ruleName (parameters);
asmSpecification();
void mainRule();
void fireUpdateSet();
void step();
};

#endif

Code 1. .h code

//asmSpecification.cpp automatically generated
#include ‘‘asmSpecification.h”
using namespace asmSpecificationnamespace;

// Conversion of ASM rules in C++ methods
void asmSpecification::ruleName (parameters){

/∗ implementation ∗/
}

void asmSpecification::mainRule(){
/∗ implementation ∗/

}

// Function and domain initialization
asmSpecification::asmSpecification():

// Static domain initialization
domainName elems(value0 ,value1 ,...),
{

//Function initialization
functionName[0] = functionName[1]

= value;
}

// Apply the update set
void asmSpecification::fireUpdateSet(){

functionName[0] = functionName[1];
}

void asmSpecification::step(){
mainRule();
fireUpdateSet();

}

Code 2. .cpp code

The translation from abstract tests to concrete tests is done by following
the rules reported in Table 1. A test suite TS is defined by using the macro
BOOST AUTO TEST SUITE(testSuiteName), it automatically registers a test
suite named testSuiteName. A test suite is ended using BOOST AUTO TEST
END(). Each test suite can contain one or more test cases. A test case is declared
using the macro BOOST AUTO TEST CASE(testCaseName). The content of
a test case is enclosed by the symbols {} and the name is unique. Each test case
contains an instance sut of the class which the ASM is translated to. Then, for
each state transition in the abstract test, the test performs in order three tasks:

1. It sets the values of monitored functions (using the assignment operator).
2. It checks the value of controlled functions by using the macro BOOST CHECK.
3. It performs an ASM step by calling the step method in the C++ class.

After each step, the monitored locations will be changed and the controlled
location will be checked again, till the end of the abstract test sequence.

3.3 Code Generation Correctness

First, we want to introduce the notion of conformity of the target C++ code
to the source ASM. Formally, we can define the model-to-code transformation
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Table 1. Translation of abstract tests to concrete tests

Abstract Test Concrete Test

Test suite TS
BOOST_AUTO_TEST_SUITE(testSuiteName)
translation of each test case in TS
BOOST_AUTO_TEST_SUITE_END( )

Test case t: s0, s1 . . . sn

BOOST_AUTO_TEST_CASE(testCaseName) {
SUTClass sut;
translation of each state transition in t
}

ASM step si → si+1

set monitored locations in si
check controlled locations in si
sut.step();

State Monitored location m = val sut.m = val;
Controlled location c = val BOOST CHECK(sut.c[0] == val);

as a function τ that takes an ASM A and returns a C++ class τ(A) with the
corresponding fields and methods. Each location l of the ASM A is transformed
to a member (field or method) of the class τ(A) (as explained in [4]).

Definition 1 (State conformance). Given an ASM A, we say that the state
of an object O of the class τ(A) conforms to a state s of A if the value of every
location l in s is equal to the value of τ(l) in the target object O.

Informally, to compare ASM states and C++ states we look at the values
of the ASM functions that are translated to C++ members. To compare values,
we use the equality but in the future we may extend the concept of conformity
between locations in order to introduce some tolerance, e.g., by allowing a small
difference between two values. We can refer to controlled conformity, if we restrict
to only controlled locations.

Additionally, we want to introduce the notion of behavioral conformance. In
our approach, we want that the target C++ class C preserves the behavior of the
ASM. Since ASMs are executable, we require that every execution of the class
C has a corresponding behavior in the abstract specification.

Definition 2 (Behavioral conformance). We say that a class C = τ(A)
behaviorally conforms to the ASM A, if starting from any reachable state r of
any object O of C such that r is conforming to the state s of A, by executing
O.step() we obtain a state r′ that is controlled conforming to the next state s′

of A.

Informally, our C++ code behaves like the original ASM, if starting from a
conforming state (with the same monitored and controlled locations) and execut-
ing a step, then the code will arrive to a next state that has the same controlled
locations.

We now introduce the concept of correctness of model-to-code transforma-
tion. We deal with the correctness from two distinct points of view: first syntactic
or type-correctness and second semantic or behavioral conformity.
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Definition 3 (Transformation correctness). We say that the transforma-
tion τ(A) is correct if the C++ class is syntactically correct and behaviorally
conforms to A.

Verifying the correctness of the translation τ would require the use of for-
mal techniques like model checking or theorem proving. As shown in [1], several
attempts already exist in this direction. In our case, this would require, at least,
to formalize the target language C++ and this would be a great overhead. More-
over, proving the correctness of the transformation may still not be enough in
case of critical systems. For such systems, the transformation should also be
tested in any case (recall the statement of Ed Brinksma). As observed in [8], a
translation validation approach, that is based on testing, seems to be a better
solution in an engineering context. Therefore, we have concentrated our efforts
in validating the transformation by testing. This activity exploits the generated
unit tests, as explained in Sect. 3.2, and is based on the following theorem.

ASM

C++

Ci Mi

Ci Mi

step

step

Ci+1 Mi+1

Ci+1
set

Mi+1Ci+1

Monitored and 
controlled
functions 

conform to

Controlled 
functions 
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ri ri+1 ri+1

Fig. 4. ASM/C++ Conformance

Theorem 1 (Correctness by testing). Given a C++ test t obtained by trans-
lating any run s1, . . . , sn of A, if τ(A) is correct, then, when executing t, each
C++ state before the i-th O.step() will conform to si, all controlled locations
will be checked by t, and t will pass with no errors.

Proof. The evolution and the relations between t and the abstract states are
depicted in Fig. 4. If τ is correct, then the C++ code is correct and it can be exe-
cuted. Let’s consider the pair of states si and si+1 and assume that ri in C++

conforms to si in the abstract run both in the controlled part Ci and the mon-
itored part Mi. The controlled conformity of ri+1 is guaranteed, thanks to Def-
inition 2, by executing immediately before each state the instruction O.step()
(see Table 1). Then, the unit test sets the monitored variables in C++ to the
values in si+1 (see Table 1). At the end, the state in C++ immediately before the
(i + 1)-th step conforms again to si+1. The test will check the controlled part,
and due to the assumption that τ is correct, it will find the expected values for
the controlled part. By induction on i, we can prove the theorem. ��

Thanks to Theorem 1, we are sure that every test will check the conformance
of the states in it with the original sequence of the ASM, and that if a test
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fails, then there is a fault in the translation. Of course, testing cannot prove the
correctness of the transformation but can help us in gaining confidence in the
translation correctness. In the following section, we explain the process we have
devised to put in practice the proposed methodology.
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Fig. 5. Validation process

4 Validation of the Transformation

In this section, we explain how we have devised a process able to validate our
transformation by testing. In principle, to validate the transformation τ, we
would need a set of inputs (a set of ASMs) or a way to generate inputs according
to some criteria and an oracle that tells whether the output of τ (C++ code) is
what is intended (for example, the user could write by hand the expected C++

code for each ASM in the test set). We follow a different path since we use the
unit tests to validate the transformations. In our approach, to check whether
the resulting code is what is intended, we first check the well-formedness of the
code and then we test its behavior in order to check whether it conforms to
the original ASM. This is consistent with our definition of correctness given in
Definition 3 and is based on Theorem 1. This is a sort of indirect testing [1], in
which we do not test directly the transformation rules but the results of such
transformations. We exploit the fact that both the ASM and its translation to
C++ are executable.

The validation process is depicted in Fig. 5 and is explained as follows. Given
an Asmeta textual specification A, A is parsed by the Asmeta parser that builds
the corresponding Java objects. For the specification A, we apply our Asm2C++
tool that implements the code transformation τ in order to obtain the C++
code. Besides, we apply the test generator component [5] and generate a set of
abstract test cases that can be translated to C++ unit tests. Then, we perform
the following validation activities: testing the transformation correctness and
coverage computation.

4.1 Testing the Transformation Correctness

Syntactic Correctness. Using the C++ compiler, we first check the syntacti-
cal correctness of the generated code. We use the -Wall option and quit the
process in case of an error. This first phase captures translation faults that pro-
duce invalid source code. Also the tests are compiled in order to obtain the
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corresponding obj files. The objs for the Asmeta specification and for the tests
are linked together.

Semantic Correctness. The obtained executable is executed in order to check
that the behavior as specified by the tests corresponds to the behavior of the
generated code. The tests will set the suitable monitored values and check the
conformance of the controlled parts. In this way, we test the semantic correctness
of the code according to Theorem 1. A failing test means that the C++ code does
not conform to its specification and since the code has been obtained by applying
the transformation, a fault in the transformation has been found.

4.2 Coverage Computation

Although it suffers from well-known shortcomings, the measure of the coverage
of software artifacts during testing can give a good feedback about the depth of
the testing activity itself. For this reason, we propose to measure the coverage
of the following aspects.

1. First, the coverage of the source language, AsmetaL in our case, gives a good
indication on how many constructs are tackled by the transformation under
test τ. The more constructs τ is able to deal with during testing, the higher
the applicability of τ is. A request of a good level of coverage avoids the
problem of transformations that are well tested but only on a limited set of
source specifications. In our approach, we instrument the Asmeta parser in
order to collect the information during parsing. This represents the coverage
of the inputs of the transformation.

2. Second, the coverage of the transformation code, the Asm2C++ code that imple-
ments the transformation written in Xtend and Java in our case, gives a good
indication on how much the transformation code itself is tested. If some parts
of the transformation are never covered, there is the risk that some critical
conditions are actually not tested, or that some code is useless and never used
therefore. This represents the pure coverage of the transformation.

3. Third, the coverage of the produced code, the C++ code including the unit tests
in our case, gives an indication on how much the tests are able to exercise
the generated C++ code. Although among the three coverage measures this is
less significant as it depends also on the technique used to generate the tests,
it is important to check whether there are parts of the produced code that
are never covered and this may be a signal that the transformation produces
some meaningless code. This represents the coverage of the outputs of the
transformation.

4.3 Tools Used

To support the validation process, we have used several tools. Ant5 is a tool
that supports users while developing software across multiple platforms. The
configuration files are written using XML where each file contains one project
5 https://ant.apache.org/.

https://ant.apache.org/
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and one or more targets. A target is composed of one or more tasks - pieces of
code that can be executed. Moreover, the configuration file contains properties
to support the user in customizing the build process.

To compute the java code coverage we use JaCoCo6, which is a free code
coverage library for Java. JaCoCo requires Ant tasks to compile and run Java
programs and to create the coverage report of the executed code. We have written
a project using Ant to automatically compile and run JUnit tests to test the
Asm2C++ generator. Once the specifications are translated into C++ code, another
task generates C++ unit tests and runs the tests on the generated C++ code.
After C++ unit tests are executed, the Ant file invokes a task to run the JaCoCo
tool, which provides the coverage of the selected code. To compute the coverage
of C++ code, we use gcov that instruments the generated C++ source code and
outputs coverage information when it is executed.

4.4 Dealing with Internal Nondeterminism

In ASMs, internal nondeterminism is represented by the following choose rule:

choose x in D with P do R

meaning to execute rule R with an arbitrary x chosen in D, which is a domain or
a set of elements, and satisfying the property P. In C++, the choose rule is trans-
lated by randomly searching an element in D satisfying P and then executing the
code obtained by the translation of R. In this way, however, the ASM and the
C++ code may choose different values for x. The test obtained from the abstract
test case may, therefore, fail only because of this reason. To tackle this problem,
we have enabled the test case generator and the C++ translator to enforce a
deterministic behavior that consists in taking the first element of D such that P
is true and use that for the variable x. Substituting a known nondeterministic
behavior with a deterministic alternative is adopted also in [14]. Although this
approach cannot guarantee that the actual nondeterministic translation is cor-
rect, it allows us to test the translation of the choose rule and the specification
containing it.

5 Results

We have taken 44 ASM models taken from the public repository of the Asmeta
framework7 and we apply the validation process to each of them. The validation
activity has allowed us to find and fix several faults and the coverage has given
us a good indication on how to extend and improve the Asm2C++ tool.

5.1 Discovered Faults

The validation process has allowed us to find faults in the transformation that
have been classified into four categories:
6 http://www.eclemma.org/jacoco/.
7 Source code and examples are available at http://asmeta.sourceforge.net/.

http://www.eclemma.org/jacoco/
http://asmeta.sourceforge.net/
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1. missing translation: the translation of an ASM construct to C++ is missing;
2. syntactically incorrect translation: the translation to C++ is syntactically

incorrect and the compiler finds the error;
3. semantically incorrect translation: the code is compiled by the C++ compiler,

but the test cases fail because the behavior of the code does not conform to
the behavior of the specification; and

4. incorrect test case generation: the generation of test cases is not correct.

The identification between the first two categories of errors is easy because
in the first case the Asm2C++ generator throws an exception and in the second
case the compiler fails to compile the C++ code and prints an error message.
The classification of errors between the third and the fourth category requires a
deep analysis, because in both cases the tests fail when a conformance fault is
found without providing any other information.

Missing Translation. These errors are caused probably by forgetfulness or
distraction of the programmer. In our case, for example, the first error reported
by the Asm2C++ tool concerned the translation of natural numbers which was
missing. We have now translated natural numbers as unsigned integers.

Another fault we have discovered is the missing translation of abstract
domains. We have now added a translation rule that for each abstract domain
A produces a C++ class CA, while constants in A are translated as objects. A
set that contains all the objects of type CA is also added to CA to keep track of
the static constants of A.

Syntactically Incorrect Translation. These errors are due to a misunder-
standing of the semantics of the source notation (ASMs) and how it is translated
to the target notation (C++). It can be also caused by an incomplete knowledge
of the target language, C++ in our case. For instance, the compiler has found an
error in the translation of case terms. Each case is translated as nested if-else
and the otherwise clause was translated using the “otherwise” keyword which
does not exist in C++, and that caused an error during compilation. This error
has been resolved by replacing “otherwise” with the“else” keyword.

Semantically Incorrect Translation. These errors are caused because ASMs
and C++ are executed differently. ASMs runs are sequences of states (rules
are executed and then the functions are updated) while C++ programs exe-
cute instructions sequentially. For example, we found an error regarding the
semantics of seqRule. In ASM specifications, rules are executed in parallel, but
sometimes it is allowed to model sequential execution by means of seqRule. In
case of a sequential block, the value of controlled functions must be updated
immediately in both current and next states. This behavior had not been taken
into consideration and some test cases failed.

Incorrect Test Case Generation. These errors are caused when the test
generation produces wrong test cases or when the translation from abstract
test cases to concrete tests is incorrect. For example, we found an error that
concerns invariants, which are constraints that must be satisfied during the ASMs
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execution. Sometimes the expression of an invariant contains monitored functions
which are chosen automatically by the test generator in order to build test
cases. Initially, they were chosen randomly, but some test cases failed because
the corresponding invariants could not be satisfied. To overcome this problem,
we have forced the test generator to continue choosing values for monitored
functions until they satisfy the corresponding invariants.

5.2 Coverage

In Sect. 4.2, we have listed the measures of code coverage one should perform
during the testing of the transformation: coverage of the source language, cov-
erage of the transformation code, and coverage of the produced code. In this
section, we present the results obtained for each coverage criteria.

Figure 6 shows the coverage of source language in terms of number of Asmeta
constructs covered during parsing. The coverage increases with the number of
specifications, until most of the constructs are covered (80% of the total). We
did not cover all of them, because there are some constructs that are not used in
any Asmeta specification in the repository. We initially started to write ad hoc
Asmeta specifications but then we realized that the language contains useless
constructs and such language overspecification should be addressed before in
order to simplify the language.
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Fig. 6. Coverage of Asmeta parser

Coverage of the transformation code is shown in Fig. 7. The result obtained
is satisfactory because most of the code is covered, despite not all the classes are
100% covered. This is because the code contains many redundant checks in case
of critical situations that should never happen.

The third coverage is about the produced code. Initially, the value was low
because the ASM rules were translated in two execution modes: the first was
in the parallel mode (the standard ASM mode), while the second was in the
sequential mode. The sequential mode is used rarely in ASM specifications and
the unused code contributes to decrease the percentage of code coverage (the
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Fig. 7. Asm2C++ coverage

highest coverage was ≈70%). For this reason, we have improved the translator
by producing the sequential version of rules only if they are actually called by
seqBlock rules. The result of this improvement is a higher percentage of code
coverage and in most cases it reaches 100% of the generated code.

6 Related Work

The challenging nature of model transformation creates the need for validation
of this systematic process. This need and the associated challenges have been
documented by several researchers, e.g., [3,9,15]. A comprehensive survey on the
related state of the art can be found in [1,7].

Wimmer et al. [16] present a language-agnostic approach for testing model-
to-text and text-to-model transformations. They extend the Object Constraint
Language with additional String operations to specify contracts for practical
examples and to evaluate the correctness of current UML-to-Java code genera-
tors offered by some UML tools. As compared to this work, our input models
are verified and validated by both users and tools, i.e., they are well-formed,
implement the specified requirements, and do not contain unintended behaviors.

Conrad [8] proposes a translation validation workflow for the generated code
in the context of the IEC 61508 standard. The translation validation process is
comprised of (a) numeric equivalence testing between the generated code and
the corresponding model, and (b) additional measures to demonstrate that unin-
tended functionality has not been introduced during the translation process. In a
similar work [11], Sampath et al. present a technique for verifying and validating
Stateflow8 model translation to C code. However, both these works, i.e., [8,11],
are based on the proprietary tool Simulink9. Our work, on the other hand, is
based on the Asmeta framework, which is an open-source project and freely
available.
8 Stateflow is a hierarchical state-machine modeling language that is part of the
Simulink/Stateflow tool-suite from The MathWorks Inc.

9 www.mathworks.com/products/simulink.

www.mathworks.com/products/simulink
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In [10], Küster et al. present their initial experiences with a white box model-
based approach for testing model transformations within the context of busi-
ness process modeling. They propose multiple techniques for constructing test
cases and show how to use them to locate errors in model transformations. As
aforementioned, this work is performed within the context of business process
modeling and uses a supported notation. Our work, in comparison, is gener-
ally applicable across multiple domains and uses ASMs, which is a scientifically
well-founded method for systems engineering.

In [13], Stümer et al. present a general and systematic test approach for
model-based code generation. This approach undertakes formal descriptions of
the optimizations under test by using graph transformation rules. The proposed
tool automatically creates test models (first-order test cases) from the classifi-
cation tree, which is used to derive a formal description of the input space of
an optimization rule. In a further step, test vectors (second-order test cases)
are generated, which ensure structural coverage of the test model and the corre-
sponding code. Model and generated code then undergo a back-to-back test using
these test vectors. A signal comparison of the test outputs is used to determine
functional equivalence between the model and the code. The main difference
between this work and our approach is that, although many of their observa-
tions are general, they target Simulink and Stateflow programs. Moreover, we
extend their use of coverage information to measure the quality of the testing
activity by explicitly distinguishing between several types of coverage.

7 Conclusion

In this paper, we have presented a process to automatically validate the transfor-
mation correctness from Asmeta specifications to C++. The process is based on
the notion of conformity between C++ code and Asmeta specifications, and on
the definition of correctness (see Definition 3). It consists in parsing an Asmeta
specification, and generating the C++ code and unit test cases. The source code
is compiled, linked, and executed. During tests execution, possible faults can be
found and code coverage information is collected. The coverage regards several
artifacts involved in the transformation, namely the inputs (ASM specs), the
transformation itself (Xtext code), and the outputs (the generated C++ code).

We have applied this process to a set of ASMs and we were able to dis-
cover several faults both within the transformation code and the test generator
component. Such faults were sometimes due to the subtle misunderstanding of
ASM semantics (like the SeqRule) that requires a peculiar translation to C++.
Further, this activity has allowed us to increase the applicability of the transfor-
mation by extension to missing ASM constructs, and identification of parts of
the Asmeta language, which are not used in practice.
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Abstract. Services like chatbots that provide information to customers
in real-time are of increasing importance for the online market. Chat-
bots offer an intuitive interface to answer user requests in an interactive
manner. The inquiries are of wide-range and include information about
specific goods and services but also financial issues and personal advices.
The notable advantages of these programs are the simplicity of use and
speed of the search process. In some cases, chatbots have even surpassed
classical web, mobile applications, and social networks. Chatbots might
have access to huge amount of data or personal information. Therefore,
they might be a valuable target for hackers, and known web applica-
tion vulnerabilities might be a security issue for chatbots as well. In
this paper, we discuss the challenges of security testing for chatbots. We
provide an overview about an automated testing approach adapted to
chatbots, and first experimental results.

Keywords: Adaptive systems · security testing · chatbots

1 Introduction

Since Joseph Weizenbaum [27] introduced ELIZA, the first computer program
that interacts with users in a natural language, in 1966, humanlike communi-
cation with a machine has been of growing interest, leading to improvements,
e.g., see [14,26] and finally to chatbots, which rely on artificial intelligence for
emulating natural conversation with humans. Whereas some chatbots realize
conversation using pre-specified patterns, others make use of machine learning
techniques [19,23]. These intelligent chatbots provide the user a more person-
alized conversation by remembering and reusing specific information from pre-
vious conversations. Chatbots have also gained a lot of interest from industry.
The evolution of these systems over the years has been analyzed and there are
predictions about the rise of the chatbot market in the future [5,7].

Like any other technology also chatbots do not come without drawbacks.
Despite their intuitive novelty, chatbots are built upon existing technology.
They are often integrated into online websites. Therefore, they rely on HTTP(S)
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and other existing communication protocols. Smart chatbots are connected to
databases, thereby performing SQL queries. Data integrity and privacy, as well
as user authentication and authorization must be ensured to the clients, espe-
cially by personalized chatbots. If a chatbot fails in this task, data leaks can
compromise the user’s privacy and may lead to financial losses. Because of these
facts, it is very likely that even chatbots become a target for attackers, where
known vulnerabilities and attacks, like cross-site scripting (XSS) and SQL injec-
tions (SQLI), can be exploited. Therefore, it is inevitable to cover security issues
when testing chatbots as well.

In this paper, we discuss the issue of security testing for chatbots, where we
describe an automated approach for the detection of intrinsic software leaks in
order to prevent their exploitation. We do not test the chatbots’ performance nor
their functionality, e.g. natural language processing, or ask what the underlying
machinery should be allowed to do [21]. We solely focus on security testing. The
result is an offensive testing approach that targets two very common exploita-
tions, namely XSS and SQLI, which has – to the best of our knowledge – not
been considered before in the context of chatbots.

The paper is organized as follows. Section 2 gives an overview about the over-
all testing approach. Then, Section 3 explains a concrete example and discusses
the outcome. Section 4 enumerates related work, whereas the paper is concluded
in Section 5.

2 Overview of the approach

When designing chatbots, the primary focus lies on the processing of natural
language. There the developers must take into consideration the correct under-
standing and answering of the user’s inquiries. In addition, the system should
be able to handle errors and unexpected inputs appropriately [6]. Existing tools
[1,2,11] primarily target the system’s functionality but do not guarantee secu-
rity. The chatbot can fulfil its functional requirements but still remain vulnerable
to malicious actions. The still open challenge is to test chatbots regarding their
resistance to unintended and malicious user inputs. Figure 1 depicts an overall
structure of an online system comprising a chatbot.

In this example, a chatbot is set up online and the communication proceeds
accordingly to the standard HTTP(S) protocol. We further assume that the chat-
bot is connected to a database comprising client-related private information. A
smart chatbot would be able to increase the amount of information about a user
during communication. Therefore, user authentication must be guaranteed as
well as the integrity of all stored information. [9,15,17] showed that several web
vulnerabilities can be exploited due to security leaks in systems. For example,
the vulnerabilities SQLI and XSS can be triggered because of insufficient input
sanitization. The consequence can be unauthorized database access or malicious
script execution on side of the client, which has to be avoided.
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Fig. 1. Communication flow in the chatbot system

For our approach to chatbot security testing, we rely on an adapted execution
framework and test oracles for both types of vulnerabilities from previous work
[12]. This framework comprises two test sets for XSS and SQLI, respectively.
Both test sets consist of a list of individual malicious inputs, called attack vectors.
In case of XSS, the list encompasses JavaScript code, and for SQLI, a list of
SQL statements is used in the tests. The test inputs are sent sequentially to
the chatbot, i.e., the system under test (SUT). The resulting outputs from the
chatbot are read and checked against the test oracles, and a test verdict is given
back as a result. Figure 2 depicts the overall approach.

Fig. 2. Security testing approach for chatbots

The framework is implemented in Java and comprises several elements. Both
test sets are attached to an executor. Then, every attack vector is put into
generated HTTP requests individually and sent against the SUT. A HTML
parser [8] reads the corresponding output in search for critical content that is
needed by the test oracle. Finally, the testing procedure terminates when both
test sets have been exhausted. Section 3 will describe the test scenario in more
detail on an example.

3 Case Study

In this case study, we used the described approach for security testing a chatbot.
Although several chatbots are developed and used by private companies, some of
them are publicly available, e.g., [3,4]. For this case study, we selected Program
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O, which is written in PHP and comprises a MySQL database [10], because it
perfectly fits the structure provided in Figure 2. Program O makes use of conver-
sational patterns that have to be specified in the Artificial Intelligence Markup
Language (AIML) [25]. According to given patterns, the chatbot formulates its
responses by analyzing the user’s provided keywords.

For security testing Program O we developed test suites for XSS and SQLI.
Scripts for XSS have the following form:

<script>alert(document.cookie)</script>">

For SQLI, we add SQL queries containing for example the following code:

’ OR 1=1 #

When testing the chatbot, we make use of the provided input field used to
communicate with humans. According to the mentioned test oracles from [12],
we draw the conclusions for the obtained test verdicts.

When testing with the test suite for XSS, the parsed response from the SUT
indicates that the script was not triggered. Unfortunately (for the attacker),
critical parts, namely the <script> elements, were filtered out from the input
string thus preventing its execution. The response HTML contains only a fraction
of the original script, e.g. alert(document.cookie)">.

We obtained a similar result for SQLI attack related test input where the
depicted attack vector is meant to retrieve data from the database. The chatbot’s
HTTP response body shows evidence that this input has been filtered out as well
(by escaping out the apostrophe ’, which is enough to prevent the execution).

Although, we were not able to successfully trigger a vulnerability for Program
O, the testing framework at least showed evidence that Program O has no trivial
security bugs. In addition, we showed that, the overall challenge of security
testing of online chatbots can be reduced to general security testing for web
applications. In both cases, the same challenges exist, namely how to define
attack vectors and how to construct efficient detection mechanisms.

4 Related Work

To the best of our knowledge, there are no papers dealing with security testing of
chatbots. There are papers describing methods and tools for testing functionality
and usability (e.g. [24]), and also other papers considering testing of AI systems
in general [18,22]. In the general context of security testing there has been some
publication dealing with testing against certain attacks like XSS and SQLI.

In [20] the authors present QED, a system that is based on goal-directed
model checking for testing against XSS and SQLI. It uses a definition of the
vulnerability to be tested and a set of input values for test case generation. QED
targets on automated testing of Java web applications. There a model checker
is used to generate attack vectors for the SUT via searching for candidates that
are likely to detect a vulnerability.



Security Testing for Chatbots 37

Duchene et al. [15] present a testing tool for XSS that relies on fuzzing and
model inference. The underlying method is a black-box fuzzer and makes us of
a genetic algorithm with the help of an attack grammar. The work sets focus on
the input generation of XSS attack vectors by applying mutation and crossover
operators. A fitness function guides the choice of inputs for test case generation,
which attack vectors are then executed against web applications.

In our previous work [12], we use visual depictions of attacks against web
applications. There we specified attack patterns for XSS and SQLI that guide
test execution. The result is an abstract state machine that offers a high degree
of configurability and extendibility for black-box security testing purposes.

Other works that cover XSS and SQLI include [16] and [13].

5 Conclusion and Future Work

In this paper, we introduced a first version of a security testing approach to be
applied to chatbots. We claim that the topic covers a challenge of growing interest
and importance. This is due to growing interest of chatbots from industry (see
[7]). Most interestingly, the scientific literature lacks solutions for the challenge of
testing chatbots for vulnerabilities. In this paper, we briefly introduced a testing
framework for security testing chatbots and discuss first results we obtained
using an available chatbot implementation.

Although, we were not able to trigger vulnerabilities, we could show that the
framework fits well its purpose. In addition, the tests raise evidence that the
used chatbot is resistant to some common attack vectors. It is worth noting that
the current test execution framework is not limited to XSS and SQLI attacks.
In the future, we will extend testing chatbots against other vulnerabilities [9].
In addition, we want to further investigate on automated test case generation
for security testing of chatbots.

Acknowledgments. The research presented in the paper has been funded in part by
the Cooperation Programme Interreg V-A Slovenia-Austria under the project AS-IT-IC
(Austrian-Slovenian Intelligent Tourist Information Center).

References

1. Botium - new generation testing. http://www.botium.at, accessed: 2018–05-07
2. BotMan - The PHP messaging and chatbot library. https://botman.io, accessed:

2018–05-20
3. BotMill.io - We Mill Bots and Create Bot Milling Tools! http://www.botmill.io,

accessed: 2018–05-22
4. CharlieBot. https://sourceforge.net/projects/charliebot/, accessed: 2018–05-22
5. Chatbot Market Size And Share Analysis, Industry Report, 2014–2025. https://

www.grandviewresearch.com/industry-analysis/chatbot-market, accessed: 2018–
05-07

6. Chatbottest. http://chatbottest.com, accessed: 2018–05-07

http://www.botium.at
https://botman.io
http://www.botmill.io
https://sourceforge.net/projects/charliebot/
https://www.grandviewresearch.com/industry-analysis/chatbot-market
https://www.grandviewresearch.com/industry-analysis/chatbot-market
http://chatbottest.com


38 J. Bozic and F. Wotawa

7. Gartner Top Strategic Predictions for 2018 and Beyond. https://www.
gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-
and-beyond/, accessed: 2018–05-07

8. jsoup: Java HTML Parser. https://jsoup.org/, accessed: 2018–02-02
9. OWASP Top Ten Project. https://www.owasp.org/index.php/Category:OWASP

Top Ten Project, accessed: 2018–01-31
10. Program O AI Chatbot - The Friendly Open Source PHP, MySQL, AIML Chatbot.

https://www.program-o.com, accessed: 2018–02-04
11. QMetry BOT Tester. http://www.qmetry.com/qmetry-bot-tester/, accessed:

2018–05-07
12. Bozic, J., Wotawa, F.: Security Testing Based on Attack Patterns. In: Proceedings

of the 5th International Workshop on Security Testing (SECTEST’14) (2014)
13. Clarke, J., Fowler, K., Oftedal, E., Alvarez, R.M., Hartley, D., Kornbrust, A.,

O’Leary-Steele, G., Revelli, A., Siddharth, S., Slaviero, M.: SQL Injection Attacks
and Defense, 2nd edn. Syngress, (2012)

14. Colby, K.: Artificial Paranoia: A Computer Simulation of Paranoid Process.
Pergamon Press, New York (1975)

15. Duchene, F., Rawat, S., Richier, J.L., Groz, R.: KameleonFuzz: Evolutionary
Fuzzing for Black-Box XSS Detection. In: CODASPY. pp. 37–48. ACM (2014)

16. Fogie, S., Grossman, J., Hansen, R., Rager, A., Petkov, P.D.: XSS Attacks: Cross
Site Scripting Exploits and Defense. Syngress, (2007)

17. Halfond, W.G.J., Viegas, J., Orso, A.: A Classification of SQL Injection Attacks
and Countermeasures. In: Proceedings of the IEEE International Symposium on
Secure Software Engineering. Arlington, VA, USA (2006)

18. Liu, G., Liu, Q., Zhang, W.: Model-Based Testing and Validation on Artificial
Intelligence Systems. In: Second International Multisymposium on Computer and
Computational Sciences (2007)

19. Lowe, R., Noseworthy, M., Serban, I.V., Angelard-Gontier, N., Bengio, Y., Pineau,
J.: Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses.
In: Proceedings of the 5th International Conference on Learning Representations
(ICLR) Workshop. Toulon, France (2017)

20. Martin, M., Lam, M.S.: Automatic Generation of XSS and SQL Injection Attacks
with Goal-Directed Model Checking. In: 17th USENIX Security Symposium (2008)

21. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp.
463–502. Edinburgh University Press (1969), reprinted in McC90

22. Rushby, J.: Quality Measures and Assurance for AI Software. In: NASA Contract
Report 4187, Washington DC (1988)

23. Shawar, B.A., Atwell, E.: Using corpora in machine-learning chatbot systems. In:
International Journal of Corpus Linguistics, vol. 10 (2005)

24. Vasconcelos, M., Candello, H., Pinhanez, C., dos Santos, T.: Bottester: Testing
Conversational Systems with Simulated Users. In: IHC 2017: Proceedings of the
XVI Brazilian Symposium on Human Factors in Computing Systems (2017)

25. Wallace, R.S.: The Elements of AIML Style. In: ALICE A.I. Foundation (2003)
26. Wallace, R.S.: The Anatomy of A.L.I.C.E. In: ALICE A.I. Foundation (2004)
27. Weizenbaum, J.: ELIZA-A Computer Program For the Study of Natural Language

Communication Between Man and Machine. In: Communications of the ACM
Volume 9, Number 1 (January 1966) (1966)

https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://jsoup.org/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.program-o.com
http://www.qmetry.com/qmetry-bot-tester/


JMCTest: Automatically Testing
Inter-Method Contracts in Java

Paul Börding1, Jan Haltermann1, Marie-Christine Jakobs2(B),
and Heike Wehrheim1

1 Paderborn University, Paderborn, Germany
2 LMU Munich, Munich, Germany

M.Jakobs@lmu.de

Abstract. Over the years, Design by Contract (DbC) has evolved as a
powerful concept for program documentation, testing, and verification.
Contracts formally specify assertions on (mostly) object-oriented pro-
grams: pre- and postconditions of methods, class invariants, allowed call
orders, etc. Missing in the long list of properties specifiable by contracts
are, however, method correlations: DbC languages fall short on stating
assertions relating methods.

In this paper, we propose the novel concept of inter-method contract,
allowing precisely for expressing method correlations. We present JMC as
a language for specifying and JMCTest as a tool for dynamically check-
ing inter-method contracts on Java programs. JMCTest fully automat-
ically generates objects on which the contracted methods are called and
the validity of the contract is checked. Using JMCTest, we detected
that large Java code bases (e.g. JBoss, Java RT) frequently violate stan-
dard inter-method contracts. In comparison to other verification tools
inspecting (some) inter-method contracts, JMCTest can find bugs that
remain undetected by those tools.

1 Introduction

Design by Contract (DbC), first proposed by the Vienna definition language [35],
has become a popular concept for documentation, testing, and verification of
(mainly) object-oriented software. Today, DbC concepts exist for languages like
Eiffel [28], Java (JML [26]), .Net (Code Contracts [19]), C (like used in VCC [17])
or Python [31]. Typically, contracts are directly written into the code and thus
also document programs. Contracts are moreover the basis for test generation
(e.g., [7,11,14,29,30] for JML) and runtime verification (e.g., [9,13] for JML).

Contracts can refer to different entities of object-oriented programs. Most
DbC languages contain pre- and postconditions of methods on normal, i.e. non-
exceptional, behavior and class invariants. More sophisticated languages allow
to specify history constraints, behavioral subtypes, or type-state properties (call
order of methods), incorporate the description of normal as well as exceptional
behavior, and include so-called model variables as convenient way of specifica-
tion. However, all these languages cannot explicitly state method correlations.
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(1) Object o;
true → o.equals(o)

(2) Object o1, o2, o3;
o1.equals(o2) AND o2.equals(o3)
→ o1.equals(o3)

(3) Object o1, o2;
o1.equals(o2) →
o1.hashCode() == o2.hashCode()

(4) MyClass mc;
mc.incr() AND int v = mc.get() →
mc.decr() AND v == mc.get()

public class MyClass {

private int i;

@Override

public boolean equals(Object o){

if (o == null) return false;

if (o == this) return true;

if (!(o instanceof MyClass))

return false;

return i == ((MyClass) o).i;

}

@Override

public int hashCode(){

return super.hashCode(); }

public void incr() {i++;}

public void decr() {i--;}

public int get() {return i;}}

Fig. 1. Four contracts (left) on the Java method equals and the Java methods incr

and decr, respectively, and an example class violating contract 3 (right).

Method correlations describe interactions between methods, i.e., the effects
of a method execution on the results of other methods or the relation between
method results. Such correlations often exist and constitute an integral part of
the (intended) behavior of classes. Even the Java API documentation informally
states such correlations and expects application classes extending predefined
Java classes or implementing Java interfaces to satisfy these. The most prominent
one is the contract on the methods equals and hashCode of class Object:

“If two objects are equal according to the equals method, then calling
the hashCode method on each of the two objects must produce the same
integer result.” (From: Java API documentation of class Object)

While this example concerns a general case (all classes must adhere to this
behavior), correlations might also be application specific like one method having
the inverse effect of another (e.g. an increment and a decrement). Today’s DbC
language, however, fall short on specifying method correlations.

In this paper, we rectify this situation by proposing a new type of contract,
called inter-method contract, that allows to specify method correlations. We pro-
pose the language JMC (Java Method Contracts) for writing inter-method con-
tracts for Java. JMC allows to state relations between arbitrary methods of (not
necessarily the same) classes. In its syntax, JMC closely follows Java and is thus
easy to use for Java programmers. As our running example consider the four con-
tracts given in the left of Fig. 1. The first three contracts specify requirements
on the equals method: contract (1) states reflexivity, contract (2) transitivity,
and contract (3) the above mentioned interplay between equals and hashCode.
Contract (4) specifies that a decrement is the inverse of an increment, a prop-
erty not expressible in existing DbC languages. All contracts take the form of
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an implication (denoted by →): if the first part in the implication is “true”, the
second part should hold as well. Expressions and method calls in JMC follow
standard Java syntax.

With JMCTest we furthermore developed a tool that automatically tests
JMC contracts on Java classes. JMCTest is built on Java’s reflection mecha-
nism to retrieve constructors of classes under test and to call these as to fully
automatically generate objects for test input. Using this input, JMCTest car-
ries out tests evaluating the validity of JMC contracts. Being a dynamic analysis
tool, JMCTest aims at finding violations of contracts, not at proving their cor-
rectness. For the example class of Fig. 1, JMCTest easily finds a violation of the
equals-hashCode contract (as the class specializes equals to the object variable
of the class, but not hashCode).

To evaluate the effectiveness of JMCTest, we applied it on real-world pro-
duction software. Our experiments show that JMCTest can find contract vio-
lations in large code bases and detect violations that static analyzers miss.

2 Inter-Method Contracts

Inter-method contracts describe correlations between methods. We next start
with presenting the syntax and semantics of inter-method contracts.

Syntax. The BNF-style grammar shown in Fig. 2 sketches the syntax of inter-
method contracts like the ones shown in Fig. 1. Terminal symbols are given in
quotes, * denotes iteration (including 0 times) and + iteration at least once.
To ease contract specification and test generation, we decided to rely on Java
syntax for the four non-terminals VARDECLARATION, BOOLEXPR, METHODCALL, and
VARDEFINITION (thus they are not explicitly specified in the grammar).

An inter-method contract specification consists of a set of inputs followed
by the actual contract specification. The inputs of a contract state its partici-
pants and their types. During testing, different (Java) objects will be generated
as concrete participants. The actual contract specification follows the concept of
inference rules and consists of a premise (the part in front of the arrow) and a con-
clusion. Both, premise and conclusion, consist of a sequence of statement blocks
which inspect, manipulate or derive information about objects or classes.1 We
distinguish two types of statement blocks: predicate blocks and function blocks.

Predicate Blocks. The predicate blocks of a contract determine its validity.
More concretely, each predicate block describes a property on the participants
of the contract and possible additionally declared entities. To avoid misun-
derstandings of contracts caused by mistakenly ignoring operator precedence,
predicate blocks must not mix conjunction and disjunction.

Function Blocks. In contrast to a predicate block, the task of a function block
is limited to changing the state, e.g., to properly initialize or configure objects,
and to extract and store information for later usage.

1 An empty sequence is an abbreviation for the one-element sequence true, see con-
tract (1) in Fig. 1.
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SPECIFICATION ::= INPUTS CONTRACT

INPUTS ::= VARDECLARATION+

CONTRACT := STATEMENTBLOCKS ’->’ STATEMENTBLOCKS

STATEMENTBLOCKS ::= STATEMENTBLOCK*

STATEMENTBLOCK ::= PREDICATEBLOCK | FUNCTIONBLOCK

PREDICATEBLOCK ::= DISJUNCTION | CONJUNCTION

DISJUNCTION ::= BOOLEXPR | BOOLEXPR ’OR’ DISJUNCTION

CONJUNCTION ::= BOOLEXPR | BOOLEXPR ’AND’ CONJUNCTION

FUNCTIONBLOCK ::= FUNCTIONAL+

FUNCTIONAL ::= METHODCALL | VARDEFINITION

Fig. 2. Grammar for inter-method contracts

As an example, consider contract (3) of Fig. 1. The contract declares two partici-
pants (objects o1 and o2). Its premise and conclusion consist of a single predicate
block. Also, contract (2) has just one predicate block in the premise. The AND
operator joins two boolean expressions (BOOLEXPRs), not predicate blocks.

Semantics. Our inter-method contracts use an execution-based semantics, which
builds upon the Java semantics. This has the advantage that the semantics is
well-known to the user and we avoid a semantic gap between contracts and tests.
To execute a contract, we require concrete values for the inputs (participants).

Definition 1. A concrete input for a contract is a function that maps each
input variable (participant) of the contract to a value/object of a proper type.

Given a concrete input for a contract, we can define the semantics of the
contract on that concrete input. To this end, we first of all need to define the
execution of the contract with the given input. Due to side-effects of e.g. method
calls in function blocks, the execution order of statements matters. Our semantics
uses a sequential execution order that starts with the first block of the premise
and ends with the last block of the conclusion. The statements in predicate and
function blocks are also executed from left to right. However, there is a difference
between the execution of predicate and function blocks. While function blocks
only need to be executed, for predicate blocks also the validity of the property
checked by that block must be recorded. During testing, the validity may be
stored directly in a (boolean) variable or encoded implicitly in the control-flow.
Furthermore, a predicate block will be executed lazily, i.e., as soon as its result
(boolean value) is fixed, the remaining expressions are not executed. Thus, we
use the Java operators && and || for conjunction and disjunction during testing.

Next to the execution, we must also define the validity of a contract on
that concrete input. Testing aims at finding contract violations. Thus, we define
when a contract is violated. Since thrown exceptions are ambiguous, they may be
thrown because a contract is violated or the contract is improper (e.g. violates
method preconditions), we exclude exceptions from our violation definition.
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Definition 2. A concrete input violates a contract if (1) all predicate blocks
occurring in the premise evaluate to true, (2) at least one predicate block occur-
ring in the conclusion evaluates to false, and (3) the execution terminates
normally.

Note again that ANDs and ORs are not used to join predicate blocks, just
boolean expressions. This semantics of contracts is the basis for test generation.

3 Test Generation

The goal of test generation is to automatically build JUnit tests [23] that check
whether a given set of classes adheres to a contract. The JUnit tests depend on
two main building blocks: (1) checking whether concrete inputs violate contracts
and (2) generating the concrete inputs for testing (test input data generation).

Generating Violation Checking Test Code. First of all, we need code that checks
whether a concrete input violates the contract. To achieve modularity, we decided
to generate a method testContract for that check and to provide the concrete
input via parameters as e.g. done in parameterized JUnit tests. Input generation
itself is done by the second building block. The testContract method has the
following signature

int testContract(list of input types)
where list of input types is a placeholder for the list of parameters. The list
of parameters will contain one parameter for each input variable of a contract.

We use an integer return value instead of a boolean one and no assert state-
ments in the method testContract to be able to return some more information
about the outcome of the check (0 = premise not fulfilled, 1 = premise and
conclusion fulfilled, 2 = contract violated). More specifically, for each contract,
we generate a violation check method of the following form. The generation of
the parameter list, the premise and the conclusion is contract dependent and
explained below.

public int t e s tCont rac t (<parameter l i s t >) {
<premise>
<conc lus ion>
return 1 ; }

Generating the parameter list is simple. Since in the INPUTS of a contract we
use variable declarations without initialization to specify the input variables,
we simply turn the INPUTS into a parameter list. For the premise code, we
need to translate a sequence of statement blocks. The idea is to generate a
sequence of Java statements by translating each statement block into a Java
statement. Function blocks are easy (since this is already correct Java code): we
just take them as they are. In contrast, a predicate block is translated into an
if-statement as to capture the semantics of contracts, which crucially depends
on the evaluation of predicate blocks. The if-statement takes the following form:
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i f ( !(< property >)) {
return 0 ; }

The if-statement checks whether the property of the predicate block is not ful-
filled. In this case, the value 0 is returned, i.e., the contract is not violated on
the concrete test input because the premise is already not fulfilled. Note that
this is correct since a violation (see Definition 2) requires all predicate blocks in
the premise to evaluate to true. The property of a predicate block itself is either
a disjunction or a conjunction, and thus translated either using || or &&.

Generating code for the conclusion (second STATEMENTBLOCKS element in a
contract) is similar to the generation of the premise code. The only difference is
the return value, which for the conclusion is 2 when a property is not fulfilled.
Figure 3 shows the testContract method generated for the equals-hashCode.

public int t e s tCont rac t ( Object o1 , Object o2 ) {
i f ( ! ( o1 . equa l s ( o2 ) ) {

return 0 ; }
i f ( ! ( o1 . hashCode ( ) == o2 . hashCode ( ) ) ) {

return 2 ; }
return 1 ; }

Fig. 3. Generated testContract method checking violation of equals-hashCode

Detecting a contract violation with a single concrete input is unlikely. A con-
tract must be checked with many different concrete inputs. While we could have
created one test case per concrete input, we decided to bundle all violation checks
for a particular class into one JUnit test case and report violation details in a
log. This improves the clarity of the test result. The method testContractImpl
checks such a set of inputs, calling for each input the testContract method,
and logs the following data.

Logging Test Inputs. For each observed contract violation or exception, the
toString() representations of all input values is logged. For the first n2

violations or exceptions, the input values are also serialized to a file associated
with the respective violation or exception.

Logging Statistical Data. Besides test inputs, the testContractImpl method
logs statistical data about the contract checks for the implementation (class).
A list of this data can be found in Table 1.3

The method testContractImpl ends with the JUnit assertion
assertTrue(failures == 0 && exceptions == 0);

referring to the collected statistical data, i.e., JUnit signals a successful test when
no test input violates the contract nor causes an exception to be thrown.
2 The number n is user-configurable.
3 The ratio of PremiseFF to Runs is a metric indicating how many of the generated

tests are relevant for contract checking.
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Table 1. Logged statistics

Name Description

Runs Number of executions of method testContract

PremiseFF Number of executions of method testContract with fulfilled premise

Failures Number of executions of method testContract with violations

Exceptions Number of executions of method testContract which threw exceptions

FailRate Failures * 100/PremiseFF

Generating Test Input Data. To execute test cases, we need concrete inputs.
We build the concrete inputs from input data given for each input variable.
Hence, we need to generate input values for each type occurring in the INPUTS
of a contract. Note that with respect to coverage, we need not achieve coverage
of the testContract method, which existing white-box input generators would
likely try, but rather of the contract and the methods involved in the contract.
Thus, we decided to use an efficient, black box strategy that mainly generates
input values randomly. In addition, we allow user guidance to steer or restrict
the random generation. Table 2 summarizes the configuration options for test
input generation. In our random generation, we distinguish between primitive
types, Strings, and other object types.

Table 2. Configuration parameters for test input generation

Type Options Description

Int Sampling Values for ints chosen at random, range and number
parameterizable

Fixed Values for ints user defined

Double Sampling Values for doubles chosen at random, range and number
parameterizable

Fixed Values for doubles user defined

String Sampling Values for Strings chosen at random, pattern and number
parameterizable

Fixed Values for Strings user defined

Object Depth Maximal nesting depth in constructor calls.

AllowNull Allow/Disallow null as parameter in constructor calls
above Depth

Creation Search (all constructor combinations) or Random samples

#Empty Number of objects constructed with parameterless (empty)
constructor

#NonEmpty Number of random objects constructed with other
(non-empty) constructors (only if Creation is set to Random)
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Primitive Data Types. We use a rather standard generation for primitive data
types. For boolean types, the test generator uses both values true and false.
In all other cases, the test generator relies on a predefined selection from the
range of the data type. The selection depends on the configuration and consists
of the fixed set and a number of random values from the sample range.

Strings. Whenever a String value is required, the test generator chooses the
value from a predefined set of String literals. This predefined set consists of a
set of user-provided Strings and a fixed number of randomly created Strings.

Objects. In contrast to the previous values, arbitrary objects cannot be repre-
sented by literals. To create objects, one must call constructors. Depending on
the constructor, parameter values are also required. For primitive data types and
Strings as parameters, the predefined value sets described above are used. All
other objects have to be created, which again requires calling constructors and
building objects for their parameters. The nesting depth of object creation is set
by the user. Beyond that limit, only null values are used to avoid infinite object
creation. By default, the test generator does a search, i.e., via Java’s reflection
mechanism it retrieves all available constructors of a class and calls these with
all combinations of parameter values available, which is rather exhaustive. To
speed up the test process, the user can fix the number of created objects for each
input variable with an object type. In this case, the constructors are selected ran-
domly for each object creation. Additionally, the user may add the null value
and decide if the parameterless constructor should be used multiple times.

JUnit Test Generation. Knowing how to check contract violations and how to
generate test input data, we have everything at hand to generate the actual tests.
To easily identify the generated tests for a contract, we decided to generate one
JUnit test class per contract. The class is named after the contract. The following
code skeleton illustrates the structure of the generated JUnit test class.

// imports

public class <cont rac t name> {
// set-up

// test cases

// testContract and testContractImpl

// testImplXXX methods }

The import section ensures that the types, the classes under test, and the JUnit
elements are known. The set-up section hard codes the test values for primitive
data types and Strings, initializes the object generator, and ensures that for each
test case the object generator creates test values for all input objects that are
not under test. Furthermore, it sets up the loggers.

The third part adds the test cases. Next to the two methods testContract
and testContractImpl described above, there exists one test case per imple-
mentation (class XXX under test).4 Each test case tests whether the respective
4 Note that we could have used one parameterized JUnit test instead, but we think

our solution simplifies the detection of the contract violating implementations.
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class under test sticks to the contract. All test cases are defined by the same
schema illustrated by the following piece of code.

@Test
public void testImplXXX () {

XXX[ ] cut =
(XXX[ ] ) ob jectGenerator . c r ea t e Input (XXX. class ) ;

t e s tContract Impl ( . . . , cut , . . . ) ; }
A test case is described by a testImplXXX method. The method is annotated

with the @Test tag to tell the JUnit framework that the method should be treated
as a test case. During its execution, it generates the input values for those input
variables that are under test5. To this end, it uses the creation method of the
object generator. Thereafter, it calls the testContractImpl method to test the
implementation against the contract. For the parameters, it uses the local array
cut and the test values defined in the set-up part.

4 Implementation and Evaluation

We briefly explain our implementation of this testing framework (called
JMCTest) and report on the results of our experimental evaluations.

4.1 JMCTest

JMCTest is a research prototype written in Java that supports specification
and automatic testing of inter-method contracts for Java.

Figure 4 describes the workflow of JMCTest. The user starts with the con-
tract definition using the graphical contract editor of JMCTest. Thereafter, she
configures and starts the test generation for that contract. In her configuration,
she specifies how to generate input data. Additionally, she provides a jar-file
that defines which class implementations to test. Based on the given configu-
ration, JMCTest automatically creates a set of JUnit tests, one for each class
in the jar-file. After all tests are generated, they are executed with the JUnit
4 Framework [22]. Finally, the number of executed and failed test cases as well

5 Currently, all input variables under test must have the same object type.
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as the failed test cases together with their failure reason are reported. Detailed
information about the executed and failed test cases are provided in the log files.

4.2 Evaluation

We carried out a number of experiments to evaluate the effectiveness and effi-
ciency of JMCTest. Since our JMC language contains a large part of Java’s
expression language, we easily expressed the informal Java API contracts as
well as all contracts from our projects in JMC. Writing contracts in JMC is
effective.

Comparison with Other Tools. For the evaluation, we wanted to compare
JMCTest with other analysis tools (for Java). As there have been no inter-
method contracts before, the number of tools checking a comparable sort of
properties is limited. Model checkers like Java PathFinder [34] are designed to
check specific properties of programs and thus cannot directly be used for inter-
method contracts. Nevertheless, we found two categories of tools that principally
can check at least some form of inter-method contracts: (a) property-based test-
ing tools (similar to QuickCheck [15]) and (b) bug pattern detection tools. To
decide against which tools to compare JMCTest, we took a closer look at some
tools and evaluated them with respect to the following criteria:

– for testers only: the ability to automatically generate test input, for primitive
data types as well as for objects,

– the ability to check arbitrary contracts, possibly via an encoding of them in
a different form (e.g., property),

– the ability to work on a jar-file and test all classes in it,
– the ability to return all errors found (vs. stop with the first error found).

In the first category, we chose the property-based tester JCheck6 found at
GitHub. There were more options available, but none seemed to be frequently
used. For the second category, we chose three tools: EqualsVerifier7, which
is specifically tailored to properties of the equals-method, FindBugs [2,22], a
static analysis tool frequently employed today (e.g. also at Google) to find com-
mon bug patterns in Java programs, and RANDOOP [30], a feedback-directed
random test generator. An alternative for FindBugs could have been PMD8,
but we decided not to have two tools using the same basic checking princi-
ple. Table 3 provides a summary of the evaluation. Due to their limitations e.g.
on input generation, JCheck and EqualsVerifier are improper for auto-
matic contract checking. Thus, we only compare JMCTest with FindBugs and
RANDOOP.

6 http://www.jcheck.org/.
7 https://github.com/jqno/equalsverifier.
8 https://pmd.github.io/.

http://www.jcheck.org/
https://github.com/jqno/equalsverifier
https://pmd.github.io/
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Table 3. Functionality of tools considered for the comparison

Tool Input generation Arb. contracts jar All errors

Primitive data type Object

JCheck � × � × �
EqualsVerifier � × × × ×
FindBugs n.a. n.a. × � �
RANDOOP � � × � �
JMCTest � � � � �

Claims. Besides showing that it is feasible to use JMCTest for testing inter-
method contracts, our experiments aimed at evaluating the following claims.

Claim 1 JMCTest can find real violations of inter-method contracts.
Claim 2 JMCTest can find violations that other tools do not detect.
Claim 3 JMCTest is fast enough to be integrated into the build process.

For the evaluation of these claims, we planned the following experiments.

Claim 1. We used JMCTest to check the equals-hashCode contract on three
real-world software projects: (1) CPAchecker (a software analysis tool, [5]),
(2) JBoss (a J2EE middleware framework) and (3) Java rt.jar (the Java system
library). We restricted ourselves to the equals-hashCode contract since it is
universally applicable to all Java source code and Java programmers are trained
to follow this contract. Thus, violations of the contract constitute a bug.

Claim 2. To evaluate claim 2, we compare JMCTest against FindBugs and
RANDOOP. FindBugs checks for specific patterns, e.g., classes overriding either
equals or hashCode, to detect violations of the equals-hashCode contract.
RANDOOP generates random sequences of constructor and method calls and
e.g. checks that the resulting objects meet the equals-hashCode contract.

Claim 3. For the evaluation of the last claim, we run JMCTest on the three
software projects with different configurations (in particular, differences in the
number of objects constructed). In the experiments, we wanted to see the runtime
and the number of objects to be constructed until bug finding converges, i.e.,
until no more bugs are found when the number of test cases is increased. This
helps to see whether it is possible to run JMCTest during a nightly build.

Results. We performed our experiments on a machine with an Intel i5-300HQ
v6 CPU with a frequency of 2.3 GHz, 16 GB of memory, and a Windows 10
operating system. Execution times are reported in seconds. Note that a ground
truth for the experiments, i.e., the real number of violations of the equals-
hashCode contract in the three software projects, is not known.
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Table 4. Overview of the JMCTest analysis

Software Tested classes Reported errors #NonEmpty objects Depth

CPAchecker 316 3 50 3

JBoss 214 9 50 3

Java rt.jar 1088 124 100 3

Claim 1. For all three software projects, Table 4 shows the number of
classes9 tested against the equals-hashCode contract, the number of contract
violations found as well as the number of objects constructed during the
test using non-empty constructors (i.e., not the parameterless construc-
tor) and the nesting depth of object creation. We see that JMCTest
detects contract violations in all three projects, even in the Java runtime
library (Java rt.jar). Violations in Java rt.jar were found in the package
com.sun.org.apache.bcel.internal.generic.

Claim 2. We let FindBugs, RANDOOP, and JMCTest analyze the same
classes and compared the number of reported violations. Figure 5 shows the
results of this comparison in two bar charts. Each bar chart shows for every
analyzed software project10 the number of violations reported by FindBugs
(RANDOOP), by JMCTest, by both (i.e., the intersection of bugs found), and
by JMCTest only (i.e., bugs found by JMCTest, but not by the other tool).
We see that JMCTest always finds some violations that are not detected by
the other tool (rightmost bars). FindBugs and RANDOOP always find more
violations than JMCTest. A manual inspection of some randomly chosen warn-
ings revealed that many of FindBugs’ violations are false warnings. Some real
bugs are, however, missed by JMCTest. Real bugs reported by FindBugs are
missed because JMCTest fails to construct objects of the classes under test
due to (1) abstract classes (no object construction possible) and (2) missing
access permissions, which disallowed object construction. As such problems are
inherent to our technique (testing needs object creation and method execution),
we see no way of circumventing them. For two bugs reported by RANDOOP,
JMCTest’s random input generator did not build suitable inputs, although in
principle it could. The other three are missed because JMCTest cannot deal
with generics and does not test the equals-hashCode contract with objects of
different classes.

Claim 3. Finally, for claim 3 we were interested in runtimes of JMCTest. To
be practically usable, testing results should be obtained in a reasonable amount
of time. Figure 6 shows the results for the three software projects. On the x-axis
the number of non-empty constructor calls made during the tests is given. The
y-axis gives the runtimes in seconds. For both CPAchecker and Java rt.jar,

9 We tested all public classes which did not use Object.equals.
10 We compare RANDOOP and JMCTest only on the CPAchecker project because

RANDOOP failed on Java rt.jar and got stuck on JBoss.
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test results are obtained within some seconds. For JBoss, runtimes are higher.
This is due to the complicated nature of constructors in JBoss, which for instance
have to bind ports. We were also interested in finding out how many constructor
calls are necessary to find all bugs: for CPAchecker and JBoss the number of
bugs remains stable after testing with 50 constructor calls, for Java rt.jar it is
100 constructor calls. More experiments are, however, needed to find out what a
good value for the #NonEmpty configuration parameter is. Nevertheless, even
if we set this configuration parameter to 150 or 200, JMCTest finished after a
few minutes. Thus, JMCTest is fast enough to run as part of the build process.

In summary, the experiments show that JMCTest can be practically
applied, also on large code bases, and can detect contract violations, which other
tools do not detect.



52 P. Börding et al.

5 Related Work

Behavioral Contract Languages. One of the first contract language is the
Eiffel language [28]. Nowadays, various contract languages exist. All of them
are either embedded contracts or contracts defined by an additional language.
Embedded contract languages like e.g. jContractor [24], TreatJS [25], the Spec#
programming language [3] or the conditional properties used by QuickCheck [15]
directly write contracts in the programming language itself. In contrast, con-
tracts like Jass [4], the Java modeling language (JML) [26], Praspel [18], and the
VCC annotated C [17] are defined in an additional language, whose sole purpose
is to specify the respective contract. Nevertheless, the mentioned contracts are
often embedded in the comments of the source code. We also developed a sepa-
rate contract language. Instead of pre-, postconditions, invariants, protocols or
refinement, our language tackles inter-method relations. The only other contract
languages that can express inter-method relations are conditional properties [15]
and parametrized unit tests [33], which express properties by arbitrary function
code. In contrast to our approach, both mix specification and testing code, which
impairs the developer’s access to inter-method contracts.

A different type of contracts are algebraic specifications of abstract data
types [21]. Algebraic specifications use algebraic equations, the contracts, to
state relationships among operations of abstract data types. Our inter-method
contracts cover these relations, but allows us to specify relations beyond abstract
data types, e.g., relations between methods of different classes.

Checking Behavioral Contracts. Techniques like static analysis [1,3,8], run-
time verification [3,4,18,20,26], or testing [7,11,14,16,27,29,30,32,36] are used
to check behavioral contracts. Next, we focus on testing, the technique we apply.

Few test approaches [16,32] automatically test fixed contracts. JCrasher [16]
creates tests to inspect the robustness of public methods. Pradel and Gross [32]
test substitutability of subclasses. Both randomly sample primitive values. Con-
structors and methods with a proper return type are used to create objects.
JMCTest checks user-defined contracts, also uses random primitive values in
addition to fixed values, but only uses constructors for object creation.

Like us, many test approaches, e.g., [7,11,12,27,29,30,36], use the contract
specification to generate a test oracle, which decides if a test fails or passes. Those
approaches, however, build the oracle from class invariants and a method’s pre-
and postconditions and differ in their input generation.

The JML-JUnit framework [11] is semi-automatic and generates tests based
on user-specified inputs. Bouquet et al. [6] build tests that cover all parts of a
(method’s) specification. Often, test inputs are generated randomly. Jartege [29]
randomly creates sequences of method calls to generate input objects. Similarly,
JET [12] applies a random approach in which input objects are created by a
constructor call followed by a sequence of method calls mutating the object.
Both, Jartege and JET rely on JML specifications. In contrast, RANDOOP [30]
and ARTGen [27] check contracts provided by classes implementing specific
interfaces. RANDOOP [30] builds a test case concatenating randomly chosen
existing sequences and extending them with a random method call. ARTGen [27]
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performs adaptive random testing [10], i.e., it selects the test case from a pool
of test inputs that is farthest away from the already used test cases. The pool
is modified randomly, calling methods on existing objects or adding new objects
created from random method sequences. QuickCheck [15] tests properties defined
by functions in the code. Test cases are created randomly with (user-defined)
generators. Parametrized unit tests [33], unit test methods with parameters sim-
ilar to our testContract method, check properties defined in the test method
code. Often, test inputs are generated with symbolic execution to execute the
parametrized unit tests and to achieve high code coverage.

In contrast to JMCTest, Korat [7] and JMLAutoTest [36] systematically
explore a bounded search space. Korat [7] uses a finitization code that describes
the search space and a predicate checking if an input is valid. JMLAutoTest [36]
also relies on finitization code. Provided with a finitization and a JML specifi-
cation, it systematically generates all non-isomorphic test cases, excluding those
which violate class invariants, and checks them against the JML specification

JMCTest uses the inter-method contract as test oracle and generates inputs
from random samples and fixed inputs. However, it is limited to constructor calls
for object generation. While conditional properties [15] and parametrized unit
tests [33] subsume our inter-method contracts, in contrast to QuickCheck and
parametrized unit tests, JMCTest is fully automatic.

6 Conclusion

For more than 20 years, languages and tools have been developed to support the
idea of Design by Contract. Regardless, existing languages and tools mostly focus
on pre-, postconditions, and invariants. This makes it difficult if not impossible
to state and check contracts that focus on correlations between methods.

Our inter-method contract language offers a mechanism to formally describe
method correlations and, thus, enables their automatic validation. Due to its
similarity to Java, our language is easy to learn. Furthermore, we did not stop
at the language level, but we carried on with tool support for specification and
validation of inter-method contracts. Our prototype tool JMCTest provides a
user interface for inter-method contract specification. It can automatically test
a set of implemented classes against a specified inter-method contract. Although
JMCTest is an academic prototype, it already detected real violations of the
equals-hashCode contract in existing, well-maintained software projects. More
impressively, some of these violations have not been found by other tools.
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Abstract. The paper introduces a testing solution for evaluating Ambi-
ent Assisted Living systems by means of 3D simulations generated with
a game engine, complex event processing, and classifiers. The solution
aims to ensure that: (1) some key features of the problem appear in the
simulation, and (2) the assistive solution interacts with the persons in the
right way. A specific testing solution is needed because of the evolving
nature of the simulation (each iteration of the requirements specification
involves changes in the activities within the simulation) and the assis-
tive solution (it operates in real time and evaluating its performance
may require manually inspecting hours of simulation). The approach is
illustrated with a proof-of-concept experiment.

Keywords: 3D simulation · Ambient Assisted Living (AAL)
Real-time simulation · Requirements gathering

1 Introduction

One of the main areas of application of Ambient Intelligence (AmI) is the support
for improving the autonomy and quality of life of ageing population with Ambient
Assisted Living (AAL) solutions [8]. They cover many needs of the daily life, such
as facilitating the administration of medication, fall detection, and monitoring
of chronic diseases or common activities, among others.

Although these tasks are usually performed by care-givers, AAL technologies
are contributing to the assistance of older persons at home with new services,
which can work 24 h a day and reach a larger population. The development of an
assistive solution must take into account the participation of the end-users in its
process, which has to be user-centered and co-creative [6], to prevent technology
rejection situations. Co-creation happens usually in the context of expensive
facilities, such as living labs.

Some recent tools [7] are translating the co-creation effort to the computer,
addressing both the modeling of the problem and its corresponding assistive solu-
tion through computer 3D simulations [3]. 3D simulations are easier to under-
stand than technical specifications, and do not require special skills by the users.
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This facilitates communication in multidisciplinary teams. Though this is an
advance, they have led to new problems: how to ensure that each new iteration
of the 3D simulations is consistent with previous iterations, and how to verify
that the assistive solution and the simulated characters within are behaving as
they should. Since simulations are run in real time, validation requires some sort
of time accounting while analyzing the events that are produced by the sim-
ulation. A way to do this is by using Complex Event Processing (CEP). This
technique analyses incoming events from some user defined sources and applies
user-defined rules to find patterns in them. We apply this feature to arrange unit
tests to support the analysis of the 3D simulation progress.

The contributions of this work are an informal formulation of a unit test and
the identification of the required elements for the validation of 3D simulations of
AAL solutions. Section 2 presents an informal unit test definition. This is followed
by a description of the deployment structure of the solution in Sect. 3. Section 4
presents a proof of concept, an example of memory loss scenario, which has
been developed using simulations generated with the AIDE (Ambient Intelligence
Development Environment) software framework [5], which is based on the use
of model driven development techniques [4], and has been applied in different
domains [2]. Finally, Sect. 5 summarizes the findings.

2 A Unit Test Definition

The unit test considers either the validation of simulation components (be it the
behavior of its constituents, including the assistive solution) or the simulation
as a whole. If the assistive solution is conceived within a use case of a certain
technology in one or many scenarios, a single simulation represents one (prefer-
ably) of those scenarios. The developer expects to model a scenario that reflects
some problem of a person (for instance, a person at home forgets to close a cup-
board door because she initiates another activity), and an assistive solution (for
instance, something detects the situation and reminds her that the door should
be closed).

The testing goal is to generate validation instructions for each of these two
issues (the description of the problem and the assistive solution), and both are
assessed according to the progress of the simulation. The simulation consists of
several elements, which imply specific validation issues:

Avatar. A character that performs actions within the simulation and interacts
with the assistive solution. Avatar validation implies that (1) the character is
in certain locations and that (2) it initiates, and (3) completes certain activities,
successfully or not. The outcome of the activity, since it may involve an interplay
with the assistive solution, needs to account the sensory input of the avatar (e.g.,
determining if anyone has talked to the character) or the status of some elements
in the environment.

Activities. Activities in the simulation are presented as graphical animations of
the gestures the character should make, such as running, walking, falling, water
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tap open, switch on light, to cite some. Activities validation implies that
(1) they occur along the simulation in a particular sequence, and that (2), despite
the animation being used, the character is showing certain gestures, such as bend-
ing the arm, even-though there is no explicit isolation animation for that and it
is just a part of a bigger animation. The outcome of the activity is evaluated at
the avatar level.

Environment. The place where activities take place: a house, a mall, an uni-
versity building, etc. This includes Actuators, objects that allow avatars in the
simulation to interact with the environment, such as power switches, TV remote
control, water taps, etc. Environment validation implies that (1) the objects
in the environment produce the expected stimulus at the expected order, such as
a TV showing the expected TV program, and that (2) they perceive the avatar’s
or assistive solution’s actions, such as a fridge door being closed by the avatar
or a house alarm being activated by the assistive solution.

Sensors. They provide information on what is happening in the simulation,
from an avatar, the environment, or the interaction among them. They intend
to reproduce the expected output of a real sensor. Sensors validation implies
(1) determining that the expected sensory input is present at the necessary
moments as a consequence of some actions performed along the simulation by
the character, other objects, or the assistive solution itself. Also, (2) that the
sensor output matches in frequency and data quality those values obtained by
real sensors. For instance, some sensors need to be modeled with noisy signals
because of limitations of the current technology.

2.1 Validation Success Criteria

Evaluating the success of an assistive solution-simulation interplay requires tak-
ing into account two issues. First, that the simulation continuously produces
streams of events that have to be processed on-line (if the simulation is a
long one and the developer wants to identify failures sooner) or off-line (if the
simulation is a short one). Second, that the interaction of the assistive solution
and the simulation may be intermittently successful along the simulation.

The idea of time window is used to partially deal with these two issues. A
time window classifies the events from the simulation into groups correspond-
ing to those produced within two instants of time. The size of the time window
will be defined by the developer depending on the domain.

The success of the simulation-solution will then be defined in terms of: what
situations should occur, or should not, within the time window; and whether what
happened in some window, should or should not happen in some/any/all existing
time windows along the execution.

3 Testing Infrastructure

The software components that are necessary for this validation are run within
three separated nodes, as shown in Fig. 1. Simulations are created and run with
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Fig. 1. UML deployment diagram showing nodes and artifacts involved in the testing

the AIDE tool. AIDE also enables communication between the Solution and
the Simulation. The Tester is the one being introduced in this paper.

The Solution runs outside the Simulation, so as to reproduce real situa-
tions where delays in the decision making may lead to failures in assisting people.
It can be made of emulators (e.g., Android emulators or IoT emulators) or plain
processes enabled with communication facilities towards the simulation. It inter-
acts with the Simulation through AIDE [5] middleware, obtaining information
from the simulated sensors deployed within the simulation (e.g., movements of
some limbs of the avatar) and triggering actions (e.g., speaking to the avatar).
The Simulation uses the open source 3D game engine JMonkey to run the
actions as defined in a custom visual language [1]. The simulation runs in real
time, though it can be accelerated to some extent.

The Tester is the node performing the validation of the simulation and the
interplay of simulation and the solution. It initializes and launches a Complex
Event Processing (CEP) instance with the necessary files containing the Specific
CEP rules, the Trained classifiers, and a particular time window (CEP is
configured with one). The Specific CEP rules analyze the stream of events
as produced by the simulation and generates success/failure states within each
time window. The rules identify patterns in the generated events along the time
window and generates new labeled events, such as the avatar is in the living
room or the avatar is running. Other CEP rules combine the new labeled events
with other pieces of information to implement the success criteria within a time
window and across time windows.

Some low level information cannot be informed directly by the simulation,
such as whether a door is open or closed, if there are people speaking, or if the
character is raising a hand. Focusing on the later, if the situation to be repro-
duced is a character that cannot perform movements with an arm, this cannot
be identified by just checking what animations are being run. The only way is
by checking position and movement data associated to the hand component in
the simulation. Trained classifiers allow to deal with such cases. They are
connected directly with the Simulation and classify low level events, e.g., posi-
tion of elements, into some predetermined categories, such as the arm is being
moved. The classifiers have to be trained to the situations to be recognized,
though, which may not be trivial for all developers.
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4 Proof of Concept

This framework is illustrated with an assistive system that should detect when
doors are left open. This case is relevant in cases of memory loss, which are fre-
quent in patients with Alzheimer. Table 1 describes the sequence of validations to
be performed and that affects both objects in the environment (the fridge door,
the glass), the location of the avatar (kitchen and living room), and the activities
(walking, drinking, opening doors, sitting down). Some low level evaluation is
required to decide.

Table 1. Definition of the activities of the simulation and the corresponding validation
steps

Fig. 2. Result of all the tests after running the 3D simulation of the scenario

It is expected that step number 5 fails because the patient forgets to close
the door. Only an assistive solution will change the situation and make the test
complete successfully. The assistance could be as simple as reminding the avatar
that the door was left open. To achieve so, the challenge is to determine the
minimal amount of affordable sensors to be deployed in the simulation. The use
case assumes the sensors are located over the avatar (chest - s1, left hand - s2,
right hand - s3). The generated sensor feed is processed by the assistive solution,
or the validation component, the same way as a real sensor feed. With this infor-
mation, it is possible to detect gestures with specific trained classifiers, such as
get up/get down hand. The execution of the simulation with the analysis of the
outputs made with the CEP infrastructure is presented in Fig. 2. The streams of
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events are analyzed and the success of each step decided. Each validation step is
associated with a time window at the right hand part of the figure. To the left,
an actual 3D simulation snapshot is presented. To the right, a sample report
generated by the unit test is presented where step 5 fails. Now, it would be up to
the co-creation team to determine what assistive solution can solve this issue.

5 Conclusion and Future Work

This paper has introduced elements necessary to validate 3D simulations that
capture a daily living issue and permit to address the features required from
an assistive solution. The paper has presented the elements to be validated and
illustrated the general approach using complex event processing technology com-
bined with classifiers to analyze low level raw data. The result is validated in a
3D scenario where one of the validation steps fails and can only succeed when the
assistive solution is attached. This necessary failure could be maintained along
the development to ensure the assistive solution is really making a difference.
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Abstract. This contribution studies testing behavioral aspects of a
given UML and OCL model. In our approach, a so-called model validator
can automatically generate test cases (object models) by using configu-
rations for the object models and manually formulated OCL invariants.
But expressing OCL invariants can be complex and difficult, especially
for novel or occasional modelers. In this contribution, we present an app-
roach to automatically transform a diagrammatic test case schema into
a corresponding OCL invariant. The schema is a visual representation
of a behavioral test scenario constructed by the developer and which
is instantiated by the model validator to achieve different concrete test
cases. This approach enhances the underlying testing technique in mak-
ing it developer-friendly and independent of OCL expertise.

1 Introduction

As the size and complexity of models grow, there is an increasing need for testing
their correctness. Today, modeling languages such as the UML along with the
OCL are used to describe structural and behavioral aspects of a system.

For checking such crucial properties of a UML and OCL model, the tool
USE can be employed to transform a given application model into an equivalent
so-called filmstrip model [5]. In USE, a model validator (MV) can automatically
generate valid object diagrams based on given configurations (determining finite
sets of objects, links and attribute values) and external OCL invariants. For the
validation process, external OCL invariants are currently manually formulated.
However, writing OCL expressions is a difficult and time-consuming task and
often results in erroneous constraints. To address this problem, we propose an
approach where developers can express a scenario by constructing a so-called
test case schema (TC schema) which then can automatically be transformed
into an OCL invariant. Furthermore, the MV is used to instantiate the abstract
TC schema in order to generate multiple concrete test cases.

The rest of the paper is structured as follows. Section 2 provides the back-
ground and motivation of our work. Section 3 describes TC schemas with an
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example and its transformation to an OCL invariant is explained in Sect. 4. In
Sect. 5, we show test case generation using the MV. Section 6 presents related
work and we conclude our paper with future work in Sect. 7.

2 Background

The MV in USE is specifically designed for structural analysis of models. There-
fore, we use our filmstrip approach which transforms invariants (structural prop-
erties) and operation pre- and postconditions (behavioral properties) of an appli-
cation model into a filmstrip model which possesses only invariants.

Fig. 1. Application model and filmstrip model.

The filmstripping approach can be explained best in terms of an example.
A simple SocialNetwork model in which a user can invite, accept and reject
a friendship request is chosen as an example. The upper part of Fig. 1 shows
the class diagram of the filmstrip model. The original application model, con-
sisting of the classes Profile and Friendship with the associations Invite
and Invitee, is completely contained in the filmstrip model and indicated in a
gray-shaded style. The small sequence diagram also represents elements of the
application model. The application model is automatically transformed with a
plug-in into the filmstrip model: the non-gray shaded classes and invariants (not
shown) are added. In essence, the application model sequence diagram becomes
a filmstrip model object diagram. Snapshot objects explicitly allow to cap-
ture single system states from the application model. Operation call objects
(suffix OpC) describe operation calls from the application model. Basically, each
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operation is transformed into an OperationCall class with attributes for the
self objects and for the operation parameters. Thus, for example, the call
profile3.accept(profile1) (dotted box) from the sequence diagram is repre-
sented by the object accept profileopc1 in the filmstrip object diagram. The
effect of the operation call is represented by the differences between the left and
the right snapshot: The accept operation call changes the attribute status. The
four Profile and the two Friendship objects represent different object states
before and after the operation call. So one could say that the object profile2
is a later incarnation of the object profile1.

Fig. 2. Overview on filmstrip validation (gray box) with TC schema approach (dotted
box).

The gray highlighted part in Fig. 2 gives an overview on the existing filmstrip
transformation and model validation process. In the validation process, exter-
nal OCL invariants are specified to guide the object diagram generation into a
particular direction, e.g., for attesting that objects or links with particular prop-
erties exist (for example, for the initial or final scenario state) [5]. Up to now,
these external OCL invariants had to be written manually. Thus, we propose
an approach where a TC schema, which is a diagrammatic representation of
a scenario, can automatically be transformed into an OCL invariant for model
validation in order to make the validation process free of OCL expertise.

3 Test Case Schema Example

A TC schema is basically a partial filmstrip object diagram consisting of differ-
ent snapshots which represent system states, and these snapshots can contain
application model objects and links. The objects of different snapshots can be
connected through filmstrip (pred,succ) links. We now show the construction of
a TC schema for an example scenario of the SocialNetwork model.

The description of the user defined test scenario is as follows: There have to
exist two user profiles. In the initial state, they are not linked with each other,
and in the final state, they are linked with each other through a friendship
request. Figure 3 shows the TC schema for this scenario. In Snapshot1, there
exist two user profiles which are not linked with each other. In Snapshot3, the
Profile3 is linked to Profile6 through Invite and Invitee links as well as a
Friendship object. For each snapshot, developers have a choice between a so-
called open snapshot and a closed snapshot, and the specification of snapshots
will be according to the expected scenario generation. If a snapshot is classified
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Fig. 3. TC schema of the test scenario.

as closed, only the stated links (if any) are allowed between the snapshot objects
in a generated test case; if a snapshot is classified as open, other links are allowed
between the snapshot objects in a generated test case. More details about the
classification of snapshots and their OCL representations are discussed below.

4 Transformation of a TC Schema into an OCL Invariant

As previously stated, a TC schema is comprised of snapshots (application objects
and links) and filmstrip links. So during the transformation from a TC schema
to an OCL invariant, these elements must be transformed into OCL expressions.
The OCL expressions for the filmstrip (pred,succ) links which connect different
snapshot objects are directly generated using the succ role name. However,
different OCL representations are possible for the snapshots, as they can be
classified as an open or closed. In the open case, the mentioned objects and
links are fixed by the generated OCL invariant, but it is possible that more
links are present in generated test case. However, in the closed case, apart from
the mentioned objects and links, other possible application links which are not
explicitly mentioned, are excluded by the generated OCL invariant. To illustrate
the generation of an OCL invariant, we continue with the TC schema shown in
Sect. 3. The generated OCL invariant is as follows:

context Snapshot inv FirstLastClosedSnapshots:

Profile.allInstances->exists(p1,p2,...,p6|Set{p1,p2,..,p6}->size()=6 and

p1.succ=p2 and p2.succ=p3 and p4.succ=p5 and p5.succ=p6 and

Friendship.allInstances->exists(f1|

p1.friendshipR.invitee->excludes(p4) and // Snapshot1

p1.friendshipE.inviter->excludes(p4) and

p4.friendshipR.invitee->excludes(p1) and

p4.friendshipE.inviter->excludes(p1) and

p3.friendshipR->includes(f1) and f1.inviter = p3 and // Snapshot3

p6.friendshipE->includes(f1) and f1.invitee = p6 ))

For the closed snapshots, OCL expressions are generated guaranteeing (a) the
absence of links between Profile1 and Profile4 in Snapshot1 and (b) the
presence of links between Profile3 and Profile6 in Snapshot3. In the open
snapshot, OCL expressions are not generated, as there are no links.
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5 Applying the Model Validator for Scenario Generation

The MV uses a given configuration and the generated OCL invariant for setting
the sequence of operation calls by fixing (a) attribute values and (b) objects and
links that have been left open in the TC schema in order to construct different
test cases. We check the feasibility of our approach by transforming a TC schema
into an OCL invariant and analyze the generated test cases.

From many generated test cases (filmstrip object diagrams), two are shown
in Figs. 4 and 5: one test case is an invite; accept; the other one is an invite;
invite. In the TC schema, one friendship is expected between two profiles. In

Fig. 4. Automatically generated test case 1

Fig. 5. Automatically generated test case 2



Generating OCL Constraints from Test Case Schemas 67

order to satisfy the scenario at least one invite operation call should exist, and
another operation call could be an accept, decline or invite as the attribute
status of the friendship object is not specified. In both test cases, the test
schema is satisfied (highlighted with dashed rectangles). The objects and links
in the open snapshots have been decided by the MV depending on the operation
calls.

In both shown test cases, the expected test scenario is precisely generated.
These show the successful transformation of an OCL invariant from a given TC
schema, and validate that our concept of distinguishing between open and closed
snapshots lead to the desired results. Various other larger models and larger test
case schemas have been developed. Due to space limitations we stick to the small
demonstration example.

6 Related Work

There are several contributions discussing techniques and approaches for OCL
transformation and test case generation. In [1], the authors are using the Seman-
tic Business Vocabulary and Rules (SBVR) to transform constraints written in
natural language to OCL statements. In [6], the tool MoMuT::UML is presented
to generate fault based test cases for UML state machine models. In [4], the
authors describe symbolic scenarios as operation sequences to generate func-
tional test cases. In [2], the authors propose a method to generate test data on
a higher-order representation of OCL models. In [3], the tool UMLtoCSP allows
a developer to perform verification and validation of a UML/OCL model based
on Constraint Logic Programming. In contrast to all these works, our approach
is the only one generating OCL constraints automatically from a developer-
specified scenario to generate concrete test cases for behavior model validation.

7 Conclusion

This contribution proposed a transformation for automatically generating an
OCL invariant from a TC schema. We showed scenario generation using a model
validator which constructed valid behavioral scenarios with different sequences of
operation calls based on the generated OCL invariant. Future work will consider
more options for attribute specification in the transformation, as this should help
developers to express a scenario more effectively. More and larger case studies
must check the applicability of the approach.
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Abstract. The paper is devoted to testing critical Software Defined Net-
working (SDN) components and in particular, SDN-enabled switches. A
switch can be seen as a forwarding device with a set of configured rules
and thus, can be modelled and analyzed as a ‘stateless’ system. Corre-
spondingly, in this paper we propose to use appropriate logic circuits or
networks to model the switch behavior. Both active and passive testing
modes can benefit from such representation. First, this allows applying
well-known test generation strategies such as for example, test deriva-
tion techniques targeting Single Stuck-at Faults (SSFs). We also specify
a number of mutation operators for switch rules and propose an algo-
rithm for eliminating equivalent mutants via SAT solving. Logic circuits
simulating the behavior of the switches can be effectively utilized for run-
time verification, and such logic circuit based approach is also discussed
in the paper. Preliminary experimental results with Open vSwitch, on
one hand, demonstrate the necessity of considering new fault models for
logic circuits (apart from, for example well established SSFs) and on the
other hand, confirm the efficiency of the proposed test generation and
verification techniques.

Keywords: Software Defined Networking (SDN)
SDN-enabled switches · Mutation testing · Run-time verification
Logic circuits

1 Introduction

As communication technologies progress rapidly, more attention is now paid
to virtual networks and various ‘softwarization’ techniques. In fact, virtualiza-
tion opens a large number of possibilities when the common resources can be

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
I. Medina-Bulo et al. (Eds.): ICTSS 2018, LNCS 11146, pp. 69–84, 2018.
https://doi.org/10.1007/978-3-319-99927-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99927-2_7&domain=pdf
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effectively shared and specific network services manage the policies for using
these resources. Nevertheless, whenever a given virtual network is requested, it
is necessary to assure that its implementation strictly corresponds to the submit-
ted request. In order to guarantee this property, all the hardware and software
components involved into the chaining and virtualization processes need to be
thoroughly tested and verified.

Software Defined Networking [20] is known to be one of the fundamental
building blocks for the creation of virtual networks and thus, SDN-enabled
devices such as for example, switches and/or controllers need to be certified,
guaranteeing the absence of (specific) bugs and misconfigurations.

We focus on testing SDN switches that act as forwarding devices receiving
and sending network packets in accordance with a set of configured rules. Nowa-
days, such devices are predominantly implemented in software, and therefore
different software bugs can induce different functional faults. For example, while
using the ONOS controller [2] and Open vSwitch (OVS) [22] we have detected a
potential overflow with respect to (w.r.t.) the switch port numbers. Namely, any
request with an output port number which is greater than or equal to 216 pro-
duces inconsistent results. Each of such requests gets the assigned port number
modulus 216. The OpenFlow Switch Specification [18] states that the maximal
physical and logical port number is 4294967040 (0xffffff00). Therefore, one can
conclude there is a bug in the OVS implementation1. Such software bugs lead to
the incorrect packet processing, i.e., the specification given as a set of rules for
the switch is not respected. Thus, detecting such bugs is crucial for improving
the functional correctness of the SDN infrastructure.

In this paper, we apply model based testing techniques for an SDN-enabled
switch. In particular, we propose to model the switch behavior as a correspond-
ing logic circuit in order to take advantage of various scalable manipulations over
such circuits as well as to benefit from well-established techniques for their test-
ing. Both, active (Sects. 4 and 5.1) and passive testing (Sects. 4.5 and 5.2), can
take advantage of such representation. In particular, we estimate the usefulness of
logic circuit based fault models such as for example Single Stuck-at Faults (SSFs)
for detecting bugs and misconfigurations in the SDN-enabled switch implemen-
tations. Correspondingly, we introduce potential mutations over the switch rules
and discover which of these mutations can be effectively detected using the
proposed logic circuit based approach. Moreover, we discuss how Boolean Satis-
fiability (SAT) solvers can be utilized for detecting equivalent mutants. Finally,
we propose a scalable solution for the switch monitoring on the basis of logic
circuits and related operations.

The paper is organized as follows. Section 2 contains the necessary back-
ground and notations. Section 3 summarizes the related work in the area of SDN
switch testing and verification. The logic circuit based approach for switch test-
ing is presented in Sect. 4. Preliminary experimental results for a set of switch
rules are shown in Sect. 5. Section 6 concludes the paper.

1 Version 2.0.2 used with the ONOS controller version 1.10.4.
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2 Background and Notations

2.1 Software Defined Networking

In Software Defined Networking architectures, the control plane is decoupled
from the forwarding (data) plane [20], i.e., a logically centralized control func-
tion maintains the state of the network and provides instructions to the data
plane (packet forwarding devices). Switches located in the data plane then for-
ward data packets according to these control instructions, more specifically, for-
warding and filtering rules [23]. Each switch should process the received packets
according to the installed forwarding rules. A forwarding rule consists of three
parts: a packet matching part, an action part, and a location/priority part. The
matching part describes the values a received network packet should have in
order for the rule to be applied (to the packet). The action part indicates how to
process the matched network packets; the location/priority part controls the rule
hierarchy using tables and priorities. In SDN, to steer network packets in the
data plane, forwarding rules are ‘pushed’ to the switches by the controller that
has a global view of the network; switches are configured remotely and dynam-
ically through interfaces using protocols such as the OpenFlow (OF) protocol
[16]. The forwarding rules are grouped in different flow tables and are considered
to be the configurations of switches with respect to packets and application flow
management.

As an example of rules installed in a switch, consider the set of rules defined
in Table 1. The table includes the following matching parameters: Flow Table,
a virtual partition for the installed rules; Priority, the order attributed to the
rule to be applied with respect to other rules in the flow table; Input Port
(In port), the ingress port of the incoming packets; Ethernet Type (Eth type),
the type of traffic carried by the Ethernet datagram; Source and Destination IP
Addresses respectively (IP source, IP dest), that define the IP protocol source
and destination addresses. The output ports (Output) defines the set of ports
where a matching packet should be forwarded.

Table 1. Switch example

Flow table Priority In port Eth type IP source IP dest Output

0 500 ∗ ARP (0x806) ∗ ∗ Port 1

0 500 1 ARP (0x806) ∗ ∗ “All”

1 501 1 IP (0x800) 10.0.0.1/32 10.0.0.2/32 Port 2

1 501 2 IP (0x800) 10.0.0.2/32 10.0.0.1/32 Port 1

For example, according to Table 1, the third rule is specified in the flow table
1 with the priority 501. When the packets having the source IP address 10.0.0.1
and destination IP address 10.0.0.2 arrive to Port 1 of the switch, these packets
have to be forwarded via the (output) Port 2 of the switch.
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2.2 Logic Circuits and Related Fault Models

A combinational circuit is composed of logic gates; each logic gate implements a
Boolean function. Sequential circuits include on one hand, a combinational logic,
and on the other, memory elements, namely latches. In this paper, we consider
circuits ‘without memory’, i.e., combinational circuits where the circuit output
significantly depends only on its current input.

Following [12], we consider three types of faults that can occur in the cir-
cuit implementation, namely Single Stuck-At Faults, Single Bridge Faults, and
Hardly Detectable Faults. A circuit that contains a fault is referred to as a
mutant, as usual.

– Single Stuck-At Fault (SSF) Mutants occur when one circuit gate gets ‘stuck’
at a given logical value (“1” or “0”);

– Single Bridge Fault (SBF) Mutants occur when a given input of a given logical
gate is wrongly wired (bridged), i.e., taking the input from the wrong gate;

– Hardly Detectable Fault (HDF) Mutants occur when a single gate changes
its output for a single input.

A number of test generation strategies against the faults listed above have
been proposed in the last decades. The interested reader can, for example refer
to [15,21]. Moreover, test suites derived against the SSFs are claimed to have
high fault coverage with respect to other types of circuit mutants. In this paper,
we investigate the fault coverage of these techniques when testing SDN-enabled
switches effectively described by corresponding logic circuits.

2.3 Notations

A rule R defined in the switch configuration is represented by the following
implication: (p1 ∈ V1 & p2 ∈ V2 & . . . & pi ∈ Vi & . . . & pn ∈ Vn) =⇒
output ports = {o1, o2, . . . , om}. In this case, pi refers to an input parameter, oi

refers to an output port and the sets V1, V2, . . . , Vn define a range or an interval
for each switch parameter p1, p2, . . . , pn, correspondingly2. For convenience, we
denote as Π the projection operator, characterized with a parameter pi such
that for a given rule R = (p1 ∈ V1 & p2 ∈ V2 & . . . & pi ∈ Vi & . . . & pn ∈
Vn) =⇒ output ports = {o1, o2, . . . , om}, Πpi

= Vi. Similarly, we denote the
output projection of R as Πout = {o1, o2, . . . , om}.

An output mutant for the rule R is defined as follows: (p1 ∈ V1 & p2 ∈
V2 & . . . & pi ∈ Vi & . . . & pn ∈ Vn) =⇒ output ports = {o′

1, . . . , o
′
m′}, and

{o′
1, . . . , o

′
m′} �= {o1, . . . , om}.

A parameter value mutant for the rule R is defined as follows: (p1 ∈ V1 & p2 ∈
V2 & . . . & pi ∈ V ′

i & . . . & pn ∈ Vn) =⇒ output ports = {o1, o2, . . . , om},
and V ′

i �= Vi.

2 The defined intervals are assumed to contain integers, without loss of generality.
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In the example illustrated in Table 1, the number of parameters is n = 6, and
|Vi| = 1, i ∈ {1, . . . , 6}. Note that m = 3 (the number of output ports) for the
rules in Table 1.

3 Related Work

A number of publications and online presentations have been previously devoted
to the verification and testing of SDN switches. In particular, a number of works
are dedicated to the validation of the consistency of the switch rules [1,9].

There exist a large number of publications that concern the overall verifi-
cation of the data plane. Different techniques can be applied in this case, for
instance, Header Space Analysis of network packets [10] or Model Checking
and Symbolic Execution [6]. Several properties for the whole data plane can be
checked in this case, such as reachability issues, absence of loops/holes, etc.

Data plane analysis has also been performed in an active mode. In this case,
the packets to be sent through the switches have been specifically generated to
capture various network failures. The approaches of this set mostly cover auto-
matic network traffic or flow generation (see, for example [5,7,25]). We however
note that the analysis is usually performed for checking the paths/networks
implemented in the data plane rather than checking the functionality of a given
critical forwarding device.

Existing works on testing a given switch can be mostly divided into two
groups. The approaches of the first group have a number of pre-defined test
purposes that either cover some stress situations for the switch (such as, for
example, a flow table capacity) or verify given scenarios formally described in
the OpenFlow specification [19]. The approaches of the second group rely on
formal models. In particular, in [24] so called Pipelined Extended Finite State
Machines are introduced for describing a switch behavior. Note that in this case,
a switch is considered as a stateful system which immediately complicates the
process of test generation and execution.

We also note that the idea of expressing a switch or a composition of those
with the use of Boolean algebra or a system of (partially specified) Boolean
functions has been employed before. For example, in [1] a set of switch rules
is described by a corresponding Binary Decision Diagram that later is used for
verifying their consistency. Moreover, a set of Boolean expressions have been
constructed in [14] for the data plane verification based on the SAT problem.

However, to the best of our knowledge, there does not exist an approach
which proposes the use of Boolean satisfiability or related logic circuits/networks
for deriving active test suites with guaranteed fault coverage. Moreover, ‘clas-
sical’ logic circuit based testing strategies such as for example, SSF detection,
have not been previously used for checking the functionality of SDN-enabled
switches. Likewise, the authors are not aware of any works where logic circuits
and their software and/or hardware implementations are used for a passive test-
ing/monitoring of an SDN-enabled switch behavior.
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4 Logic Circuit Based Approach for Test Suite
Generation

4.1 Introducing a Fault Model

We assume that the switch implementation has no faults if each packet is pro-
cessed exactly in the way that the switch configuration requires. Moreover, if
for a given packet pkt there is no rule R in the switch configuration such that
the matching part (p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) contains the neces-
sary preamble, the packet pkt is simply dropped by the switch, i.e., should not
be forwarded anywhere. We note however that a switch can output the packet
to ‘consult’ with the SDN controller about the action applied to an ‘unknown’
packet [16]; the controller might alter the rules in the switch configuration as
a result. We assume this is a different specification; further, in this work, we
do not focus on such case. The proposed fault model has three items, as usual,
namely FM = 〈S,=, FD〉 where S, the specification, is the set of switch rules,
i.e., the rule forwarding configuration of the switch (referred in this paper simply
as switch configuration); = is the conformance relation represented by the equal-
ity, and FD is the fault domain where the potential switch implementations are
explicitly enumerated. As usual, we are interested in deriving exhaustive test
suites, such that ∀I ∈ FD, I �= S, is detected by the test suite.

We also note that the system specification in this case can be complete (com-
pletely specified) or partial. The set S of switch rules is said to be complete if for
each preamble (p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) there exists a rule R ∈ S
such that R = ((p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) =⇒ output ports =
{o1, o2, . . . , om}). Otherwise, the specification S in the fault model FM is partial.
We further discuss how completeness and partiality of S affect the exhaustiveness
of the test suites derived using well-known logic circuit based fault models.

4.2 Deriving a Logic Circuit for a Switch Specification

The specification S represented by a set of switch rules is not scalable for solv-
ing different problems, such as for example, searching for two rules in possibly
different tables that coincide or that on the contrary, contradict each other. We
therefore, propose to build a logic circuit that preserves the behavior of S on
one hand, but allows taking advantage of several scalable manipulations over the
Boolean vectors (logic circuits) on the other hand. Such logic circuit LC can be
derived in different ways and in this work, we focus on a somehow straightforward
approach for this purpose, i.e., we propose to use logic synthesis solutions from
a Look-up-Table (LUT) for a system of (partially specified) Boolean functions3.
The corresponding procedure is described in Algorithm 1.

3 It is intuitively right to consider Boolean representations for values transmitted in
network packets as they represent data in binary strings.
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Algorithm 1. Logic circuit derivation from a set of switch rules
Input : A specification S represented by a set of switch rules
Output: A logic circuit LC simulating S
Define the set of parameters P = {p1, p2, . . . , pn} such that each parameter
pi ∈ P is used in at least one preamble of at least one rule R ∈ S.
Determine the number of the primary inputs for the logic circuit as∑n

i=1�log2(1 + max(
⋃

R∈S Πpi))�, max(
⋃

R∈S Πpi) is the maximal element in
all sets for the parameter pi where all values of pi are non-negative, and �x�
denotes the ceiling function applied to x.
The number of the primary outputs for the logic circuit equals to
max(

⋃
R∈S Πout), where max(

⋃
R∈S Πout) denotes the maximum output port

number used in S.
Derive an empty LUT L for a system of max(

⋃
R∈S Πout) partially specified

Boolean functions of
∑n

i=1�log2(1 + max(
⋃

R∈S Πpi))� variables
foreach rule R ∈ S do

foreach r = (v1, v2, . . . , vn) ∈ V1 × V2 × . . . × Vn, where
Vi = Πpi , ∀i ∈ {1, 2, . . . , n} do

Encode each vi, i ∈ {1, 2, . . . , n} by a Boolean vector Bi of length
�log2(1 + max(

⋃
R∈S Πpi))�

Set the Boolean vector B port to (00 . . . 0), |B port| = max(
⋃

R∈S Πout)
foreach output port oj ∈ {o1, . . . , om} do

Set oj-th bit of B port to 1 (the first bit starts at the rightmost
position with index 1)

Add a new line to the LUT, i.e., set L to L ∪ {B1B2 . . . Bn|B port}
Run a logic synthesis solution for deriving a logic circuit LC from the LUT L
return LC

For the running example of the set of switch rules listed in Table 1, the LUT
derived by Algorithm 1 has four lines illustrated in Table 2. Note that dashes (−)
denote ‘don’t care’ terms4.

Table 2. LUT for the switch running example

4.3 Test Suite Generation

Once a logic circuit LC that simulates the behavior of the switch with the rules S
is derived, one can apply different techniques for test generation. On one hand,
‘classical’ logic circuit testing strategies such as for example, test derivation
4 The netmasks of the IP addresses are taken into consideration by the dashes in the

corresponding field.
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techniques for SSF detection can be exploited. In this case, the circuit LC is
mutated in order to obtain a set of mutants of different kinds, such as for example
SSF or HDF. The test suite derived to kill each mutant of a particular type can
later be applied to the implementation of an SDN switch. The goal of deriving
such test suite is to distinguish the output of a correct implementation from an
assumed incorrect implementation (mutant)5. The advantage of this approach
is that logic circuit testing techniques are well studied and elaborated and there
exist a number of tools for such test derivation. In this work, we used the tool
developed in [12] together with the logic synthesis and verification tool called
ABC [4]. Preliminary experimental results for such test generation strategy are
presented in Sect. 5.

On the other hand, in some cases, certain properties for a test suite fault cov-
erage can be guaranteed. For example, for SSF mutants the following statements
hold.

Proposition 1. If S is complete and ∃ i ∈ {1, . . . m} such that ∃! R ∈ S, R =
((p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) =⇒ output ports = {o1, o2, . . . , om})
and oi /∈ {o1, o2, . . . , om}, then each output fault in the rule R is detected by an
exhaustive test suite w.r.t. SSFs.

Proof. The completeness of the specification S automatically implies the com-
pleteness of the system of Boolean functions implemented by the circuit LC
(Algorithm 1). Each output fault (p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) =⇒
output ports = {o′

1, o
′
2, . . . , o

′
m′}, and {o′

1, o
′
2, . . . , o

′
m′} �= {o1, o2, . . . , om} is only

detected by a test suite if this test suite includes the input pattern B1B2 . . . Bn

that corresponds to the rule R. As the test suite TS contains a pattern that
distinguishes each SSF mutant of the logic circuit LC, for the output i of LC
this pattern can only be B1B2 . . . Bn, otherwise the stuck-at-one fault in the i-th
output cannot be detected (due to the uniqueness of the rule R). 	


Note that whenever the set S of switch rules is not complete, the logic circuit
LC is derived for a system of partially specified Boolean functions. Therefore, the
behavior of the circuit over the undefined patterns can be specified in different
ways. In our approach and in our experiments, we use ABC, which sets the
corresponding outputs to 0. This fact allows to guarantee the fault coverage for
output mutants of the rules when initially the specification S is not complete.

Proposition 2. If for a set of rules S ∃ i ∈ {1, . . . m} such that ∃! R ∈ S, R =
((p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) =⇒ output ports = {o1, o2, . . . , om})
and oi ∈ {o1, o2, . . . , om}, then each output fault in the rule R is detected by an
exhaustive test suite w.r.t. SSFs.

Proof. Similar to Proposition 1, a test suite TS which detects each stuck-at-
zero fault on the i-th output of LC must contain a pattern B1B2 . . . Bn that

5 Note that we do not focus in this work on testing unsupported ports: the port
number(-s) of an IUT should belong to the set of supported port numbers.
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corresponds to the preamble (p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) of rule R.
This exact pattern detects each output fault in the rule R.

Corollary 1. If in the set S of switch rules, each output port is used in at most
one rule, then an exhaustive test suite w.r.t. SSFs is also exhaustive w.r.t. rule
output mutants.

We note however, that the above statements do not necessarily hold for the
parameter value mutations. Such faults can in some cases be detected by other
mutants of logic circuits such as bridges or hardly detectable faults. Nevertheless,
thorough investigation of the correlation between the mutations of rules and
those of logic circuit still needs to be performed. Such investigation is left for
future work.

4.4 SAT Solving for Equivalent Mutant Detection

Whenever possible rule mutations are enumerated explicitly and therefore, a test
suite TS is derived under the White Box testing assumption aiming at killing all
the mutants of certain type, the question of equivalent mutants automatically
rises [8]. Indeed, mutations of different orders (especially second and higher) have
a high probability of deriving an equivalent mutant. However, as the number of
patterns can be rather high (2

∑n
i=1�log2(1+max(

⋃
R∈S Πpi

))�), applying/checking
all such patterns can be a time consuming task, and thus, detecting equivalent
mutants by direct (brute force) search becomes unfeasible.

Correspondingly, such equivalent mutants can be effectively detected when-
ever two logic circuits LC and LCM for both the specification S and the mutant
M under investigation, are derived. Indeed, the equivalence decision problem
can be reduced to the well-known SAT problem. For this reason, a miter of
two circuits can be derived. For two logic circuits LC and LCM with the set
X = {x1, . . . , xk} of inputs and the sets O = {o1, . . . , op} and O′ = {o′

1, . . . , o
′
p}

of outputs, a miter Mit with the set X = {x1, . . . , xk} of inputs and a single
output is derived as follows. The output function of Mit is the result of a logic
OR operation of the functions f1, . . . , fp that are implemented as the XORs
of output functions g1, . . . , gp and h1, . . . , hp of the circuits LC and LCM cor-
respondingly, i.e., fj = gj ⊕ hj , j ∈ {1, 2, . . . , p}. Circuits LC and LCM are
equivalent, and so are the sets of rules S and M , if each output of the miter
Mit always equals 0, i.e., when the corresponding Boolean function is UNSAT.
Algorithm 2 implements this strategy to detect equivalent mutants.

The correctness of the proposed equivalence check is established by the fol-
lowing proposition.

Proposition 3. For a given set S of switch rules and a given mutant M of this
specification, Algorithm2 returns a test case killing M if and only if the mutant
M is not equivalent to S.
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Algorithm 2. Equivalence check for a switch mutant
Input : A specification S represented by a set of switch rules and its mutant

M
Output: The verdict about the mutant equivalence or a test case killing M
Run Algorithm 1 for both, specification S and its mutant M , obtain the logic
circuits LC and LCM , correspondingly.
Construct the miter Mit on the circuits LC and LCM .
Run a SAT solver for the Boolean function f implemented by Mit.
if UNSAT then

return the verdict ‘The mutant M is equivalent to S’.

return A satisfying pattern B for the Boolean function f

Proof. Indeed, the circuit Mit implements a constant 0 if and only if the outputs
B port coincide for all input patterns B1B2 . . . Bn (Algorithm 1). Thus, a satis-
fying pattern B for the function f returns an input B1B2 . . . Bn for the preamble
(p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) where the output ports differ.

We note that such equivalence check can be performed over the logic cir-
cuit representations in a scalable way. The reason is that both circuits LC and
LCM are combinational, i.e., without latches or internal memory. For sequential
circuits, the derivation of the miter as well as the SAT problem formulation is
in fact much more complex. The latter means, that if modelling a switch as a
stateful system, for example when taking into account its potential communica-
tion with an SDN controller, the solution of the equivalence check might not be
scalable. More research and experiments are needed in this area, and these tasks
are left for the future work.

4.5 Logic Circuits for Switch Monitoring

We previously discussed the use of logic circuits for active test generation for an
SDN switch. In fact, whenever the access to the switch is limited and its behavior
can only be observed, a logic circuit LC modelling the specification S can still
be effectively utilized. The reason is that the simulation of LC can in some
cases be much faster than the search of the particular switch rule and its further
application to conclude about the expected output port(-s). In other words, the
task of the switch monitoring that verifies that the packets are forwarded to
the exact ports specified by S, can be reduced to the problem of the circuit
simulation6, i.e., obtaining an output pattern for a given input (pattern). This
approach is described in Algorithm 3.

As discussed in Sect. 5, in many cases, the verdict about the correct or incor-
rect application of a given switch rule can be made much faster when the logic
circuit representation is exploited.

6 Under the assumption that the circuit simulation is correct.
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Algorithm 3. SDN switch monitoring
Input : The switch implementation under test I and the corresponding

specification S that I must implement
Output: Alerts for the packets processed wrongly by the given IUT
Run Algorithm 1 on S, obtain a logic circuit LC
while working do

// working is a Boolean flag to control the execution of the

monitoring process

packet observed ← input(I).// input returns the processed input of

the IUT

Extract the Boolean vector B packet from the packet observed header
parameters, including the encoded value for the input port of the IUT.
port observed ← output(I).// output returns the port number for the

input
Encode port observed as the Boolean vector B port.
if port observed 	= sim(LC,B packet) // sim is a function that

simulates the circuit behavior over a given input

then
alert(packet observed).// Alert an incorrect processing of

packet observed

5 Preliminary Experimental Results for Open vSwitch

The experiments have been performed on the widely-known SDN-enabled switch,
Open vSwitch (OVS) [22] version 2.0.2. To simulate a ‘close-to-real’ switch
behavior, the popular Mininet [17] tool was utilized; Mininet provides an easy
way to simulate and prototype SDN networks (using OVS). The topology of
the simulated network is similar to the one presented in our previous work [3]
and shown in Fig. 1. This topology models the data plane as a graph where
all switches are connected to an SDN controller. In Fig. 1, hosts and switches
are labeled with strings starting with the letters h and s respectively. For each
edge in the graph, the corresponding port number used by the two nodes is
depicted; for example, in the edge (s2, s3), the label ‘33’ indicates that the port
3 at switch s2 is connected to the port 3 at switch s3. In addition, the Ethernet
MAC addresses for each of the hosts are shown above or below each host. For our
experiments, without loss of generality, we chose the switch s3 (depicted with a
dotted pattern) as the system under test. The ONOS [2] controller version 1.10.4
was used for all the experiments. The experiments were executed under different
virtual machines running under a VirtualBox Version 5.2.8 r121009 for Mac OS
X 10.13.4. The virtual machines have the characteristics shown in Table 3.
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Fig. 1. Experimental setup topology

Table 3. Experimental platform

ID Operating system CPUs RAM

V M1 CentOS 6.9 2 Intel(R) Core(TM) i5-2415M
CPU @ 2.30 GHz processors

3 GB

V M2 Ubuntu 14.04.4 LTS
(mininet dist.)

Intel(R) Core(TM) i5-2415M
CPU @ 2.30 GHz processors

2 GB

5.1 Logic Circuit Fault Models for SDN-Enabled Switch Fault
Model

There exist a large number of possibilities how an SDN network can be (re-)
configured, and therefore how to obtain the switch rule set specification S. The
SDN controller by itself is not ‘responsible’ for this configuration. In an SDN
architecture, applications query the controller for information of the data plane
and request the implementation of different rule sets for the forwarding devices
(e.g., SDN-enabled switches). The applications can have different goals; for exam-
ple, one application can monitor the data plane in order to balance the load
between the network links (edges). One of the most common applications for
an SDN network is the Layer 2 switching application; this application forwards
Layer 2 packets (e.g., Ethernet) between hosts using the shortest paths.

To provide meaningful results, we programmed the data plane with a Layer
2 switching application. The rules were pushed through the controller using the
REST interface. As an example, one rule R ∈ S installed on s1 is the following:
R = ((INPUT PORT ∈ {1}&ETH SRC ∈ {9a:d8:73:d8:90:6a}& ETH DST ∈
{ff:ff:ff:ff:ff:ff} =⇒ output ports = {2, 3}). After the rules were pushed, commu-
nication from / to any host was successfully achieved via the Ethernet protocol.

A logic circuit LC was derived from the specification S using Algorithm 1.
The logic synthesis tool used for deriving LC was ABC [4]. After the synthesis,
LC has 99 inputs and 4 gates. The logic circuit was then saved into the Berkeley
Logic Interchange Format (BLIF), and a BLIF Mutant Generator (BMG) [12]
tool was executed to generate mutants for the SSF, SBF, and HDF types. The
total number of mutants is 214, where 206 mutants are all SSF mutants, 4 are
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randomly chosen SBF, and likewise 4 are randomly chosen HDF mutants. A
distinguishing pattern was found for each non-equivalent mutant. For each of
the fault models, a test suite was obtained, i.e., TSSSF , TSSBF , and TSHDF ;
furthermore, the union of all 3 test suites was used to obtain TSACF , a test suite
for all circuit faults7. The original BLIF circuit contains a sum of products, hence,
only 4 gates (the output gates). In order to check if the fault coverage increases
with different circuit representations, the original BLIF file was re-synthesized
as an AND-INVERTER graph (AIG), we hereafter refer to this circuit as S′

(functionally equivalent to S). S′ has 99 inputs and 395 gates, and therefore, the
total number of mutants is 1778, where 998 mutants are all SSF mutants, 395 are
randomly chosen SBF, and likewise 395 are randomly chosen HBF mutants. The
same procedure was performed on S′ to obtain the corresponding test suites.

To check the fault coverage of traditional digital circuit fault models, a set
M of 45 mutants of S was generated. The set of mutants contains different order
mutants. After running Algorithm2 to remove from M the equivalent mutants (1
was removed), each pattern p in each of the test suites TSSSF , TSSBF , TSHDF ,
TSACF was used to simulate the behavior of S and compare it to the behavior of
each mutant M in the non-equivalent mutant set ∀M ∈ M. The fault coverage8

obtained for each of the test suites is shown in Table 4.

Table 4. Fault coverage for traditional digital circuit fault models

Circuit SSF SBF HDF ACF (total)

S 79% 45% 18% 86%

S′ 95% 97% 95% 100%

As seen in Table 4, the fault coverage of traditional logic circuit fault models
reaches 100% for a Layer 2 switching specification. Therefore, we conclude that
test suites derived based on traditional logic circuit fault models have a high
fault coverage for SDN-enabled switch faults. An interesting aspect is that the
fault coverage highly increases when the original circuit specification is trans-
formed into an AIG. It is reasonable to assume that AIGs have more gates, and
therefore more mutants and distinguishing patterns are obtained with such rep-
resentations. Thus, different functional errors in the switch rules can be covered
by a larger test suite when derived based on such AIGs.

5.2 Using Logic Circuits for Monitoring

When monitoring functional properties of a given IUT I, there are two modes of
operation (off-line and on-line/run-time). As discussed before, run-time monitor-
ing requires that the monitor (in this case LC) is not slower than I. A large body

7 ACF stands for ‘all circuit faults’.
8 Calculated as the ratio of killed mutants to total number of (non-equivalent) mutants.
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of studies has been dedicated to the proposal of fast monitoring algorithms (see,
for example [13]) and heuristics (see, for example [11]) to enhance the perfor-
mance of monitoring solutions. It is presumable that a combinational circuit has
a constant (or near to constant) computational time for any input pattern. On
the other hand, switch implementations such as Open vSwitch effectively work
by caching the corresponding actions to be applied to a matching packet, and
thus, these cached actions are applied to subsequent packets matching the rule
[22]. The match lookup (and corresponding action to be applied) is done using
a set of hash tables which are increased with each unique match [22]. Therefore,
a priori the simulation of a logic circuit for the implementation of the switch
behavior should be faster than the described caching mechanism.

To verify that logic circuits are indeed suitable for run-time monitoring of
SDN-enabled switches, we performed the following experiment. On one hand,
10000 rules were pushed into the switch s3 (IUT) using the ONOS controller.
On the other hand, a logic circuit was obtained using Algorithm1 for the spec-
ification containing the same 10000 rules installed in the IUT. The time Open
vSwitch takes to process one packet and the time taken to simulate a single
pattern of the logic circuit are measured as follows. To determine the time to
process one packet, monitors were installed on each switch port (interface). The
time difference between the packet ingress and the packet egress was measured
to be ∼0.29 ms, executing Open vSwitch under V M2. As the time to simulate a
single pattern in ABC (given a synthesized circuit) is considerably low, precision
issues may occur while measuring the time to simulate a single pattern. Further-
more, reading the file and writing the response to the standard output take most
of the simulation time. For that reason, the relevant values were extracted from
the packet used, and the Open vSwitch was simulated one thousand times. The
time taken to simulate a single pattern was measured to be ∼0.003408 ms.

Discussion. As a conclusion of the presented experiments, it can be seen that
the logic circuit simulation is more than 85 times faster (compared to the switch
packet processing). Arguably, the difference in the input/output interfaces for
the different environments (packet input in a switch vs. file read in a circuit
simulation) can also affect the time estimations. However, capturing packets at
a network interface is done when the packet has been processed by the interface
and processed by the operating system, therefore, reading a packet is done from
the internal (RAM) memory of the devices. On the other hand, the file used to
simulate a pattern in the circuit simulation is performed from a hard drive (HD).
For that reason, it is reasonable to assume the time measurements performed
over the switch have an inherent advantage (RAM access is much faster than
HD access). Therefore, theoretically, the speed-up may be even larger when
considering the same input/output interfaces.

It is of special interest to accurately estimate the obtained speed-up due to
its potential applications not only for testing reasons but, for optimizing the
switch implementations. Performing such investigation of the speed-up obtained
via the logic circuit representation of a set of rules is left for the future work.
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6 Conclusion

In this paper, we proposed a logic circuit based approach for testing SDN-enabled
devices. It allows to take advantage of well established test generation strategies
for logic circuits as well as of scalable manipulation over Boolean vectors and
functions. We also introduced some mutation operators over the switch rules and
discussed how logic circuit and related SAT solving can be utilized for detecting
equivalent mutants. Finally, we considered run-time verification of switches and
investigated the use of logic circuits in this case. Preliminary experiments with
Open vSwitch confirm the effectiveness of the proposed approaches.

As future work, we foresee a number of directions. First, as the main focus of
the paper is on test case derivation, important aspects of test execution are left
for future work. Additionally, we plan to thoroughly investigate the correlation
between the mutants of the switch rules and those of logic circuits. At the same
time, it is interesting to analyze which kind of bugs and inconsistencies in an SDN
controller or a controller-to-switch communication can be detected via proposed
‘stateless’ approach. Equivalent mutants for switches and the corresponding SAT
solving solution also need further investigation. Likewise, it is interesting to study
related complexity issues in this case to see if the SAT solving can scale in a
general case or specific classes over switch rules should be defined. Finally, we
would like to perform more experiments on other real SDN infrastructures and
environments with software and/or hardware implementations for checking the
effectiveness of logic circuit solutions.

Acknowledgments. This research was partially funded by the Celtic-Plus European
project SENDATE, ID C2015/3-1.
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3. Berriri, A., López, J., Kushik, N., Yevtushenko, N., Zeghlache, D.: Towards model
based testing for software defined networks. In: Proceedings of the 13th Interna-
tional Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE 2018, Funchal, Madeira, Portugal, 23–24 March 2018, pp. 440–446 (2018)

4. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

5. David, L., Stefano, V., Olivier, B.: Towards test-driven software defined network-
ing. In: 2014 IEEE Network Operations and Management Symposium, pp. 1–9
(2014)

6. Dobrescu, M., Argyraki, K.: Toward a verifiable software dataplane. In: Proceed-
ings of the Twelfth ACM Workshop on Hot Topics in Networks, p. 18. ACM (2013)

https://doi.org/10.1007/978-3-642-14295-6_5
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Abstract. We propose a novel energy based framework for the valida-
tion of smart-spaces. The framework includes, in addition to the given
smart-space SS, an exterior environment (Env) that mimics a typical
real environment where the SS can be deployed, and a Tester for deter-
mining which pre-post condition requirements are satisfied by the SS in
the considered Env contexts. The Tester appropriately uses an energy
aware simulator to derive device operation sequences (or tests), with
minimal power consumptions cost, that can be used to move Env to the
intended exterior context and the SS to a context satisfying the given
pre-condition. In addition, the Tester monitors the relevant SS context
attributes to release verdicts about which pre-post conditions are met
under each considered Env context. The framework is deployed in a real
SS environment to assess the actual energy consumption of derived tests
in practice. Experiments show that the actual power consumption of the
derived tests is close to the estimated values. Furthermore, a detailed
case study is provided to assess the gains in using energy aware tests in
comparison to tests derived using non-energy aware alternatives.

Keywords: Ubiquitous computing systems · Smart-spaces
Minimal energy context move
Energy based simulation and testing framework

1 Introduction

Ubiquitous computing systems [19] or context-aware pervasive systems [6] are
systems that can sense their surrounding physical environment and accordingly
adapt their behavior. The space or home where the ubiquitous computing system
is deployed is called smart-space (or smart-home) [4]. A smart-space (SS) consists
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of a physical-space or a location with physical attributes such as temperature,
humidity, etc., representing the environment of the SS. A SS also includes a set
of physical devices such as sensors, actuators, home appliances, etc., that are
distributed all over the physical space. Devices are controlled by an embedded
software and they communicate with each other through the network to provide
services to the SS users. A user has a behavior such as position in the room,
activity, etc. A context of a smart-space is defined by a set of values of variables
representing current status of devices, values of environment variables, position
and activity of users, and others.

Users of a SS usually define, according to their preferences, a set of testing
requirements that should be provided as services by the SS to its users. These
requirements, are usually defined over attributes of the smart-space context vari-
ables. For example, the requirements specification are given as a set of pre-post
condition properties that should hold in (or provided by) the system such as “If
a user A is in a room R, room R’s temperature and humidity should be set to
25 ◦C and 50%, respectively.”

In practice, a SS is deployed in a realistic exterior environment which has
an impact on the SS environment attributes such as temperature and humidity.
However, the SS attributes such as humidity and temperature have no effect on
Env. The values of Env temperature and humidity significantly vary within the
same day, from day to day, from one season to another, and from one physical
location to another. So, it is necessary to determine which of the SS testing
requirements are satisfied over the different Env conditions (contexts).

Today, energy consumption is regarded an important aspect of research and
development in ubiquitous computing. Accordingly, in this paper, we present
a novel energy-aware approach for the validation of smart-spaces taking into
account the minimization of energy consumption encountered during testing.
More precisely, given a set of pre-post conditions as testing requirements that
should be satisfied by the SS over various exterior environment contexts, a
method is proposed that appropriately derives and executes operations sequences
(or tests) and monitors the appropriate attributes of the SS contexts to determine
which of the pre-post conditions are satisfied by the SS under specific exterior
environment conditions. The method is implemented as a Tester in the frame-
work that includes the considered SS devices and context-aware control system,
and an exterior environment Env that is built and can be controlled by Tester
to represent and mimic the exterior environment conditions where the SS can be
deployed. Thus, Env includes appropriate devices and sensors to measure the
required exterior environment attributes. The Tester interacts with both the SS
and the Env devices and has the capability of observing their context attributes,
mostly humidity and temperature, as needed. The Tester, for checking the given
set of pre-post conditions under a certain exterior environment context, it first
derives and uses a test (sequence of operations with minimal power consump-
tion cost) that move Env to the intended exterior environment context. After
reaching the intended context, the Tester derives and executes another minimal
cost test that moves the SS from its current context into a context satisfying the
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pre-condition of a selected pre-post condition. After the SS reaches the intended
context, the Tester gives control back to the SS and its software and hardware
components, and thus the SS is left to run by itself according to its (black-box)
possibly distributed implementation software and hardware components. After-
wards, at an appropriate time instance, determined in advance by the test case,
the Tester checks if the current reached context attributes of the SS satisfy the
post-condition of the considered pre-post requirement. If so, the SS is declared
to satisfy the pre-post requirement under the current exterior environment con-
text. Otherwise, no conclusion is made about the considered pre-post condition,
and testing proceeds to examine another pre-post condition.

We note that in general multiple devices are deployed in a SS and there
are many different sequences of device operations (tests) that can be used to
move the SS from a context to another, and these sequences greatly differ in
their consumption of energy. In addition, the behavior of the SS, in terms of
contexts and events connecting contexts with their associated power consump-
tion and duration (time), is not known in advance. Accordingly, we rely on a
simulator to explore (part) of this behavior and derive minimal cost tests. We
assess the energy consumption of tests derived by the simulator when executed
in a real environment. According to these experiments, the difference, between
the estimated and actual costs obtained when executing the derived tests in the
real environment is reasonable (the difference is 20–30%). Our testing method
can be used to determine and compare the actual energy cost obtained by the
SS while covering a certain pre-post requirement to a possible energy-aware SS
implementation. We provide a case study that considers many possible non-
energy aware implementations (or alternatives) that cover the given SS testing
requirements. We also compare these alternatives with respect the energy aware
implementation used in the framework.

Related Work: There are some studies for context modeling and reasoning [2]
and simulating context movement [13]. In [2], three context models are intro-
duced as basic models: object-role based models, spatial models, and ontology-
based models. These models can formally represent arbitrary context, but moves
between contexts are not formally defined. UbiREAL [13] is a simulator for
smart-spaces; However, unlike PathSim used in this paper, UbiREAL does not
have a function to derive an optimal cost event sequence to reach an intended
context. Recently, some studies try to optimize energy consumption in control-
ling devices in a smart home [7,8]. However this work does not support vali-
dation of requirements considering energy costs. Many approaches are used for
testing smart-spaces based on altering and adapting previous related work on
other related domains taking into account different aspects of SSs. Satoh [16]
used a simulation centered validation technique of context-aware application.
Further, a considerate number of specification-based validation techniques are
proposed based on different formalisms. Axelsen et al. [1] model components
as algebraic specifications Chan et al. [3] used metamorphic relations in testing
context-aware applications. Lu et al. [10], and Lai et al. [9] used the traditional
data-flow-graph model to represent context aware entities and proposed coverage
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criteria to dynamically verify the definition and use of variables. Wang et al. [18]
also worked on the development of test suites based on some proposed cover-
age criteria. Further, many validation approaches are proposed based on formal
specifications; for example, Heimdahl and George [5] obtain tests based on for-
mal software specifications and von Ronne [14] derives requirements such that
each testing item needs to be covered multiple times before it is considered suffi-
ciently exercised. Sama et al. [15] uses a finite state model approach Our testing
method can be regarded as a combination of a simulation and a requirements
based validation technique specifically designed for checking if certain pre-post
conditions are satisfied in a given SS taking into account energy consumption
costs of test execution. In some sense, the novelty of our proposed work stems
from the fact that we consider energy consumption is an important aspect that
should be considered in test derivation and assessing SS implementations.

This paper is organized as follows. Section 2 includes preliminaries related to
smart-spaces, and Sect. 3 addresses the testing framework. Section 4 gives the
experimental evaluation and and Sect. 5 concludes the paper.

2 Smart-Space: Definitions and Requirements

In this section, we first introduce a behavioral representation of a smart-space
and requirements specification that should hold in the smart-space.

2.1 Behavioral Representation of Smart-Spaces

Contexts: In general, a SS includes one or more physical locations (or rooms) R.
Further, a SS has a set of devices such as TVs, Air Conditioners (ACs), Humid-
ifiers (Hms), Dehumidifiers (Dhs), etc., deployed in R. Let D = {d1, . . . , dm}
denote the set of m devices deployed in R. A device di ∈ D, has n attributes
Adi(j), j = 1,. . . , n. For example, let Status, Current-Channel and Volume-
Level be two attributes of a TV, then ATV (1) = Status and ATV (2) = Current-
Channel. In addition, each attribute of a device Adi(j) has a domain of val-
ues Dom(Adi(j)). For example, possible domains of the TV attributes are
Dom(ATV (1)) = {ON,OFF} and Dom(ATV (2)) = {1, . . . , 300}.

A current state c of a device di is a valuation vector of attributes of the device.
That is, a current state c of a device di is represented by a valuation vector
vdi
c = 〈vdi

c (1), ..,vdi
c (n)〉, vdi

c (j) ∈ Dom(Adi(j)), for j = 1,. . . , n. For example,
the valuation vector vTV

c = 〈vTV (1) = “ON”, vTV (2) = 10, vTV (3) = 30〉,
represents a current state c of the TV where Status is “ON”, Current-Channel
is 10, and Volume-Level is 30. A current state c of the m devices in R is a vector
of valuations 〈vd1

c , ..,vdm
c 〉.

In addition, a SS usually has a set of l users u1,. . . , ul. We properly partition
the SS into a (finite) set of positions (or locations) representing disjoint subloca-
tions of R. For every such user ui, i = 1, . . . , l, we let ui.pos denote the location
of the user in R. Let ui.attr denote the other attributes of the user such as user
ID and activity. Special devices, such as sensors, can be deployed in the SS to
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recognize users and determine activity status of users. A current state c of user
ui is represented as the vector vui

c = 〈ui.pos, ui.attr〉 and current state c of the
l users can be represented by the vector 〈vu1

c , . . . ,vul
c 〉.

Further, we assume that a SS has environment attributes associated with each
sublocation of R. Let r1, . . . , rk be sublocations of R. As environment variables,
we consider temperature and humidity1 and we denote the values of these vari-
ables at sublocation ri by ri.temp and ri.humidity, respectively. Values of these
attributes can be set implicitly through other devices as will be described later.
Current state c of sublocation ri is represented as vri

c = 〈ri.temp, ri.humidity〉
and current state of R (k sublocations) can be represented by the vector 〈vr1

c , . . . ,
vrk
c 〉. A context (or a current state) c of the whole SS represents current states

of its m devices, l users, and environment variables of k sublocations of R. That
is c = 〈vd1

c , . . . ,vdm
c ,vu1

c , . . . ,vul
c ,vr1

c , . . . ,vrk
c 〉.

Events and Transitions: The behavior of the SS can be represented in terms
of contexts and edges representing transitions connecting contexts. An edge con-
necting two contexts is labeled by an event which can move the system between
these contexts and each such an event has a cost and time duration representing
the energy cost and time of such a move as will be described later.

We consider three types of events of a SS: non-environment devise events,
environment device events, and the environment spontaneous event.

An event is a non-environment device event, denoted by DE, if the event can
be generated by setting the value of an attribute of a non-environment device
within the domain of the attribute. A device, such as TV, is a smart-space non-
environment device as it has negligible effect on the SS environment temperature
and humidity attributes. As an example of non-environment device events, a TV
Status can be set “ON” based on an event “SetON” which can be issued using
the TV remote control. We note that we regard the event of setting the user
location in R, by letting the user move into that location, as a non-environment
event. An event is an environment device event, denoted by E, if the event can be
generated by setting a value of an attribute of an environment device. A device,
such as AC, Hm, and Dh, is considered a smart-space environment device if it
can be used to change the SS environment temperature and humidity attributes.
For example, the status of an AC can be turned “OFF” based on an appropriate
environment device event that turns the AC “OFF”.

Non-environment and environment events can instantly be executed, and
thus have no related cost nor duration.

An event is called an environment spontaneous event, denoted by τ , if it
represents a move of the system from a context to another due to change from
one range to the following range of an environment (temperature or humidity)
variable. This changes takes time and has an associated power consumption
cost according to the current context humidity and temperature attributes and
the effect of Env on the SS. Thus, it is clear that an appropriate selection

1 We can easily add other environment variables such as illuminance, dust level, noise
level, and so on, but as we focus on energy consumption, we focus on temperature
and humidity in this paper.
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of environment events and their execution order has an affect on the power
consumption of the system.

It is worth mentioning that the behavior of a SS is in general infinite if the
devices attributes, the user positions/attributes, or the environment variables
have real value domains. Thus, an appropriate discretization of a SS behav-
ior considering a finite number of ranges of continuous variables is necessary.
Hereafter, we assume that the domain of each continuous variable of the SS is
appropriately divided into finite number of ranges. We note that the range size
must be carefully decided so that the perceptual quality of the context-aware
service is not deteriorated.

Another important issue related to the representation of a SS behavior is
that such a behavior is not known in advance. Thus there is the practice of
deriving part of this behavior through simulation. Usually part of such a behav-
ior is derived, based on certain intended goals, as the number of contexts and
transitions can be so huge and the computation of the power consumption costs
of spontaneous events is rather complex.

2.2 Energy-Aware Test Cases

A test case is a (finite) sequence of events. The cost of a test case is the total
sum of the power consumption costs of the test case events. The (estimated)
time duration or simply the time or duration of the test case is the total sum
of the estimated durations of the events of the test case events. In this paper, we
seek energy aware test cases that cover certain test purposes with least energy
consumption costs.

Test Purposes: We consider user defined testing requirements that need to be
checked over many realistic exterior environment conditions.

Smart-Space Testing Requirements: We specify a set of properties
called requirements specification which should be satisfied in a given SS. Let
Properties = {Proper1, . . . , P ropertyh} denote the requirements specification,
where Propertyi denotes a property. Each property is specified as a tuple of a
pre-condition and a post-condition as follows: Propertyi = (Prei, Posti)

Here, Prei and Posti are specified as linear inequalities with variables and
constants in configurations, comparison operators such as >,≥,≤, <,=, logic
operator ∧, and set operator ∈.

For example, in a property “When Alice is in the living room, the room
temperature and humidity should be around 27 ◦C and 60%, respectively,”
Pre and Post can be described as follows. Here, we assume that tempera-
ture and humidity ranges are divided by 1 centigrade and 1% steps, respec-
tively. Pre: uAlice.pos = rLiving, Post : rLiving.temp ∈ {[26, 27), [27, 28)} ∧
rLiving.humidity ∈ {[59, 60), [60, 61)}
Smart-Space Exterior Environment Conditions: As a SS is deployed in
a realistic Env which has an impact on the SS environment temperature and
humidity attributes. As these attributes may significantly vary from one season
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to another and with the same day. Thus, we consider checking the SS require-
ments over various realistic Env conditions. Accordingly, we consider a set of
exterior Env contexts ExtContexts = {C1, . . . Cn} that are properly selected to
represent the different actual Env conditions where the SS can be deployed.

3 Testing Framework

3.1 Testing Architecture

In order to determine if a given SS satisfies a given set of user defined pre-post
conditions over some considered Env conditions, we use the testing environment,
depicted in Fig. 1, that includes the given SS environment with its corresponding
devices and control program. In addition, the environment includes an exterior
environment Env and a Tester that derives and executes (minimal energy) tests
to move Env to the intended contexts and then determine which of the pre-post
conditions are satisfied by the SS over each considered Env context.

Exterior Environment
Env

Target smart-space SS

control

Sensors
(temperature,

humidity)

Actuators
(ACs, Hms, 
doors, etc)

Context-aware
system

Tester

Set and observe SS 
temp, & humid. on/off

Sensors
observe Exterior environment 

temp. & humid.

… …

…

…

Set Exterior 
environment 
temp. & humid.

Actuators
(Ac , HMs, etc) 

for outside temp. & humid.

Fig. 1. Architecture of the testing environment

A SS deploys many sensors to sense the physical quantities and detect the
inhabitant locations. In addition, it implements a context-aware system, includ-
ing, devices and appliances such as ACs, Hms, controllable doors and windows,
etc., and SS control program(s). Each device and sensor sends information to
the control program(s) through the network. The control-program(s) can observe
contexts and events of the system based on obtained information and also can
control the devices; thus, indirectly controls humidity and temperature, by issu-
ing related environment device events as programmed in the controller(s).

In practice, a SS is deployed in an Env which has an impact on the SS
environment temperature and humidity attributes, then it is necessary to test a
SS in various Env conditions (or contexts). Accordingly, in order to test a SS,
we necessarily build in addition to the SS an Env that depicts the real exterior
environment of the SS. Thus, in Env temperature and humidity sensors and
several actuators including ACs and Hms are deployed as shown in the outer box
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of Fig. 1. In addition, the testing environment includes a Tester that is connected
to the sensors and actuators of both the SS and Env. The Tester derives and
executes tests needed to move Env to a selected exterior context and also move
the SS to a context satisfying the pre-condition of a certain pre-post requirement.
In addition, the Tester makes conclusions about the status of the executed
tests. That is, the Tester can observe, as needed and determined by the relevant
tests, both the SS and the Env context temperature and humidity attributes.
In addition, the Tester can actuate and control both these environments by
issuing appropriate messages (or events) to related devices and control programs.
For example, Tester can stop or enable the SS or Env controllers as needed
and as specified by the derived test cases. Further, in order to test the system
in various Env contexts, Tester derives test cases that can move Env from
a given context and to another; and as Env can be controlled in our case,
such moves are always possible. However, while testing a given SS, it is not
guaranteed that we can always move the SS from a given context to an intended
context. Accordingly, our testing method takes into consideration these facts
while deriving and executing tests. Further the tester employs a timer that can
be used appropriately (according to related tests) to determine when to send
commands or observe contexts or to determine when to start or reset the timer
to start executing another test.

3.2 Testing Method

Given a set of user defined pre-post conditions Properties = {Proper1, . . . ,
P ropertyh}, Propertyi = (Prei, Posti), i =1..h, and a set of exterior Env con-
texts ExtContexts = {C1, . . . Cn} that are properly selected to represent the
different actual exterior environment conditions where the SS can be deployed.

Testing a given SS involves determining which pre-post conditions are sat-
isfied by the SS under each considered Env context. In addition, our method
is an energy-aware method in the sense that it works on reducing the power
consumption needed for testing.

For each (Prei, Posti) and each exterior environment context Cj , we deter-
mine if (Prei, Posti) is satisfied in Cj . A pre-post condition (Prei, Posti) is
satisfied in a particular Cj if the SS can move, by itself, as implemented by its
designers, from a context that satisfies Prei to a context that satisfies Posti
while Env is at Cj . Thus, there is a need to move Env from one to another
context, and also move the SS from a current context to another; for instance to
move the SS from the context that satisfies the pre-condition of a given pre-post
requirement. This requires the derivation and execution of test cases derived by
the simulator PathSim which is explained in the next sub section. In addition,
a test case includes commands to stop or enable the SS control system and com-
mands that allow observing the context attributes as needed. If an event of a
test is explicit, the Tester executes the event by taking an appropriate action
command, such as issuing command to the appropriate device to actuate the
event, such as turn on or off AC, Hm, etc. However, if the event is the implicit
τ event, then the Tester waits an appropriate period of time (associated with
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the event) in order to handle the next event of the test case. Thus, based on
the durations associated with the implicit τ events of a test case, the Tester
can determine when to observe the system current context temperature and
humidity attributes.

3.3 PathSim: A Simulator for Deriving Tests with Minimal Costs

The proposed testing method uses the simulator PathSim [12] to derive minimal
cost test cases that are used, for different purposes, in the testing method pro-
vided. More precisely, for each considered Env context in the set ExtContexts,
the simulator is used to derive a minimal energy test that (a) can move Env
from a current context to the intended context, or (b) move the SS from its
current context to a context satisfying the pre-condition of a selected pre-post
requirement from the set Properties. In addition, the simulator is used to esti-
mate when the Tester can observe the SS context to determine if in fact it has
moved from the context satisfying the pre-condition to a context satisfying the
corresponding post-condition.

In fact PathSim uses a strategy that employs many functions to determine
a minimal cost path (with related operation events). As the behavior, contexts
and transitions between these contexts with associated power consumption costs,
are not known, PathSim explores part of this behavior in such a way that a
minimal cost path is derived. A known heuristic to solve such a problem is the
A* algorithm; hence, PathSim employs a modified version of the A* utilizing
functions to derive possible events that can be executed at a current context, a
context move function that simulates context movement to a neighboring context
upon the execution of an event. In addition, it includes functions that estimate
for a τ event related power consumption and duration taking into account the
volume (size) and heat conductivity of walls (including windows and roofs) of
the SS outside air temperature and heat and moisture emitted by devices, and
so on.

3.4 Testing Method in Detail

A detailed description of the testing method is provided as Algorithm1.

3.5 Implementation of the Testing Environment

We have implemented the proposed test environment in a SS which is built in
Nara Institute of Science and Technology [17]. This smart home is built in an
experiment room (76 square meters) in the university building. The experimental
room is equipped with temperature and humidity sensors and an air conditioner
to imitate the temperature outside the smart home. A server is also deployed
in the room and used to run both the context-aware system under test and our
tester. The SS is equipped with home appliances, and temperature and humidity
sensors. All sensors continuously upload the measured sensor values to the server
every few seconds. Appliances can be operated via the home network.
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Algorithm 1. TestingMethod
Input: A set of pre-post conditions Properties = {Property1, . . . , Propertyh}, Propertyi =
(Prei, Posti), i =1..h, a set ExtContexts of exterior environment contexts Cj , j = 1..n, a current
initial external environment context Ccur, and a current initial context c of the target SS.
Output: Verdicts about which (Prei, Posti) conditions are satisfied by the SS under each con-
sidered exterior environment context Cj

1: for all Cj ∈ ExtContexts do
2: Derive, using PathSim, a minimal cost path with corresponding test case that can move Env

from the current exterior environment context Ccur to Cj

3: Execute the derived test case; Wait appropriate time as specified in the test case for Env to
reach the intended context Cj

4: for all Propertyi ∈ Properties do
5: Determine, using PathSim, if there is a minimal cost path, with the corresponding test

case, that can move the SS from its current context c to a context ci that satisfies the
pre-condition Prei of Propertyi

6: if there is such path (test case) then
7: Disable the target SS controller
8: Execute the derived test case that moves SS to ci which satisfies Prei of Propertyi

9: Wait appropriate time as specified by the test case (to let the SS move by itself to the
context that satisfies Posti)
Observe the (reached) SS context

10: if the SS reaches a context that satisfies Posti then
11: Declare (or issue a verdict) that SS satisfied Propertyi in the current considered

exterior environment context Cj

12: end if
13: end if
14: end for
15: end for
16: End Algorithm 1

We also implemented the above proposed testing approach where a Tester
is implemented that derives and executes tests as in the proposed approach. At
the implementation level the events of the tests are appropriately coded using a
device control language that we defined for this purpose.

L: 6,41m

W
: 2,57m

Env

H: 2,35m

HM1

AC

HM2 HT
SS

Fig. 2. Env and SS in the real environment (Color figure online)

4 Experimental Evaluation

In this section, we provide two case studies relevant to the proposed work.

4.1 Case Study 1: Real vs Simulated Environment Tests

In this case study, we consider the estimated energy consumption and execu-
tion times of tests derived by PathSim and compare these with respect to the
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Table 1. Configuration of devices of the
real target smart-space

Power
consumption

Heat capacity

AC HOT: 1420W HOT: 4.1 kW

Heater 1500W 1500W

Humidifier-1 47W 550mL/h

Humidifier-2 35W 450mL/h

Table 2. Energy consumption and tran-
sition time

Energy
consumption (kW)

Transition
time (s)

Simulation
based

323.229 1262

Real
environment

416.775 1868

actual values obtained by running these tests on a real SS environment that was
explained in Sect. 3.5.

Real Environment of Case Study 1. We consider the SS shown within a
red box shown in Fig. 2. The target SS (in gray area surrounded by red line) has
2.57 m width, 6.41 m length, and 2.35 m height. The all rooms outside the SS
are supposed as an Env in this case study. Windows and doors are closed during
the experiment.

The SS includes four devices (appliances): An AC with heating and cool
modes, a heater and two humidifiers. In addition, for each device, we constructed
a model of power consumption versus rated capacity (output) based on its device
specification catalog as shown in Table 1.

In PathSim, we empirically defined the thermal conductivity by 0.2 W/(m ·
K) for a glass window and 0.15 W/(m · K) for the wood walls and the roof
connecting to the exterior environment Env.

In order to calculate inflow and outflow moisture amounts in the SS, we
conducted a preliminary experiment to measure the actual humidity variations
in the SS and got an air quantity of ventilation V olven = 0.0762.

Smart-Space Source and Target Contexts. The experiments were con-
ducted under keeping Env with approximately 14–16 ◦C of temperature and
40–45% of humidity. The temperature and humidity in the SS were stable in the
ranges of 16–18 ◦C and 20–25% after one-hour ventilation with turning off all
appliances. This experiment was conducted in a daytime of winter (January) in
Nara Japan.

Therefore, we divided the temperature domain into ranges of 2 ◦C, and the
humidity domain into ranges of 5%, and we define the SS source context with
[16 ◦C, 18 ◦C) in temperature range and [20%, 25%) in humidity range. The
ministry of the Environment of Japan recommends 20 ◦C as the standard room
temperature and 40–60% as the suitable room humidity, in winter. Accordingly,
we defined the target context temperature to be in the range [20 ◦C, 22 ◦C) and
humidity range in [50%, 55%).

Experimental Method and Results. Here we assess and compare the differ-
ence in energy consumption and execution time of running sequences obtained
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by the simulated PathSim environment and our real smart-home environment
described in Sect. 4.1.

The experiments were conducted based on the following simple procedure.

1. Set the temperature and humidity ranges in the real home smart-space as
those of the considered source context temperature and humidity ranges by
ventilation with turning off all appliances.

2. Derive a sequence of events using PathSim for moving from the considered
source context to the target context.

3. Use the derived sequence to move the real smart-home space to the intended
target context.

4. Compare the energy consumption and transition time of the sequence
obtained by PathSim in (2) with the corresponding real smart-home energy
consumption and time obtained in (3).

In order to minimize errors in measurement results and the influence of the
change of the temperature and humidity of the outside air, we repeated the above
steps three times and compute the average of all obtained results. According to
the conducted experiments, the real smart-home always reached the intended
target context using the sequences derived by PathSim.

Table 2 shows the average results of the conducted experiments. According to
these results, the difference between the energy consumption and the transitions
duration (time) of the simulation and real smart-home environment are 20–30%.
In this experiment, we defined the power consumptions and capacities for each
appliance in PathSim based on the catalog specification, and this caused the
difference. We believe that building a more realistic model of power consumption
and capacity will reduce the difference.

Table 3. Source and target contexts

Pair # Category Source context Target context Description

1 Daytime DT 17.8 ◦C, 27.35% (160mL) 22.8 ◦C, 20.35% (160mL) +5 ◦C

2 17.8 ◦C, 27.35% (160mL) 27.8 ◦C, 15.37% (160mL) +10 ◦C

3 DH 17.8 ◦C, 27.35% (160mL) 17.8 ◦C, 37.35% (219mL) +10%

4 17.8 ◦C, 27.35% (160mL) 17.8 ◦C, 47.35% (277mL) +20%

5 DP 17.8 ◦C, 27.35% (160mL) 20.0 ◦C, 40% (300mL) Low T & H

6 17.8 ◦C, 27.35% (160mL) 24.0 ◦C, 50% (470mL) High T & H

7 17.8 ◦C, 27.35% (160mL) 22.0 ◦C, 45% (378mL) Middle T & H

8 Night DT 13.6 ◦C, 27.38% (124mL) 22.8 ◦C, 27.38% (124mL) +5 ◦C

9 13.6 ◦C, 27.38% (124mL) 27.8 ◦C, 27.38% (124mL) +10 ◦C

10 DH 13.6 ◦C, 27.38% (124mL) 13.6 ◦C, 37.38% (170mL) +10%

11 13.6 ◦C, 27.38% (124mL) 13.6 ◦C, 47.38% (215mL) +20%

12 DP 13.6 ◦C, 27.38% (124mL) 20.0 ◦C, 40% (267mL) Low T & H

13 13.6 ◦C, 27.38% (124mL) 24.0 ◦C, 50% (420mL) High T & H

14 13.6 ◦C, 27.38% (124mL) 22.0 ◦C, 45% (337mL) Middle T & H

DT: Different temperature, DH: Different humidity, DP: Different preference

T: Temperature, H: Humidity
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Table 4. Simulation parameters

Parameter Value

Env environment Daytime temp = 8.7 ◦C, humid = 48%

Night temp = 1.5 ◦C, humid = 60%

Temperature range boundary k k1 1 ◦C

k2 1 ◦C(temp < 18 ◦C), 0.5 ◦C(temp ≥ 18 ◦C)

4.2 Case Study 2: Assessing Energy Gains in Using Energy Aware
Tests

In this section, we assess the gains (in terms of energy cost) of using minimal cost
test cases, derived with the simulator PathSim used in our testing method, in
comparison to test cases derived using some non energy-aware adhoc methods.
To this end, we consider deriving tests for moving the SS from a given source to
a target context using the following hypotheses:

(1) Minmal Energy Cost Tests: Here PathSim is used to derive minimal
energy cost tests as described above.

(2) Minimal T ime Cost Tests: Here PathSim is also used; however, to derive
minimal time test to reach the intended context range by changing the cost
function of PathSim to consider durations of the τ events.

(3) Temprature-First Focus Tests: Tests are derived by turning All ACs and
heaters on with the Heat (Cool) mode to reach the intended target con-
text temperature if the source context temperature range is higher (lower)
than that of the target context. In addition, all humidifiers then are used
afterwards to reach the intended context humidity.

(4) Humidty-First Focus Tests: Opposite to (3); i.e., all humidifiers are used
to reach the intended humidity given in the target context and then all ACs
and heaters are used to reach the intended temperature.

We consider many source and target context pairs, as given below, and for
each pair tests are derived using each of the above options and their correspond-
ing energy and time costs are captured.

In this case study, we set the temperature and humidity by supposing the
typical winter in Tokyo, Japan based on [11]. We used the same SS and Env
with the same devices as in Case Study 1 (see Fig. 2 and Table 1).

Tables 3 and 4 show the source and target contexts and simulation variables
used in this case study. We consider two time periods of a day (daytime and
night time), three types of the target contexts (supposing different persons with
different preferences), and two types of range widths.

Daytime and Night in a day have different outside temperature and humidity.
Accordingly, the natural room temperature also differs between daytime and
night. Moreover, the room temperature and the outside temperature will greatly
differ as long as the window(s) of the room is closed. Here, we assume that the
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relative humidity of a room has the same absolute humidity as that outside unless
(de)humidification is not done. Consequently, we consider two types of source
contexts (in SS) and Env environment, respectively, with different temperature
and humidity to assess the difference between daytime and night.

The target contexts are set by considering different temperature, different
humidity, and different user’s preference, respectively. To consider temperature
difference, 5 or 10 ◦C more than the source context is set to the temperature in
the target contexts where the (absolute) humidity is left unchanged. To consider
the humidity difference in the target contexts, 10 or 20% humidity more than
the source context is set to the target humidity while the temperature is left
unchanged. To assess the realistic case supposing user’s preferences/demands,
we consider three target contexts with comfortable temperature and humidity:
the case with a user of type 1 who dislikes hot and high humidity, the case with
another user of type 2 who dislikes cold and low humidity, and the case of the
two users with type 1 and 2 being in the same room, respectively.

The finer the ranges are divided, the more finely the tester can monitor
context changes and control devices. However, if the source context is far from
the target context, processing resources of the tester will be wasted and the path
derivation time by PathSim will be increased. Therefore, we consider two types
of the temperature range widths. k1 divides all ranges every 1 ◦C temperature.
k2 divides ranges every 1 ◦C if less than 18 ◦C, and every 0.5 ◦C if more than or
equals to 18 ◦C that corresponds to the comfortable winter temperature range.

In summary, we consider 14 different source and target context pairs for the
considered two types of range widths, thus, we evaluate the total of 28 pairs
with respect to energy consumption, transition time, and the path length for
each test derivation hypothesis.

Table 5 shows the results for these 28 pairs (numbered from 1 to 14 to compare
between k1 and k2 cases in each pair). In the table, gray cells show the best cases
among all methods.

According to the results depicted in Table 5, for all considered pairs, tests
derived using the Minimal Energy Cost Tests (EC) hypothesis have less energy
costs than those derived using the other methods. In addition, Minimal Time
Cost Tests (TC) have less time durations, except for the pair #14 with k1, than
the tests derived by the other methods. For the pair #14 the target context
range is far apart from the source context, thus TC did not derive the test with
minimal time. This is due to the fact that PathSim is a heuristic.

For the pairs where source and target differ only in temperature (DT: # 1
& 2), all except the EC test derivation method derived minimal time tests. The
reason why only EC derived tests with longer time costs is that it derives the
tests without using low energy efficiency devices to achieve the minimal energy
cost. In these cases and in the cases where the humidity of the target context
is closer to that in the source target, Temperature-First Focus Tests (TF) and
Humidity-First Focus Tests (HF) derived the same tests.

For the pairs where source and target contexts differ only in humidity (DH: #
3 & 4), the same tests were obtained by all test derivation methods. This is due



An Energy Aware Testing Framework for Smart-Spaces 99

Table 5. Results of simulation (gray cells show the best cases)

Pair# Category k
Energy(kW) Time(s) Path Length

EC TC TF HF EC TC TF HF EC TC TF HF

1
DT

+5 ◦C
k1 154 188 188 188 109 68 68 68 8 10 10 10
k2 162 198 198 198 115 71 71 71 13 15 15 15

2 +10 ◦C
k1 319 388 388 388 224 136 136 136 13 15 15 15
k2 327 398 398 398 230 139 139 139 23 25 25 25

3
DH

+10%
k1 21 21 21 21 230 230 230 230 7 7 7 7
k2 21 21 21 21 230 230 230 230 7 7 7 7

4 +20%
k1 49 49 49 49 513 513 513 513 9 9 9 9
k2 49 49 49 49 513 513 513 513 9 9 9 9

5

DP

Low
k1 129 142 143 143 431 367 407 407 13 14 15 15
k2 120 132 133 133 425 366 404 404 15 16 17 17

6 High
k1 439 1473 487 549 2420 2255 2359 3000 21 41 23 28
k2 431 638 477 538 2416 2224 2356 2987 29 46 29 34

7 Middle
k1 255 679 288 288 1061 993 1102 1103 17 29 19 19
k2 246 474 278 278 1124 931 1099 1099 23 38 23 23

8
DT

+5 ◦C
k1 161 196 196 196 114 70 70 70 8 10 10 10
k2 169 206 206 206 120 74 74 74 9 11 11 11

9 +10 ◦C
k1 325 396 396 396 229 138 138 138 13 15 15 15
k2 334 406 406 406 234 142 142 142 19 21 21 21

10
DH

+10%
k1 16 16 16 16 176 176 176 176 7 7 7 7
k2 16 16 16 16 176 176 176 176 7 7 7 7

11 +20%
k1 36 36 36 36 380 380 380 380 9 9 9 9
k2 36 36 36 36 380 380 380 380 9 9 9 9

12

DP

Low
k1 280 320 329 329 713 624 651 651 18 21 20 20
k2 277 310 319 319 710 620 648 648 22 23 22 22

13 High
k1 761 1842 839 1645 4397 3542 4319 12610 25 66 28 37
k2 753 2163 829 1967 4395 3740 4315 16022 31 104 34 43

14 Middle
k1 427 582 492 517 1240 1259 1537 1794 23 32 24 33
k2 422 988 482 506 1567 1284 1534 1784 30 56 28 37

EC: Minimal Energy Cost Tests, TC: Minimal Time Cost Tests,
TF: Temperature-First Focus Tests, HF: Humidity-First Focus Tests
DT: Different temperature, DH: Different humidity, DP: Different preference

to the fact that there is no significant difference in efficiency of humidification
between humidifiers and the temperature ranges of source contexts are as those
of the corresponding target contexts.

For the pairs supposing the user’s preference (DP: # 5–7 & 12–14), TF
derived tests with less energy and time costs than HF. Moreover, EC derived
tests with less energy costs than other methods, and TC derived tests with less
time costs than other methods. In all these cases, the fine range width (k2)
significantly reduced the energy cost for EC; but, for most pairs, this significant
improvement was not obtained by the other methods.

5 Conclusion

An energy-based framework for the validation of smart-spaces is proposed. The
framework includes in addition to the considered SS environment an exterior
environment Env representing a typical environment where the SS can be
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deployed and a Tester for test derivation, execution and monitoring. Given a set
of Env contexts, the Tester appropriately derives minimal cost tests for moving
Env to the considered exterior contexts and also it derived tests for moving the
SS to contexts satisfying the pre-conditions of a given set of user defined pre-
post condition requirements. The Tester controls and appropriately observes
both the SS and Env to release verdicts about which pre-post conditions are
satisfied by the SS. A case study that considers real SS and Env environments
is provided. In addition, another study is given to show the gains (in terms of
energy reduction) in using energy aware tests in comparison to adhoc non-energy
aware tests.
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Numbers 26220001, 16H01721.
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Abstract. The C++11/14 standard offers a wealth of features aimed
at helping programmers write better code. Unfortunately, some of these
features may cause subtle programming faults, likely to go unnoticed dur-
ing code reviews. In this paper we propose four new mutation operators
for C++11/14 based on common fault patterns, which allow to verify
whether a unit test suite is capable of testing against such faults. We
validate the relevance of the proposed mutation operators by performing
a case study on seven real-life software systems.

Keywords: Software testing · Mutation testing · C++11/14
Mutation operators

1 Introduction

Nowadays, the process of software development relies more and more on auto-
mated software tests due to the developers interest in testing their software
components early and often. The level of confidence in this process depends on
the quality of the test suite. Therefore, measuring and improving the quality of
the test suite has been an important subject in literature. Among many of the
studied techniques, mutation testing is known to perform well for improving the
quality of the test suite [10].

The idea of mutation testing is to help identify software faults indirectly by
improving the quality of the test suite through injecting an artificial fault (i.e.
generating a mutant) and executing the unit test suite to see whether the fault
is detected [19]. If any of the tests fail, the mutant is said to detected, thus killed.
On the other hand, if all the tests pass, the test suite failed to detect the mutant,
thus the mutant survived. However, some mutants result in code which does not
pass the compiler and these are called invalid mutants. And in other situations,
a mutant fails to change the output of a program for any given input hence can
never be detected—these are called equivalent mutants.

A mutant is created by applying a transformation rule (i.e. mutation opera-
tor) to the code that results in a syntactic change of the program [9]. Given an
effective set of mutation operators, mutation testing can help developers identify
the weaknesses in the test suite [1]. Nevertheless, designing effective mutation
c© IFIP International Federation for Information Processing 2018
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operators requires considerable knowledge about the coding idioms and the com-
mon programming faults often made in the language [9]. More importantly, good
mutation operators should maximize the likelihood of valid and non-equivalent
mutants [4].

The first set of mutation operators were reported in King et al. [12]. They
were later implemented in the tool Mothra which was designed to mutate the
programming language FORTRAN77. With the advent of the object-oriented
programming paradigm, new mutation operators were proposed to cope with
specific programming faults therein [11]. This is a common trend in mutation
testing: languages evolve to get new language constructs; some of these con-
structs cause subtle programming faults; after which new mutation operators get
designed to shield against these common faults. For example, with the evolution
of Java related languages, mutation operators have been designed to account
for concurrent code [2], aspect-oriented programming [7], graphical user inter-
faces [18], and Android applications [6].

The C++11/14 standard (created in 2011 and 2014 respectively) offers a
wealth of features aimed at helping programmers write better code [20]. Most
notably there is more type-safety and compile-time checking (e.g. static assert,
override). Unfortunately, the standard also provides a few features that may
cause subtle faults (e.g. lambda expressions, list initialization, . . . ). Our goal is
to identify these sources of common faults and introduce new mutation operators
that address them. While it is possible that some subset of these faults are
addressed by C++99 mutation operators, previous experience shows targeted
mutation operators prove useful in improving the test suite quality further [3,5].
In this study, we seek to answer the following research questions:

– RQ1. Which categories of C++11/14 faults are most likely to be made by
programmers, and what are the corresponding mutation operators?

– RQ2. To what extent do these mutation operators create valid, non-
equivalent mutants?

The rest of this paper is structured as follows: In Sect. 2 we provide the necessary
background information about this study, and briefly discuss the related work.
In Sect. 3 we discuss our approach to answering our research questions, and show
our results in Sect. 4. Finally, we present our conclusions in Sect. 5 and highlight
the future research directions rooted in this work.

2 Background and Related Work

In this section we provide the necessary background information needed to com-
prehend the rest of the article and discuss the related work. First, we describe
mutation testing and its related concepts. Then, we describe the new C++11/14
features, focusing on subtle faults that may be revealed via mutation testing.
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2.1 Mutation Testing

Mutation testing is the process of inserting bugs into software(Mutants) using a
set of rules(Mutation Operators) and then running the accompanying test suite
for each inserted mutant. If all tests pass, the mutant survived. If at least one test
fails, the mutant is killed. If the mutant causes an error during compilation of the
production code, it is invalid. A valid mutant that does not change the semantics
of the program, thus making it impossible to detect, is called equivalent.

An equivalent mutant is a mutant that does not change the semantics of
the program, i.e. its output is the same as the original program for any possible
input. Therefore, no test case can differentiate between an equivalent mutant and
the original program, which makes it undesirable. The detection of equivalent
mutants is undecidable due to the halting problem [16]. The only way to make
sure there are no equivalent mutants in the mutant set is to manually inspect
and remove all the equivalent mutants. However, this is impractical in practice.
Therefore, the aim is to generate as few equivalent mutants as possible.

Mutation operators are the rules mutation testing tools use to inject syntac-
tic changes into software. Most operators are defined as a transformation on a
certain pattern found in the source code. The first set of mutation operators ever
designed were reported in King et al. [12]. These mutation operators work on
basic syntactic entities of the programming language such as arithmetic, logical,
and relational operators. Offutt et al. came up with a selection of few mutation
operators that are enough to produce high quality test suites with a four-fold
reduction of the number of mutants [17]. Kim et al. extended the set of mutation
operators for object-oriented programming constructs [11].

Because of the complexity of parsing C++, building a mutation testing tool
for C++ is almost equivalent to building a complete compiler [8]. It is only
with modern tooling, e.g. the Clang/LLVM compiler platform, that it became
possible to write such tools without an internal parser.

Kusano et al. developed CCmutator, a mutation tool for multi-threaded
C/C++ programs that mutates usages of POSIX threads and the C++11 con-
currency constructs, but works on LLVM’s intermediate representation instead
of directly on C++ source code [13]. Delgado-Perez et al. have expanded on the
work done for the C language by adding class mutation operators, and created a
set of C++ mutation operators [5]. In addition, they show that the class muta-
tion operators compliment the traditional ones and help testers in developing
better test suites.

2.2 C++11/14

C++11 was introduced in 2011 with the goal of adapting C++ and its core
libraries to modern use cases of the language (e.g. multi-threading, genetic algo-
rithms, . . . ). This release was followed by C++14 in 2014 with similar goals. The
introduction of C++11/14 has changed the language to the point that earlier
iterations of the language are dubbed the classical C++, and modern C++1

1 http://www.modernescpp.com/index.php/what-is-modern-c.

http://www.modernescpp.com/index.php/what-is-modern-c
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starts with C++11/14. The release of the standard was followed by real-time
adoption in compilers such as Clang and G++.

Unfortunately, the C++11/14 standard also provides a few features that
may cause subtle faults, thus where support in the form of new mutation oper-
ators would be desirable. In this subsection we briefly explain these features of
C++11/14.

Range-Based for Loop. [http://en.cppreference.com/] is syntactic sugar
made to simplify looping over a range of elements. For example, the following
two loops are similar:

for ( int i : v ) {
std : : cout << i << ’ \n ’ ; }

for ( int i =0; i<v . s i z e ( ) ; i++) {
std : : cout << v . at ( i ) << ’ \n ’ ; }

Lambda Expressions. [http://en.cppreference.com/] allow for the definition
of unnamed in-line functions. For example, in the following piece of code, lambda
contains a function which captures a and b (they are available in the body of
lambda as const expressions), takes an input parameter x, and returns a bool.

int a , b ;
auto lambda = [ a , b ] ( int x ) {return x > a + b ;}

It is possible to have a default capture at the start of the capture list, e.g. ’=’
for by-value, or ’&’ for by-reference capture. This causes all variables referenced
in the lambda body to be captured the specified way.

Move Semantics. [http://en.cppreference.com/] are introduced in C++11/14
to address the inefficiencies of copy construction when the copied value is deleted
after the execution of the constructor. For example, the following code would be
inefficient in C++03:

std : : vector<int> v ( ComputeLargeVector ( 1 0 0 0 ) ) ;

In C++03, this code would create the vector in ComputeLargeVector, call
the copy constructor for v, which copies all elements into a newly allocated
buffer, and then destroys the original. With move semantics, v would simply
copy the internal size, capacity, and pointer to the elements in the temporary
vector and set the members of the temporary vector to 0.

To enable this, value categories2 got redefined in C++11. Every expression is
either an lvalue, an xvalue, or a prvalue. The difference between these value
categories lies in two properties: whether or not they have identity (i.e. it is pos-
sible to determine whether two expressions are the same using an address), and
whether they can be moved from (move semantics can bind to the expression).

2 http://en.cppreference.com/w/cpp/language/value category.

http://en.cppreference.com/
http://en.cppreference.com/
http://en.cppreference.com/
http://en.cppreference.com/w/cpp/language/value_category
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lvalues and xvalues have identity, while xvalues and prvalues can be moved
from. All rvalues can bind to rvalue references, which are denoted by &&. For
example, the signature of the move constructor of vector is:

vector<T> ( vector<T>&&);

It is possible to convert an lvalue to an xvalue through std::move, which
casts the object to an rvalue reference type.

Perfect Forwarding. [http://en.cppreference.com/] allow for forwarding of
input arguments to other functions as-is. For example, the emplace family of
functions in the standard containers accept any number of arguments and for-
ward them to the constructor of the element type. The following template func-
tion constructs an object of type T with a given argument:

template<typename T, typename Arg>
T cons t ruc t (Arg&& argument ) {

return T{ std : : forward<Arg>(argument ) } ;
}

Because Arg is a template parameter, Arg&& is a forwarding reference [22].
This means that it will resolve to either an lvalue or an rvalue reference
depending on argument. If argument is an lvalue, std::forward is a no-op,
and if argument is an rvalue reference, it behaves the same way std::move
does.

List Initialization. [http://en.cppreference.com/] is a new syntax introduced
in C++11 that allows the initialization of an object from braced initial values.
It expands the ability to construct structs and arrays using braced initializer to
all types in C++. For example, the following is a valid syntax for creating and
initializing an array of int :

int b {1 , 2 , 3 , 4 , 5} ;

Also, a type with a constructor that takes std::initializer list as an
argument can be initialized using this new syntax. For example, the following
declaration of a std::vector creates a vector of integers with 5 elements:

std : : vector<int> v {1 , 2 , 3 , 4 , 5} ;

3 Study Design

In this section, we discuss the design of our study. First, we explain our evalua-
tion criteria, and then we describe the process by which we determine the fault
categories and create mutation operators. Finally, we present the details of our
data set.

http://en.cppreference.com/
http://en.cppreference.com/
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3.1 Evaluation Criteria

RQ1. Which categories of C++11/14 faults are most likely to be made by
programmers, and what are the corresponding mutation operators?
To evaluate the results of this question, the mutation operator needs to fulfill
the following criteria:

– Can the mutation operator simulate a fault from the fault category we iden-
tified?

– Is it reasonable to assume that the software developer can create faulty code
similar to the generated fault?

We look at guidelines provided by experts concerning the new standards and
the common pitfalls mentioned therein. We search for such patterns and select
those that can be reconstructed into a mutation operator.

RQ2. To what extent do these mutation operators create valid, non-equivalent
mutants?

Mutation Operator Score = 1 − E −D

T − I −D
(1)

T = Total Number of Mutants, E = Number of Equivalent Mutants, D = Number
of Easily-Detectable Equivalent Mutants, I = Number of Invalid Mutants

An effective mutation operator generates valid semantic faults. This means
that mutation operators need to generate as few equivalent mutants as possible.
We borrow this criterion from Delgado-Perez et al. who used it in their study [4].
It is also important for each mutant to be valid, i.e. the mutated program com-
piles without errors. To quantify the effectiveness of each mutation operator, we
calculate the percentage of equivalent mutants among the valid mutants after
filtering the easily-detectable equivalent mutants. The mutation operator score
is then calculated by deducting the mentioned percentage from 100% (see Eq. 1).
For each mutation operator, we provide methods to filter easily-detectable equiv-
alent mutants.

To see how our operators work in real-life scenarios, we looked at seven open
source projects that are using C++11/14 (see Table 1). Our analysis consists
of applying our mutation operators to create all possible mutants. We do this
by manually searching for the code patterns that match (using grep). Then,
we manually categorize the resulting mutants into invalid, equivalent, and valid
non-equivalent mutants. If a mutant did not change the semantics of the pro-
gram, we classified it as an equivalent mutant. If the operator created a non-
compilable program, we classified the mutant as invalid. Otherwise, we consid-
ered the mutant as valid non-equivalent.

3.2 Data Set

In this subsection, we present the details of our data set. Our data set is publicly
available in the replication package available at https://www.parsai.net/files/
research/ICTSSRepPak.zip.

https://www.parsai.net/files/research/ICTSSRepPak.zip
https://www.parsai.net/files/research/ICTSSRepPak.zip
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In order to find the common fault patterns related to C++11/14, we looked
at the authoritative sources of fault patterns such as those suggested by Scott
Meyers in his book titled Effective Modern C++ [15], and C++ Core Guidelines
by Bjarne Stroustrup [21]. We also took into account the standard proposal
N3853 by Lavavej [14] which points out problems with range-based for loop
syntax.

Table 1. Project statistics

Project Commit Size (Lines of Code) Number of commits Team size

Production Test

i-score c86cd3d 108K 3.5K 5358 14

C++React 1f6ddb7 11K 2K 417 1

EntityX 6389b1f 9K 1K 296 28

Antonie 59deb0d 9K 0.1K 306 2

Json a09193e 8K 18K 1973 59

Corrade ff3b351 6.5K 9.1K 1898 10

termdb bd0fb4a 783 153 26 2

For the evaluation of the mutation operators, we looked at seven open source
projects that use C++11/14 (Table 1). These projects range from a small, several
hundred lines of code header-only library, to a full application with over 100,000
lines of code with years of active development:

– i-score is an interactive intermedia sequencer, built in Qt.
– C++React is a C++11 reactive programming library, based on signals and

event streams.
– EntityX is an Entity Component System that uses C++11 features.
– Antonie is a processor of DNA reads, developed at the Bertus Beaumontlab

of the Bionanoscience Department of Delft University of Technology.
– Json is a single-header library for working with Json with modern C++.
– Corrade is a C++11/14 utility library, including several container classes, a

signal-slot connection library, a unit test framework, a plugin management
library and a collection of other small utilities.

– termdb is a small C++11 library for parsing command-line arguments.

4 Results

In this section, we present the results of our research. For each mutation operator,
first we give its definition, then we discuss the motivation behind it to answer
RQ1, and finally we provide our analysis of the data set to answer RQ2.
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4.1 For

The range-based “for” reference removal (FOR) operator finds instances of range-
based for loops of the form for (T& elem : range) or for (T&& elem : range),
where T is either auto or a concrete type, and removes the reference qualifier
from the range declaration. Table 2 shows the results for this mutation operator.

Code Excerpt 1.1. Original For

for (auto& elem : range ) { . . . }
Code Excerpt 1.2. Mutated For

for (auto elem : range ) { . . . }

Motivation (RQ1). FOR operator is based on the possibility of confusion over
the default value semantics of the new range-based for loop, whereas previous
methods of looping over containers resulted in reference semantics. This was noted
previously by Stephan Lavavej [14]. In his standard proposal, he lists three prob-
lems with the most idiomatic-looking range-based for loop, for (auto elem :
range), namely:

– It might not compile - for example, unique ptr3 elements are not copyable.
This is problematic both for users who won’t understand the resulting com-
piler errors, and for users writing generic code that’ll happily compile until
someone instantiates it for movable-only elements.

– It might misbehave at runtime - for example, elem = val; will modify the
copy, but not the original element in the range. Additionally, &elem will be
invalidated after each iteration.

– It might be inefficient - for example, unnecessarily copying std::string.

From a mutation testing perspective, the second reason is the main motiva-
tion to create a mutation operator. In the case of a range-based for loop that
modifies the elements of a container in-place, the correct and generic way to
write it is for (auto&& elem : range). For all cases except for proxy objects
and move-only ranges, for (auto& elem : range) works as well.

This operator is only a minor syntactic change that is easily overlooked even
in code review if such fault pattern is not actively looked for. Surviving mutants
of this type can pinpoint the loops whose side effects on container elements are
not tested.

Analysis (RQ2). Invalid Mutants: The invalid mutants are comprised of two
groups. The majority of the invalid loops were over containers of move-only
types. Of the invalid mutants in i-score, 33 were containers of pointers to virtual
interface classes with custom dereferencing iterators, making the mutant try to

3 http://en.cppreference.com/w/cpp/memory/unique ptr.

http://en.cppreference.com/w/cpp/memory/unique_ptr
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Table 2. Results of FOR operator

Project Total Invalid Equivalent Easily detectable Score

i-score 251 101 115 110 87.5%

Corrade 24 1 13 13 100%

Json 1 0 0 0 100%

EntityX 2 0 2 2 N/A

termdb 0 0 0 0 N/A

C++React 8 0 6 6 100%

Antonie 39 10 18 18 100%

instantiate a non-instantiable type. Both of these cases can be easily checked
when generating the mutants.

Equivalent Mutants: In the majority of equivalent cases, the body of the loop did
not mutate the referenced element in the container, thus making it equivalent to a
loop with an added const qualifier. This is relatively easy to verify automatically,
hence such mutants are listed as detectable. Only a handful of equivalent cases
were loops that did mutate the elements of the container, but the container
never gets used after the loop finishes. This would require more complicated
static analysis.

4.2 LMB

The lambda reference capture (LMB) operator changes a default value capture to
a default reference capture. Table 3 shows the results for this mutation operator.

Code Excerpt 1.3. Original Lambda

[= ] ( int x ) { return x + a ; } ;

Code Excerpt 1.4. Mutated Lambda

[& ] ( int x ) { return x + a ; } ;

Motivation (RQ1). This operator is based on the warnings on default capture
modes in Core Guideline F53 and Meyers’ 31st item [15,21]. This mutation oper-
ator results in code that leads to undefined behavior if the lambda is executed in
a non-local context, because the references to local variables are not valid. This
can happen when the lambda is pushed up the call stack or sent to a different
thread for asynchronous execution.

Just like the FOR operator, this operator is only a minor syntactical change
that can easily be overlooked, and results in faults that are not necessarily easy to
detect; thus it is worth testing for its absence. Mutants created by this operator
are not easy to detect either, because they invoke undefined behavior which is
highly dependent on compiler optimization levels and runtime circumstances.
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Table 3. Results of LMB operator

Project Total Invalid Equivalent Easily detectable Score

i-score 189 0 113 101 86.3%

Corrade 0 0 0 0 N/A

Json 0 0 0 0 N/A

EntityX 0 0 0 0 N/A

termdb 0 0 0 0 N/A

C++React 1 0 0 0 100%

Antonie 0 0 0 0 N/A

Analysis (RQ2). Invalid Mutants: We did not witness any invalid mutants
generated by this operator in our data set.

Equivalent Mutants: All undetectable equivalent mutations were ones where the
lambda gets passed into a function that executes it within its own scope. While it
is theoretically possible to detect them, we classify them as undetectable because
it would require complicated non-local reasoning. The other equivalent mutants
are detectable by taking into account what the capture list actually captures.
For example, in Code Excerpt 1.5, the minimal capture list is empty, whereas in
Code Excerpt 1.6 the minimal capture list is [a] and in Code Excerpt 1.7 the
minimal capture list is [this]. In the first and third examples, replacing the
default value-capture with reference-capture changes nothing about the capture
list. In i-score, these made up the majority of equivalent cases, hence the high
percentage of detectable equivalent mutants.

Code Excerpt 1.5. Empty Capture

[= ] ( int x ) {return x < 1 ; } ;

Code Excerpt 1.6. Local Capture

int a ; [= ] ( int x ) {return x < a ; } ;

Code Excerpt 1.7. ‘this‘ Capture

struct Foo {
int a ;
auto g e t F i l t e r ( ) {

return [= ] ( int x ) {return x < a ; } ;
}

} ;

4.3 FWD

The forced rvalue forwarding (FWD) operator replaces std::forward instances
with std::move to force moving from forwarded arguments. Table 4 shows the
results for this mutation operator.
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Code Excerpt 1.8. Original Forwarding

template<class T>
void wrapper (T&& arg )
{

f oo ( std : : forward<T>(arg ) ) ;
}

Code Excerpt 1.9. Mutated Forwarding

template<class T>
void wrapper (T&& arg )
{

f oo ( std : : move( arg ) ) ;
}

Motivation (RQ1). There are often two possible errors in relation to for-
warding semantics (which Meyers warns about in his items 24 and 25 [15]):
forgetting to use std::forward (and thus passing both lvalues and rvalues
on as lvalues) or moving instead of forwarding (and thus passing lvalues on
as rvalues to be moved from).

As an example, the following function constructs an object of type T using
uniform initialization by forwarding the variadic list of arguments using perfect
forwarding:

template<typename T, typename . . . Args>
T cons t ruc t ( Args &&.. . a rgs ) {

return T{ std : : forward<Args>( args ) . . . } ;
}

We then use the following type, chosen because std::string has a destruc-
tive move constructor and std::unique ptr is a move-only type:

struct Widget
{

std : : s t r i n g text ;
s td : : unique ptr<int> value ;

} ;

Then the following code constructs two Widgets with the same text and
different values:

std : : s t r i n g text {64 , ’ a ’ } ; //Long enough to d i s a b l e SSO
auto w1 = construct<Widget>( text , s td : : make unique<int > (0) ) ;
auto w2 = construct<Widget>( text , s td : : make unique<int > (1) ) ;

Both calls result in Args being [std::string&,std::unique ptr<int>&&],
which makes std::forward correctly forward the first argument as lvalue and
the second as rvalue. Forgetting to use std::forward results in both arguments
being forwarded as lvalues, which fails to compile since std::unique ptr is
a move-only type. When forgetting to forward, code will always either compile
and default to copying the types, or fail to compile because a move-only type is
used. Since for all types, the only visible effect of doing a copy instead of a move
is a performance degradation, this would not be a useful operator for testing
purposes.
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Table 4. Results of FWD operator

Project Total Invalid Equivalent Easily detectable Score

i-score 71 13 18 9 81.6%

Corrade 5 0 0 0 100%

Json 14 0 14 6 0%

EntityX 7 0 1 1 100%

termdb 0 0 0 0 N/A

C++React 160 0 17 15 98.6%

Antonie 0 0 0 0 N/A

Replacing the std::forward with std::move, however, does has the poten-
tial to change program behavior. With construct mutated as in the code sample
above, the string text will be moved from in the first call, and the second call
results in unspecified behavior. In most standard library implementations, w2
will end up with an empty text. Meyers argues that it is easy to confuse rvalue
and forwarding references because of their identical syntax, making this a likely
fault for developers to make.

A large part of these mutants can be targeted by using forwarding on a non-
const lvalue argument, since it cannot bind to an rvalue reference. Another
way of testing these is to use a type with a destructive move, and test the state
of the original object after passing it into the function as an lvalue.

Analysis (RQ2). Invalid Mutants: The invalid mutants were comprised of two
groups: fixed template argument and non-const lvalue reference callee argu-
ments. The first group forwards to another template function while explicitly
stating the template argument as seen in Code Excerpt 1.10. This causes the
code to not compile when called with a non-const lvalue. If it is called with
const lvalues or rvalue references it will have the same runtime behavior as
the original.

Code Excerpt 1.10. Fixed Template Argument Forwarding

template<typename T>
void f oo (T&&);

template<typename T>
void bar (T&& t ) {

foo<T>( std : : forward<T>( t ) ) ;
}

The second group forwards into a function with fixed arguments, at least one
of which is a non-const lvalue reference, as seen in Code Excerpt 1.11 which
defines a function that calls another with a prepended integer argument. Because
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the second argument is a non-const lvalue reference, applying the operator here
results in an invalid mutant because it cannot bind to an rvalue reference.

Code Excerpt 1.11. Forwarding into Non-Const Lvalue Reference

void f oo ( int , int&, int ) ;

template<typename . . . Args>
void bar ( Args &&.. . a rgs ) {

f oo (1 , std : : forward<Args>( args ) . . . ) ;
}

Equivalent Mutants: There are three categories of equivalence for this operator.
The first is where std::forward gets used within a decltype or noexcept context,
where the operator either changes nothing, or makes the code fail to compile.
This is why we classify these as detectable equivalent mutants. The second case
is where the forwarded argument never gets stored, which makes irrelevant the
difference between std::forward, std::move, and passing by reference. The
third and final category is where the callees are guaranteed to not take rvalue
references or value parameters of movable types. Of these three categories, the
first is easily detectable by filtering out mutants within a decltype or noexcept
expression. The second would require sophisticated flow analysis which is why
we listed them as not easily-detectable. The last category can be detected if
it is feasible to find all possible callees and see whether they take any rvalue
references or value parameters of movable types. This is only feasible for mutants
calling functions that cannot be overloaded by external code, since it is otherwise
theoretically possible to introduce a new overload of the called function that
takes a parameter of a type with a destructive move, making the mutant non-
equivalent. The mutants for which this analysis is possible are listed as detectable
in our analysis.

4.4 INI

The initializer list constructor (INI) operator checks constructor calls of types
with an initializer list constructor and changes to/from uniform initialization in
order to provoke calling a different constructor. Table 5 shows the results for this
mutation operator.

Code Excerpt 1.12. Original Initializer

std : : vector<int> v ( 3 , 2 ) ;

Code Excerpt 1.13. Mutated Initializer

std : : vector<int> v {3 ,2} ;

Motivation (RQ1). While initializer list constructors are helpful in defining
container contents, they are possible sources of faults as well. For example, when
using uniform initialization one needs to pay attention to the correct syntax,
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Table 5. Results of INI operator

Project Total Invalid Equivalent Easily detectable Score

i-score 1 0 0 0 100%

Corrade 0 0 0 0 N/A

Json 0 0 0 0 N/A

EntityX 0 0 0 0 N/A

termdb 1 0 0 0 100%

C++React 0 0 0 0 N/A

Antonie 18 0 0 0 100%

since using {} instead of () by mistake changes the semantics of the expression
drastically. A prominent example of this problem is std::vector of integer
types, which Meyers points out in his 7th item [15]. The non-mutated version in
Code Excerpt 1.12 defines a vector of three elements with value 2, whereas the
mutated vector in Code Excerpt 1.13 has only two elements: 3 and 2.

Analysis (RQ2). Invalid Mutants: This operator has no way of creating invalid
mutants by design, because it checks whether or not a different constructor is
called when it is applied. This includes checking for narrowing conversions; e.g.
when trying to mutate std::vector<char>(10,’a’);.

Code Excerpt 1.14. Equivalence Cases for INI

struct Defaul t1 {
int f oo = 1 ;
Defau l t ( ) = default ;
De fau l t ( int f ) : f oo ( f ) {} ;
} ;

s td : : vector<Default1> v1 ( 1 ) ; //v1{1}
std : : vector<int> v2 ( 2 , 2 ) ; //v2 {2 ,2}

Equivalent Mutants: There are only a few corner cases for std::vector where
this operator results in equivalence (e.g. Code Excerpt 1.14).

In both of these cases, the mutated initializer results in the same vector as
the original. Given the number of times this pattern was observed in our data
set (20 instances in all projects), it is unlikely that such equivalent mutants are
found in any significant number.

4.5 Discussion

We have aggregated the number of all generated mutants per kind for each
mutation operator in Fig. 1. The FOR operator generates the highest number
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of mutants, most of which are either invalid or easily detectable equivalent.
Hence, it is possible to filter most of these mutants easily. This is why this
mutation operator is promising. The most promising mutation operator is INI,
which generated no invalid or equivalent mutants in our data set. However, the
low number of mutants generated by this mutation operator means that it might
not be applicable in every case. FWD is the operator that generates the most
valid, non-equivalent mutants along with a low number of equivalent and invalid
mutants, while LMB generates no invalid mutants at all but has a slightly higher
ratio of equivalent mutants that are hard to detect.

Fig. 1. Generated mutants Fig. 2. Mutation operator scores

Figure 2 shows the mutation operator score for each mutation operator. It is
clear that all mutation operators are within reasonable boundaries regarding the
percentage of generated hard to detect equivalent mutants when compared to
other C++ mutation operators (e.g. Delgado-Perez et al. [4]). Overall, we found
that these mutation operators have a high mutation operator score, with all of
them generating very few equivalent mutants (13.5% or less of the total number
of mutants).

One of the noticeable trends among these mutation operators is their ten-
dency to generate lots of mutants in a single project, and few in others. For
example, INI generated 18 mutants in Antonie, and 2 in all other projects, while
LMB generated 189 mutants in i-score and only 1 in others. Other than the
size of the projects, we found that the adoption of the new syntax has not been
uniform in all of the projects, i.e. some projects make use of mostly a single new
syntactic feature and not all of them.
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5 Conclusions and Future Work

In this study, we created a set of mutation operators that target the com-
mon faults introduced by C++11/14 syntactic features. We collected advice
about the new C++11/14 syntax from authoritative sources, and created four
new statement-level mutation operators (FOR, LMB, FWD, and INI). For each
mutation operator, we discussed the motivation behind its creation and the type
of faults they generate. We used Mutation Operator Score as a way to mea-
sure the effectiveness of each mutation operator. For this, we selected 7 real-life
C++11/14 projects, and counted the number of valid, invalid, easily detectable
and hard to detect equivalent mutants generated by each mutation operator for
each project. Our results show that all of the introduced mutation operators
generate at most 13.5% hard to detect equivalent mutants. The high operator
scores indicate that these mutation operators are a useful addition to the muta-
tion operators suggested previously in literature.

Several aspects of this study can be researched further. In particular, the
use of our proposed mutation operators alongside traditional and class mutation
operators may result in finding multiple redundancies among these mutation
operators. In addition, a comparative study similar to Delgado-Perez et al. [5]
between these mutation operator sets would provide more insight into the use-
fulness of each set of operators depending on the context.
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Abstract. The problems of active inference (learning) and conformance testing
of a system modelled by an automaton have actively been studied for decades,
however, much less attention has been paid to modular systems, modelled by
communicating automata. In this paper, we consider a system of two commu-
nicating FSMs, one machine represents an embedded component and another
the remaining part of the system, the context. Assuming that the context FSM is
known, we want to learn the embedded FSM without directly interacting with it.
This problem can be viewed as a generalization of the classical automata
inference in isolation, i.e., it is the grey box learning problem. The proposed
approach to solve this problem relies on a SAT-solving method for FSM
inference from traces. It does not depend on the composition topology and
allows at the same time to solve a related problem of conformance testing in
context. The latter is to test whether an embedded implementation FSM com-
posed with the given context is equivalent to the embedded specification FSM
also composed with the context. The novelty of the conformance testing method
is that it directly generates a complete test suite for the embedded machine and
avoids using nondeterministic approximations with their tests, eliminating thus
several sources of test redundancy inherent in the existing methods.

Keywords: Active inference � FSM learning � Conformance testing
Component-based systems � Embedded testing � Testing in context
SAT solving

1 Introduction

Componentization is an important engineering principle. Top-down design approaches
brake down large systems into smaller parts, components, and bottom-up approaches
compose existing components into larger systems. While practitioners are mostly using
ad hoc techniques, model-based software engineering is investigating formal approa-
ches which can offer automation to various phases of modular system development,
including testing and using legacy components and components of the shelf, COTS.

The existing model-based testing approaches focus mostly on a holistic view of a
modular system, based on a single state-oriented model, see, e.g., [7]. Conformance
tests are then generated from a state machine, which models either a component in
isolation or a whole system as observed on external interfaces [4, 5, 7]. On the other
hand, when a system is built using existing components, testing efforts should be
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focused only on new components [17]. This motivates research in conformance testing
in context aka embedded testing, which aims to check whether an embedded imple-
mentation FSM composed with the given context is equivalent to the embedded
specification FSM also composed with the context.

All the known methods for complete tests generation for testing in context first
construct from the context and embedded machine an embedded equivalent or the
largest solution to the appropriate FSM equation, which represents the behavior of the
embedded machine as can be controlled and observed via context [2, 11, 12, 14]. The
resulting partial machine is a nondeterministic approximation of the embedded deter-
ministic machine, it is then used to derive complete internal tests, which are finally
translated into external ones executed on external interfaces of a modular system.

Conformance testing is closely related to active inference, aka query learning, as
already been understood, see, e.g., [10], for the case when a system is considered “as a
whole”, i.e., modelled as an FSM.

Model inference helps in dealing with legacy components and COTS. Once a
model is reengineered it can be used to perform verification with model checkers,
regression and integration testing or redesign. Automata inference is an important topic
addressed in many works, see, e.g., [1, 3, 8, 9, 13, 15], which treat a system as a single
black box, even if it contains components with known models and only some need to
be learned.

We propose to generalize the FSM inference problem to the case when an FSM to
learn is a part of a modular system. Indeed, the traditional automaton/FSM inference
problem statement is a particular case of this general situation, namely, when the rest of
the system is a single state machine performing just a bijection of external and internal
inputs. We know the only work [18] addressing the grey box learning problem, where
the goal is to learn a tail FSM in the serial composition with the context FSM. We
propose an approach for solving the grey box learning problem that does not depend on
the composition topology, as opposed to the previous work [18].

To simplify the discussions, we model a system with two communicating FSMs,
one machine represents an embedded component and another the remaining part of the
system, the context. Assuming that the context FSM is known, we elaborate an
approach to learn the embedded FSM without directly interacting with it. The proposed
approach relies on a SAT-solving method for FSM inference from sample traces. The
approach also allows to solve the problem of conformance testing in context, which is
to check whether an embedded implementation FSM composed with the given context
is equivalent to the embedded specification FSM also composed with the context. The
novelty of the conformance testing method is that it directly generates a complete test
suite for the embedded machine and avoids using nondeterministic approximations
with their tests, eliminating thus several sources of test redundancy inherent in the
existing methods.

The paper is organized as follows. Section 2 provides definitions related to state
machines and automata needed to formalize the approach. Communicating FSMs are
formally defined and illustrated on a working example in Sect. 3. A SAT-solving
method for FSM inference from traces, which allows to obtain different conjectures
[10] as required by the proposed methods, is recalled in Sect. 4. Section 5 presents our
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method for complete test generation for embedded components. In Sect. 6 we present
some experimental results concerning test generation. Section 7 describes the method
for embedded FSM inference and Sect. 8 concludes.

2 Definitions

A Finite State Machine or simple machine M is a 5-tuple (S, s0, I, O, T), where S is a
finite set of states with an initial state s0; I and O are finite non-empty disjoint sets of
inputs and outputs, respectively; T is a transition relation T � S� I � O�
S; ðs; a; o; s0Þ 2 T is a transition. When we need to refer to the machine being in state
s 2 S, we write M/s.

M is complete (completely specified) if for each tuple (s, a) 2 S � I there exists
transition (s, a, o, s′) 2 T, otherwise it is partial. It is deterministic if for each (s,
a) 2 S � I there exists at most one transition (s, a, o, s′) 2 T, otherwise it is nonde-
terministic. FSM M is a submachine of M′ = (S′, s0, I, O, T′) if S� S0 and T � T 0.

An execution of M/s is a finite sequence of transitions forming a path from s in the
state transition diagram of M. The machine M is initially connected, if for any state
s 2 S there exists an execution from s0 to s. Henceforth, we consider only deterministic
initially connected machines.

A trace ofM/s is a string in (IO)* which labels an execution from s. Let Tr(s) denote
the set of all traces of M/s and TrM denote the set of traces of M/s0. For trace x 2 Tr sð Þ,
we use s-after-x to denote the state M reached after the execution of x, for an empty
trace e, s-after-e = s. When s is the initial state we write M-after-x instead of s0-after-x.

Given a string x 2 (IO)*, the I-restriction of x is a string obtained by deleting from
x all symbols that are not in I, denoted x#I .

The I-restriction of a trace x 2 Tr(s) is said to be a transfer sequence from state s to
state s-after-x. The length of a trace is defined as the length of its I-restriction. A prefix
of trace x 2 Tr sð Þ is a trace x0 2 Tr sð Þ such that the I-restriction of the latter is a prefix
of the former.

Given an input sequence a, we let out(s, a) denote the O-restriction of the trace that
has a as its I-restriction. States s, s′ 2 S are equivalent w.r.t. a, if out(s, a) = out(s′, a),
denoted s ≅ a s′; they are distinguishable by a, if out(s, a) 6¼ out(s′, a), denoted s ≇ a s′
or simply s ≇ s′. States s and s′ are equivalent if they are equivalent w.r.t. all input
sequences, i.e., Tr(s) = Tr(s′), denoted s ≅ s′. The equivalence and distinguishability
relations between FSMs is similarly defined. Two FSMs are equivalent if their initial
states are equivalent.

Given two FSMs M = (S, s0, I, O, T) and M0 ¼ S0; s00; I; O; T
0� �
, their product

M � M′ is the FSM (P, p0, I, O, H), where p0 ¼ s0; s00
� �

such that P and H are
the smallest sets satisfying the following rule: If s; s0ð Þ 2 P; s; x; o; tð Þ 2 T ;
s0; x; o0; t0ð Þ 2 T 0, and o = o′, then (t, t′) 2 P and ((s, s′), x, o, (t, t′)) 2 H. It is known
that if M and M′ are complete machines then they are equivalent if and only if the
product M � M′ is complete.
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Two complete FSMs M = (S, s0, I, O, T) and M0 ¼ S0; s00; I;O; T
0� �

are called
isomorphic if there exists a bijection f: S ! S′ such that f s0ð Þ ¼ s000 and for all a 2 I,
o 2 O, and s 2 S, f(s-after-ao) = f(s)-after-ao. Isomorphic FSMs are equivalent, but
the converse does not necessarily hold.

Given a string x 2 (IO)* of length |x|, let Pref(x) be the set of all prefixes of x. We
define a (linear) FSM W(x) = (X, x0, I, O, Dx), where Dx is a transition relation, such
that |X| = |x| + 1, and there exists a bijection f: X ! Pref(x), such that f(x0) = e, (xi, a,
o, xi+1) 2 Dx if f(xi)ao = f(xi+1) for all i = 0,…, |x|−1, in other words, W(x) has the set
of traces Pref(x). We call it the x-machine. Similarly, given a finite prefix-closed set of
traces X � (IO)* of some deterministic FSM, let W(X) = (X, x0, I, O, DX) be the
acyclic deterministic FSM such that X is the set of its traces, called an X-machine. The
bijection f relates states of this machine to traces in X.

While the set of traces of the X-machine is X, there are many FSMs which contain
the set X among their traces. We restrict our attention to the set of all FSMs with at
most n states and alphabets I and O, denoted J n; I; Oð Þ. An FSMC ¼
S; s0; I; O; Tð Þ; C 2 J n; I;Oð Þ is called an X-conjecture, if X � TrC.

The states of the X-machine W(X) = (X, x0, I, O, DX) and an X-conjecture C = (S,
s0, I, O, T) are closely related to each other. Formally, there exists a mapping l: X ! S,
such that l(x) = s0-after-f(x), the state reached by C with the trace f(x) 2 X. The
mapping l is unique and induces a partition pC on the set X such that x and x′ belong to
the same block of the partition pC, denoted x ¼pC x0, if l(x) = l(x′).

Given an X-conjecture C with the partition pC, let D be an X′-conjecture with the
partition pD, such that X′ � X, we say that the partition pC is an expansion of the
partition pD, if its projection onto states of X′ coincides with the partition pD.

A finite set of input sequences L � I* is a checking experiment for a complete FSM
M with n states if for each FSMN 2 J n; I; Oð Þ, such that N ≅ L M, it holds that
N ≅ M. Checking experiments are also called complete (i.e., sound and exhaustive)
tests.

We also use the classical automaton model. A Finite Automaton A is a 5-tuple (P,
p0, X, T, F), where P is a finite set of states with the initial state p0; X is a finite
alphabet; T is a transition relation T�S� X [ ef g � S, where e represents an internal
action, and F is a set of final or accepting states. We shall use several operations over
automata, namely, expansion, restriction, and intersection, following [16].

Given an automaton A and a finite alphabet U; U \X ¼ £, the U-expansion of
automaton A is the automaton denoted A"U obtained by adding at each state a self-
looping transition labeled with each action in U.

For an automaton A and an alphabet U � X, the U-restriction of automaton A is the
automaton denoted A#U obtained by replacing each transition with the symbol in X\U by
an e-transition between the same states.

Given automata A = (P, p0, X, T, FA) and B = (R, r0, Y, Z, FB), such that
X \ Y 6¼ £, the intersection A \ B is the largest initially connected submachine of
the automaton ðP� R; p0; r0ð Þ;X \ Y ;Q;FA � FBÞ, where for each symbol
a 2 X \ Y and each state (p, r) 2 P � R, ((p, r), a, (p′, r′)) 2 Q, if (p, a, p′) 2 T and
(r, a, r′) 2 Z.
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We also define an automaton corresponding to a given FSM M. The automaton,
denoted by A(M), is obtained by splitting each transition of M labeled by input/output
into two transitions labeled by input and output, respectively, and connecting them with
an auxiliary non-final state. The original states of M are only final states of A(M), hence
the language of A(M) coincides with the set of traces of M.

3 Communicating FSMs

The behavior of a modular system composed of FSM components depends on its
environment. The two together constitute a closed system. Communications in it can
either be via messages or by method calls, using no queues. We restrict our attention to
the case when queues are not used, which is possible with a so-called slow environment
assuming that the closed system operates with a single message in transit [12]. This is a
sufficient condition for the existence of a deterministic FSM modelling the external
behavior of a modular system [12, 16]. Such an environment can be modelled by a
(chaos) automaton Env with two states, out of which the initial state is the final state,
shown in Fig. 1. After issuing an external input in X to the system it waits until an
external output in O is produced before executing a next input. Its language is the set
(XO)*.

We further consider only two deterministic FSMs, one of them representing an
embedded component E and another the remaining part of the modular system, aka
context K, as shown in Fig. 1.

We assume that the sets X, O, U, and V are pairwise disjoint. The context FSM
K assumed to be a complete machine interacts with the environment and can process an
external input after it produces an internal output even before an external output is
emitted. Since this violates the restriction of having a single message in transit, we
constrain its behavior by composing it with the slow environment. Let A(K) be the
automaton of the context FSM K. Then the intersection of automata
A Kð Þ \Env"U [V ¼ AðKÞslow represents the behavior of the context constrained by the
slow environment. Then the intersection A Kð Þslow \A Eð Þ"X [O denoted by A(K) ◊ A
(E) describes the behavior of the closed system, called the composite automaton of the
modular system.

K E
X
O

U

V

K E

X
O

Env

Fig. 1. Closed system of two FSMs K and E with the environment.
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The language of A(K) ◊ A(E) is the set of all strings labelling all the executions of
the system L(A(K) ◊ A(E)). Restricting a string to the alphabets of a component FSM
we obtain a trace of the context or embedded FSM. The external behavior of the system
is expressed in terms of external inputs X and outputs O, so it is the set of (X [ O)-
restrictions of A(K) ◊ A(E), i.e., external traces of the system. They are traces of an
FSM, provided that A(K) ◊ A(E) has no livelocks, i.e., cycles labelled by symbols in
U [ V [16], the machine can be obtained by removing e-transitions in A(K) ◊ A
(E)#X[O and pairing each input with a subsequent output, if it exists, to an FSM
transition’s label. If some external input is not followed by an external output it is
deleted from the corresponding state of (A(K) ◊ A(E))#X[O, as a result, the FSM
becomes partial. If all inputs are deleted from the initial state then the machine has a
single state and no transition. We let K ◊ E denote the resulting FSM, called the
composite FSM of the modular system.

Given two FSMs E and E′ over the alphabets U and V, such that the composite
machines K ◊ E and K ◊ E′ are complete FSMs, we say that E and E′ are externally
equivalent (or equivalent in context) if K ◊ E ≅ K ◊ E. Clearly, E ≅ E′ implies K ◊
E ≅ K, but the converse does not hold. Testing in context uses external equivalence as
a conformance relation between implementations of a component embedded in a
modular system and its specification.

A finite set of input sequences L � X* is an external checking experiment (com-
plete test suite) for the embedded FSM E w.r.t. J n; U; Vð Þ; if for each FSMN 2
J n; U; Vð Þ; where n is the number of states in E such that K ◊ N ≅L K ◊ E, it holds
that K ◊ N ≅ K ◊ E.

Example. Consider the context FSM K and embedded FSM E shown in Fig. 2
together with the composite FSM K ◊ E. The composite automaton A(K) ◊ A(E) is
shown in Fig. 3.

a b
x1/u1
v2/u2

x2/u1 v1/u1 x1/u2
v1/o1

x2/o2 v2/o1

1u2/v1

u2/v2
u1/v1
u1/v1 u2/v13

2
u1/v1

x2/o1

x1/o1x1/o1

x2/o1x1/o1

x2/o2 x1/o1
x2/o2

(a)

(b)
(c)

Fig. 2. The context FSM K (a), embedded FSM E (b) and composite FSM K ◊ E (c).
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4 Passive Inference with SAT-Solving

Henceforth, we first provide a brief overview of the SAT-solving based method for
conjecture generation from a given set of traces avoiding regeneration of already
considered conjectures which is the basic step of testing and learning an FSM in
isolation [10] and an embedded FSM, as we show in Sect. 5. For a detailed presen-
tation, the reader is referred to [10].

The basic step of conjecture inference from a given set of traces X is state merging
of the X-machine. SAT-solving approaches [6, 9] encode the problem into Boolean
constraints, a solution if it exists is a conjecture with a given number of states. We use
an existing encoding of a set of traces X into a Boolean formula formula [6]. Let W
(X) = (X, x0, I, O, DX) be the X-machine. Each state of the X-machine is represented
by a variable x, so xi 2 {0, …, n − 1}. Since the X-machine is deterministic, the state
variables satisfy the constraint [1]:

8xi; xj 2: if xi 6ffi xj then xi 6¼ xj and

if 9a 2 I s:t: out xi; að Þ ¼ out xj; a
� � ¼ o then xi ¼ xj ) xi-after-ao ¼ xj-after-ao ð1Þ

An assignment of values to variables such that the formula (1) is satisfied defines a
mapping l: X ! S, where S is the set of states of an X-conjecture, i.e., the mapping l
defines a partition of X into n blocks.

These CSP (constraint satisfaction problem) formulas are then translated to SAT
using unary coding for integer variables, represented by n Boolean variables vx,0,…, vx,
n−1. For each x 2 X, we have the clause:

vx;0_. . ._vx;n�1 ð2Þ

v1u1 u1 v1 o1

x2

x2o2

x1u2

x1

u1

v1 o1 x2

x1

o2

x1
x2

u1v1

u2 v2
o1

Fig. 3. The composite automaton A(K) ◊ A(E), final states are in bold.
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For each state x 2 X and all i, j 2 {0, …, n − 1} such that i 6¼ j, we have the
clauses:

:vx;i _ :vx;j ð3Þ

We use auxiliary variables ex, y [6]. For every x, y 2 X such that x ≇ y we have

:ex; y ð4Þ

For all x, y 2 X such that out(x, a) = out(y, a) = o, we have

ex;y ) ex�after�ao;y�after�ao ð5Þ

For every x, y 2 X and all i 2 {0, …, n − 1}

ex;y ^ vx;i ) vy;i ð6Þ

:ex;y ^ vx;i ) :vy;i ð7Þ

The resulting Boolean formula is the conjunction of clauses (2)–(7).
The traditional use of SAT solvers for state minimization aims at obtaining a single

conjecture, while the problems of conformance testing and learning require that con-
straints should allow a solver to check, once a conjecture is found, whether another
non-equivalent conjecture exists. Absence of a conjecture proves that a checking
experiment is constructed and the machine is identified.

This is achieved by using the following procedure to infer a conjecture that differs
from already considered conjectures. Isomorphic conjectures are identified by their
common partition, encoded into an additional constraint. Recall that states of an X-
machine form a partition defined by an X-conjecture. We let P denote a set of parti-
tions of states of X′-machines, where X′ � X.

To check the satisfiability of a formula one can use any of the existing solvers, calling
the function call-solver(formula). If a solution exists then we have an X-conjecture with
n or fewer states. The latter is obtained from the determined partition on X.
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5 External Checking Experiment Construction

Solving the problem of external checking experiment generation, we use as in our
previous work [10] Algorithm 1 for conjecture inference from a current set of traces.
The difference, however, is that traces now no longer belong to a machine considered
in isolation (this becomes even more crucial for active inference), they are produced by
an embedded component. Accordingly, instead of checking the equivalence of a
conjecture to the specification machine, we must check their external equivalence. To
this end, we need to compose a conjecture C and the context K. As discussed above, if
the resulting composite automaton A(K) ◊ A(C) has a livelock, its external behavior
cannot be specified by an FSM, since an external input triggering livelock cannot be
paired with any output. To deal with this issue we formulate a new constraint (in the
form of a partition, as before) avoiding its regeneration by a solver. Once the current
conjecture composed with the context yields a composite FSM K ◊ C an external input
sequence distinguishing it from the given composite machine K ◊ E can be deter-
mined, if they are not equivalent. The found sequence is added to a current set of input
sequences. The distinguishing external input sequence is the X-restriction of the word
of the automaton A(K) ◊ A(C) from which a trace of the embedded component is
obtained as the (U [ V)-restriction and used to generate a next conjecture. If, however,
no new trace of the embedded component is obtained and the state partition of the
conjecture distinguishable from the specification machine is added as a constraint to
avoid its regeneration. The process iterates until the constraints are no longer satisfi-
able. The procedure is implemented in Algorithm 2.
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Algorithm 2 calls Infer_conjecture(X, n, P), which in turn calls a SAT solver
constraining it to avoid solutions of already considered conjectures.

Note that the Boolean formula used by the SAT solver is built incrementally; a
current formula is saved and new clauses are added when a set X or P is augmented.

Example. We illustrate Algorithm 2 using the context and embedded machines in
Fig. 2. We assume n = 2. Initially, the set of external input sequences W is empty, so is
the set of internal input sequences X. The function Infer_conjecture(X, n, P) for the
empty set P returns a X-conjecture C0 as an FSM with a single state and no transitions.
The composite machine K ◊ C has no transitions either. We choose the external input
x1, so W = {x1}. This input is the X-restriction of the word r = x1u1v1u1v1o1 in A
(K) ◊ A(E). Its restriction onto the alphabets of the embedded component is
r# U [Vð Þ ¼ u1v1u1v1:X = u1v1u1v1f g. The function Infer_conjecture(X, n, P) for the
empty set P returns a X-conjecture C1 as an FSM with a single state and transition
labelled u1/v1. The composite FSM K ◊ C1 is shown in Fig. 4(a).

The FSM K ◊ C1 has an undefined input x1 in the second state, we take the external
input sequence x1x1, so now W = {x1x1}. It is the X-restriction of the word r =
x1u1v1u1v1o1x1u2v1o1 in A(K) ◊ A(E). Its restriction onto the alphabets of the embedded
component is r# U [Vð Þ ¼ u1v1u1v1u2v1:X ¼ u1v1u1v1u2v1f g. The function Infer_-
conjecture(X, n, P) for the empty set P returns a X-conjecture C2 as an FSM with a
single state and two transitions labelled u1/v1 and u2/v1. The composite FSM K ◊ C2 is
shown in Fig. 4(b). It is a complete machine, however, the product
(K ◊ C) � (K ◊ E) is a partial machine, since its behavior is not specified for the input
sequence x2x1x2. In fact, this sequence demonstrates that K ◊ C2 ≅ K ◊ E, since
K ◊ C2 reacts with the o1o1o2, while K ◊ E with o1o1o1.

x1/o1 x2/o1

x2/o2

(a)

x1/o1 x2/o1

x2/o2

(b)

x1/o1

u2/v1
u1/v1

u2/v2u1/v1
(c)

u2/v1u1/v1
u2/v2u1/v1

(d)

x2/o1

x1/o1x1/o1

x2/o1
x1/o1

x2/o2 x1/o1
x2/o2

(e)

u2/v1
u1/v1

u2/v2u1/v1
(f)

x1/o1x2/o2

x2/o1

x1/o1x2/o2

x1/o1
(g)

Fig. 4. Constructing the external checking experiment.
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The input sequence x2x1x2 is added to W, which becomes {x1x1, x2x1x2}. The
sequence x2x1x2 is the X-restriction of the word r = x2u1v1o1 x1u2v2o1x2u1v1o1 in A
(K) ◊ A(E). Its restriction onto the alphabets of the embedded component is
r# U [Vð Þ ¼ u1v1u2v2u1v1:X ¼ u1v1u1v1u2v1; u1v1u2v2u1v1f g. Next X-conjecture C3 is
shown in Fig. 4(c). The composite FSM K ◊ C3 is isomorphic to K ◊ E. Now the set
of partitions P should include the following partition of prefixes of X, as each of them
is a state of the X-machine:

p1 ¼ e; u1v1u1v1; u1v1u1v1u2v1; u1v1u2v2u1v1; u1v1; u1v1u2v2f g:

In the next iteration, Infer_conjecture(X, n, P) returns the X-conjecture C4 shown
in Fig. 4(d). The composite FSM K ◊ C4 is shown in Fig. 4(e). It is not equivalent to
K ◊ E, and the shortest input sequence distinguishing them is x1x1x1x2, it extends the
existing sequence x1x1.

The input sequence x1x1x1x2 is added to W, which becomes {x1x1x1x2, x2x1x2}. It is
the X-restriction of the word r = x1u1v1u1v1o1x1u2v1o1x1u2v1o1x2o2 in A(K) ◊ A(E).
We have r# U [Vð Þ ¼ u1v1u1v1u2v1u2v1:X ¼ u1v1u1v1u2v1u2v1; u1v1u2v2u1v1f g. Next
X-conjecture C5 is shown in Fig. 4(f). The composite FSM K ◊ C5 is shown in Fig. 4
(g). It is not equivalent to K ◊ E, and the shortest input sequence distinguishing them is
x2x1x2x1x2, it extends the existing sequence x2x1x2.

The input sequence x2x1x2x1x2 is added to W, which becomes {x1x1x1x2,
x2x1x2x1x2}. It is the X-restriction of the word r = x2u1v1o1 x1u2v2o1x2u1v1o1x1-
u2v1o1x2o2. We have r# U [Vð Þ ¼ u1v1u2v2u1v1u2v1:X ¼ u1v1u1v1u2v1u2v1; u1v1u2v2f
u1u2v1g. The function Infer_conjecture(X, n, P) returns False, since there is no
solution which does not extend the partition p1. Algorithm 2 terminates with the
external checking experiment W = {x1x1x1x2, x2x1x2x1x2}.

This example was used in the previous work [12] to illustrate a number of various
approaches to construct complete tests for the embedded component, compared to them
the SAT solving approach elaborated here generates a much smaller test suite. For
comparison, we construct the same experiment assuming this time that n = 3. The
prototype tool presented in Sect. 7 returns just seven tests.

Notice that the algorithm not only delivers an external checking experiment for the
embedded component, but also infers an FSM that is externally equivalent to the given
embedded FSM. In our example, the X-conjecture C3 in Fig. 4(c) is externally
equivalent to the FSM E in Fig. 2. This observation indicates that the approach should
work for active inference of an embedded component. We elaborate a corresponding
algorithm in Sect. 7.

Theorem 1. Given complete deterministic FSMs K and E such that the composite
machine K ◊ E is a complete FSM, Algorithm 2 returns an external checking exper-
iment for the embedded FSM E w.r.t. J n; U; Vð Þ.
Sketch of Proof. When Algorithm 2 terminates the resulting set of external input
sequence W is indeed a checking experiment, since by the post-condition of Infer_-
conjecture no conjecture exists that is not externally equivalent to the given embedded
FSM E. Note that all complete conjectures externally equivalent to E are excluded
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because as soon as one if found (including E itself), its partition is added to P.
Algorithm 2 will not generate the same conjecture all over again and always terminates
because the set of all possible conjectures with at most n states is finite.

6 Preliminary Experiments

The complexity of checking experiments for complete deterministic FSMs is well
understood, however, no result exists yet on estimating complexity of external
checking experiments for embedded FSMs. Considering a system of two communi-
cating machines, context and embedded FSMs, the question arises which of them
contribute more to the complexity of external checking experiments. We decided to
perform experiments aiming at shedding some light on this.

Both machines are generated randomly for |X| = |O| = |U| = |V| = 2. In the first
experiment, we fix the number of states of an embedded FSM to six and vary that of the
context; in the second experiment, we fix the number of states of a context FSM to six
and vary that of the embedded FSM. For each pair of values, the average of ten
instances obtained with a prototype tool implementing Algorithm 2 is calculated and
the results are illustrated in Fig. 5. They indicate that the length of experiments grows
with the number of states in an embedded machine similar to an FSM considered in
isolation, but the complexity of the context seems not to be a significant contributor.
More experiments are needed to check this conclusion.

7 Active Inference of Embedded FSM

Given a composition of two complete deterministic FSMs K and E with the topology in
Fig. 1, called a grey box, GB, where the context FSM K is known, while the embedded
FSM E is not, we want to learn the machine E by applying external inputs I and
observing external as well as internal outputs O, U, V, assuming that the embedded
FSM E has at most n states.
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Fig. 5. The length of external checking experiments vs the number of states in the context (left
hand side) and in the embedded machine (right hand side).
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External input sequences are applied to the grey box obeying the property of a slow
environment Env (Fig. 1), i.e., inputs are interleaved with outputs. We assume that
livelocks are removed from the grey box. The learning procedure is implemented in
Algorithm 3. It is an enhancement of Algorithm 2 replacing the FSM E by a current
conjecture.

Example. We illustrate Algorithm 3 using the context and embedded machines in
Fig. 2. The embedded FSM is the one to be inferred and we use the composite
automaton in Fig. 3 as the grey box. We assume n = 2. Initially, the set of external
input sequences W is empty, so is the set of internal input sequences X. The function
Infer_conjecture(X, n, P) for the empty set P returns a X-conjecture C0 as an FSM
with a single state and no transitions. Its second execution yields D0 which has no
transition. (K ◊ C0) � (K ◊ D0) has no transitions either. We choose the external input
x1, so W = {x1}. When this input is applied to the grey box, the trace r = x1u1v1u1v1o1
is observed. Its restriction onto the alphabets of the embedded component is
r# U [Vð Þ ¼ u1v1u1v1:X ¼ u1v1u1v1f g. The function Infer_conjecture(X, n, P) for the
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empty setP returns a X-conjecture with a single state and transition labelled u1/v1. This
machine becomes now the conjecture C1. The composite FSM K ◊ C1 is shown in
Fig. 4(a). Next execution of the loop yields the conjecture D1 equivalent to C1.

The product (K ◊ C1) � (K ◊ D1) has an undefined input x1 in the second state, we
take the external input sequence x1x1, so now W = {x1x1}. When this input sequence is
applied to the grey box, the trace r = x1u1v1u1v1o1x1u2v1o1 is observed. Its restriction
onto the alphabets of the embedded component is r# U [Vð Þ ¼ u1v1u1v1u2v1:X ¼ u1v1f
u1v1u2v1g. The function Infer_conjecture(X, n, P) for the empty set P returns a
X-conjecture D2 with a single state and two transitions labelled u1/v1 and u2/v1. This
machine becomes now the conjectureC2. The composite FSMK ◊ C2 is shown in Fig. 4
(b). The product (K ◊ C2) � (K ◊ D2) is a complete machine, P :¼ P[ p D2f g is
executed, where pD2 = {e, u1v1, u1v1u1v1, u1v1u1v1u2v1}. The function Infer_conjecture
(X, n,P) for the setP returns aX-conjectureD3 shown in Fig. 6(a). The composite FSM
K ◊ D3 is shown in Fig. 6(b). Its behavior is not specified for the input sequence x2x1.

The input sequence x2x1 is added to W, which becomes {x1x1, x2x1}. The grey box
produces the trace r = x2u1v1o1 x1u2v2o1 when the sequence x2x1 is applied. Its
restriction onto the alphabets of the embedded component is r# U [Vð Þ ¼ u1v1u2v2:X ¼
u1v1u1v1u2v1; u1v1u2v2f g. Next X-conjecture D4 is shown in Fig. 4(c). This machine

becomes now the conjecture C3. The composite FSM K ◊ C3 is isomorphic to the FSM
in Fig. 2(c). Then the set of partitions P should include the following partition:
pD4 ¼ fe; u1v1u1v1; u1v1u1v1u2v1; u1v1; u1v1u2v2g.

In the next iteration, Infer_conjecture(X, n, P) returns the X-conjecture D5 shown
in Fig. 4(d). The composite FSM K ◊ D5 is shown in Fig. 4(e). It is not equivalent to
K ◊ C3, and the shortest input sequence distinguishing them is x1x1x1x2, it extends the
sequence x1x1.

The input sequence x1x1x1x2 is added to W, which becomes {x1x1x1x2, x2x1}.
The sequence applied to the grey box produces the trace r = x1u1v1u1v1o1x1u2v1o1x1
u2v1o1x2o2. We have r# U [Vð Þ ¼ u1v1u1v1u2v1u2v1:X ¼ u1v1u1v1u2v1u2v1; u1v1f
u2v2g. Next X-conjecture D5 is shown in Fig. 4(f). The composite FSM K ◊ D5 is
shown in Fig. 4(g). It is not equivalent to K ◊ E, and the shortest sequence distin-
guishing them is x2x1x2x1x2, it extends the sequence x2x1.

The input sequence x2x1x2x1x2 is added toW, which becomes {x1x1x1x2, x2x1x2x1x2}.
Applied to the grey box it produces the tracer = x2u1v1o1 x1u2v2o1x2u1v1o1x1u2v1o1x2o2.
We have r# U [Vð Þ ¼ u1v1u2v2u1v1u2v1:X ¼ u1v1u1v1u2v1u2v1; u1v1u2v2u1v1u2v1f g.

x2/o1

x1/o1

x2/o1x1/o1

x2/o2 x1/o1 x2/o2u2/v1
u1/v1
u1/v1
(a)

(b)

Fig. 6. X-conjecture D3 (a) and the composite FSM K ◊ D3.
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The function Infer_conjecture(X, n, P) returns False, since no solution with a state
partition which does not extend the partition pD4 can be found. Algorithm 3 terminates
with the conjecture C3 (Fig. 4(c)) that is externally equivalent to the embedded FSM E in
Fig. 3 and its external checking experimentW = {x1x1x1x2, x2x1x2x1x2}. In this example,
both algorithms give the same experiment, though this should not be expected for other
systems, since the function call-solver(formula) can make nondeterministic choices in
solving constraints. Moreover, various input sequences can be chosen to deal with partial
FSM products (see line 13 in Algorithm 3).

Theorem 2. If a grey box behaves as a complete FSM and the embedded FSM E has
n states, Algorithm 3 infers a conjecture with at most n states that is externally
equivalent to E and constructs an external checking experiment for it.

Sketch of Proof. Algorithm 3 follows the steps of Algorithm 2, just replacing the
FSM E by a current conjecture. This does not influence its termination since it only
occurs when no more externally distinguishable conjecture can be found. At some
point, because the grey box behaves as a composite FSM of the known context FSM
and the embedded machine with n states, an FSM that is externally equivalent to E will
be returned by Infer_conjecture. The resulting set of external input sequences is an
external checking experiment for the resulting FSM, as in Theorem 1.

8 Conclusions

We considered a system of communicating FSMs and investigated possibilities for
active learning and testing of an embedded FSM without disassembling the system.
The contribution of this paper is the generalization of the isolated FSM inference
problem to that of an FSM embedded in a modular system (grey box learning) and an
approach for solving this problem that does not depend on the composition topology.
The approach also offers a novel solution to embedded testing by generating a complete
test suite directly for the embedded machine that avoids intermediate testing of non-
deterministic approximations, eliminating thus several sources of test redundancy
inherent in the existing methods. We plan to perform more experiments to assess the
proposed methods, especially for learning embedded components.
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Abstract. In theory, a neural network can be trained to act as an arti-
ficial specification for a program by showing it samples of the programs
executions. In practice, the training turns out to be very hard. Programs
often operate on discrete domains for which patterns are difficult to dis-
cern. Earlier experiments reported too much false positives. This paper
revisits an experiment by Vanmali et al. by investigating several aspects
that were uninvestigated in the original work: the impact of using dif-
ferent learning modes, aggressiveness levels, and abstraction functions.
The results are quite promising.

Keywords: Neural network for software testing · Automated oracles

1 Introduction

Nowadays, many systems make use of external services or components to do some
of their tasks, allowing services to be shared, hence reducing cost. However, we
also need to take into account that third parties services may be updated on
the fly as our system is running in production. If such an update introduces an
error, this may affect the correctness of our system as well. One way to guard
against this is by doing run time verification [2]: at the runtime the outputs of
these services are checked against their formal specifications. Unfortunately, in
practice it is hard to persuade developers to write formal specifications.

A more pragmatic idea is to use ‘artificial specifications’ generated by a com-
puter. Another use case is automated testing. Tools like QuickCheck, Evosuite,
and T3 [3,6,13] are able to generate test inputs, but if no specification is given,
only common correctness conditions such as absence of crashes can be checked.
Using artificial specifications would extend their range.

Although we cannot expect a computer to be able to on its own specify the
intent of a program, it can still try to guess this intent. One way to do this is by
observing some training executions to predict general properties of the program,
e.g. in the form of ‘invariants’ (state properties) [5], finite state machine [12],
or algebraic properties [4]. These approaches cannot however capture the full
functionality of a program, e.g. [5] can only infer predefined families of predicates,
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many are simple predicates such as o �= null and x+y ≥ 0. With respect to these
approaches, neural networks offer an interesting alternative, since they can be
trained to simulate a function [9].

The trade off of using artificial specifications is the additional overhead in
debugging. When a production-time execution violates such a specification, the
failure may be either caused by an error triggered by the execution, or by an
error in the training executions that were reflected in the predictions, or due
to inaccuracy of the predictions. The first two cases expose errors (though the
second case would take more effort to debug). However, the failure in the last
case is a false alarm (false positive). Since we do not know upfront if a violation
is a real error or a false positive, we will need to investigate it (debugging),
which is quite labour intensive. If it turns out to be a false positive, the effort is
wasted. Despite the potential, studies on the use of neural networks as artificial
specifications are few: [1,10,11,14]. They either reported unacceptably high rate
of false positives, or do not address the issue.

In this paper we revisit an experiment by Vanmali et al. [14] that revealed
≈16% rate of false positives—a rate of above 5% is likely to render any approach
unusable in practice. The challenge lies in the discrete nature of the program
used as the experiment subject, making it very hard to train a neural network.
This paper explores several aspects that were left uninvestigated in the original
work, namely the influence of different learning modes, aggressiveness levels, and
abstraction. The results are quite promising.

2 Neural Network as an Artificial Specification

Consider a program P that behaves as a function I → O. An artificial specifi-
cation φ is a predicate I × O → bool; φ(x, P (x)) = T means that P ’s output is
judged as correct, and else incorrect. With respect to the intended specification
G, φ’s judgment is a true positive is when both φ and G judge a T, a true negative
is when they agree on the judgement F, a false positive is when φ judges F and
G judges T, and a false negative is when φ judges T and G judges F.

An neural network (NN) is a network of ‘neurons’ [9] that behaves as a
function R

M → R
N . We will restrict ourselves to feed forward NNs (FNNs)

where the neurons are organized in linearly ordered layers [9]; an example is
below:

In I0
In I1
In I2

O0

O1

The first layer is called the input layer, consisting of M neurons connected to the
inputs. The last layer is the output layer, consisting of N neurons that produce the
outputs. The layers in between are called hidden layers. An input neuron simply
passes on its input, else it has k inputs and an additional input called ‘bias’ whose
value is always 1 [9]. Each input connector has a weight wi. The neuron’s out-
put is the weighted sum of its inputs, followed by applying a so-called activation
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function: out = f (Σ0≤i≤k wi.xi). A commonly used f is the logistic function,
which we also use in our experiments.

Any continuous numeric function R
M → R

N , restricted within any closed
subset of RM , can be simulated with arbitrary accuracy by an FNN [7], which
implies that an FNN can indeed act as an artificial specification for P , if P
is injectable into such a numeric function. That is, there exists a continuous
numeric function F :RM → R

N and injections πI :I → R
N and πO:O → R

N such
that F encodes P : for all x ∈ I, P (x) = π−1

O (F (πI(x))). However, finding a right
FNN is hard. A common technique to find one is by training an FNN using a
set of sample inputs and outputs, e.g. using the back propagation [9] algorithm.
It might be easier to train the NN to simulate α ◦ P instead, where α is some
chosen abstraction on P ’s output values. The trade off is that we get a weaker
specification.

Since an NN does not literally produce a bool, we couple its output vector
z̄′ = NN(πI(x̄)) to a so-called comparator C : RN → R

N → bool to calculate the
judgement by comparing z̄′ with the observed output z̄ = πO(α(P (x̄))). Basi-
cally, if their values are ‘far’ from each other, then the judgement is F, and else
T. By adjusting what ‘far’ means we can tune the specification’s aggressiveness
without having to tamper with the NN’s internals. In our experiments (below),
the identity function id = (λx . x) will be used as the injector πI and πO. Because
id simply passes on its input, it will be omitted from the formulas.

3 Experiments

Figure 1 shows a credit approval program from the financial domain that was
used as the experiment subject by Vanmali et al. [14]. The program takes 8
input parameters describing a customer. The output is a pair (b, y) where b is a
boolean indicating whether the credit request is approved, and if so y specifies
the maximum allowed credit. We will ignore b since [14] already shows that
an FNN can accurately predict its value. Despite its size, the subject is quite
challenging for an NN to simulate because it operates on a discrete domain (the
numeric values are all integers). The whole input domain has 224000 possible
values. We will use an FNN with 8 inputs (representing approve’s inputs) and a
hidden layer with 24 neurons (adding more layers and neurons does not really
improve the FNN’s accuracy).

Five variations of the FNN will be used, as listed below, along with the used
comparator C. C is parameterized with aggressiveness level A (integer 0 (least
aggressive) ... 5) that determines C’s policy to deal with non clear-cut cases.

1. The FNN direct has one output, which is trained to simulate y. Its comparator
CA uses Euclidian distance, with sensitivity linearly scaled by A: CA(y, y′) =
|y − y′| < εmax − 0.01A, with εmax = 0.09.
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1 approve ( C i t i z e n s h i p , State , Region , Sex , Age , Mar i t a l , Dependents , Income ) {
2 i f ( Region==5 | | Region==6) Amount=0 ;
3 e l s e i f (Age<18) Amount=0 ;
4 e l s e {
5 i f ( C i t i z e n s h i p==0) {
6 Amount = 5000+1000∗ Income ;
7 i f ( S ta t e==0)
8 i f ( Region==3 | | Region==4) Amount = Amount∗2 ;
9 e l s e Amount = ( i n t ) ( Amount∗1 .50) ;

10 e l s e Amount = ( i n t ) ( Amount∗1 .10) ;
11 i f ( Ma r i t a l==0)
12 i f ( Dependents>0) Amount = Amount+200∗Dependents ;
13 e l s e Amount = Amount+500;
14 e l s e Amount = Amount+1000 ;
15 i f ( Sex==0) Amount = Amount+500 ;
16 e l s e Amount = Amount+1000;
17 }
18 e l s e {
19 Amount = 1000 + 800 ∗ Income ;
20 i f ( Ma r i t a l==0)
21 i f ( Dependents>2) Amount = Amount+100∗Dependents ;
22 e l s e Amount = Amount+100 ;
23 e l s e Amount = Amount+300 ;
24 i f ( Sex==0) Amount = Amount+100 ;
25 e l s e Amount = Amount+200 ;
26 }
27 i f (Amount==0) Approved=F e l s e Approved=T;
28 r e t u r n ( Approved , Amount ) ; }

Fig. 1. The experiment subject: a credit approval program from [14].

2. The FNN uniN has N outputs, trained to simulate αN ◦ approve. The abstrac-
tion αN maps approve’s y output to a vector z̄ : [0.0..1.0]N representing one
of N uniform sized intervals in y’s range [0..18000], such that the k-th inter-
val is represented by a vector of 0’s except a single 1 at the k-th position. If
v̄ : [0.0..1.0]N , let winner(v̄) be the index of the greatest element in v̄.
The comparator is more complicated. An obvious case is when z̄′ = NN(x̄)
and z̄ = α10(approve(x̄)) report the same winner. If the NN’s winner is con-
fident of itself, approve’s output is judged as correct. When they produce
different winners and the NN’s winner is confident of itself, we judge approve
to be incorrect. Other cases are non-clear-cut and judged depending on the
aggressiveness level. The full definition of CA is shown below. The original
work Vanmali et al. [14] only uses A = 3 aggressiveness level.

function CA(z̄, z̄′)
k, j ← winner(z̄),winner(z̄′) ; agree ← k = j
if agree ∧ |agree − z̄′

j | < thlow then (obvious match) T

else if ¬agree ∧ |agree − z̄′
j | > thhigh then (obvious mismatch) F

else (non-clear-cut cases) case A of
0 : (least aggressive: always accept) T
1 : (reject when the NN contradicts agreement) ¬(agree ∧ |T − z̄′

j | > thhigh)
2 : (always accept on agreement) agree
3 : (Vanmali et al. [14]: accept on conflicting results) ¬agree ∨ |T − z̄′

j | > thhigh

4 : (only accept if NN’s winner supports z̄) |agree − z̄′
j | < thlow

5 : (most aggressive: never accept) F
end function

The thresholds thlow and thhigh are set to 0.2/0.8.
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3. The FNN uniminN is a less presumptuous variant of uni, with thlow/thhigh

set to 0.1/0.9. This will cause more cases to be regarded as non-clear-cut.
4. The FNN lowerN is like uniN , but trained to simulate αN ◦ low ◦ approve. low

is used to ‘stretch’ αN to divide y into finer intervals in the lower region of y’s
range, e.g. if we believe the region to be more error prone, and growing coarser
towards the other end. We use the log function to do this: K ∗ log(1 + y/a)
with K = 8000 and a = 100 controlling the steepness.

5. The FNN centerN is like uniN , but trained to simulate αN ◦ ctr ◦ approve.
ctr is used to ‘stretch’ αN to divide y into finer intervals in the center region
of y’s range. We use logistic function ctr(y) = M/(1 + e−a(y−0.5M)) where
M = 18000 (y’s maximum) and a = 0.0006 control the function’s steepness.

Training. We randomly generate 500 distinct inputs (from the space of 224000
values) and collect the corresponding approve’s outputs. This set of 500 pairs
(input,output) forms the training data. For every type of FNN above and every
aggressiveness level an FNN is trained. N controls the granularity of the used
abstraction, so we also try various N (10..60). For each FNN, the connections’
weight is randomly initialized in [−0.5..0.5]. The training is done in a series of
epochs using the back propagation algorithm [9]. We tried both the incremental
learning mode [8,9], where the FNN’s error is propagated back after each training
input, and batch learning modes, where only the average error is propagated
back, after the whole batch of training inputs (500 of them). Incremental learning
is thus more sensitive to the influence of individual inputs.

Evaluation. To evaluate the FNNs’ ability to detect errors, we run them on 21
erroneous variations (mutants) of the subject as in [14]—due to limited space they
are not shown here. For each mutant, 500 distinct random inputs are generated,
whose outputs are ‘error exposing’ (distinguishable from the corresponding out-
puts of the correct subject). As an artificial specification, an FNN should ideally
reject all these error exposing outputs. Each rejection is a true positive. We also
generate 500 distinct random inputs and feed it to the (unmutated) subject. The
FNN should accepts the corresponding outputs—each rejection is a false positive.

Figure 2 shows some of the results. Except for direct, the training was done in
1500 epochs with learning rate 0.5. We can see that using abstraction improves
the FNN’s performance: compare direct with uni30. The latter obtains a true
positive rate 68% on aggressiveness 2, implying that out of two erroneous exe-
cutions, uni30 is likely to detect at least one, while when the aggressiveness level
is set low, its rate of false positives is only around 2%. Abstraction also makes
training easier: after 1500 epochs uni30 produces a mean square error (MSE) of
≈ 0.0001, whereas the shown results for direct is obtained after 10000 epochs
(incrementally) with 0.1 learning rate, yielding an MSE ≈ 0.0004.

The experiment in [14] uses unimin10. We believe [14] used batch learning
because the reported MSE after 1500 epochs matches, namely ≈ 0.05. However,
as can be seen in Fig. 2, this leads to poor performance (batched unimin10). Incre-
mental learning yields a much more accurate FNN (≈ 0.0001 MSE), hence also
better performance (unimin10). The performance of the FNN in [14] under our
setup is indicated by the vanmali-markers in Fig. 2.
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Fig. 2. The true positive and false positive rates (in %) of different FNNs.

The effect of using different abstractions and abstraction granularity (the
N parameter) is shown in Fig. 3. Based on the results in Fig. 2, we now use
the lowest aggressiveness level (0). The graph of uni shows that increasing N
can greatly improve the FNN’s ability to detect error, while keeping the false
positive rate below 5%. We also see αN and αN ◦ low perform significantly better
than αN ◦ ctr, implying that the choice of the abstraction function matters.
Compared to αN , αN ◦ low and αN ◦ ctr introduce non-linear granularity. The
results suggest that introducing more granularity in the region (of P ’s output)
which is more error prone pays off.

Fig. 3. The effect of different abstractions and the abstraction granularity (N).
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4 Conclusion

The experiment showed that, contrary to earlier attempts, it is possible to train
Neural Networks, given an appropriate abstraction, to become an artificial spec-
ification for a non-trivial discrete-domain program with acceptable precision. As
future work, more case studies are needed to see how this generalizes.
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Abstract. Finding bugs in systems without model is well-known to be
challenging and costly. But, most of today’s developers think that writ-
ing models is also a hard and error-prone task. In this context, this
paper addresses the problem of learning a model, from a component-
based system, which captures and separates the behaviours of compo-
nents and encodes their synchronisations. We present a passive model
learning method called COnfECt to infer such models from execution
traces in which no information is provided to identify components. We
describe the two main steps of COnfECt in this paper and show some
preliminary experimentations on real systems.

Keywords: Model learning · Passive learning · Reverse engineering
Component-based systems

1 Introduction

Software testing aims at assessing the quality of the features offered by a system
in terms of conformance, security, performance, etc., to discover and correct its
defects. Nowadays, testing is essentially performed by means of test cases written
by hand, which is often a long, difficult and error-prone task. To make this
task easier, model learning approaches have proven to be valuable for recovering
models that can be exploited by many software engineering stages, e.g. testing.

Although the generation of behavioural models has been greatly studied, little
attention has been given to the learning of models from component-based systems.
Yet, most of the systems being currently developed are made up of reusable fea-
tures or communicating components that interact together. These observations
motivate this work, which adresses the challenge of how to learn a model from its
traces, in such a way that the model captures the behaviour of every component
of the System Under Learning (SUL) and their synchronisations.

Research supported by the VASOC Project and the French Region Auvergne-Rhône-
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For this purpose, we designed the method COnfECt (COrrelate Extract Com-
pose) for learning models of component-based systems. Its main originality is
that it does not require any preliminary identification information about com-
ponents. COnfECt learns a system of LTSs (Labelled Transition Systems) from
traces (passive learning), which captures the behaviours of every component by
a LTS and shows how they are synchronised together. COnfECt is composed
of two main steps called Trace Analysis & Extraction and LTS synchronisation
which are going to be developped in this paper.

Paper Organisation: Section 2 introduces the two steps of the COnfECt app-
roach. The next section summarises the results of a preliminary evaluation on
an IOT (Internet Of Things) device. Finally we conclude in Sect. 4.

2 The COnfECt Approach

Beforehand, we recall that the LTS model, we use in this paper, is defined in
terms of states and transitions labelled by actions, taken from a general action
set L, which expresses what happens (a more complete definition can be found
in [2]). We also define special actions of the form call Ci and return Ci to
model component calls with Ci referring to a LTS. Actions of the form call Ci

and return Ci synchronise pairs of LTSs as described in [1]. The execution of
Ci starts with the label call Ci and ends when the transition return Ci is fired.

2.1 Overview of COnfECt

The COnfECt method aims to infer a system of LTSs SC from the traces of SUL,
in such a way that SC captures the behaviours of the SUL components and their
synchronisations. COnfECt initially requires the set of traces of SUL, denoted
Traces(SUL), to analyse the system behaviours and identify components. We
suppose that each component can be identified by its behaviour, materialised by
action sequences. And the more traces, the more correct the component detection
will be. SUL can be indeterministic, uncontrollable or can have cycles among
its internal states. However, we assume SUL and Traces(SUL) obey certain
restrictions. We consider that SUL has components whose observable behaviours
are not carried out in parallel. One component is executed at a time from its
initial state to one of its final states. Furthermore, we consider that traces are
collected in a synchronous manner (by means of synchronous communications) to
avoid the interleaving of actions. Traces can be collected by means of monitoring
tools or extracted from log files. We assume that Traces(SUL) does not include
actions expressing the calls of components.

Furthermore, although this task is costly and important, we do not focus
this work on the trace formatting, hence, we assume having a mapper, which is
a tool often required in model learning to transform raw execution traces into
higher level representations.

COnfECt has two main successive steps illustrated in Fig. 1. The first step,
called Trace Analysis & Extraction tries to detect components in Traces(SUL),
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Fig. 1. The COnfECt approach overview

which is partitioned into a set of trace sets called STraces. Each trace set of
STraces captures some behaviours of one component. The second step, called
LTS Synchronisation, takes the set STraces and starts with the generation of
one LTS for each trace set of STraces. This step also proposes different synchro-
nisation strategies to generate a system of LTSs SC, before merging equivalent
states with kTail.

2.2 Trace Analysis and Extraction

The aim of this step is to identify the different components in the traces of
Traces(SUL). The algorithm, which is given in [2] is divided into three pro-
cedures. The first one, Inspect analyses the traces and segments them in sub-
sequences. We define a Correlation Coefficient to evaluate the correlation of suc-
cessive actions in Traces(SUL), i.e. the degree to which successive actions are
associated with regard to Traces(SUL). We define the Correlation coefficient
between two actions by means of a utility function, which involves a weighting
process for representing user priorities and preferences. We have chosen the tech-
nique Simple Additive Weighting (SAW) [3], which allows the interpretation of
these preferences with weights. This factor must take a value between 0 and 1,
and needs to be appraised, depending of the context.

From this Correlation coefficient, we define a relation to express the notion
of strong correlation. We say that strong-corr(σ1) holds when σ1 has successive
actions that strongly correlate. Besides, we compare two sequences with the rela-
tion σ1 mismatch σ2, which holds when the last event of σ1 does not correlate
strongly with the first one of σ2.

The second procedure Extract whose algorithm is also given in [2] creates
recursively different sequences to express component calls. It takes every trace
σ, transforms it and stores the new trace into a set Tj , by the means of the
coefficient correlation.

Example 1. Let us illustrate the procedure Extract with the example of Fig. 2a.
The procedure takes as input a trace initially segmented into 4 sub-sequences
by the correlation coefficient. (A) We start at σ1 and suppose that no other sub-
sequence is strongly correlated with σ1. The sequence σ2σ3σ4 is hence extracted
and replaced by the actions call C2 return C2, which model the call of a com-
ponent C2. The procedure is recursively called with Extract(σ′ = σ2σ3σ4, T2).
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(a) Procedure Extract steps (b) Component call

Fig. 2. Sequence extraction example.

(B) We now suppose σ2σ4 strongly correlate, thus σ3 is extracted and the
sequence σ′ becomes σ′ = σ2.call C3 return C3.σ4. The extracted sequence σ3

cannot be segmented. It is surrounded with the actions call C3 and return C3
to prepare the LTS synchronisation and to express that C3 is called by another
component. The resulting sequence is added to the set T3. As σ′ is completely
covered, σ′ is surrounded with the actions call C2 and return C2 and added to
the new trace set T2. At the end of this process, we have recovered the hierar-
chical component call depicted in Fig. 2b and we get three trace sets.

The set T1, which holds the modified traces of the initial trace set
Traces(SUL), may include traces resulting from several components. We call the
third procedure Separate for trying to partition T1, to build the set STraces
such that a trace set T of STraces is produced by one component. For that, we
evaluate the trace similarity with regard to the actions shared between pairs of
traces. Among the different available coefficients, we chose the Overlap coefficient
because the action sets used by two traces may have different sizes. Then a clus-
tering technique is used to get the equivalence classes. The procedure Separate
is implemented with a Similarity threshold here.

2.3 LTS Synchronisation

The previous step of COnfECt has segmented, extracted and modified the traces
of Traces(SUL) in such a way that each trace set contains the behaviour of only
one component. We generate a LTS from every trace set, where each trace repre-
sent a path of a tree-like LTS. These LTSs include actions of the form call Ci and
return Ci. These actions were added in the previous step to prepare the syn-
chronisation of components with LTSs. We proposes different synchronisation
strategies, which provide systems of LTSs with different levels of generalisa-
tion. The strict synchronisation limits over-generalisation, and used only kTail
to merge equivalent states. The weak synchronisation aims at reducing the num-
ber of models and allows repetitive components calls, its uses a LTS similarly
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coefficient to merge models by means of a clustering technique. The strong syn-
chronisation generate callable-complete LTSs, i.e., the LTS can call any other
LTS of the system from any states.

Example 2. Let us illustrate this step with the set STraces of Fig. 3. The traces
T1 to T4 are obtained from the step Trace Analysis & Extraction on a trace
collected from a real smart thermostat device at the HTTP level. This trace,
composed of 16 actions, was formatted to keep the Urls and some data, e.g., the
temperature.

STraces = {
T1 {/devices call_C2 return_C2 Response(status:=200,data:=[1]) call_C3 return_C3 /devices

Response(status:=200,data:=[1]) /hardware Response(status:=200,data:=[2]) /config call_C4
return\_C4 Response(status:=200,data:=[2]) /tools Response(status:=200,data:=[3])}

T2 {call_C2 /json.htm(idx:=115,svalue:=15.00)=A Response(status:=200)=D return_C2}
T3 {call_C3 /json.htm(idx:=115,svalue:=16.00)=B Response(status:=200)=D return_C3}
T4 {call_C4 /json.htm(idx:=0,switchcmd:=On)=C Response(status:=200)=D return_C4} }

Fig. 3. Example of formatted trace segmented into 4 trace sets.

We choose to apply the Weak synchronization strategy. A similarity matrix
is computed by means of the LTS Similarity coefficient. Figure 4a shows the
matrix obtained with the four LTSs of our example. We can observe that two
classes of similar LTSs emerge in this matrix: (C1) and (C2, C3, C4). A clustering
technique is used to generate these classes. The LTSs of each cluster are then
joined by means of a disjoint union.

C1 C2 C3 C4

C1 1 0,38 0,38 0,38
C2 0,38 1 1 0,8
C3 0,38 1 1 0,8
C4 0,38 0,8 0,8 1

(a) LTS Similarity matrix (b) LTS C 2 3 4 mod-
elling the sensors

(c) Reduced
LTS C 2 3 4

Fig. 4. LTS results.

From the trace sets of Fig. 3, we obtain the two LTS clusters: (C1) and
(C2, C3, C4), the first one expressing the behaviour of the Web interface, and
the other one, the component that sends data. Figure 4b depicts the LTS C234

derived from the second cluster. The LTS C234 holds two equivalent state classes
(q2, q4, q6) and (q3, q5, q7). kTail merges them and returns the LTS of Fig. 4c.
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3 Preliminary Evaluation

We have implemented COnfECt in a prototype tool on which we conducted
several experiments. We initially collected traces from an IOT device, a smart
connected thermostat. It integrates 3 components providing HTTP traces. Sev-
eral experiences have been performed, only five of them are provided in Tables 1
and 2: exp 1 and 2, traces of only one component is recovered, exp 3 and 4,
traces of 2 components, and the last one with all the components.

Firstly, we evaluated the capability of COnfECt to recover the correct number
of components, and then we compared the number of states and transitions with
kTail. The tool, the trace sets and results are available here1. In Table 1, for
exp. 1 to 5, the number of LTSs is equal to the number of real components with
the Weak and Strong strategies, but not with the Strict strategy. This strategy
segments traces, which are lifted to the level of LTS, but these are not merged.

Table 1. Number of components detected by COnfECt.

Exp. # real components Strict Weak Strong

Exp. 1 1 10 1 1

Exp. 2 1 1 1 1

Exp. 3 2 85 2 2

Exp. 4 2 67 2 2

Exp. 5 3 173 3 3

Table 2 gives the number of states and transitions of all the LTSs generated by
COnfECt in Exp. 1 to 5. We also provide the number of states and transitions
of these LTSs after removing the transitions labelled by the synchronisation
actions in the last three columns. For comparison purposes, we applied kTail
on the same trace sets. As expected, we obtain bigger LTSs with COnfECt
than the ones achieved by kTail (excepted with Exp. 2 since there is no trace

Table 2. Size of the LTSs obtained with kTail and the three strategies of COnfECt.
The label “hide” refers to the removal of the LTS transitions labelled by synchronisation
actions.

Exp. kTail Strict Weak Strong Strict+hide Weak+hide Strong+hide

#states #trans #states #trans #states #trans #states #trans #states #trans #states #trans #states #trans

Exp 1 40 66 152 169 46 78 60 150 120 137 39 70 36 67

Exp 2 6 8 6 8 6 8 6 8 6 8 6 8 6 8

Exp 3 60 115 731 691 104 188 72 183 399 359 71 124 36 85

Exp 4 22 47 496 470 41 81 25 57 236 210 24 55 10 23

Exp 5 85 175 1307 1185 158 286 82 197 627 505 96 169 36 87

1 https://github.com/Elblot/COnfECt.

https://github.com/Elblot/COnfECt
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segmentation). This result comes from the functioning of our method since the
LTSs are completed with transitions labelled by synchronisation actions.

The transitions labelled by synchronisation actions help interpret the com-
ponents combination and are required to compose LTSs, but are not relevant if
one want to focus on the component behaviours only. If we remove them, the
models achieved by COnfECt become more concise than those obtained with
kTail.

4 Conclusion

We have introduced COnfECt, a passive model learning method that gener-
ates systems of LTSs from execution traces. A system of LTSs captures the
behaviours of components and their synchronisations. COnfECt detects com-
ponent behaviours by analysing traces with a Correlation coefficient and Sim-
ilarity coefficients. It proposes different LTS synchronisation strategies, which
help manage the model generalisation. With this hierarchic component organi-
sation, we believe it offers better readability and comprehensibility than classical
learned models, and consequently can be easily used for testing. In future work,
we plan to perform more evaluations of COnfECt on several kinds of systems.
We also plan to use the models for security testing.
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Abstract. In contrast to untimed FSMs, two minimal initialized FSMs with
timeouts can be equivalent but not isomorphic. Accordingly, we propose an
appropriate fault model and a method for complete test derivation for initialized
deterministic FSMs with timeouts based on an appropriate FSM abstraction of
the timed FSM specification. We also show how the same approach can be used
for deriving tests for FSMs with both time guards and timeouts.

Keywords: Conformance testing � Timed finite state machines

1 Introduction

A multitude of approaches are given for test derivation from formal specifications
modeled as Finite State Machines (FSMs). The W method [1] paved the way for many
derivatives to work on the test derivation considering various classes of FSM speci-
fications and Implementations Under Test (IUT). For related summary and experiments
the reader may refer to [2, 3]. Extensions to the W-based methods are also considered
in the context of systems with timed constraints [4, 5]. Merayo et al. [6] establish a
number of conformance relations for possibly non-deterministic FSM with input and
output timeouts; however, test derivation is not considered in [6]. El-Fakih et al. [7]
consider test derivation and assessment for timed FSMs with timed guards and single
clock that is reset at every transition. Zhigulin et al. [8] presented a method for deriving
complete test suites for FSMs with timeouts considering a traditional fault domain
assuming that the number of states of an implementation TFSM does not exceed that of
the reduced specification TFSM as well as the maximal finite timeout of the IUT does
not exceed this of the specification. Recently, Bersolin et al. [9] investigated many
timed FSM models with a single clock.

In this paper, we consider complete test derivation against FSMs with timeouts,
hereafter denoted as TFSMs. In contrast to untimed FSMs, we show that two minimal
initialized TFSMs can be equivalent but not isomorphic; moreover, we show that these
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TFSMs can have different number of states. According to [9], the behavior of a TFSM
can be completely described by its corresponding (untimed) FSM abstraction and the
reduced initially connected forms of corresponding FSM abstractions of two initialized
equivalent TFSMs are isomorphic. This hints that the fault model and complete test
derivation can be developed based on the reduced form of the FSM abstraction of a
given TFSM specification. We consider complete test derivation with respect to an
appropriate fault domain that contains every TFSM over the same input alphabet as the
specification such that the reduced form of the FSM abstraction of an IUT has at most
m[ 1 states, and thus, the proposed approach is easily extended to FSMs with
timeouts and timed guards.

2 Preliminaries

An initialized FSM is a 5-tuple S ¼ ðS; I;O; hS; s0Þ where I and O are input and output
alphabets, S is a finite non-empty set of states with the designated initial state s0, and
hS �ðS� I � O� SÞ is the transition relation. We consider complete and deterministic
FSMs, i.e., for each pair s; ið Þ 2 S� I there exists exactly one transition
ðs; i; o; s0Þ 2 hS. The equivalence and distinguishability relations between different
states of FSMs are defined in a usual way [3]. It is known that given a complete
deterministic initialized initially connected FSM, any two reduced initially connected
forms of this FSM are isomorphic.

An FSM with timeouts, a TFSM for short, is an FSM annotated with a clock that is
reset to zero at the execution of any transition. In addition, such a TFSM has input
timeout transitions. When an input timeout expires at a state, the TFSM can sponta-
neously move to the destination state of the timeout transition while resetting the time
to zero. An initialized TFSM is a 6-tuple S ¼ ðI; S;O; hS;DS; s1Þ where I and O are
input and output alphabets, S is the finite non-empty set of states, hS � S� I � O� S is
the transition relation and DS: DS : S ! S� ðN [f1gÞ is the timeout function, where
N is the set of positive integers: for each state, this function specifies the maximum time
for waiting for an input. Given state s of TFSM S such that DS sð Þ ¼ s0; Tð Þ, if no input
is applied before the timeout T expires, S moves to state s0 and the clock is set to zero. If
s ¼ s0 then the clock is set to zero when timeout is expired. The transition ðs; i; o; s0Þ 2
S� I � O� S means that S being at state s accepts an input i applied at time t\T
measured from the moment when the clock was reset at state s of S; the clock then is set
to zero and S produces o. Hereafter, the timeout at state s can be written as Ts or T when
s is known from the context, for short.

TFSM S is a deterministic complete TFSM if for each pair s; ið Þ 2 S� I, there is
exactly one transition ðs; i; o0; s0Þ 2 hS. In this paper, we consider only deterministic
complete TFSMs. TFSM is (initially) connected if each state is reachable from the
initial state. Given a TFSM S, a timed input is a pair (i, t) where i 2 I and t is a real; a
timed input (i, t) means that input i is applied to the TFSM at time instance t where t is a
local time. A sequence of timed inputs a ¼ i1; t1ð Þ . . . in; tnð Þ is a timed input sequence.
A sequence a=c ¼ i1; t1ð Þ=o1 . . . in; tnð Þ=on of consecutive pairs of timed inputs and
outputs starting at the state s is a timed trace of TFSM S at state s. Given complete
deterministic TFSMs S and P, states s of S and p of P are equivalent if output responses
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at these states coincide for each timed input sequence; otherwise, s and p are distin-
guishable. Two initialized TFSMs S and P are equivalent if their initial states are
equivalent. If any two different states of TFSM S are distinguishable then S is (state)
reduced or minimal.

Consider two complete deterministic TFSMs in Fig. 1 which are equivalent. Each
state in S1 að Þ and S2 bð Þ is reachable from the initial state and both machines are
reduced. However, these two equivalent machines are not isomorphic; moreover, they
have different number of states.

In order to calculate an output for a timed input (i, t) for each state s of TFSM S we
consider the function time s; tð Þ ¼ s0 that determines state s0 that will be reached by
S through timeouts if no input was applied during t time units. The output response b of
S to a sequence a ¼ i1; t1ð Þ i2; t2ð Þ . . . in; tnð Þ at state s is iteratively determined starting
from state s.

Determining if two states of a TFSM S are equivalent or distinguishable can be
done using the (untimed) FSM-abstraction AS of S defined in [9].

FSM Abstraction: Given a complete deterministic TFSM S ¼ ðS; I;O; hS;DS; s0Þ, we
derive the FSM abstraction of S as the FSM AS ¼ ðSA; IA;OA; kAS; s0; 0ð Þ, where
IA ¼ I [f1g;OA ¼ O[f1g. The input (output) 1 is a special input (output) of the FSM
abstraction denoting the time duration. For each state s, the set SA has a state (s, 0).
Moreover, for each state s where the timeout Ts is finite, the set SA has the states
f s; 1ð Þ; ::; ðs; Ts� 1Þg. Given state s; tj

� � 2 SA of AS and input i, a transition
ððs; tjÞ; i; o; ðs0; 0ÞÞ is a transition of the abstraction AS iff there exists a transition
ðs; i; o; s0Þ 2 hS. Transitions under the input 1 correspond to timeout transition between
states. Given state s such that DS sð Þ ¼ s0; Tsð Þ where 1\Ts\1, there are transitions
ððs; 0Þ; 1; 1; ðs; 1ÞÞ; . . .; ððs; Ts � 2Þ; 1; 1; ðs; Ts � 1ÞÞ; ððs; Ts � 1ÞÞ, in kAS. If DS sð Þ ¼
s0; Tsð Þ then there is a transition ððs; Ts � 1Þ; 1; 1; ðs0; 0ÞÞ while there is a transition
ððs; 0Þ; 1; 1; ðs; 0ÞÞ 2 kAS iff Ts ¼ 1. In [9], it is shown that the FSM abstraction of a
complete and deterministic TFSM S is also complete and deterministic. As an example,
consider the FSMs S1 and S2 in Fig. 1(a) and (b), their corresponding isomorphic FSM
abstractions AS1 and AS2 are also shown in Fig. 1.

By definition, given an FSM with timeouts with n states and k inputs, the corre-
sponding FSM abstraction has kþ 1ð Þ inputs and the number of states of the FSM

s3s1 s2
2

3

i / o1

i / o1

i / o2

q2q1

5

i / o1

i / o2

(a) (b)

(s1 ,0)

Abstraction FSM AS1

(s1 ,1) (s2 , 0) (s2 ,1) (s2 ,2) (s3 , 0)

i / o2

1/11/1 1/1 1/1 1/1

(q1 ,0)

i / o1

(q1 ,1) (q1 , 2) (q1 ,3) (q1 ,4) (q2 , 0)

i / o2

1/11/1 1/1 1/1 1/1
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(b)

i / o1

Abstraction FSM AS2  

Fig. 1. Two equivalent yet not isomorphic TFSMs S1 (a) and S2 (b) and their FSM abstractions.
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abstraction equals
P

s2S0 ðTs þ SnS0j j where S0 is the subset of all FSM states for which
the timeout Ts is finite.

A timed input sequence a of TFSM S can be transformed into a corresponding
input sequence aFSM of the FSM abstraction AS. In this case, each timed input (i, t) is
replaced by sequence 1:1 . . . 1. i of inputs of the FSM abstraction where the number of
inputs 1 equals t. At the same time the response of the FSM abstraction to sequence
1:1 . . . 1. i is the sequence 1:1 . . . 1. o where the number of outputs 1 is the same as for
the timed input (i, t) and o is the response of the TFSM to timed input (i, t). Thus, the
output sequence of the FSM abstraction cFSM is exactly the output sequence c after
removing all outputs 1. As there is no ambiguity, we further do not distinguish
sequences cFSM and c.

Proposition 1. Given a complete deterministic TFSM S and its corresponding FSM
abstraction AS, a timed trace a=c exists for TFSM S if and only if there exists a trace
aFSM=c for the FSM abstraction AS.

Proposition 2 [9]. Two complete deterministic TFSMs are equivalent if and only if
their FSM abstractions are equivalent.

The following proposition describes an input sequence that distinguishes two non-
equivalent TFSMs.

Proposition 3. Given two non-equivalent complete deterministic TFSMs S and P over
the same input and output alphabets, let AS and AP be their FSM abstractions. If an
input sequence aFSM ¼ 1:1 . . . 1: i1 . . . 1:1 . . . 1. ik distinguishes FSM abstractions AS

and AP, then the timed input sequence ði1; t1Þ . . . ðik; tkÞ where tj is the number of inputs
before the input ij, 1� j� k, distinguishes machines S and P.

An FSM abstraction of a TFSM can be reduced using a traditional way. Then the
FSM abstraction of a TFSM implementation can be compared with the FSM
abstraction of the specification TFSM and if they are not equivalent then corresponding
TFSMs can be distinguished by some input sequence aFSM . Moreover, a corresponding
timed input sequence a will distinguish the TFSM implementation from the specifi-
cation TFSM (Proposition 3). Correspondingly, a complete test suite can be derived
based on the minimal form of the FSM abstraction of the specification TFSM. Such a
test suite is derived for timed sequences over local time and later we discuss how the
test cases can be written over global time. We also note that when distinguishing two
initialized deterministic complete FSMs AS and AP, a distinguishing input can be only
i 2 I, as input 1 is defined at each state with the output 1. The sequence aFSM . i dis-
tinguishes FSMs AS and AP and based on it a corresponding distinguishing sequence
for TFSMs S and P can be constructed (Proposition 3).

When applying test cases to an IUT, we reasonably assume that each transition is
performed with some small output delay h such that the sum of all delays during a test
case application is less than 1 and since timeouts are integers and these delays are very
small they do not effect a proposed fault model.
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3 Fault Models and Test Derivation

Given a specification TFSM S, we consider the fault model \S;ffi;FDm [ , where
FDm contains every TFSM P over the same input alphabet as S such that the reduced
form of the FSM abstraction of P has at most m[ 1 states. We note that it can well
happen that some timed FSMs with less states than the specification TFSM are not
included into the fault domain and vice versa a number of timed FSMs with more states
than the specification TFSM are included into the fault domain.

Theorem 1. The test suite TS obtained by Algorithm 1 is complete with respect to the
fault model \S;ffi;FDm [ .

4 Deriving Tests for FSMs with Timed Guards and Timeouts

In [9], FSMs with timed guards and timeouts are considered. Input timed guards
describe the behavior at a given state for inputs, which arrive at different time instances.
Formally, an initialized TFSM is a 6-tuple S ¼ ðI; S;O; hS;DS; s0Þ where I and O are
input and output alphabets, S is the finite non-empty set of states, hS � S� I � O�
S�P is the transition relation and DS is the timeout function. The set P is a set of
input timed guards. An input timed guard g 2 P describes the time domain when a
transition can be executed and is given in the form of interval ⌈min, max⌉ from [0; T),
where ⌈ 2 {(, [},⌉ 2}, ), ]} and T is the value of the (input) timeout at the current state.
The transition ðs; i; o; s0; gÞ 2 S� I � O� S�P means that TFSM S being at state
s accepts an input i applied at time t 2 g measured from the moment when S entered
state s; the clock then is set to zero and S produces output o. TFSM S is a deterministic
complete TFSM if for each two transitions s; i; o1; s1; g1ð Þ; s; i; o2; s2; g2ð Þ 2 hs it holds
that g1 \ g2 ¼ ; and the union of all input timed guards at state s under input i equals
[0; T) when DS sð Þ ¼ s0; Tð Þ. Given a complete deterministic TFSM S, the largest finite
boundary BS of input timed guards and timeouts, we derive the FSM abstraction of S as
the FSM ASðBÞ ¼ ðSA; I [f1g;O[f1g; kAS; ðs0; 0ÞÞ;B�BS, where SA ¼ f s; 0ð Þ; s;ð
0; 1ð ÞÞ; . . .; s; B�1;Bð Þð Þ; s;Bð Þ; ðs; ðB;1ÞÞ : s 2 Sg. In [9], it is shown that such an
FSM abstraction of a complete and deterministic TFSM S is also complete and
deterministic and a timed input sequence a of TFSM S can be transformed into a

Deriving Tests with Guaranteed Fault Coverage 153



corresponding input sequence aFSM of the FSM abstraction AS Bð Þ similar to an FSM
with timeouts. We then consider the fault model \S;ffi;FDmðBÞ[ , where FDmðBÞ
contains every TFSM P over the same input alphabet as S such that the reduced form of
the FSM abstraction of P has at most m[ 1 states and the largest finite boundary of
input timed guards and timeouts is B�BS. In our case, the test derivation technique
completely coincides with Algorithm 1 where the FSM abstraction AS is considered
and the test suite TS obtained by Algorithm 1 is complete w.r.t. the fault model
\S;ffi;FDmðBÞ[ .

5 Conclusion

A proper fault domain is considered for complete test derivation against timed FSMs.
The fault domain takes into account the fact that a reduced TFSM specification and a
reduced TFSM implementation with timeouts can be equivalent yet not isomorphic.
A proper characterization of the fault domain is then considered using the unique
reduced form of the FSM abstraction of the given timed FSM specification. The fault
domain is extended to consider FSMs with timeouts and timed guards.
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Abstract. Ordinary tools for computing combinatorial test suites rely
on simple input models comprising variables together with their domains
and constraints limiting possible combinations. Modeling for combinato-
rial testing requires to represent the input domain of the application in a
way such that it fits to the combinatorial testing input model. Depend-
ing on the application’s domain this mapping ranges from trivial to more
complicated. In this paper, we focus on modeling for combinatorial test-
ing in cases the application’s domain can be represented in form of an
ontology, i.e., concepts and their relationships. We formally introduce
the notation of ontology we rely on in this paper, and show how such
ontologies can be automatically mapped to a combinatorial testing input
model. We discuss the algorithm and show its properties.

Keywords: Combinatorial testing · Ontologies · Combinatorial
testing input models

1 Introduction

System development more and more rely on models describing the system’s envi-
ronment, potential interaction as well as its intended behavior. Such models often
conceptualize the application domain and are often available in a formal form
that can be used for various purposes. Ontologies, which are a formal conceptual-
ization of entities, their interfaces and behaviors, and relationships, describe the
knowledge behind such an application domain are more often used for various
purposes. For example, in the context of autonomous driving such ontologies
have been used for decision making [17], describing traffic situations [4], and
navigation [21].

In the context of testing and in particular test suite generation, ontologies
provide information about certain entities and their relationships from which we
might extract test cases. Let us have a look at simplified text ontology comprising
the concepts of Text, Sentence, Delimiter and Word. An instance of a Text
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is a sequence of sentences, i.e., instances of Sentence followed by a instance of
Delimiter. A particular sentence comprises words, which are instances of the
concept Word. We depict the relationships between these concepts in Fig. 1. A
test case would be a certain instance of Text comprising its parts specified in
the ontology. If we want to use such tests for verifying a program like a text
processor, we would be interested in obtaining certain combinations of words
and delimiters that form a sentence.

One possible way of coming up with such combinations would be the use of
combinatorial testing [8] that has been successfully applied for verifying different
software applications. Combinatorial testing in its simplest form takes a set of
variables representing inputs and parameters together with their domains as
input model and generates test cases including certain combinations of variable
values. In particular, in combinatorial testing we search for all tests that cover
all combinations for any subset of size k of the variables, where k is called the
strength of the generated test suite.

Unfortunately, there has been no algorithm reported that takes an ontology as
input and which returns a combinatorial test input model (or a combinatorial test
suite of strength k) as output. In this paper, we focus on this open challenge and
present an algorithm that allows using ontologies as input for the generation of
combinatorial test suites. For this purpose, we formalize ontologies and discuss an
algorithm that maps those ontologies to combinatorial input models. In addition,
we show the underlying functionality of the algorithm using the text ontology
as a case study.

The intention behind this work is to use it for test suite generation of ontolo-
gies for autonomous driving, which are currently under development. There the
focus is on tests that reveal situations an autonomous vehicle has to deal with
under which it might fail. A first ontology comprises more than 200 concepts
from which we want to generate test suites used to verify the correct function-
ality of an autonomous vehicle even in critical situations comprising different
combinations of static elements like roads or dynamic elements like other cars
of pedestrians.

We structure this paper as follows: First, we discuss related research including
mappings of UML diagrams to combinatorial test suites. Afterwards, we formally
introduce the concept of ontologies and in order to be self-contained discuss the
foundations of combinatorial testing. We further introduce the algorithm for
converting ontologies into combinatorial test suites followed by a section where
we apply this algorithm on our text ontology. Finally, we conclude the paper.

2 Related Research

Software testing is tedious and expensive yet critical to quality assurance. Design-
ing suitable test cases requires that programmers possess a certain amount of
domain knowledge. Therefore, ontology can aid in software testing as they encode
domain knowledge in a machine processable format. It provides people and soft-
ware systems a common shared understanding of knowledge which is easy to
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Fig. 1. A simplified textual input ontology depicted using UML comprising sentences,
which themselves have words and one delimiters.

organize, maintain and update [13]. Although the study of ontology has become
active since the last decade, few works have been done regarding the ontology-
based software testing, especially in the field of combinatorial testing (CT). Li
et al. [10] developed an ontology to generate user-centric GUI test cases. First,
GUI and non-GUI components are captured by reverse engineering techniques.
Relations among GUI components are then analyzed to create a GUI ontology
and rules for test case generation.

Nguyen et al. [15] proposed an ontology-based test generation framework for
multi-agent systems. An ontology that defines content semantics of agent inter-
actions is developed to generate test inputs, guide the input space exploration,
and verify messages exchanged between agents. Li and Ma [11] discussed how to
generate the parameter setting interface for test atom in spacecraft automatic
test based on an ontology knowledge base. The knowledge base represents the
information extracted from the test atom and user interface and the rules pre-
defined to the mapping relationship between test atom attributes and interface
elements.

Satish et al. [18] proposed a rule-based approach to derive CT parameters and
values from use case specification (UCS) and UML use case diagrams (UCD).
The UCS specifies the requirements in a predefined structure such as the pre-
condition, normal-flow, alternative-flow, and postconditions. The UCD depicts
the software under test (SUT) from functionality point of view, and the function
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is encompassed within a use case in a UCD. The rules are formulated to derive
the combinatorial test design model (CTDM) elements from the UCS and UCD
parsers. A set combined set of parameters and values are then derived from these
rules to provide suggestions to the testers for further elements selection. Before
this work, Satish’s team had applied similar strategy to derive CT parameters
and values from UML activity diagrams [20] and sequence diagrams [19].

Use case diagrams focus on the system’s functional usage and their interre-
lationships, dependencies, etc. They are useful for understanding how a feature
is used. However, they isolate the details of the system. These details provides
information for deriving CT parameters and values. The UML class diagrams,
which we use to depict ontology in this paper, directly shows the reflections of
the real world as objects (i.e., classes) and their interrelationships. Different use
cases identified in use case diagram can turn into classes. In addition, the ontol-
ogy depicted by UML class diagrams can be represented in hierarchical style
which is perfect for generating the target CT model. Therefore, using ontol-
ogy depicted by class diagrams is more straight forward to structure the entire
system in a CT-oriented way.

Moser et al. [12] argued that measurable benefits such as the feasibility of the
ontology-based test case generation approach and the cost-benefit potential of
ontology-based test case generation approaches (e.g., cost-benefit for a constant
number of parameters and for expanding the number of parameters) are essential
to decide whether an ontology-based approach and the change costs is acceptable
or not. Studies in [1,14,22,23,25] designed ontologies that focus on the software
testing process and the corresponding activities and artifacts. The aim is to
manage software testing knowledge so that different knowledge items in software
testing are collected, shared, reused and organized.

3 Basic Definitions

In this section, we briefly outline the basic foundations of ontologies used for
providing input models, and combinatorial testing used for generating test cases
from the given model. In contrast, to ordinary combinatorial input models, the
ontology-based models provide more details about relationships between differ-
ent conceptual entities.

3.1 Ontology

Feilmayr and Wöß [3] stated that “an ontology is a formal, explicit specification
of a shared conceptualization that is characterized by high semantic expressive-
ness required for increased complexity ”. From this informal definition we are
able to deduce that ontologies need to describe concepts in a formal way as well
as knowledge about these concepts including their relationships. In the following,
we introduce a very much simplified definition of ontologies based on concepts
restricting relations to composition and inheritance. We use the former relations
to formalize knowledge that one concept comprises some other concepts and
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the latter for stating that one concept is more general than another concept. A
concept itself describes an entity either from the real world, e.g., a car, or from
nonmaterial descriptions, e.g., a sentence or a (physical) force.

Concepts form the basic building blocks of ontologies. In the context of this
paper, concepts shall describe the basic entities of the input model. For example,
in our running example depicted in Fig. 1 we use the concepts of Text, Sentence,
Word, and Delimiter to construct an ontology for textual input. Concepts are
also allowed to have attributes, i.e., properties that characterize concepts. For
example, a person has a name, a birth day, and other specific properties that
distinguishes one person from another. An attribute itself has a certain type like
a string or a date. Note that for providing input models for test case generation,
we only rely on enumeration types as basic type where someone has to specify
the elements of the enumeration that corresponds to an attribute.

Definition 1 (Ontology). An ontology is a tuple (C,A,D, ω,R, τ, ψ) where
C is a finite set of concepts, A is a finite set of attributes, D is a finite set
of domain elements, ω : C �→ 2A×2D is a function mapping concepts to a set
of tuples specifying the attribute and its domain elements, and R is a finite
set of tuples from C × C stating that two concepts are related. The function
τ : R × R �→ {c, i} assigns a type to each relation using i for inheritance and
c for composition. Furthermore, ψ : R × R �→ IN0 × IN0 is a function mapping
relationships solely of type c to its minimum and maximum arity. The arity is
for specifying how many concepts a particular concept may comprise and ranges
from 0 to any arbitrary natural number.

Note that this definition of ontologies assures that there is at the maximum
one relation between two concepts. Hence, it is not possible to state that one
concept is a sub-concept of another concept and that there is a compositional
relationship between them as well. For simplicity, we further introduce the func-
tion dom : C × A �→ 2D that we will use later in this paper. The function dom
returns the domain for an attribute of a given concept.

Obviously ontologies can also be represented in a graphical form. In Fig. 2, we
depict the graphical representation of concepts and their relations using UML2
syntax1. Note that in the graphical representation the arity of the concept C1
of the composition relation is always 1. The minimum and maximum arity of
concept C2 is given as follows: In case of * the minimum arity is 0 and the
maximum arity is any value. Otherwise, we have a 1..* indicating a minimum
arity of 1.

Example 1. Using the graphical representation of the text ontology from Fig. 1,
we can easily obtain a formal description of the ontology accordingly to
Definition 1. The text ontology comprises four concepts, i.e., C = {Text,
Sentence, Word, Delimiter}, and one attribute leading to: A = {id}. We
further assume that we have three different words and only a period and a

1 For the UML language specification have a look at https://www.omg.org/spec/
UML/2.5.1/ (last visited March 3rd, 2018).

https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/
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Attributes: Concept C with
two attributes a1, a2 of
basic type Enumeration.

Inheritance: Concepts C2
and C3 are sub-concepts of
C1.

Composition: Concept C1
comprises instances of con-
cept C2. There might be 0
to n concepts C2 assigned
to C1 depending on the
value of ∗.

Fig. 2. Basic concepts, their attributes, and relationships considered for coming up
with an ontology for a particular application domain.

questionmark as delimiters. Hence, the domain comprises five elements, i.e.:
D = {‘word1’, ‘word2’, ‘word3’, ‘.’, ‘?’}.

Only delimiters and words have attributes. Hence, ω can be defined as fol-
lows: ω(Text) = {}, ω(Sentence) = {}, ω(Delimiter) = {(id, {‘?’, ‘.’})},
and ω(Word) = {(id, {‘word1’, ‘word2’, ‘word3’})}. Finally, we only need
to specify the relationships between concepts and the function ψ. R can be
easily obtained from Fig. 1: R = {(Text, Sentence), (Sentence, Delimiter),
(Sentence, Word)}. For these relations, we further specify their types:
τ(Text, Sentence) = c, τ(Sentence, Delimiter) = c, and τ(Sentence, Word) =
c. For ψ we have to take the numbers from the figure, where we assume * to be
2 leading to: ψ(Text, Sentence) = (1, 2), ψ(Sentence, Delimiter) = (1, 1), and
ψ(Sentence, Word) = (1, 2). It is worth noting that we can assume any arbitrary
value of the arity for each relationship in case of *. However, it is not recom-
mended to choose too high values, because - as we will see later - this increases
the number of test cases to be generated.

When having a look at the graph representation of ontologies, we can obvi-
ously add structural means for characterizing ontologies. Concepts correspond
to graph vertices, and relations to the edges of a graph. Considering the defini-
tion of ontologies, the relations are tuples comprising two concepts and a type
and can be interpreted as directed edges. Hence, we can easily find a mapping
from constraints to directed graphs and define the corresponding means for root
vertices, leaf vertices, and cycles.

Definition 2 (Root concept; leaf concept). Given an ontology (C,A,D, ω,
R, ψ). A concept c ∈ C is a root concept if and only if there exists no relation
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(c′, c, x) ∈ R for c′ ∈ C, x ∈ {i, c}. A concept c ∈ C is a leaf concept if and
only if there is no relation (c, c′, x) ∈ R for c′ ∈ C, x ∈ {i, c}.

Accordingly to this definition, there is one root vertex Text and two leaf
vertices Delimiter and Word in the text ontology.

Definition 3 (Cyclic ontology). An ontology (C,A,D, ω,R, ψ) is called a
cyclic ontology if and only if (i) there is a relation (c, c, x) ∈ R for a con-
cept c ∈ C and x ∈ {i, c}, or (ii) there are relations (c0, c1, x0), . . . , (ci, c0, xi)
in R for i > 0, concepts c0, . . . , ciinC and x0, . . . , xi ∈ {i, c}. In this case the
sequence of relations is called a cycle. If an ontology is not cyclic, it is called
acyclic ontology.

Obviously the ontology for texts is an acyclic ontology. Note that for gen-
erating an input model for combinatorial testing, we rely on acyclic ontologies
comprising exactly one root concept. We call such an ontology a well-formed
ontology.

Definition 4 (Well-formed ontology). An ontology (C,A,D, ω,R, ψ) is a
well-formed ontology if and only if (i) it comprises exactly one root concept, (ii)
it is acyclic, and (iii) where all its leaf concepts have attributes.

It is worth noting that rule (iii) in the definition of well-formed ontologies
assures that we are able to construct test cases from ontologies.

In order to model the input for a particular application, we have to first
come up with concepts that are used for describing that input. For each of these
concepts, we further on define the attributes and finally the relations capturing
the relationship between two concepts. For inheritance, we have to show that one
concept is a generalization of the other or vice versa a specialization. For example,
in the case of the automotive domain, we have the concepts of vehicle, car,
and truck, where both truck and car are a specialization of the more general
concept of vehicle. In case of composition, we have to ask whether one concept
can be part of the description of another concept. In the text ontology, we know
that a sentence has parts, i.e., its words, and also delimiters at the end. Hence,
the concepts of word and delimiter have to be in compositional relation with
sentence. As already mentioned, we also want to have exactly one root concept
in the resulting ontology and no cycles.

3.2 Combinatorial Testing

Combinatorial testing (CT) is a method that aims to improve the effectiveness
of software testing while lowering its cost at the same time. The essence of CT
is that not all parameters contribute to failures but by interactions between
relatively few parameters [6].

CT is rooted in the mathematical concept of combinatorics, which is used
for the construction of combinatorial objects called Covering Arrays (CA). A
fixed-value covering array denoted by CA(N, vk, t) or CA(N, k, v, t) is an N × k
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matrix of elements from a set of v symbols {0, . . . , (v−1)} such that every set of
t columns contains each possible t-tuple of elements at least once where t is the
strength of the covering array. A mixed-value covering array is an extension of
fixed value CA where k = k1 + . . . + kn meaning that for each column k1 (i = 1
to n) it has v1 (i = 1 to n)different elements, respectively [7].

Hence, the input model required for combinatorial testing has to have vari-
ables and their domains. In addition, there might be constraints that restrict the
number of valid value combinations. Formally, we are able to define combinato-
rial testing input models as follows:

Definition 5 (Combinatorial testing input model). A combinatorial test-
ing input model is a tuple (V,DOM,CONS) where V is a set of variables,
DOM is a function mapping variables from V to a set of values, i.e., the vari-
ables’ domains, and CONS is a set of constraints over variables that have to be
fulfilled for each test case.

Table 1. A 2-way test suite for platform configuration

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X IE IPv4 Intel Sybase

6 OS X Firefox IPv4 Intel Oracle

7 RHEL IE IPv6 AMD MySQL

8 RHEL Firefox IPv4 Intel Sybase

9 RHEL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle

Testing with a test suite of t-way covering array is called t-way testing [7]. It
requires that every combination of any t parameter values in the software must be
tested at least once. When t = 1, it is called the Each Choice (EC) combination
strategy. It becomes Pairwise Testing (PW) when t = 2. When t = n, it is
called the All Combination (AC) strategy meaning that every combination of
all n parameter values must be tested at least once. The input model for CT
includes the number of parameters, the value range for each parameter, and
any constraints among these parameters. For example [9], assume that there
is an application which needs to be run on different platforms consisting of five
components (or parameters): OS (Windows XP, Apple OS X, Red Hat Enterprise
Linux), browser (Internet Explorer, Firefox), protocol (IPv4, IPv6), CPU (Intel,
AMD), and database (MySQL, Sybase, Oracle). There is a total of 72 (i.e.,
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3 × 2 × 2 × 2 × 3) possible platforms (or combinations). However, as shown in
Table 1, it only requires 10 tests for conducting a 2-way or pairwise testing to
cover all possible pairs of platform components.

According to Nie and Leung [16], CT has the following characteristics: (1)
CT generates test cases by selecting values for parameters and by combining
these values to form a CA. These test cases cover all t-way combinations of
parameter values, where t is the strength specifying the number of parameters
in combination; (2) CT uses a CA as the test suite. The CA aims to test as many
parameter value combinations as possible to detect failures triggered by these
interactions; (3) Not every parameter contributes to a fault, and some faults can
only be triggered by a small number of parameters; (4) CT does not require
knowledge about the implementation of SUT; and (5) Test generation for CT
can be automated.

In addition, to conduct a CT-based test generation strategy, four aspects need
to be considered [16]: (1) specifying the strength for CT as the corresponding
CAs have different failure detection abilities with different cost. Two of the most
widely used covering array generators are ACTS [26] and PICT [5]; (2) assign
some specific test cases in advance; (3) considering constraints can increase the
difficulty in applying CT; and (4) method to be used to generate test cases. In
general, the methods can be categorized into four groups: greedy algorithm (e.g.,
AETG [2] and IPO [24]), heuristic search algorithm, mathematical method, and
random method.

4 Ontology Conversion

Before introducing the ontology conversion formally, we first illustrate the under-
lying ideas using our text ontology.

Example 2. Let us explain our approach using the text ontology formally intro-
duced in Example 1. First, have a look at the concept Sentence composed from
Word and Delimiter. A test case capturing one particular Sentence can be con-
sidered as an instance or individual of Sentence. Each instance of Sentence,
therefore, comprises 1 to n instances of Word, i.e., w1, . . . , wn, and one instance
of Delimiter, i.e., d. Note that each instance of the leaf concepts Word and
Delimiter comprises a particular value of their attributes, which can be obtained
from their domains.

An instance of a concept that is not a leaf concept now comprise the
instances of the concepts staying in relation. Hence, one instance of Sentence
is w1 . . . wn d. This is exactly what we need for combinatorial testing. The
wi’s and d represent the variables of the input model and their domains come
from leaf concepts, i.e., defined using the attributes and their domains that
can be accessed using the dom function. For this example, instances of Word
can be represented as a variable Word id with a domain dom(Word, id) =
{‘word1’, ‘word2’, ‘word3’}. Using the same idea for the delimiter concept, we
finally obtain a combinatorial input model for Sentence comprising the variables
Word id 1, . . . , Word id n, Delimiter id, which represent the words w1, . . . , wn
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and the delimiter d, and their corresponding domains given when using the dom
function.

In the following, we formally introduce the conversion of ontologies into an
input model for combinatorial testing. Given an ontology (C,A,D, ω,R, τ, ψ),
we describe the conversion for the three cases, i.e., concepts with attributes,
inheritance relations, and compositional relations. For each case, we compute the
combinatorial testing input model MCT comprising its variables, their domains,
and constraints denoted by V CT , DOMCT , and CONSCT respectively, i.e.,
MCT = (V CT ,DOMCT , CONSCT ). Whenever needed we use a combinatorial
testing algorithm CT (M, t) where M is a combinatorial testing input model and
t the combinatorial strength, returning a test suite.

Concepts with attributes. Let us assume a concept c ∈ C with attributes
a1, . . . , an ∈ A, n ≥ 1. This is the simplest case where we only have to con-
struct input variables for combinatorial testing for each attribute of the con-
cept. The domain of each combinatorial testing input variable is equivalent to
the domain of its corresponding attribute, and there are no further constraints
to add. I.e.: V CT = {c a1, . . . , c an}, ∀n

i=1 : DOMCT (c ai) = dom(c, ai), and
CONSCT = {}.

Concepts and inheritance. Let us assume a concept c ∈ C having n ≥ 1 sub-
concepts c1, . . . , cn ∈ C such that ∀n

i=1 : (c, ci) ∈ R. In this case, for c we have
only one variable on side of combinatorial testing, and all its values come from
the different values obtained when using the models from its sub-concepts
and generating their combinatorial test suites. Let us assume MCT

i be the
combinatorial testing model of sub-concept ci, then MCT of c is given as
follows: V CT = {c}, DOMCT (c) =

⋃n
i=1 CT (MCT

i , t), and CONSCT = {},
where CT is an algorithm computing a combinatorial test suite of strength t.

Concepts and composition. Assume the case of two concepts c1 and c2 from
C and a relation (c1, c2) ∈ R of type τ(c1, c2) = c in our ontology. This is
the case we already discussed at the beginning of this section in Example 2.
Depending on the minimum arity of the relation we have to consider two
cases. If the minimum arity is zero, then there need not to be any instance
of c2 attached to c1. In case the minimum arity is one, we have at least one
individual of c2. We distinguish these two cases using a constraint.
Before, we discuss how to handle the different instances of c2, i.e., c12, . . . , c

m
2 .

For a fixed m, we are able to construct a combinatorial testing input model.
We only need to say that each instance is itself a variable and its domain
is given from all values computed when using the combinatorial testing
model of c2, i.e., MCT (c2). V CT = {c12, . . . , c

m
2 } and ∀m

i=1 : DOMCT (ci2) =
CT (MCT (c2), t) ∪ {ε} where CT is an algorithm computing a combinatorial
test suite of strength t.
Note that ε represents the empty value allowing a certain instance of c2
not to be relevant. We decided to use this, in order to finally come up
with compositions of arbitrary length less than or equal to m. Because
there might be the case that all instances of c2 have a value of ε, we have
to consider two cases depending on the minimum arity of the relation. In
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case there need to be no instance of c2, i.e., when the minimum arity is
zero, there is no need for a constraint, i.e., CONSCT = {}. Otherwise,
CONSCT = {∃i : 1 < i ≤ m ∧ ci2 �= ε} stating that at least one individ-
ual of c2 has to have a non empty value when computing the combinatorial
test suite.

For general well-formed ontologies there might be cases where we have to
combine the different rules described for computing a combinatorial test suite.
For example, there might be a concept that has itself attributes and relations
with other concepts. In such cases, we have to combine the variable, domains
and constraints in order to compute the summary model of this concept for
generating combinatorial test suites.

Algorithm 1 TC GEN (O,t)
Require: A well-formed ontology O and a combinatorial strength t.
Ensure: A combinatorial test suite for the root concept of the ontology O.
1: Let r be the root concept of ontology O.
2: Call CT ONT(r, O, t) and store the result in (V CT , DOMCT , CONSCT ).
3: return CT ((V CT , DOMCT , CONSCT ), t)

Algorithm 1 TC GEN computes combinatorial test suites for the root con-
cept of given ontology, and makes use of Algorithm2 CT ONT that recursively
computes the combinatorial input models for the different concepts starting with
the root node down to the leafs. In this algorithm the different cases are directly
implemented. In the algorithm description we assume that the global variable
m stores the number of instances that should be generated for compositional
relations. The algorithm can be easily adapted in order to cope with a value of
m to adapted for each concept. We only need to introduce a function that maps
a concept to its maximum value of instances to be considered.

Obviously, CT ONT terminates because we only consider finite and well-
formed ontologies where there are no cycles and a finite number of concepts and
relations. The algorithm traverses the whole graph and has therefore a compu-
tational complexity in the size of the graph when ignoring the computational
complexity of combinatorial test suites during the traversal. The algorithm can
be optimized to avoid multiple computations of input models, which may occur.
The drawback of CT ONT is that the number of computed test cases can be
high. For example, let us consider the simplest case assuming a combinatorial
strength of 2 and only 2 instances to be generated for every relation. If we con-
sider the first relation with one leaf concept having one attribute with n elements
in its domain, the number of generated tests is bound by n. If we use this result
in a further step with 2 instances, we get n2 combinations because we have to
combine all elements in the domain of the instances, which are n elements. In
the next levels we obtain n4, n16, . . . , n2m test cases where m is the depth of the
concept hierarchy. Hence, the depth of the ontology has to be small in order to
be still feasible.
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Algorithm 2 CT ONT (c,O,t)
Require: A concept c of a well-formed ontology O, and a combinatorial strength k.
Ensure: A combinatorial input model for n.
1: Let V CT and CONSCT be empty sets.
2: for all attributes a ∈ ω(c) do
3: Add c a to V CT .
4: Let DOMCT (c a) be dom(c, a).
5: end for
6: if c is not a leaf concept then
7: Let tmp be the empty set.
8: for all relations (c, c′) ∈ R with type τ(c, c′) = i do
9: Add CT (CT ONT(c′, O, t), t) to tmp

10: end for
11: if tmp is not empty then
12: Add c to V CT .
13: Let DOMCT (c) be tmp.
14: end if
15: for all relations (c, c′) ∈ R with type τ(c, c′) = c do
16: Add variables c′ 1 to c′ m to V CT .
17: Let d be CT (CT ONT(c′, O, t), t) ∪ {ε}
18: for i = 1 to m do
19: Let DOMCT (c′ i) be d.
20: end for
21: if ψ(c, c′) = (1, x) then
22: Add

∨
i∈{1,...,m} c′ i �= ε to CONSCT .

23: end if
24: end for
25: end if
26: return (V CT , DOMCT , CONSCT )

5 Case Study

For the case study, we use the Text ontology mentioned in previous sections
for demonstration. In the following, we provide a step-by-step instruction for
elaborating the process of applying the proposed algorithm TC GEN to convert
a given ontology to a CT-based input model.

Using the text ontology O, we invoke the function TC GEN(O, t) at the
beginning, which internally calls the function CT ONT(Text,O, t), where Text
is the root concept of our ontology O is (Algorithm 1, Line 2). In this step
ω(Text) = {} meaning that Text currently does not have any attributes. There-
fore, the corresponding V CT (Text) is empty and DOMCT of Text is also empty
(see Algorithm 2, Lines 1 to 6).

Since Text is not a leaf concept and there is one compositional relation
between the concepts Text and Sentence, τ(Text, Sentence) = c with ψ(Text,
Sentence) = (1, 2). Then for the relation (Text, Sentence), we add two vari-
ables s1 and s2 to V CT (Text). For each of these variables, DOMCT (s i) is
defined calling the combinatorial testing algorithm CT using the recursive call
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to CT ONT, i.e., CT (CT ONT(Sentence,O, t), t)∪{ε} (Algorithm 2, Lines 18
to 20). Because ψ(Text, Sentence) = (1, 2), we add the constraint s1 �= ε∨s2 �= ε
to CONSCT for concept Text (Algorithm 2, Lines 21 to 23).

In order to determine the CT input model for Text, we first have to have the
input model for concept Sentence. Obviously, DOMCT (s1) = DOMCT (s2) we
obtain calling CT (CT ONT(Sentence,O, t), t)∪{ε}. When invoking CT ONT
(Sentence,O, t), we see that Sentence is not a leaf concept because it has two
compositional relations with τ(Sentence, Delimiter) = c, and ψ(Sentence,
Delimiter) = (1, 1) and τ(Sentence,Word) = c and ψ(Sentence,Word) =
(1, 2), respectively. As a result, for (Sentence,Delimiter) we add one variable d
to V CT (Sentence) and let DOMCT (d) = CT (CT ONT(Delimiter,O, t), t) ∪
{ε}. For (Sentence,Word) we add two variables w1 and w2 to V CT (Sentence)
and let DOMCT (wi) = CT (CT ONT(Word,O, k), k)∪{ε} for i = 1, 2. In addi-
tion, we also add the two constraints d �= ε and w1 �= ε ∨ w2 �= ε to CONSCT

for Sentence. For the recursive function call CT ONT(Delimiter,O, k),
and because Delimiter is a leaf concept we set V CT (Delimiter) = {id},
DOMCT (id) = {‘.’, ‘?’}, and CONSCT (Delimiter) = {}, Therefore, the domain
DOMCT (d) = {‘.’, ‘?’, ε}.

Regarding DOMCT (wi) = CT (CT ONT(Word,O, t), t) ∪ {ε}, let us again
only focus
on DOMCT (w1) = CT (CT ONT(Word,O, t), t)∪{ε} in this example, because
the same applies for computing DOMCT (w2). For CT ONT(Word,O, t), since
Word is a leaf concept and ω(Word) = {(id, {‘word1’, ‘word2’, ‘word3’})}, we
obtain DOMCT (w1) = {‘word1’, ‘word2’, ‘word3’, ε} which is the same for
DOMCT (w2).

When taking this together, we are now able to come up with a CT input
model MCT for Sentence: V CT (Sentence) = {w1, w2, d}, with DOMCT (w1) =
DOMCT (w2) = {‘word1’, ‘word2’, ‘word3’, ε}, DOMCT (d) = {‘.’, ‘?’, ε}, and
CONSCT (Sentence) = {w1 �= ε ∨ w2 �= ε, d �= ε}.

Now we use ACTS 3.1 and IPOG to generate a 2-way (i.e., t = 2) CT-based
test suite for the instances of Sentence, i.e., s1 and s2. The hardware environ-
ment used to carry all experiments is a Dell XPS Laptop with 2.6 GHz, Intel
Core i7, 16 GB memory using Windows 10. In Table 2 we see the obtained 15 test
cases, which is far less compared to a total of 48 (=4 × 4 × 3) possible test cases
given the corresponding input model extracted from the ontology and assuming
strength 2.

Note that the test suite in Table 2 forms the domain for variables s1 and
s2 of the Word concept. Hence, we obtain the following CT input model
MCT for Word: V CT (Text) = {s1, s2}, with DOMCT (s1) = DOMCT (s2) =
{(‘word1’, ‘word2’, ‘?’), (‘word1’, ‘word2’, ‘.’), . . . , (ε, ‘word3’, ‘?’), ε} having 15
items from the test suite of Sentence and additionally ε, and, CONSCT (Text) =
{s1 �= ε ∨ s2 �= ε}. When using ACTS 3.1 and IPOG, we obtain 255 test cases
for the concept Text from this input model and combinatorial strength 2. Obvi-
ously, with the exception of one test case that would capture the case where
both sentences are empty, this test suite comprises all possible elements. If we
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Table 2. 2-way test suite for the instances s1, and s2 of concept Sentence

w1 w2 d

1 ‘word1’ ‘word1’ ‘?’

2 ‘word1’ ‘word2’ ‘.’

3 ‘word1’ ‘word3’ ‘?’

4 ‘word1’ ε ‘.’

5 ‘word2’ ‘word1’ ‘.’

6 ‘word2’ ‘word2’ ‘?’

7 ‘word2’ ‘word3’ ‘.’

8 ‘word2’ ε ‘?’

9 ‘word3’ ‘word1’ ‘.’

10 ‘word3’ ‘word2’ ‘?’

11 ‘word3’ ‘word3’ ‘.’

12 ‘word3’ ε ‘?’

13 ε ‘word1’ ‘.’

14 ε ‘word2’ ‘?’

15 ε ‘word3’ ‘?’

would not restrict the number of instances for sentence to 2, we would be able
to obtain fewer tests if the strength is less than the number of sentences.

From this case study we see that the proposed algorithm TC GEN allows for
obtaining combinatorial test suites from specified ontologies. It is obvious that
the proposed algorithm can be easily improved avoiding unnecessary recursive
calls. For this purpose, we need only to store the outcome of combinatorial
testing for one concept whenever available and re-use it during the process. It
is also worth mentioning that in the algorithm and the explanations we assume
a certain amount of instances to be generated. This information might be given
for each concept in the ontology. In addition, the algorithm does not specify
any order in the sequence of attributes or instances. For example, in Table 2 we
stated the order w1, w2 followed by d. Hence, for coming up with concrete test
cases, we have to make use of such an order to obtain meaningful information
to be used to stimulate the system under test.

6 Conclusions

In this paper, we introduced an algorithm that is able to obtain a combina-
torial test suite for a given ontology. We discussed the basic foundations and
outlined the basic principles behind the algorithm. In addition, we elaborate on
a case study showing that the algorithm can be applied delivering combinato-
rial test suites. Furthermore, we discussed additional assumptions used in the
case study and potential improvements of the algorithm, e.g., for avoiding the
re-computation of test input models in a recursive algorithm call.
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To the best of our knowledge the proposed algorithm is the first one allowing
to obtain combinatorial test suites from ontologies that can also be applied to
UML class diagrams. Previous research has mainly focused on obtaining combi-
natorial test suites from use cases, activity or sequence diagrams. Improvements
might consider generating a CT input model for the root concept of an ontol-
ogy via collecting all variables from their related concepts instead of obtaining
domain information from those concepts. In future research, we will investi-
gate in this direction and also provide an empirical evaluation with the purpose
of showing the practicability of the proposed approach for practical applica-
tions and comparing different versions of test suite generation using ontologies
and combinatorial testing. In particular, we will focus on the automated and
autonomous driving domain where practitioners and researchers are currently
working on ontologies describing driving scenarios.
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